確率過程における頑健な擬似尤度推定

大阪工業大学 情報科学部 江口翔一 Shoichi Eguchi Faculty of Information Science and Technology Osaka Institute of Technology

東京大学大学院 数理科学研究科 増田弘毅 Hiroki Masuda Graduate School of Mathematical Sciences University of Tokyo

1 導入

本稿では, 観測データにスパイクノイズやジャンプが含まれるような状況における確率 過程の拡散係数の推定について, 正規型擬似尤度に重み付ける形式で拡張した推定手法の 提案およびその手法を数値実験に適用した結果について紹介する.

まず、本研究におけるモデル設定として、d次元確率過程 Y_t^* および d'次元確率過程 X_t^* がそれぞれ

$$Y_t^* = Y_0^* + \int_0^t \mu_{s-} ds + \int_0^t \sigma(X_{s-}^*, \theta_0) dw_s + J_t, \quad t \in [0, T],$$
(1.1)

$$X_t^* = X_0^* + \int_0^t \mu_{s-}' ds + \int_0^t \sigma_{s-}' dw_s' + J_t', \quad t \in [0, T]$$
(1.2)

で与えられるものとする. ここで, T > 0の固定値であり, (1.1) と (1.2) を構成する各要素は以下のとおりである:

- μ, μ', σ' はそれぞれ d 次元, d' 次元, $\mathbb{R}^{d'} \otimes \mathbb{R}^{r'}$ の確率過程を表す;
- $\theta_0 = (\theta_{1,0}, \dots, \theta_{p,0}) \in \Theta \subset \mathbb{R}^p$ であり, パラメータ空間 Θ は有界凸領域と仮定

する;

- Θ の閉包 $\overline{\Theta}$ に対して, $\sigma : \mathbb{R}^{d'} \times \overline{\Theta} \to \mathbb{R}^{d} \otimes \mathbb{R}^{r}$;
- w, w' はそれぞれ r 次元, r' 次元の標準ウィーナー過程を表す;
- J, J' は有界変動であるような純ジャンプ過程を表す.

また, $t_j = jT/n$ として, 離散観測データ $\{(Y_{t_j}, X_{t_j})\}_{j=0}^n$ は,

$$Y_{t_j} = Y_{t_j}^* + \sum_{j=1}^n b_j \Upsilon_j I(t=t_j), \quad X_{t_j} = X_{t_j}^* + \sum_{j=1}^n b'_j \Upsilon'_j I(t=t_j)$$
(1.3)

により得られるものとする. このとき, $b_j, b'_j \in \{0,1\}$ であり, Υ_j, Υ'_j はそれぞれ d 次元, d' 次元の確率変数である. b_j または b'_j の少なくとも一方が 1 のとき, 時刻 t_j に観測さ れるデータにはノイズが含まれると考えることができる. このように生じるノイズを, ス パイクノイズと呼ぶことにする.

本研究では, (1.3) により得られる観測データ $\{(Y_{t_j}, X_{t_j})\}_{j=0}^n$ に対して, モデル

$$Y_t = Y_0 + \int_0^t \mu_{s-} ds + \int_0^t \sigma(X_{s-}, \theta) dw_s,$$
(1.4)

を想定した場合のパラメータ $\theta \in \Theta \subset \mathbb{R}^p$ の推定に焦点を当てる. このとき, 観測データ に含まれるスパイクノイズやジャンプの影響を取り除くために一般的な手法が閾値推定で ある ([4], [7], [8], [9]) が, その推定には適切な閾値の選択が必要となる. また, [6] におい ては, ジャンプの存在を検定することに基づく推定手法が提案されているが, ジャンプの 存在の棄却が終了するまで, 最大の増分を除去したのちに繰り返し計算する必要がある. そこで, 本研究においては, 観測データに含まれるスパイクノイズやジャンプを外れ値と みなし, スパイクノイズやジャンプの影響を自動的に除去可能な形で外れ値に頑健な擬似 尤度推定手法を提案する. [5], [10], [11] では, 本研究と同様の構想によりエルゴード的拡 散過程における頑健なパラメータ推定手法について論じている.

2 擬似尤度推定

2.1 一般の擬似尤度推定

本節では, 観測データが $b_j, b'_j \equiv 0$ かつ $J, J' \equiv 0$ の状況下で得られる場合の擬似尤度 推定について紹介する. このとき, 観測データ $\{(Y_{t_j}, X_{t_j})\}_{j=0}^n$ はジャンプ構造を除去し たモデル (1.1), (1.2) の解過程の離散時点観測の実現値とみなすことができ, 正規型擬似

$$\hat{\theta}_n \in \operatorname*{argmax}_{\theta \in \bar{\Theta}} \mathbb{H}_n(\theta) \tag{2.1}$$

により、パラメータ θ の推定が可能となる. この \mathbb{H}_n は、Euler-丸山近似

$$Y_{t_j} \approx Y_{t_{j-1}} + \sigma(X_{t_{j-1}}, \theta) \Delta_j w$$

による微小時間正規近似

$$\mathcal{L}(Y_{t_j}|Y_{t_{j-1}}, X_{t_{j-1}}) \approx N_d\left(Y_{t_{j-1}}, h_n S(X_{t_{j-1}}, \theta)\right)$$

に基づいて与えられる正規型擬似尤度関数

$$\mathbb{H}_{n}(\theta) = -\frac{1}{2} \sum_{j=1}^{n} \left\{ \log \det \left(2\pi h_{n} S(X_{t_{j-1}}, \theta) \right) - \frac{1}{h_{n}} S(X_{t_{j-1}}, \theta)^{-1} \left[(\Delta_{j} Y)^{\otimes 2} \right] \right\}$$
(2.2)

である. ここで, $h_n = T/n(\to 0)$, $\Delta_j w = w_{t_j} - w_{t_{j-1}}$, $\Delta_j Y = Y_{t_j} - Y_{t_{j-1}}$, $S(x,\theta) = \sigma\sigma^{\top}(x,\theta)$, 行列 A と ベクトル u に対して $A[u^{\otimes 2}] = u^{\top}Au$ を表す. 関数 \mathbb{H}_n は真の尤 度関数ではないが, (2.1) によるパラメータ θ の最尤推定が可能であり, その推定量が漸近 混合正規性

$$\sqrt{n}(\hat{\theta}_n - \theta_0) \xrightarrow{\mathcal{L}} \Sigma_{\theta}^{-1/2} \zeta$$

をもつことが知られている ([3], [12]). ただし, ζ は p 次元標準正規分布, $S_t = S(X_t, \theta_0)$ に対して $\Sigma_{\theta} = \frac{1}{2T} \int_0^T \operatorname{tr} \left(\left(S^{-1}(\partial_{\theta}S) S^{-1}(\partial_{\theta}) \right)_t \right) dt$ であり, $\zeta \ge \Sigma_{\theta}$ は互いに独立である.

2.2 提案手法

簡単のため, $\phi(\cdot; \boldsymbol{\mu}, \boldsymbol{\Sigma})$) は d 次元正規分布 $N_d(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ の密度関数を表し, $\phi_j(\theta) = \phi(Y_{t_j}; Y_{t_{j-1}}, h_n S(X_{t_{j-1}}, \theta)), \psi_j(\theta) = \partial_{\theta} \log \phi_j(\theta)$ であるとする.

