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In this note: 

1) Bounded linear operator equations on a reproducing kernel Hilbert 
space may be solved analytically and numerically. Its importance and essence 
are introduced. 



128

2) Restriction and extension of functions in a reproducing kernel space 
are discussed with a general theory and with concrete examples. 

3) Very concrete new results and open problems are introduced in Sobolev 
spaces and analytic functions. (MAIN PART) 

4) Very recent results and information related are introduced. 

1 Introduction 

At first, we shall consider the estimates of the norms of Bergman spaces on 
a domain and on its subset and at the same time, restrictions and extensions 
of the Bergman functions by means of bounded linear operators using the 
Tikhonov regularization. 

For a simple example, on the Bergman space on the entire complex plane 
<C comprising of analytic functions f(z) with finite integrals, for any fixed 
t>O 

~jrf lf(z)l 2 exp (-y
2

) dxdy < oo,z=x+iy, 
v 21rt le 2t 

from the identity ([16], [18]) 

l fl ( y2) 00 
( 2t )J 1 . 

./2irt lf(x + iy)l 2 exp -- dxdy = I:-.-1 l8;J(x)l 2dx, 
21rt e 2t . J . JR 

J=O 

(1.1) 

we have the inequality 

r lf(x)l 2dx 5c ~ Jr r lf(x + iy)l 2 exp (- y
2

) dxdy, (1.2) 
}JR v 21rt le 2t 

that is, the restriction f ( x) off ( z) to the real line is a bounded linear operator 
from the Bergman space to the L2 (IR) space. Our basic interests are such an 
inequality and operator properties for the derived bounded linear operator; 
in particular, we will examine the relation of the functions f ( x) on IR and 
f(z) on <C. 

Here, the Bergman spaces may be considered as a typical example and 
the method will have a general nature for reproducing kernel Hilbert spaces 
(RKHSs). 
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As a basic tool, we use bounded linear operators using reproducing kernel 
Hilbert spaces and the Tikhonov regularization for bounded linear operator 
equations; this method is a powerful and general one in analytical and nu­
merical viewpoints that was proved by the famous and difficult real inversion 
formula of the Laplace transform and many concrete examples by applying 
the infinite precision method by H. Fujiwara. 

In order to state this note in a self-contained way, at the first part of the 
paper, we shall state their basic properties compactly that are taken from the 
book ([18]). Then, we shall apply them to the concrete cases like the Bergman 
spaces and the Sobolev spaces with some new idea and applications. 

2 Moore-Penrose generalized solution 

Let L be any bounded linear operator from a reproducing kernel Hilbert 
space HK(E) admitting a kernel K: Ex E----+ C into a Hilbert space 1-l. We 
set KP= K(·,p). 

For any member d of 1-l, we consider the best approximation problem 

(2.1) 

Set 

and 
(2.3) 

Theorem A ([18], 167 page): Under the notations (2.2) and (2.3), 
we have 

Hk(E) = {L* Lf : f E HK(E)} 

and the inner product is given by: 

(2.4) 

(2.5) 

for f, g E HK(E). 

Theorem B ([18], 167 page): Problem (2.1) admits a solution if and 
only if L*d E Hk(E). If this is the case, then we have L*d = L* L] for some 
J E HK(E) and J is a solution to (2.1). 
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Let fd E HK(E) be the element such that 

L*d = L* Lfd 

with fd E ker(L)-1. 

The extremal function f d (p) has the following representation: 

(2.6) 

Theorem C ([18], 168 page): Keep to the same assumption as above. 
Then we have 

(2.7) 

The adjoint operator L * of L, as we see from equality: 

is represented by the known data d, L, K(p, q), and H. From Theorems A, B, 
C, we see that the problem is well established by the theory of reproducing 
kernels. That is, the existence, the uniqueness and the representation of 
the solutions in the problem are well formulated. In particular, note that 
the adjoint operator is represented in a good way; this fact will turn out 
very important in our framework. The extremal function fd is the Moore­
Penrose generalized inverse Ltd of the equation Lf = d. The criteria in 
Theorem A is involved and the Moore-Penrose generalized inverse f d is, in 
general, not good, but abstract and an ideal one, in general. 

Furthermore, we note that 

Theorem D ([18], 178 page): The following are equivalent: 

( 1) L is injective; 

( 2) L * L is injective; 

(3) { L* LKx}xEE is complete in HK(E); 

(4) L* L: HK(E)-+ Hk(E) is isometry. 

In particular, note that even the simple case, L* is still, in general, not 
injective, and so we can not say that from L*d = L* Lf, Lf = d, the classical 
solution. 
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3 By the Tikhonov regularization 

When the data contain error or noise in some practical cases, the exact theory 
by the Moore-Penrose generalized solutions is not applicable, therefore, we 
shall introduce the concept of the Tikhonov regularization with general data 
g. 

Theorem E ([18], 182 page): Let a> 0. For a bounded linear operator 
L for a reproducing kernel Hilbert space HK(E) into a Hilbert space 1-l, the 
following minimizing problem admits a unique solution; 

(3.1) 

Furthermore, the minimum is attained by 

fd,a = (L* L + a)-1 L*d = (1 >.!a dE>.) L*d (3.2) 

by using the spectral decomposition. Furthermore, d f---+ f d,a is almost the 
inverse of L in the following sense: 

limh9 a = g 
et.j,0 ' 

(3.3) 

in HK(E) for all g E HK(E) and when there exists the Moore-Penrose 
generalized solution, 

limLfd a= d 
a.j,O ' 

(3.4) 

in 1-l. 

Theorem F ([18], 183 page): Let L: HK(E)----+ 1{ be a bounded linear 
operator. Then define an inner product 

(3.5) 

for Ji, h E HK(E). Then (HK(E), (·, ·)HK°'(E)) is a reproducing kernel 
Hilbert space whose reproducing kernel is given by: 

(3.6) 

Here, Ka(P, q) satisfies 

(3.7) 
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that is corresponding to the Fredholm integral equation of the second kind for 
many concrete cases. 

Theorem G ([18], 184-185 pages): Under the same assumption as 
Theorems E and F, 

attains the minimum only at fd,a E Hx(E) which satisfies 

(3.8) 

Furthermore, f d,a (p) satisfies 

(3.9) 

The representation (3.8) is not direct by using the solution of (3.7). How­
ever, the equation (3.7) is the Fredholm integral type in the second kind and 
so, the solutions are effective and numerically stable, as we see from the real 
inversion formula of the Laplace transform by taking a small a. See Chapter 
4 of [18]. 

In particular, H. Fujiwara solved the integral equation corresponding to 
(3. 7) for the real inversion formula of the Laplace transform with 6000 points 
discretization with 600 digits precision based on the concept of infinite 
precision. Then, the regularization parameters were a = 10-100 , 10-4oo sur­
prisingly. H. Fujiwara was successful in deriving numerically the real inver­
sion for the Laplace transform of the distribution delta which was proposed 
by V. V. Kryzhniy as a difficult case. This fact will mean that the above 
results are valid for very general functions approximated by the functions of 
the reproducing kernel Hilbert space. 

See also [2, 3] for another typical applications. 

4 Restriction of reproducing kernel Hilbert 
spaces 

In order to consider the restriction and extension of reproducing kernel 
Hilbert spaces, we shall recall the fundamental general property. 
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Suppose that we are given a positive definite quadratic form function 
K : E x E --+ C. The main concern here is to consider restriction of K to 
Ea x Ea, where Ea is a subset of E. Of course, the restriction is again a 
positive definite quadratic form function on the subset Ea x Ea. We shall 
consider the relation between the two reproducing kernel Hilbert spaces. 