観測データに外れ値が含まれる可能性を考慮した頑健な推定手法の構築のため, [1] に基づき, (2.2) から定まる正規型擬似スコア関数

$$\partial_{\theta} \mathbb{H}_n(\theta) = \sum_{j=1}^n \psi_j(\theta)$$

の各項に対して重み付けを行うことで $\sum_{j=1}^{n} \phi_j(\theta)^{\lambda} \psi_j(\theta)$ を得る. ここで, λ は 0 以上の 値を取るチューニングパラメータである. スコア関数に重み付けを行ったことにより擬似 尤度方程式にバイアスが生じてしまうため,このバイアスを補正した

$$\sum_{j=1}^{n} \left(\phi_j(\theta)^{\lambda} \psi_j(\theta) - E_{\theta} \left[\phi_j(\theta)^{\lambda} \psi_j(\theta) | \mathcal{F}_{t_{j-1}} \right] \right)$$
(2.3)

を考える. 第二項の条件付き期待値 $E_{\theta} \left[\phi_{j}(\theta)^{\lambda} \psi_{j}(\theta) | \mathcal{F}_{t_{j-1}} \right]$ は, 一般には明確に表すこと ができず, (2.3) を直接計算することができない. そこで, この条件付き期待値を明示的な 近似で書き下す, つまり,

$$\frac{1}{n}\sum_{j=1}^{n} E_{\theta} \left[h_n^{d\lambda/2} \phi_j(\theta)^{\lambda} \psi_j(\theta) | \mathcal{F}_{t_{j-1}} \right] \approx \frac{1}{n} \sum_{j=1}^{n} \partial_{\theta} \eta_{j-1}(\theta; \lambda)$$

を満たす η を求めることにより, 推定関数を構築する. このとき, 定数 c > 0 が存在し, $E_{\theta} \left[\phi_j(\theta)^{\lambda} \psi_j(\theta) | \mathcal{F}_{t_{j-1}} \right]$ の第 k 成分において

$$\frac{1}{n} \sum_{j=1}^{n} E_{\theta}^{j-1} \left[h_{n}^{d\lambda/2} \phi_{j}(\theta)^{\lambda} \psi_{j,k}(\theta) \right]$$

$$= \frac{1}{n} \sum_{j=1}^{n} \left\{ -\frac{\lambda}{2} \frac{(2\pi)^{-\lambda d/2}}{(\lambda+1)^{1+d/2}} \det \left(S(X_{t_{j-1}},\theta) \right)^{-\lambda/2} \operatorname{tr} \left(S(X_{t_{j-1}},\theta)^{-1} \partial_{\theta_{k}} S(X_{t_{j-1}},\theta) \right) \right\}$$

$$+ O_{p} \left(\frac{h_{n}^{c}}{\sqrt{n}} \right)$$

が成り立つことが示されることにより, 関数 η を

$$\eta_{j-1}(\theta;\lambda) = \frac{(2\pi)^{-\lambda d/2}}{(\lambda+1)^{1+d/2}} \det \left(S(X_{t_{j-1}},\theta) \right)^{-\lambda/2}$$
(2.4)

で与えることができる. (2.3) および (2.4) を考慮することにより, べき密度 (densitypower) 正規型擬似尤度関数

$$\begin{aligned} &\mathbb{H}_{n}(\theta;\lambda) \\ &= \sum_{j=1}^{n} \left(\frac{h_{n}^{\lambda d/2}}{\lambda} \phi_{j}(\theta)^{\lambda} - \eta_{j-1}(\theta,\lambda) \right) \\ &= \sum_{j=1}^{n} \det \left(S(X_{t_{j-1}},\theta) \right)^{-\lambda/2} \left\{ \frac{1}{\lambda} \phi \left(S(X_{t_{j-1}},\theta)^{-1/2} h_{n}^{-1/2} \Delta_{j} Y \right)^{\lambda} - \frac{(2\pi)^{-\lambda d/2}}{(\lambda+1)^{1+d/2}} \right\} \end{aligned}$$

を得る. チューニングパラメータ λ を与えたうえで, べき密度正規型擬似最尤推定量 (density-power GQMLE) $\hat{\theta}_n(\lambda)$ を $\mathbb{H}_n(\theta; \lambda)$ を最大とするパラメータとして定める:

$$\theta_n(\lambda) \in \operatorname*{argmax}_{\theta \in \bar{\Theta}} \mathbb{H}_n(\theta; \lambda).$$

次の定理は, density-power GQMLE $\hat{\theta}_n(\lambda)$ の漸近混合正規性について述べたものである.

定理 2.1. 適当な条件のもと,

 $\sqrt{n}(\hat{\theta}_n(\lambda) - \theta_0) \xrightarrow{\mathcal{L}} \Gamma_0^{-1}(\lambda) \Sigma_0^{1/2}(\lambda) Z$

が成り立つ. ただし, Z は p 次元標準正規分布であり,

$$\Sigma_{0}(\lambda)^{(k,\ell)} = \frac{(2\pi)^{-\lambda d/2}}{4T} \int_{0}^{T} \det(S_{t})^{-\lambda/2} \left\{ \left(2\lambda(2\lambda+1)^{-(1+d/2)} - \lambda^{2}(\lambda+1)^{-(2+d)} \right) \right.$$
$$\left. \times \operatorname{tr} \left(\left(S^{-1}(\partial_{\theta_{k}}S) \right)_{t} \right) \operatorname{tr} \left(\left(S^{-1}(\partial_{\theta_{\ell}}S) \right)_{t} \right) \right.$$
$$\left. + 2(2\lambda+1)^{-(1+d/2)} \operatorname{tr} \left(\left(S^{-1}(\partial_{\theta_{k}}S)S^{-1}(\partial_{\theta_{\ell}}) \right)_{t} \right) \right\} dt,$$

$$\Gamma_{0}(\lambda)^{(k,\ell)} = \frac{(2\pi)^{-\lambda d/2}}{(\lambda+1)^{1+d/2}} \times \frac{1}{2T} \int_{0}^{T} \det(S_{t})^{-\lambda/2} \left\{ (1-\lambda) \operatorname{tr} \left(\left(S^{-1}(\partial_{\theta_{k}}S)S^{-1}(\partial_{\theta_{\ell}}) \right)_{t} \right) - \lambda^{2} \operatorname{tr} \left(\left(S^{-1}(\partial_{\theta_{k}}S) \right)_{t} \right) \operatorname{tr} \left(\left(S^{-1}(\partial_{\theta_{\ell}}S) \right)_{t} \right) \right\} dt$$

となる.

定理 2.1 で与えた $\Sigma_0(\lambda), \Gamma_0(\lambda)$ について, $\lambda \downarrow 0$ のとき

$$\lim_{\lambda \downarrow 0} \Sigma_0(\lambda) = \lim_{\lambda \downarrow 0} \Gamma_0(\lambda) = \frac{1}{2T} \int_0^T \operatorname{tr} \left(\left(S^{-1}(\partial_\theta S) S^{-1}(\partial_\theta) \right)_t \right) dt = \Sigma_\theta \quad \text{a.s.}$$
が成り立ち,前節で述べたジャンプやスパイクノイズが含まれない場合の擬似最尤推定量

注意 2.2. *n* を固定し λ↓0 としたとき, ロピタルの定理を

$$\frac{1}{h_n^{\lambda d/2}} \mathbb{H}_n(\theta; \lambda) - \frac{n}{\lambda} + \frac{n}{h_n^{\lambda d/2}} = \sum_{j=1}^n \left\{ \frac{1}{\lambda} \left(\phi_j(\theta)^\lambda - 1 \right) - \frac{1}{h_n^{\lambda d/2}} \left(\eta_{j-1}(\theta; \lambda) - 1 \right) \right\}$$
(2.5)

に適用することにより, (2.5) 式は確率 1 で $\mathbb{H}_n(\theta)$ に収束する.

3 数值実験

の漸近分散と一致する.

本章では, GQMLE と density-power GQMLE を用いた数値実験の結果を紹介する. データの生成と GQMLE の計算には統計ソフトウェア R 上の yuima パッケージ ([2])

図1 3.1 節におけるサンプルパス例 ($\mathfrak{p} = 0.01, n = 5000$).

を使用する.

まず、3.1、3.2 節に共通する数値実験の設定について述べる. データ $(X_{t_i}^*, Y_{t_i}^*)_{i=0}^n$ が

$$dY_t^* = \exp\left\{\frac{1}{2}(-2X_{1,t}^* + 3X_{2,t}^*)\right\} dw_t + s \, dJ_t, \qquad t \in [0,1], \tag{3.1}$$

から得られるものとする. ただし, n はデータ数を表し,

$$X_{t_j}^* = (X_{1,t_j}^*, X_{2,t_j}^*, X_{3,t_j}^*)^\top = \left(\cos\left(\frac{2j\pi}{n}\right), \sin\left(\frac{2j\pi}{n}\right), \cos\left(\frac{4j\pi}{n}\right)\right)^\top,$$

$$t_j = j/n, s \notin 0$$
または 1 をとるものとする. 推定モデルとして, $X_t = X_t^*,$

$$dY_t = \exp\left\{\frac{1}{2}(\theta_1 X_{1,t} + \theta_2 X_{2,t} + \theta_3 X_{3,t})\right\} dw_t, \qquad t \in [0,1].$$

を対象とする. このとき, パラメータの真値は $\theta_0 = (\theta_{1,0}, \theta_{2,0}, \theta_{3,0})^\top = (-2, 3, 0)^\top$ であ る. データ数 n = 1000, 5000 のそれぞれにおいて 1000 組のデータセットを生成し, 各 データセットにおいて推定を行う. 推定量の計算のための数値最適化において, 各パラ メータの初期値を 0, 最小値を -10, 最大値を 10 とする.