Theorem H ([18], 78-80 pages): Let Ea be a subset of E. Then the 
Hilbert space that KIEa x Ea : Ea x Ea --+ CC defines is given by: 

HKIEoxE0 (Ea) = {f E F(Ea) : f = ]IEa for some J E HK(E)}. (4.1) 

Furthermore, the norm is expressed in terms of the one of HK(E): 

llfllHKIEoxEo(Eo) = min{llfllHK(E) : J E HK(E), f = flEa}- (4.2) 

In Theorem H, note that the inequality, for any function f E HK(E) 

llfllHKIEoxE0 (Eo) :::; llfllHK(E), (4.3) 

that is, the restriction map is a bounded linear operator. 

5 A general inequality to the restriction 

The restriction of reproducing kernel Hilbert spaces may be stated by The­
orem H, however, as we see from the concrete example of (1.1), in general, 
its construction is involved. In our method, meanwhile, we need a bounded 
linear operator stated by the norm inequality as in (1.2). There, of course, 
we are interested in its precise norm of the bounded linear operator, however, 
for many cases we do not need its precise norm for our applications. 

Therefore, we first introduce a general norm inequality of type (1.2) with 
the typical Bergman space. 

Let D be a bounded regular domain on the complex z = x + iy plane 
whoes boundary is composed of a finite number of disjoint analytic Jordan 
curves. Let AL2 (D) be a Hilbert space (Bergman space) comprising analytic 

1 

functions f(z) on D and with finite norms llfllAL2 (D) = {ffn lf(z)l 2dxdy}2. 
As we see simply, f--+ f(z)(z E D) is a bounded linear functional on AL2 (D). 
Therefore, there exists a reproducing kernel K(z, u) such that for any u E D 
and for any function f E AL2 (D), 

f(u) = J L f(z)K(z, u)dxdy. (5.1) 
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From K(z, u) = K(u, z), K(z, u) is analytic in u (complex conjugate). 
So, we shall denote it as K(z, u). This is the Bergman kernel of Dor on D. 

In general, we have the inequality 

(5.2) 

Therefore, for any subset D0 of D, we can take a positive continuous 
function p on D0 satisfying the norm inequality 

with 

r lf(z) 12 p(z)dm(z) ::::; llfll~L2(D) r K(z, z)p(z)dm(z) (5.3) 
lva lva 

{ K(z, z)p(z)dm(z) < oo, 
lva 

for some positive measure dm. For dm, we consider the simple line integral 
or surface measure for some simple cases of D0 . 

With (5.3), we shall consider it as a bounded linear operator of the 
Bergman space AL2 (D) into the space AL2 (D0 , p) satisfying 

r IJ(z)l2p(z)dm(z) < 00. 
lva 

In order to simply the situation, in the sequel we assume that D0 is a 
rectifiable line in the domain D and dm is the line element ldzl. 

Now as in ([16], [18]), for a general 

r lg(z)l2p(z)dm(z) < 00. 
lva 

we can discus approximations and analytic extension problem in this frame­
work by the operator theory. However, here, we shall consider the bounded 
linear operator in the framework of analytic functions. 

For the bounded linear operator L from the Bergman space AL2 (D) into 
the space AL2(Do, pldzl) 

r lf(z)l2p(z)ldzl < oo, 
lva 

for the sake of analyticity of functions, 
L is injective 
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and 
for the image Lf of L of the Bergman space AL2(D), its inverse f of L 

is, of course, uniquely, determined. For FE AL2(D0 , pldzl), from 

(L* F)(z) = (L* F((), K((, z))AL2(n) = (F, LK((, z))AL2(no,pldzl), (5.4) 

if the family { LK ( (, z); z E D} of functions is complete, then the adjoint 
operator L * is injective. 