3.1 スパイクノイズが含まれる場合

観測データ $(Y_{t_j})_{j=0}^n$ にスパイクノイズによる外れ値が含まれる場合を考える. ここ で, 観測データ Y_{t_j} は, s = 0 としたモデル (3.1) から得られるデータ $(Y_{t_j}^*)_{j=0}^n$ に対して $Y_{t_j} = Y_{t_j}^* + p_j Y_{c,t_j}$ で与えられるものとする. ただし, $Y_{c,t_0}, \ldots, Y_{c,t_n}$ は独立に正規分布 $N(0,\sigma^2)$ に従い, p_0, \ldots, p_n は独立に生起確率 \mathfrak{p} のベルヌーイ分布に従う. 本実験では, $\sigma^2 = 1, 3, \mathfrak{p} = 0.01, 0.05$ のそれぞれの場合において推定を実行する. 図 1 には, $\sigma^2 = 1, \mathfrak{p} = 0.01, n = 5000$ としたときの観測データのパスを描いている.

表1 3.1 節における GQMLE と Density-power GQMLE ($\theta_0 = (-2, 3, 0)^{\top}$).

n = 0.01	n = 1000		GOMLE	2		Density-	$power(\lambda =$	= 0.1)	Density-	nower() =	= 0.5)	Density-power($\lambda = 0.9$)		
P = 0.01	11 - 1000		θ ₁	θο	Â2	$\hat{\theta}_{1-}(\lambda)$	$\hat{\theta}_{2,n}(\lambda)$	$\frac{\hat{\theta}_{2-1}(\lambda)}{\hat{\theta}_{2-1}(\lambda)}$	$\hat{\theta}_{1-\alpha}(\lambda)$	$\frac{\hat{\theta}_{2}}{\hat{\theta}_{2}} = (\lambda)$	$\hat{\theta}_{2-1}(\lambda)$	$\hat{\theta}_{1-}(\lambda)$	$\hat{\theta}_{2,n}(\lambda)$	$\frac{\hat{\theta}_{2}}{\hat{\theta}_{2}}$
			- 1,1	- 2,11	* 3,1	* 1,4 (* *)	• 2, n (• •)	- 3,4 ()	• 1,n (• •)	• 2,n (• •)	* 3, # (* 1)	- 1,4 (**)	- 2, n ()	- 3,#()
original		mean	-2.0101	2.9944	-0.0005	-2.0105	2.9951	-0.0004	-2.0108	2.9965	-0.0006	-2.0100	2.9984	-0.0016
		s.d.	0.0646	0.0627	0.0602	0.0656	0.0638	0.0613	0.0821	0.0825	0.0795	0.1034	0.1057	0.1112
spike	$\sigma^2 = 1$	mean	-0.6385	0.9202	-0.0824	-2.0303	3.0238	-0.0038	-2.0066	2.9891	0.0006	-1.9984	2.9757	0.0032
		s.d.	0.9904	1.0060	0.9714	0.0724	0.0715	0.0689	0.0835	0.0843	0.0805	0.1054	0.1076	0.1124
	$\sigma^2=3$	mean	-0.4788	0.6723	-0.0452	-2.0257	3.0170	-0.0039	-2.0061	2.9885	0.0007	-1.9984	2.9756	0.0032
		s.d.	1.1704	1.1684	1.1595	0.0709	0.0700	0.0672	0.0833	0.0840	0.0803	0.1053	0.1075	0.1123
n = 5000			$\hat{\theta}_{1,n}$	$\hat{\theta}_{2,n}$	$\hat{\theta}_{3,n}$	$\hat{\theta}_{1,n}(\lambda)$	$\hat{\theta}_{2,n}(\lambda)$	$\hat{\theta}_{3,n}(\lambda)$	$\hat{\theta}_{1,n}(\lambda)$	$\hat{\theta}_{2,n}(\lambda)$	$\hat{\theta}_{3,n}(\lambda)$	$\hat{\theta}_{1,n}(\lambda)$	$\hat{\theta}_{2,n}(\lambda)$	$\hat{ heta}_{3,n}(\lambda)$
original		mean	-2.0013	2.9981	0.0015	-2.0012	2.9981	0.0016	-2.0005	2.9974	0.0019	-2.0004	2.9968	0.0027
		s.d.	0.0283	0.0281	0.0282	0.0287	0.0284	0.0289	0.0360	0.0354	0.0361	0.0457	0.0449	0.0489
spike	$\sigma^2 = 1$	mean	-0.1243	0.1429	-0.0353	-2.0089	3.0181	-0.0021	-1.9916	2.9920	0.0022	-1.9834	2.9730	0.0074
		s.d.	0.3682	0.3591	0.3768	0.0305	0.0306	0.0306	0.0361	0.0356	0.0366	0.0456	0.0448	0.0497
	$\sigma^2=3$	mean	-0.0712	0.0598	-0.0124	-2.0042	3.0115	-0.0013	-1.9914	2.9917	0.0023	-1.9845	2.9765	0.0062
		s.d.	0.3852	0.3820	0.3979	0.0301	0.0300	0.0300	0.0360	0.0355	0.0366	0.0456	0.0448	0.0496
						1						1		
p = 0.05	n = 1000		GQMLE	3		Density-	$power(\lambda =$	= 0.1)	Density-	$power(\lambda =$	= 0.5)	Density-	$power(\lambda =$	= 0.9)
p = 0.05	n = 1000		GQMLE $\hat{\theta}_{1,n}$	$\hat{\theta}_{2,n}$	$\hat{\theta}_{3,n}$	Density- $\hat{\theta}_{1,n}(\lambda)$	$power(\lambda = \hat{\theta}_{2,n}(\lambda))$	= 0.1) $\hat{\theta}_{3,n}(\lambda)$	Density- $\hat{\theta}_{1,n}(\lambda)$	$power(\lambda = \hat{\theta}_{2,n}(\lambda))$	= 0.5) $\hat{\theta}_{3,n}(\lambda)$	Density- $\hat{\theta}_{1,n}(\lambda)$	$power(\lambda = \hat{\theta}_{2,n}(\lambda))$	$= 0.9)$ $\hat{\theta}_{3,n}(\lambda)$
p = 0.05	n = 1000	mean	GQMLE $\hat{\theta}_{1,n}$ -2.0101	$\hat{\theta}_{2,n}$ 2.9944	$\hat{\theta}_{3,n}$ -0.0005	Density- $\hat{\theta}_{1,n}(\lambda)$ -2.0105	power($\lambda = \hat{\theta}_{2,n}(\lambda)$ 2.9951	= 0.1) $\hat{\theta}_{3,n}(\lambda)$ -0.0004	Density- $\hat{\theta}_{1,n}(\lambda)$ -2.0108	$power(\lambda = \hat{\theta}_{2,n}(\lambda)$ 2.9965	= 0.5) $\hat{\theta}_{3,n}(\lambda)$ -0.0006	Density- $\hat{\theta}_{1,n}(\lambda)$ -2.0100	$power(\lambda = \hat{\theta}_{2,n}(\lambda)$ 2.9984	= 0.9) $\hat{\theta}_{3,n}(\lambda)$ -0.0016
p = 0.05 original	<i>n</i> = 1000	mean s.d.	GQMLE $\hat{\theta}_{1,n}$ -2.0101 0.0646	$\hat{\theta}_{2,n}$ 2.9944 0.0627	$\hat{\theta}_{3,n}$ -0.0005 0.0602	Density- $\hat{\theta}_{1,n}(\lambda)$ -2.0105 0.0656	power($\lambda = \hat{\theta}_{2,n}(\lambda)$ 2.9951 0.0638	= 0.1) $\hat{\theta}_{3,n}(\lambda)$ -0.0004 0.0613	Density- $\hat{\theta}_{1,n}(\lambda)$ -2.0108 0.0821	$power(\lambda = \hat{\theta}_{2,n}(\lambda)$ 2.9965 0.0825	= 0.5) $\hat{\theta}_{3,n}(\lambda)$ -0.0006 0.0795	Density- $\hat{\theta}_{1,n}(\lambda)$ -2.0100 0.1034	power($\lambda = \hat{\theta}_{2,n}(\lambda)$ 2.9984 0.1057	= 0.9) $\hat{\theta}_{3,n}(\lambda)$ -0.0016 0.1112
p = 0.05 original spike	n = 1000 $\sigma^2 = 1$	mean s.d. mean	GQMLE $\hat{\theta}_{1,n}$ -2.0101 0.0646 -0.0950	$\hat{\theta}_{2,n}$ 2.9944 0.0627 0.1366	$\hat{\theta}_{3,n}$ -0.0005 0.0602 -0.0319	Density- $\hat{\theta}_{1,n}(\lambda)$ -2.0105 0.0656 -2.1154	power($\lambda = \hat{\theta}_{2,n}(\lambda)$ 2.9951 0.0638 3.1520	$= 0.1)$ $\hat{\theta}_{3,n}(\lambda)$ -0.0004 0.0613 -0.0225	Density- $\hat{\theta}_{1,n}(\lambda)$ -2.0108 0.0821 -1.9866	power($\lambda = \hat{\theta}_{2,n}(\lambda)$ 2.9965 0.0825 2.9565	$= 0.5)$ $\hat{\theta}_{3,n}(\lambda)$ -0.0006 0.0795 0.0039	Density- $\hat{\theta}_{1,n}(\lambda)$ -2.0100 0.1034 -1.9457	power($\lambda = \hat{\theta}_{2,n}(\lambda)$ 2.9984 0.1057 2.8782	$= 0.9)$ $\hat{\theta}_{3,n}(\lambda)$ -0.0016 0.1112 0.0201
p = 0.05 original spike	n = 1000 $\sigma^2 = 1$	mean s.d. mean s.d.	GQMLE $\hat{\theta}_{1,n}$ -2.0101 0.0646 -0.0950 0.3711	$\hat{\theta}_{2,n}$ 2.9944 0.0627 0.1366 0.3450	$\hat{\theta}_{3,n}$ -0.0005 0.0602 -0.0319 0.3695	Density- $\hat{\theta}_{1,n}(\lambda)$ -2.0105 0.0656 -2.1154 0.1004	power($\lambda = \hat{\theta}_{2,n}(\lambda)$ 2.9951 0.0638 3.1520 0.1085	$= 0.1)$ $\hat{\theta}_{3,n}(\lambda)$ -0.0004 0.0613 -0.0225 0.1039	Density- $\hat{\theta}_{1,n}(\lambda)$ -2.0108 0.0821 -1.9866 0.0868	power($\lambda = \hat{\theta}_{2,n}(\lambda)$ 2.9965 0.0825 2.9565 0.0897	$= 0.5)$ $\hat{\theta}_{3,n}(\lambda)$ -0.0006 0.0795 0.0039 0.0848	Density- $\hat{\theta}_{1,n}(\lambda)$ -2.0100 0.1034 -1.9457 0.1081	power($\lambda = \hat{\theta}_{2,n}(\lambda)$ 2.9984 0.1057 2.8782 0.1116	$= 0.9)$ $\hat{\theta}_{3,n}(\lambda)$ -0.0016 0.1112 0.0201 0.1137
p = 0.05 original spike	$n = 1000$ $\sigma^2 = 1$ $\sigma^2 = 3$	mean s.d. mean s.d. mean	GQMLE $\hat{\theta}_{1,n}$ -2.0101 0.0646 -0.0950 0.3711 -0.0407	$\hat{\theta}_{2,n}$ 2.9944 0.0627 0.1366 0.3450 0.0533	$\hat{\theta}_{3,n}$ -0.0005 0.0602 -0.0319 0.3695 -0.0080	Density- $\hat{\theta}_{1,n}(\lambda)$ -2.0105 0.0656 -2.1154 0.1004 -2.0894	power(λ = $\hat{\theta}_{2,n}(\lambda)$ 2.9951 0.0638 3.1520 0.1085 3.1161	$= 0.1)$ $\hat{\theta}_{3,n}(\lambda)$ -0.0004 0.0613 -0.0225 0.1039 -0.0254	Density- $\hat{\theta}_{1,n}(\lambda)$ -2.0108 0.0821 -1.9866 0.0868 -1.9847	power($\lambda = \hat{\theta}_{2,n}(\lambda)$ 2.9965 0.0825 2.9565 0.0897 2.9539	$= 0.5)$ $\hat{\theta}_{3,n}(\lambda)$ -0.0006 0.0795 0.0039 0.0848 0.0043	Density- $\hat{\theta}_{1,n}(\lambda)$ -2.0100 0.1034 -1.9457 0.1081 -1.9453	power($\lambda = \hat{\theta}_{2,n}(\lambda)$ 2.9984 0.1057 2.8782 0.1116 2.8782	$= 0.9)$ $\hat{\theta}_{3,n}(\lambda)$ -0.0016 0.1112 0.0201 0.1137 0.0199
p = 0.05 original spike	$n = 1000$ $\sigma^2 = 1$ $\sigma^2 = 3$	mean s.d. mean s.d. mean s.d.	GQMLE $\hat{\theta}_{1,n}$ -2.0101 0.0646 -0.0950 0.3711 -0.0407 0.3882	$\begin{array}{c} \hline \\ \hline $	$\hat{\theta}_{3,n}$ -0.0005 0.0602 -0.0319 0.3695 -0.0080 0.3918	Density- $\hat{\theta}_{1,n}(\lambda)$ -2.0105 0.0656 -2.1154 0.1004 -2.0894 0.0911	power(λ = $\hat{\theta}_{2,n}(\lambda)$ 2.9951 0.0638 3.1520 0.1085 3.1161 0.0983	$= 0.1)$ $\hat{\theta}_{3,n}(\lambda)$ -0.0004 0.0613 -0.0225 0.1039 -0.0254 0.0946	Density- $\hat{\theta}_{1,n}(\lambda)$ -2.0108 0.0821 -1.9866 0.0868 -1.9847 0.0861	power(λ = $\hat{\theta}_{2,n}(\lambda)$ 2.9965 0.0825 2.9565 0.0897 2.9539 0.0893	$= 0.5)$ $\hat{\theta}_{3,n}(\lambda)$ -0.0006 0.0795 0.0039 0.0848 0.0043 0.0844	Density- $\hat{\theta}_{1,n}(\lambda)$ -2.0100 0.1034 -1.9457 0.1081 -1.9453 0.1077	power(λ = $\hat{\theta}_{2,n}(\lambda)$ 2.9984 0.1057 2.8782 0.1116 2.8782 0.1119	$= 0.9)$ $\hat{\theta}_{3,n}(\lambda)$ -0.0016 0.1112 0.0201 0.1137 0.0199 0.1138
p = 0.05 original spike $n = 5000$	n = 1000 $\sigma^2 = 1$ $\sigma^2 = 3$	mean s.d. mean s.d. mean s.d.	$\begin{array}{c} \text{GQMLE} \\ \hat{\theta}_{1,n} \\ -2.0101 \\ 0.0646 \\ -0.0950 \\ 0.3711 \\ -0.0407 \\ 0.3882 \\ \hat{\theta}_{1,n} \end{array}$	$\hat{\theta}_{2,n}$ 2.9944 0.0627 0.1366 0.3450 0.0533 0.3663 $\hat{\theta}_{2,n}$	$\hat{\theta}_{3,n}$ -0.0005 0.0602 -0.0319 0.3695 -0.0080 0.3918 $\hat{\theta}_{3,n}$	$\begin{array}{c} \text{Density-}\\ \hat{\theta}_{1,n}(\lambda)\\ -2.0105\\ 0.0656\\ -2.1154\\ 0.1004\\ -2.0894\\ 0.0911\\ \hat{\theta}_{1,n}(\lambda) \end{array}$	$power(\lambda = \frac{\hat{\theta}_{2,n}(\lambda)}{\hat{\theta}_{2,n}(\lambda)}$ 2.9951 0.0638 3.1520 0.1085 3.1161 0.0983 $\hat{\theta}_{2,n}(\lambda)$	$= 0.1)$ $\hat{\theta}_{3,n}(\lambda)$ -0.0004 0.0613 -0.0225 0.1039 -0.0254 0.0946 $\hat{\theta}_{3,n}(\lambda)$	$\begin{array}{c} \text{Density-}\\ \hat{\theta}_{1,n}(\lambda) \\ -2.0108 \\ 0.0821 \\ -1.9866 \\ 0.0868 \\ -1.9847 \\ 0.0861 \\ \hat{\theta}_{1,n}(\lambda) \end{array}$	power($\lambda = \hat{\theta}_{2,n}(\lambda)$ 2.9965 0.0825 2.9565 0.0897 2.9539 0.0893 $\hat{\theta}_{2,n}(\lambda)$	$= 0.5)$ $\hat{\theta}_{3,n}(\lambda)$ -0.0006 0.0795 0.0039 0.0848 0.0043 0.0043 0.0844 $\hat{\theta}_{3,n}(\lambda)$	$\begin{array}{c} \text{Density-}\\ \hat{\theta}_{1,n}(\lambda)\\ -2.0100\\ 0.1034\\ -1.9457\\ 0.1081\\ -1.9453\\ 0.1077\\ \hat{\theta}_{1,n}(\lambda) \end{array}$	$\begin{array}{c} \hline power(\lambda = \\ \hat{\theta}_{2,n}(\lambda) \\ 2.9984 \\ 0.1057 \\ 2.8782 \\ 0.1116 \\ 2.8782 \\ 0.1119 \\ \hat{\theta}_{2,n}(\lambda) \end{array}$	$\begin{array}{c} = 0.9)\\ \hline \theta_{3,n}(\lambda)\\ -0.0016\\ 0.1112\\ 0.0201\\ 0.1137\\ 0.0199\\ 0.1138\\ \hline \theta_{3,n}(\lambda) \end{array}$
p = 0.05 original spike $n = 5000$ original	$n = 1000$ $\sigma^2 = 1$ $\sigma^2 = 3$	mean s.d. mean s.d. mean s.d.	$\begin{array}{c} \text{GQMLE} \\ \widehat{\theta}_{1,n} \\ -2.0101 \\ 0.0646 \\ -0.0950 \\ 0.3711 \\ -0.0407 \\ 0.3882 \\ \widehat{\theta}_{1,n} \\ -2.0013 \end{array}$	$\begin{array}{c} \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$\begin{array}{c} \hat{\theta}_{3,n} \\ -0.0005 \\ 0.0602 \\ -0.0319 \\ 0.3695 \\ -0.0080 \\ 0.3918 \\ \hat{\theta}_{3,n} \\ 0.0015 \end{array}$	$\begin{array}{l} \text{Density-}\\ \hat{\theta}_{1,n}(\lambda)\\ -2.0105\\ 0.0656\\ -2.1154\\ 0.1004\\ -2.0894\\ 0.0911\\ \hat{\theta}_{1,n}(\lambda)\\ -2.0012 \end{array}$	$\begin{array}{c} \text{power}(\lambda = \\ \hat{\theta}_{2,n}(\lambda) \\ 2.9951 \\ 0.0638 \\ 3.1520 \\ 0.1085 \\ 3.1161 \\ 0.0983 \\ \hat{\theta}_{2,n}(\lambda) \\ 2.9981 \end{array}$	$\begin{array}{c} = 0.1)\\ \\ \hat{\theta}_{3,n}(\lambda)\\ \\ -0.0004\\ \\ 0.0613\\ \\ -0.0225\\ \\ 0.1039\\ \\ -0.0254\\ \\ 0.0946\\ \\ \\ \hat{\theta}_{3,n}(\lambda)\\ \\ 0.0016\\ \end{array}$	$\begin{array}{l} \text{Density-}\\ \hat{\theta}_{1,n}(\lambda)\\ -2.0108\\ 0.0821\\ -1.9866\\ 0.0868\\ -1.9847\\ 0.0861\\ \hat{\theta}_{1,n}(\lambda)\\ -2.0005 \end{array}$	$\begin{array}{c} & \\ power(\lambda = \\ \hat{\theta}_{2,n}(\lambda) \\ \\ 2.9965 \\ 0.0825 \\ 2.9565 \\ 0.0897 \\ 2.9539 \\ 0.0893 \\ \\ \hat{\theta}_{2,n}(\lambda) \\ 2.9974 \end{array}$	$\begin{array}{c} = 0.5) \\ \hline \theta_{3,n}(\lambda) \\ -0.0006 \\ 0.0795 \\ 0.0039 \\ 0.0848 \\ 0.0043 \\ 0.0844 \\ \hline \theta_{3,n}(\lambda) \\ 0.0019 \end{array}$	$\begin{array}{l} \text{Density-}\\ \hat{\theta}_{1,n}(\lambda)\\ -2.0100\\ 0.1034\\ -1.9457\\ 0.1081\\ -1.9453\\ 0.1077\\ \hat{\theta}_{1,n}(\lambda)\\ -2.0004 \end{array}$	$\begin{array}{c} \text{power}(\lambda = \\ \hat{\theta}_{2,n}(\lambda) \\ 2.9984 \\ 0.1057 \\ 2.8782 \\ 0.1116 \\ 2.8782 \\ 0.1119 \\ \hat{\theta}_{2,n}(\lambda) \\ 2.9968 \end{array}$	$\begin{array}{c} = 0.9)\\ \hline \\ \hat{\theta}_{3,n}(\lambda)\\ -0.0016\\ 0.1112\\ 0.0201\\ 0.1137\\ 0.0199\\ 0.1138\\ \hline \\ \hat{\theta}_{3,n}(\lambda)\\ 0.0027\\ \end{array}$
p = 0.05 original spike $n = 5000$ original	n = 1000 $\sigma^2 = 1$ $\sigma^2 = 3$	mean s.d. mean s.d. mean s.d.	$\begin{array}{c} \text{GQMLE} \\ \widehat{\theta}_{1,n} \\ -2.0101 \\ 0.0646 \\ -0.0950 \\ 0.3711 \\ -0.0407 \\ 0.3882 \\ \widehat{\theta}_{1,n} \\ -2.0013 \\ 0.0283 \end{array}$	$\begin{array}{c} \hline \\ \hline \\ \hline \\ \hline \\ 2.9944 \\ 0.0627 \\ 0.1366 \\ 0.3450 \\ 0.0533 \\ 0.3663 \\ \hline \\ \hline \\ \hline \\ \hline \\ 2.9981 \\ 0.0281 \end{array}$	$\begin{array}{c} \hat{\theta}_{3,n} \\ -0.0005 \\ 0.0602 \\ -0.0319 \\ 0.3695 \\ -0.0080 \\ 0.3918 \\ \hat{\theta}_{3,n} \\ 0.0015 \\ 0.0282 \end{array}$	$\begin{array}{c} \text{Density-}\\ \hat{\theta}_{1,n}(\lambda)\\ -2.0105\\ 0.0656\\ -2.1154\\ 0.1004\\ -2.0894\\ 0.0911\\ \hat{\theta}_{1,n}(\lambda)\\ -2.0012\\ 0.0287\\ \end{array}$	$\begin{array}{l} \text{power}(\lambda = \\ \hat{\theta}_{2,n}(\lambda) \\ 2.9951 \\ 0.0638 \\ 3.1520 \\ 0.1085 \\ 3.1161 \\ 0.0983 \\ \hat{\theta}_{2,n}(\lambda) \\ 2.9981 \\ 0.0284 \end{array}$	$\begin{array}{c} = 0.1 \\ \\ \hline \theta_{3,n}(\lambda) \\ \\ -0.0004 \\ \\ 0.0613 \\ \\ -0.0225 \\ \\ 0.1039 \\ \\ -0.0254 \\ \\ 0.0946 \\ \\ \hline \theta_{3,n}(\lambda) \\ \\ 0.0016 \\ \\ 0.0289 \end{array}$	$\begin{array}{c} \text{Density-}\\ \hat{\theta}_{1,n}(\lambda)\\ -2.0108\\ 0.0821\\ -1.9866\\ 0.0868\\ -1.9847\\ 0.0861\\ \hat{\theta}_{1,n}(\lambda)\\ -2.0005\\ 0.0360\\ \end{array}$	$\begin{array}{c} \text{power}(\lambda = \\ \hat{\theta}_{2,n}(\lambda) \\ 2.9965 \\ 0.0825 \\ 2.9565 \\ 0.0897 \\ 2.9539 \\ 0.0893 \\ \hat{\theta}_{2,n}(\lambda) \\ 2.9974 \\ 0.0354 \end{array}$	$\begin{array}{c} = 0.5) \\ \hat{\theta}_{3,n}(\lambda) \\ -0.0006 \\ 0.0795 \\ 0.0039 \\ 0.0848 \\ 0.0043 \\ 0.0844 \\ \hat{\theta}_{3,n}(\lambda) \\ 0.0019 \\ 0.0361 \end{array}$	$\begin{array}{c} \text{Density-}\\ \hat{\theta}_{1,n}(\lambda)\\ -2.0100\\ 0.1034\\ -1.9457\\ 0.1081\\ -1.9453\\ 0.1077\\ \hat{\theta}_{1,n}(\lambda)\\ -2.0004\\ 0.0457\end{array}$	$\begin{array}{l} & \\ power(\lambda = \\ \hat{\theta}_{2,n}(\lambda) \\ & 2.9984 \\ 0.1057 \\ 2.8782 \\ 0.1116 \\ 2.8782 \\ 0.1116 \\ 2.8782 \\ 0.1119 \\ \hat{\theta}_{2,n}(\lambda) \\ & 2.9968 \\ 0.0449 \end{array}$	$\begin{array}{c} = 0.9)\\ \hline \theta_{3,n}(\lambda)\\ -0.0016\\ 0.1112\\ 0.0201\\ 0.1137\\ 0.0199\\ 0.1138\\ \hline \theta_{3,n}(\lambda)\\ 0.0027\\ 0.0489 \end{array}$
p = 0.05 original spike $n = 5000$ original spike	$n = 1000$ $\sigma^2 = 1$ $\sigma^2 = 3$ $\sigma^2 = 1$	mean s.d. mean s.d. mean s.d. mean	GQMLE $\hat{\theta}_{1,n}$ -2.0101 0.0646 -0.0950 0.3711 -0.0407 0.3882 $\hat{\theta}_{1,n}$ -2.0013 0.0283 -0.0290	$\begin{array}{c} \hline \\ \hline $	$\begin{array}{c} \hat{\theta}_{3,n} \\ -0.0005 \\ 0.0602 \\ -0.0319 \\ 0.3695 \\ -0.0080 \\ 0.3918 \\ \hline \theta_{3,n} \\ 0.0015 \\ 0.0282 \\ -0.0048 \end{array}$	$\begin{array}{c} \text{Density-}\\ \hat{\theta}_{1,n}(\lambda)\\ -2.0105\\ 0.0656\\ -2.1154\\ 0.1004\\ -2.0894\\ 0.0911\\ \hat{\theta}_{1,n}(\lambda)\\ -2.0012\\ 0.0287\\ -2.0581\\ \end{array}$	power($\lambda = \hat{\theta}_{2,n}(\lambda)$ 2.9951 0.0638 3.1520 0.1085 3.1161 0.0983 $\hat{\theta}_{2,n}(\lambda)$ 2.9981 0.0284 3.0965	$\begin{array}{c} = 0.1)\\ \hat{\theta}_{3,n}(\lambda)\\ -0.0004\\ 0.0613\\ -0.0225\\ 0.1039\\ -0.0254\\ 0.0946\\ \hat{\theta}_{3,n}(\lambda)\\ 0.0016\\ 0.0289\\ -0.0188\\ \end{array}$	$\begin{array}{c} \text{Density-}\\ \hat{\theta}_{1,n}(\lambda)\\ -2.0108\\ 0.0821\\ -1.9866\\ 0.0868\\ -1.9847\\ 0.0861\\ \hat{\theta}_{1,n}(\lambda)\\ -2.0005\\ 0.0360\\ -1.9699 \end{array}$	$\begin{array}{c} \text{power}(\lambda = \\ \hat{\theta}_{2,n}(\lambda) \\ 2.9965 \\ 0.0825 \\ 2.9565 \\ 0.0897 \\ 2.9539 \\ 0.0893 \\ \hat{\theta}_{2,n}(\lambda) \\ 2.9974 \\ 0.0354 \\ 2.9577 \end{array}$	$\begin{array}{c} = 0.5) \\ \hline \theta_{3,n}(\lambda) \\ -0.0006 \\ 0.0795 \\ 0.0039 \\ 0.0848 \\ 0.0043 \\ 0.0844 \\ \hline \theta_{3,n}(\lambda) \\ 0.0019 \\ 0.0361 \\ 0.0049 \end{array}$	$\begin{array}{c} \text{Density-}\\ \hat{\theta}_{1,n}(\lambda)\\ -2.0100\\ 0.1034\\ -1.9457\\ 0.1081\\ -1.9453\\ 0.1077\\ \hat{\theta}_{1,n}(\lambda)\\ -2.0004\\ 0.0457\\ -1.9262 \end{array}$	power($\lambda = \hat{\theta}_{2,n}(\lambda)$ 2.9984 0.1057 2.8782 0.1116 2.8782 0.1119 $\hat{\theta}_{2,n}(\lambda)$ 2.9968 0.0449 2.8638	$\begin{array}{c} = 0.9) \\ \hat{\theta}_{3,n}(\lambda) \\ -0.0016 \\ 0.1112 \\ 0.0201 \\ 0.1137 \\ 0.0199 \\ 0.1138 \\ \hat{\theta}_{3,n}(\lambda) \\ 0.0027 \\ 0.0489 \\ 0.0263 \end{array}$