With the basic assumption that is clear in the representation of concrete 
cases, we can obtain the basic result: 

Theorem 5.1 ([18], page 168): The analytic extension operator L-1 

from AL2(D0 , pldzl) onto AL2(D) that is the inverse of the restriction oper­
ator L and is uniquely determined is represented by using (5.4) with 

(5.5) 

by using Theorem C. 

6 Bergman norms and Szego norms 

For two functions rp and 'ljJ of H2 (D) for any regular domain D and for the 
analytic Hardy 2 space (Szego space), we obtain the generalized isoperimetric 
inequality 

~ 1r r lrp(z)'ljJ(z)l 2dxdy::::; 2_ r lrp(z)l 2 ldzl2_ r l'l/J(z)l2 ldzl, (6.1) 
K k ~kn ~kn 

and so, we obtain the bounded linear operator from the Szego space to the 
Bergman space 

(6.2) 

for the length l(8D) of the boundary 8D ([13]). 
Note that the inequality (6.2) is a curious one in the sense that the 

Bergman norm is for analytic differentials, but the Szego norm is for half 
order differentials. In connection with this inequality, we recall the interest­
ing best possible norm inequality: 

Jr r lf'(z)l2dxdy::::; ! r l_f'(z)dzl2 
Jn 2 } 8n idW(z, t) 

(6.3) 
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= I_ r lf'(z) 12 (8G(z, t) )-1 ldzl, 
21r lan avz 

that means the relation between the Bergman norms and the weighted Szego 
norm for (exact) differentials. Here, for the conjugate harmonic function 
G*(z, t) of the Green function G(z, t) of D, W(z, t) = G(z, t) + iG*(z, t), and 
idW(z, t) is a single-valued meromorphic differential and positive along the 
boundary 8D and 8/8vz is the inner normal derivative with respect to D. 
8G(z, t)/8vz is a positive continuous function on 8D ([14]). 

This inequality is not so simple to derive and for its proof we must exam­
ine deeply the relations among the Hardy reproducing kernel, its conjugate 
kernel and the Bergman kernel. 

The conjugate Hardy space which is given by the right hand side of (6.3) 
was surprisingly generalized as the Ohsawa-Saitoh-Hardy space on 
n-dimensional complex manifolds by Q. Guan and Z. Yuan ([9]) through 
([6, 7, 8]) with many concrete and deep results. 

Meanwhile, for the weighted Szego space, some general spaces containing 
discontinuous weights were considered in T. L. Zynda, Z. P. Winiarski, J. J. 
Sadowski, and S. G. Krantz, [20]. 

In connection with the isometric equality (1.1) and the inequalities (5.3) 
and (6.2), we may consider, in (1.1) and (1.2) 

Open problem 6.1: Does there exist a weight function p satisfying the 
inequality 

~jrf lf(x+iy)l 2 exp (-y2
) dxdy s; r lf(x)l 2 p(x)dx. (6.4) 

v21rt Jee 2t }JR 

7 Sobolev Hilbert spaces 

Example. 

The space H8 (IR.) is comprising of absolutely continuous functions f on 
IR. with the norm 

IIJIIHs(lE.) = 1 (lf(x)l 2 + lf'(x)l 2 )dx. (7.1) 
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The Hilbert space H8 ('JR..) admits the reproducing kernel 

1 r 1 1 
K(x, y) = 27r }'JR 1 + (2 exp(i(x - y)()d( = 2e-lx-yl (x, y E ~). (7.2) 

Its restriction to the closed interval [a, b] is the reproducing kernel Hilbert 
space H8 [a, b] = w1,2 [a, b] as a set of functions, and the norm is given by 

llfllHs[a,b] (1b(lf(x)l2 + lf'(x)l2) dx) + lf(a)l2 + lf(b)l2- (7.3) 

([18], pages 10-16). 
The representation (7.2) means that the functions f(x) of Hs(~) are 

represented in the form 

f(x) = 2~ 1 l: (2 exp(ix()F(()d( 

with the functions F(() satisfying 

2~ 11: (2 IF(()l2d( < 00 

and the norm is represented by 

IIJIIHs('iR) = 

The restriction mapping L from the space Hs(~) to the space H8 [a, b] is, of 
course, not injective and so, in particular, we obtain the norm inequality 

that is, 

1 (lf(x)l2 + lf'(x)l2)dx ~ (1\IJ(x)l2 + lf'(x)l2) dx) + lf(a)l2 + lf(b)l2-
(7.4) 

By our general theory, we can give the precise correspondence of the two 
spaces; that is, 



138

(7.5) 

and 

(7.6) 

with the minimum extension f of f[a,b] in Hs[a, b] to Hs(IR). Indeed, we 
can derive directly the identity (7.6) for the minimum extension f of f[a,b] in 
H5 [a, b] to H5 (IR). See the following Theorem 7.1 for the space W 2,2 (IR). 

However, for the minimum extension formula we have the general formula 
in Theorem H, 

f(p) = (JIEo(·), K(·,p))HKIEoxE0 (Eo), 

for the minimum extension f of flE0 . See the proof of Proposition 2.5 in 
[18] (pages 79-80), in particular, (2.48). 

We obtained several realizations of restricted reproducing kernel Hilbert 
spaces as in (7.3), however, they are, in general, involved. See [16], [18]. 
The formula (7.3) is a simple result, however, the realization of the restricted 
reproducing kernel spaces is, in general, complicated in this sense. 

n . 
Open Problem 7.1: Let m > 2 be an integer. Denote by mCv the 

binomial coefficient and by wm,2 (IR.n) the Sobolev space whose norm is given 
by 

Then, the reproducing kernel K is given by 

_ 1 f exp(i(x - y). ~) 
K(x, y) = (27r)n })Rn (1 + 1~12)m d~ (7.8) 

(/18}, page 22). How will be the realization of the norm for the restricted 
reproducing kernel Hilbert space to some nontrivial subset (the typical case is 
a sphere {r < a}) ofIRn as in the case of one dimensional way (7.4)? 

The typical case for the space W 2,2 (IR) 
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For the Sobolev Hilbert space w2 ,2 (IR.) defined to be the completion of 
C~(IR.) with respect to the norm: 

we have the reproducing kernel 

1 
G(s, t) 4e-ls-tl (1 + Is - ti) (s, t E IR.) 

([18], pages 21-22). 
In order to look for the reproducing kernel Hilbert space W 8 ([a, bl), (a< 

b) admitting the restricted reproducing kernel G(s, t) to the interval [a, bl, 
we calculate the integral, for any function f E W 2,2 (IR.) 

(f(s), G(s, t))w2,2([a,b])· 

By setting Gt(s) = G(s, t), we note that 

t-s+l s-t+l 
Gt(s) = 4 exp(s - t)X(a,t)(s) + 4 exp(t - s)X[t,b)(s), 

d~ t-s s-t 
ds (s) = - 4- exp(s - t)X(a,t)(s) - - 4- exp(t - s)X[t,b)(s), 

d2Gt t - s - 1 s - t - 1 
ds2 (s) = 4 exp(s - t)X(a,t)(s) + 4 exp(t - s)X[t,b)(s). (7.9) 

Then, by integration by parts repeatedly, we have 

(f(s), G(s, t))w2,2([a,b]) 

= f(t) 
-t + a - 2 t - a - 1 

+ f(a) 4 exp (a - t) - J'(a) 4 exp (a - t) 

b-t+2 b-t-1 
- f(b) 4 exp (t - b) + J'(b) 4 exp(t - b). (7.10) 

That is 
(f(s), G(s, t))ws([a,b]) 

= f(t) 
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+f(a)G(a, t) (-1 + -l ) 
l+t-a 

+ f'(a)G'(a, t) (-1- - 1) 
t- a 

+f(b)G(b,t) (-1+ l+-/-t) 
+ f' ( b) G' ( b, t) ( b ~ t - 1) . (7.11) 

For this formula, see, [18], pages 15-16 for the one dimensional case. 
We thus have the desired identity admitting the restricted reproducing 

kernel of G(s, t) to the interval [a, b] 

(f, G(·, t))w8 ([a,b]) = (f, G(·, t))w2,2(R) (7.12) 

-t + a - 2 t - a - 1 
- f(a) 4 exp (a - t) + f'(a) 4 exp (a - t) 

b-t+2 b-t-1 + f(b) 4 exp (t - b) - f'(b) 4 exp(t - b). 