p = 0.05 original spike $n = 5000$ original spike	$n = 1000$ $\sigma^2 = 1$ $\sigma^2 = 3$ $\sigma^2 = 1$	mean s.d. mean s.d. mean s.d. mean s.d. mean s.d.	$\begin{array}{c} \text{GQMLE} \\ \widehat{\theta}_{1,n} \\ -2.0101 \\ 0.0646 \\ -0.0950 \\ 0.3711 \\ -0.0407 \\ 0.3882 \\ \widehat{\theta}_{1,n} \\ -2.0013 \\ 0.0283 \\ -0.0290 \\ 0.1547 \end{array}$	$\begin{array}{c} \hline \\ \hline $	$\begin{array}{c} \hat{\theta}_{3,n} \\ -0.0005 \\ 0.0602 \\ -0.0319 \\ 0.3695 \\ -0.0080 \\ 0.3918 \\ \hat{\theta}_{3,n} \\ 0.0015 \\ 0.0282 \\ -0.0048 \\ 0.1562 \end{array}$	$\begin{array}{c} \text{Density-}\\ \hat{\theta}_{1,n}(\lambda)\\ -2.0105\\ 0.0656\\ -2.1154\\ 0.1004\\ -2.0894\\ 0.0911\\ \hat{\theta}_{1,n}(\lambda)\\ -2.0012\\ 0.0287\\ -2.0581\\ 0.0394\\ \end{array}$	$\begin{array}{l} \text{power}(\lambda = \\ \hat{\theta}_{2,n}(\lambda) \\ 2.9951 \\ 0.0638 \\ 3.1520 \\ 0.1085 \\ 3.1161 \\ 0.0983 \\ \hat{\theta}_{2,n}(\lambda) \\ 2.9981 \\ 0.0284 \\ 3.0965 \\ 0.0404 \end{array}$	$\begin{array}{c} = 0.1 \\ \\ \hat{\theta}_{3,n}(\lambda) \\ \\ -0.0004 \\ \\ 0.0613 \\ \\ -0.0225 \\ \\ 0.1039 \\ \\ -0.0254 \\ \\ 0.0946 \\ \\ \hat{\theta}_{3,n}(\lambda) \\ \\ 0.0016 \\ \\ 0.0289 \\ \\ -0.0188 \\ \\ 0.0402 \end{array}$	$\begin{array}{c} \text{Density-}\\ \hat{\theta}_{1,n}(\lambda)\\ -2.0108\\ 0.0821\\ -1.9866\\ 0.0868\\ -1.9847\\ 0.0861\\ \hat{\theta}_{1,n}(\lambda)\\ -2.0005\\ 0.0360\\ -1.9699\\ 0.0381 \end{array}$	$\begin{array}{l} & \text{power}(\lambda = \\ \hat{\theta}_{2,n}(\lambda) \\ & 2.9965 \\ & 0.0825 \\ & 2.9565 \\ & 0.0897 \\ & 2.9539 \\ & 0.0893 \\ & \hat{\theta}_{2,n}(\lambda) \\ & 2.9974 \\ & 0.0354 \\ & 2.9577 \\ & 0.0370 \end{array}$	$\begin{array}{c} = 0.5) \\ \hat{\theta}_{3,n}(\lambda) \\ -0.0006 \\ 0.0795 \\ 0.0039 \\ 0.0848 \\ 0.0043 \\ 0.0844 \\ \hat{\theta}_{3,n}(\lambda) \\ 0.0019 \\ 0.0361 \\ 0.0049 \\ 0.0381 \end{array}$	$\begin{array}{c} \text{Density-}\\ \hat{\theta}_{1,n}(\lambda)\\ -2.0100\\ 0.1034\\ -1.9457\\ 0.1081\\ -1.9453\\ 0.1077\\ \hat{\theta}_{1,n}(\lambda)\\ -2.0004\\ 0.0457\\ -1.9262\\ 0.0477\\ \end{array}$	$\begin{array}{l} \text{power}(\lambda = \\ \hat{\theta}_{2,n}(\lambda) \\ 2.9984 \\ 0.1057 \\ 2.8782 \\ 0.1116 \\ 2.8782 \\ 0.1116 \\ 2.8782 \\ 0.1119 \\ \hat{\theta}_{2,n}(\lambda) \\ 2.9968 \\ 0.0449 \\ 2.8638 \\ 0.0461 \end{array}$	$\begin{array}{c} = 0.9) \\ \hline \hat{\theta}_{3,n}(\lambda) \\ -0.0016 \\ 0.1112 \\ 0.0201 \\ 0.1137 \\ 0.0199 \\ 0.1138 \\ \hline \hat{\theta}_{3,n}(\lambda) \\ 0.0027 \\ 0.0489 \\ 0.0263 \\ 0.0263 \\ 0.0508 \end{array}$
p = 0.05 original spike $n = 5000$ original spike	$n = 1000$ $\sigma^{2} = 1$ $\sigma^{2} = 3$ $\sigma^{2} = 3$	mean s.d. mean s.d. mean s.d. mean s.d. mean	$\begin{array}{c} \text{GQMLE} \\ \hline \\ \hat{\theta}_{1,n} \\ -2.0101 \\ 0.0646 \\ -0.0950 \\ 0.3711 \\ -0.0407 \\ 0.3882 \\ \hline \\ \hat{\theta}_{1,n} \\ -2.0013 \\ 0.0283 \\ -0.0290 \\ 0.1547 \\ -0.0189 \end{array}$	$\hat{\theta}_{2,n}$ 2.9944 0.0627 0.1366 0.3450 0.0533 0.3663 $\hat{\theta}_{2,n}$ 2.9981 0.0281 0.0281 0.0310 0.1543 0.0158	$\begin{array}{c} \hat{\theta}_{3,n} \\ -0.0005 \\ 0.0602 \\ -0.0319 \\ 0.3695 \\ -0.0080 \\ 0.3918 \\ \hat{\theta}_{3,n} \\ 0.0015 \\ 0.0282 \\ -0.0048 \\ 0.1562 \\ -0.0004 \end{array}$	$\begin{array}{c} \text{Density-}\\ \hline \\ \hat{\theta}_{1,n}(\lambda) \\ -2.0105 \\ 0.0656 \\ -2.1154 \\ 0.1004 \\ -2.0894 \\ 0.0911 \\ \hline \\ \hat{\theta}_{1,n}(\lambda) \\ -2.0012 \\ 0.0287 \\ -2.0581 \\ 0.0394 \\ -2.0335 \end{array}$	$\begin{array}{l} \text{power}(\lambda = \\ \hat{\theta}_{2,n}(\lambda) \\ 2.9951 \\ 0.0638 \\ 3.1520 \\ 0.1085 \\ 3.1161 \\ 0.0983 \\ \hat{\theta}_{2,n}(\lambda) \\ 2.9981 \\ 0.0284 \\ 3.0965 \\ 0.0404 \\ 3.0582 \end{array}$	$\begin{array}{c} = 0.1) \\ \hline \hat{\theta}_{3,n}(\lambda) \\ -0.0004 \\ 0.0613 \\ -0.0225 \\ 0.1039 \\ -0.0254 \\ 0.0946 \\ \hline \hat{\theta}_{3,n}(\lambda) \\ 0.0016 \\ 0.0289 \\ -0.0188 \\ 0.0402 \\ -0.0116 \end{array}$	$\begin{array}{c} \text{Density-}\\ \hat{\theta}_{1,n}(\lambda)\\ -2.0108\\ 0.0821\\ -1.9866\\ 0.0868\\ -1.9847\\ 0.0861\\ \hat{\theta}_{1,n}(\lambda)\\ -2.0005\\ 0.0360\\ -1.9699\\ 0.0381\\ -1.9692\end{array}$	$\begin{array}{l} & \text{power}(\lambda = \\ \hat{\theta}_{2,n}(\lambda) \\ & 2.9965 \\ & 0.0825 \\ & 2.9565 \\ & 0.0897 \\ & 2.9539 \\ & 0.0893 \\ & \hat{\theta}_{2,n}(\lambda) \\ & 2.9974 \\ & 0.0354 \\ & 2.9577 \\ & 0.0370 \\ & 2.9563 \end{array}$	$\begin{array}{c} = 0.5) \\ \hat{\theta}_{3,n}(\lambda) \\ -0.0006 \\ 0.0795 \\ 0.0039 \\ 0.0848 \\ 0.0043 \\ 0.0844 \\ \hat{\theta}_{3,n}(\lambda) \\ 0.0019 \\ 0.0361 \\ 0.0049 \\ 0.0381 \\ 0.0053 \end{array}$	$\begin{array}{c} \text{Density-}\\ \hline\\ \theta_{1,n}(\lambda) \\ -2.0100 \\ 0.1034 \\ -1.9457 \\ 0.1081 \\ -1.9453 \\ 0.1077 \\ \hline\\ \theta_{1,n}(\lambda) \\ -2.0004 \\ 0.0457 \\ -1.9262 \\ 0.0477 \\ -1.9325 \end{array}$	power $(\lambda = \hat{\theta}_{2,n}(\lambda))$ 2.9984 0.1057 2.8782 0.1116 2.8782 0.1119 $\hat{\theta}_{2,n}(\lambda)$ 2.9968 0.0449 2.8638 0.0461 2.8809	$\begin{array}{c} = 0.9) \\ \hline \hat{\theta}_{3,n}(\lambda) \\ -0.0016 \\ 0.1112 \\ 0.0201 \\ 0.1137 \\ 0.0199 \\ 0.1138 \\ \hline \hat{\theta}_{3,n}(\lambda) \\ 0.0027 \\ 0.0489 \\ 0.0263 \\ 0.0268 \\ 0.0216 \end{array}$

表 1 は, 各モデル設定における GQMLE と density-power GQMLE の平均と標準偏 差をまとめたものである. 表中の original はデータとして $(Y_{t_j}^*)_{j=0}^n$ を用いた場合の推定 結果, spike はデータとして $(Y_{t_j})_{j=0}^n$ を用いた場合の推定結果を表しており, original に おいてはどちらの推定量も真値に近い値を取っている. 一方, spike においては, GQMLE が真値から大きく外れた値を取っているのに対し, density-power GQMLE は original の場合と同程度の値を取っていることが読み取れる. また, すべてのモデル設定において, データ数が増加すると推定量の標準偏差が小さくなることも観測できる.

図 2–4 は, $\sigma^2 = 1$, $\mathfrak{p} = 0.01$, n = 5000 の場合の推定量の挙動を示している. 図 2, 3 は それぞれ各 λ における推定量の平均と標準偏差および density-power GQMLE と 95% 信頼区間を表し, いずれのパラメータにおいても $\lambda = 0.2$ の場合に最適な結果が得られる

と考えられる.また, λ の値が大きすぎる場合に標準偏差が大きくなる様子もみてとれる. さらに, 図 4 は $\lambda = 0.2$ における

$$\hat{u}_{i,n} = \left(\left\{ \hat{\Gamma}_n(\lambda)^{-1} \hat{\Sigma}_n(\lambda) \hat{\Gamma}_n(\lambda)^{-1} \right\}^{-1/2} \right)_{ii} \sqrt{n} (\hat{\theta}_{i,n}(\lambda) - \theta_{i,0}), \quad i = 1, 2, 3,$$

のヒストグラムを表しており, 定理 2.1 で与えた漸近混合正規性の妥当性について検証が 可能である.