We can see that this identity is right, indeed, we shall give another natural 
method in order to see it. 

Another method 

In order to look for the norm admitting the restricted reproducing kernel 
of G(s, t) to the interval [a, b], note that the integral 

[~ (f"(x) 2 + 2f'(x)2 + f(x)2) dx (7.13) 

is identical with its integral of the function 

f(x) = 4f(a)Ga(x) - 4f' (a)G:(x) (7.14) 

that is the minimum integral over (-oo, a) of the functions w2,2 (R) taking 
the values f(a) and f'(a). 

The function is given by 

f(x) =[(A+ B)(a - x) + A] exp(x - a) 
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with 
A= f(a), B = - J'(a). 

Then, by direct calculations, we have 

[~ (f"(x)2 + 2j'(x)2 + f(x)2) dx = 2(A2 +AB+ B2) (7.15) 

= 2(f(a)2 - f(a)J'(a) + J'(a)2). 

From this result, we see that the corresponding inner product over (-oo, a) 
is represented by 

(f1,h)w2,2(-oo,a) = 2(!1(a)h(a) + J{(a)f~(a)) (7.16) 

1 1 
+ 2(!1(a) - J{(a))(h(a) - f~(a)) - 2(!1(a) + J{(a))(h(a) + f~(a)). 

The situation for the integrals over (b, +oo) is similar and so we obtain the 
desired isometric identity 

llfll~2,2(R) = llfll~2,2([a,b]) 

+2(f(a)2 - f(a)f'(a) + J'(a)2) 

+2(f(b)2 - f(b)j'(b) + J'(b)2). 

Therefore, the inner product relation is given by 

(11, h)w2 ,2 (R) = (11, h)w2 ,2 ([a,b]) 

1 
+2(fi(a)f2(a) + f{(a)f~(a)) + 2(Ji(a) - f{(a))(f2(a) - f~(a)) 

1 - 2(fi(a) + f{(a))(h(a) + f~(a)) 

+2(!1(b)h(b) + J{(b)f~(b)) + }U1(b) - J{(b))(h(b) - f~(b)) 

-}U1(b) + J{(b))(h(b) + f~(b)). 

We can confirm that (7.10) and (7.16) are consistent, directly. 
Indeed, 

1 
2(f(a)Gt(a) + J'(a)G~(a)) + 2(f(a) - J'(a))(Gt(a) - G~(a)) 

(7.17) 
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is identical with 

-t + a - 2 t - a - l 
+ f(a) 4 exp (a - t) + f'(a) 4 exp (a - t). 

For the point b, the result is similar. 
In particular, we have 

Theorem 7.1: The extension of the functions f in Ws([a, bl) to W2·2 (R) 
with the minimum norm is given by 

f(t) = (f, G(·, t))w2,2([a,b]) 

1 
+2(f(a)Gt(a) + f'(a)G~(a)) + 2(f(a) - f'(a))(Gt(a) - G~(a)) 

1 - 2(f (a) + f' (a))( Gt(a) + G~(a)) 

+2(f(b)Gt(b) + f'(b)G~(b)) + ~(f(b) - f'(b))(Gt(b) - G~(b)) 

-~(f(b) + f'(b))(Gt(b) + G~(b)). 

Related versions 

By the similar method or directly we have the following results. 

Let 

100 cos(s u) cos(t u) 1r 
K(s, t) = 2 du= - (exp(-ls - ti)+ exp(-s - t)) 

0 u + l 4 
(7.18) 

for s, t > 0. Then HK(0, oo) = W 1•2 (0, oo) as a set of functions and the norm 
is given by: 

2100 
- (lf'(u)l 2 + lf(u)l 2 ) du 
7f 0 

(7.19) 

([18], pages 12-13). From the restriction of the kernel K(s, t) to [a, bl, a> 0, 
we have the norm inequality 

2 2 1 - exp ( - 2a) 2 

llf llHK(O,oo) ~ ; 1 + exp(-2a) lf(a) I (7.20) 
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Let 

-1= sin(su) sin(tu) 1r K(s t) = ----du= - (exp(-1s -ti) - exp(-s -t)) (7.21) 
' 0 u2 + 1 4 

for s, t > 0. Then we have 

HK(0, oo) = {f E AC(0, oo) : f(0) = 0} (7.22) 

as a set of functions and the norm is given by 

21= - (lf'(u)l 2 + lf(u)l 2 ) du 
7r 0 

(7.23) 

([18], pages 13-14). From the restriction of the kernel K(s, t) to [a, b], a> 0, 
we have the norm inequality 

llf llt ~ 3. 1 + exp(-2a) lf(a) 12 
K(O,oo) 7r 1 - exp(-2a) (7.24) 

+3.1b (lf'(u)l 2 + lf(u)l 2 ) du+ 3.lf(b)l 2 • 
1r a 7r 

Let 
K(s, t) = min(s, t) (s, t > 0). (7.25) 

Then we have 

HK(0, oo) = {f E W 1'2 (0, oo) : lim f(E) = o} (7.26) 
c:-J,.O 

as a set of functions and the norm is given by 

(7.27) 

([18], pages 14-15). From the restriction of the kernel K(s, t) to [a, bl, a> 0, 
we have the norm inequality 

1 lb llflltK(O,oo) ~ -lf(a)l 2 + lf'(u)l 2 du. 
a a 

(7.28) 
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We have many type Sobolev Hilbert spaces. For example, 
for w2 = 1 2 - a 2 > 0, the kernel 

exp(-als - ti) CY 
K(s, t) = 2 { cos(wls - ti)+ - sin(wls - ti)} 

4a1 w 

is the reproducing kernel for the Sobolev Hilbert space admitting the norm 

llull 2 = 4a,2u(a) 2 + 4au'(a) 2 

+ lb (u"(t) + 2au'(t) + 1 2u(t))2 dt 

(E. Parzen, [12]). 
See also the recent paper A. Yamada ([19]). 

Basic applications of the realization of the restricted reproduc­
ing kernel Hilbert space 

The identity (7. 6) and other derived identities show that the extension 
of the function with the minimum norm to the whole (half) space from a 
closed interval [a, b] is given simply. This means that in the related Fourier 
transform, the inversion that corresponds to the function with the minimum 
norm may be calculated in terms of the values on the interval [a, b]. 

A typical problem for the Bergman space 

The identity (7.3) creates the new problem and concept. We shall state 
the prototype problem: 

On the unit disc lzl < 1, look for the identity 

Jr r lf(z)l 2 dxdxy = Jr r lf(z)l 2 dxdy 
}{lzl<l} }{lzl<a} 

(7.29) 

+? 

with some information off on lzl = a, 0 < a< l; that is, the integral 

Jr r lf(z) l2 dxdy 
J{a<lzl<l} 

is represented in terms off on lzl = a, 0 < a< 1. 
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8 On the Bergman space 

On the above line, we can obtain the following simple and general result: 

Lemma 8.1: For a general domain D existing the Green function G(z, t) 
on the complex plane, an analytic function f(z) of the Bergman space on D 
is represented by the Green function and the Bergman kernel K(z, u) on a 
simply connected subdomain Ds of D with a piecewise smooth closed Jordan 
boundary curve in D in the following way, for z E Ds 

l 1 8G((, z) 
f(z) = (!((), K((, z)h2(ns) + ~ f(() a d(. 

1[1, ans z 

Proof: First, recall the trivial identity 

f(z) = (!((), K((, z)h2(n) 

= (!((), K((, z)h2(ns) + (!((), K((, z)h2(n\ns)· 

We calculate the last integral. By using the identity 

K( _) = -~ 82G(z, u) 
z,u a a-

1r z u 
and the Green formula, we have 

_ 1 1 8G((, z) 
(!((), K((, z)h2(n\ns) = ~ f(() a d(. 

1[1, ans z 

(8.1) 

(8.2) 

Note that the derivative of the Green function is zero on the boundary of the 
domain D. We thus obtain the desired result. 

Note the identity, for z E Ds 

_ 1 1 8G((, z) 
(!((), K((, z)h2(n\ns) = ~ f(() a d(. 

1[1, ans z 
(8.3) 

The inner product on L2 (D \ Ds) will have the curious representation. We 
wish to represent it in some inner product form in the symmetric form on 
the boundary 8D8 in order to look for the representation of the norm on the 
boundary. 
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For (7.29), we have 

Jr { f(z)~ ( 1_ )2 dxdy = a2 f(a 2u). 
}{lzl<a} 7r 1 - UZ 

It will be a curious operator. For the Szego kernel case, we have the corre­
spondent result as in 

1 1 1 
f(z)- ( _ ) ldzl = af(au), 

{lzl=a} 21r 1 - UZ 

however, some correspondent result to Lemma 8.1 is unclear and curious. 

Of course, we can apply Theorem 1, (5.5), however, the structure of the 
related reproducing kernel Hilbert space Hk is involved in this situation, 
because the small kernel k(z, u) is given in the present situation by 

k(z,u) 

= j Ls (!Ls K(z1 , u)K(z1 , z2)dm(z1)) K(z2 , z)dm(z2 ) 

with the L2 surface measure. We can not use the isometric mapping L* L from 
the Bergman space on D into the Bergman space on D for the realization of 
the space H k . 

However, with a numerical sense, we can obtain the reasonable result for 
the concrete case. 

A remark for extension and restriction 

In connection with restriction and extension of functions in reproducing 
kernel Hilbert spaces, recall the discritization principle; that is, the norms in 
reproducing kernels are represented in terms of a discrete countable unique­
ness set ([18], page 127-139). Then, restriction and extension problems are 
reduced to those of reproducing kernels themselves. 

9 From Ohsawa-Takegoshi's type norm inequal­
ities 

As well-known, the converse norm inequality of (5.3) 
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Ill P112 ll!L2(D):::;; C r lf(z)l 2p(z)dm(z) 
}Do 

(9.1) 

is known with some positive function p and some constant C on some complex 
domain in a general dimension. See for example, [10] and [11]. Surprisingly 
enough, the best constant C is even discovered, see [1, 4, 5]. The author 
wonders whether can we apply our idea in this paper to their great and deep 
results. 

In this section, we assume this norm inequality 

IIJll!L2(D):::;; C r IJ(z)l 2p(z)ldzl 
}Do 

(9.2) 

with a rectifiable curve D0 as a typical case and we shall consider the bounded 
linear operator L from the space with finite norm 

r IJ(z)l 2p(z)ldzl < 00 
}Do 

into the Bergman space AL2 (D); that is for Lf = J, (9.2) is valid for analytic 
extension operator L in the framework of analytic functions. Here we write 
the same f as an analytic function and its restriction, because by the identity 
theorem we can assume that the correspondence is one-to-one. 

Anyhow, it seems that the general theory for bounded linear operator 
equations on reproducing kernel Hilbert spaces in the first part in this note 
is a general and powerful theory. It creates many deep and concrete problems. 
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