3.2 ジャンプが含まれる場合

本節では, 観測データとして s = 1 としたモデル (3.1) から得られるデータ $(Y_{t_j}^*)_{j=0}^n$ を考える.ここで, $\mathcal{L}(J_t) = CP(q, U), U \sim N(0, 3)$ であり, CP は複合ポアソン過程を 表すものとする.本実験では, q = 0.01n, 0.05n のそれぞれの場合において推定を実行す

18

図 5 3.2 節におけるサンプルパス例 (q = 0.01n, n = 5000).

表 2 3.2 節における GQMLE と Density-power GQMLE($\theta_0 = (-2, 3, 0)^{\top}$).

	q = 0.01n	n = 1000)		n = 5000)		q = 0.05n	n = 1000)		n = 5000)	
		$\hat{\theta}_{1,n}$	$\hat{\theta}_{2,n}$	$\hat{\theta}_{3,n}$	$\hat{\theta}_{1,n}$	$\hat{\theta}_{2,n}$	$\hat{\theta}_{3,n}$		$\hat{\theta}_{1,n}$	$\hat{\theta}_{2,n}$	$\hat{\theta}_{3,n}$	$\hat{\theta}_{1,n}$	$\hat{\theta}_{2,n}$	$\hat{\theta}_{3,n}$
GQMLE	mean	-0.5540	0.7562	-0.1159	-0.0496	0.0729	-0.0087	mean	-0.0720	0.0956	-0.0348	-0.0078	0.0130	-0.0139
	s.d.	1.0439	1.0756	1.0447	0.3639	0.3667	0.3830	s.d.	0.3740	0.3766	0.3939	0.1605	0.1659	0.1621
		n = 1000)		n = 5000				n = 1000			n = 5000		
		$\hat{\theta}_{1,n}(\lambda)$	$\hat{\theta}_{2,n}(\lambda)$	$\hat{\theta}_{3,n}(\lambda)$	$\hat{\theta}_{1,n}(\lambda)$	$\hat{\theta}_{2,n}(\lambda)$	$\hat{\theta}_{3,n}(\lambda)$		$\hat{\theta}_{1,n}(\lambda)$	$\hat{\theta}_{2,n}(\lambda)$	$\hat{\theta}_{3,n}(\lambda)$	$\hat{\theta}_{1,n}(\lambda)$	$\hat{\theta}_{2,n}(\lambda)$	$\hat{\theta}_{3,n}(\lambda)$
Density-power	mean	-2.0197	3.0036	0.0028	-2.0023	3.0062	-0.0003	mean	-2.0514	3.0485	-0.0096	-2.0187	3.0343	0.0370
$\lambda = 0.1$	s.d.	0.0665	0.0652	0.0656	0.0284	0.0291	0.0288	s.d.	0.0728	0.0753	0.0727	0.0314	0.0309	0.0220
		n = 1000			n = 5000				n = 1000			n = 5000		
		$\hat{\theta}_{1,n}(\lambda)$	$\hat{\theta}_{2,n}(\lambda)$	$\hat{\theta}_{3,n}(\lambda)$	$\hat{\theta}_{1,n}(\lambda)$	$\hat{\theta}_{2,n}(\lambda)$	$\hat{ heta}_{3,n}(\lambda)$		$\hat{\theta}_{1,n}(\lambda)$	$\hat{ heta}_{2,n}(\lambda)$	$\hat{\theta}_{3,n}(\lambda)$	$\hat{\theta}_{1,n}(\lambda)$	$\hat{\theta}_{2,n}(\lambda)$	$\hat{\theta}_{3,n}(\lambda)$
Density-power	mean	-2.0113	2.9922	0.0052	-1.9974	2.9982	0.0016	mean	-2.0050	2.9790	0.0019	-1.9992	3.0038	0.0375
$\lambda=0.5$	s.d.	0.0822	0.0828	0.0808	0.0353	0.0376	0.0370	s.d.	0.0818	0.0853	0.0800	0.0376	0.0364	0.0242
		n = 1000)		n = 5000				n = 1000			n = 5000		
		$\hat{\theta}_{1,n}(\lambda)$	$\hat{\theta}_{2,n}(\lambda)$	$\hat{\theta}_{3,n}(\lambda)$	$\hat{\theta}_{1,n}(\lambda)$	$\hat{\theta}_{2,n}(\lambda)$	$\hat{\theta}_{3,n}(\lambda)$		$\hat{\theta}_{1,n}(\lambda)$	$\hat{\theta}_{2,n}(\lambda)$	$\hat{\theta}_{3,n}(\lambda)$	$\hat{\theta}_{1,n}(\lambda)$	$\hat{\theta}_{2,n}(\lambda)$	$\hat{\theta}_{3,n}(\lambda)$
Density-power	mean	-2.0084	2.9864	0.0082	-1.9946	2.9917	0.0035	mean	-1.9889	2.9464	0.0095	-1.9978	3.0014	0.0627
$\lambda = 0.9$	s.d.	0.1031	0.1044	0.1104	0.0443	0.0478	0.0508	s.d.	0.1010	0.1078	0.1100	0.0506	0.0516	0.0309

る. 図 5 は, q = 0.01n, n = 5000 としたときの観測データのパスを描いたものである.

表 2 では, 各 q における GQMLE と density-power GQMLE の平均と標準偏差をま とめている. この表より,本節のモデル設定を用いた推定について,表 1 の spike の場合 と同様の結果が得られることがわかる. また,図 6,7 は, q = 0.01n, n = 5000 の場合の 各 λ における推定量の平均と標準偏差, density-power GQMLE と 95% 信頼区間をそれ ぞれ表している. さらに,図 8 は q = 0.01n, n = 5000, λ = 0.2 の場合の $\hat{u}_{1,n}$, $\hat{u}_{2,n}$, $\hat{u}_{3,n}$ のヒストグラムを表している.図 6-8 より, density-power GQMLE を用いた推定につい て,観測データにジャンプが含まれる場合においても 3.1 節と同様の結果が得られること がわかる.

図8 3.2 節における $\hat{u}_{1,n}$, $\hat{u}_{2,n}$, $\hat{u}_{3,n}$ のヒストグラム $(q = 0.01n, \lambda = 0.2)$.

謝辞

RIMS 共同研究「確率モデルと統計的推測」にて貴重な講演の機会をいただき, 感謝申 し上げます.また, 本研究は JSPS 科研費 22H01139, JST CREST JPMJCR2115 の助 成を受けたものです.

参考文献

 A. Basu, I. R. Harris, N. L. Hjort, and M. C. Jones. Robust and efficient estimation by minimising a density power divergence. *Biometrika*, 85(3):549–559, 1998.

20

- [2] A. Brouste, M. Fukasawa, H. Hino, S. M. Iacus, K. Kamatani, Y. Koike, H. Masuda, R. Nomura, T. Ogihara, Y. Shimizu, M. Uchida, and N. Yoshida. The yuima project: A computational framework for simulation and inference of stochastic differential equations. *Journal of Statistical Software*, 57(4):1–51, 2014.
- [3] V. Genon-Catalot and J. Jacod. On the estimation of the diffusion coefficient for multi-dimensional diffusion processes. Ann. Inst. H. Poincaré Probab. Statist., 29(1):119–151, 1993.
- [4] H. Inatsugu and N. Yoshida. Global jump filters and quasi-likelihood analysis for volatility. Ann. Inst. Statist. Math., 73(3):555–598, 2021.
- [5] S. Lee and J. Song. Minimum density power divergence estimator for diffusion processes. Ann. Inst. Statist. Math., 65(2):213–236, 2013.
- [6] H. Masuda and Y. Uehara. Estimating diffusion with compound Poisson jumps based on self-normalized residuals. J. Statist. Plann. Inference, 215:158–183, 2021.
- [7] T. Ogihara and N. Yoshida. Quasi-likelihood analysis for the stochastic differential equation with jumps. Stat. Inference Stoch. Process., 14(3):189–229, 2011.
- [8] Y. Shimizu. A practical inference for discretely observed jump-diffusions from finite samples. J. Japan Statist. Soc., 38(3):391–413, 2008.
- [9] Y. Shimizu and N. Yoshida. Estimation of parameters for diffusion processes with jumps from discrete observations. *Stat. Inference Stoch. Process.*, 9(3):227–277, 2006.
- [10] J. Song. Robust estimation of dispersion parameter in discretely observed diffusion processes. *Statist. Sinica*, 27(1):373–388, 2017.
- [11] J. Song. Robust test for dispersion parameter change in discretely observed diffusion processes. *Comput. Statist. Data Anal.*, 142:106832, 17, 2020.
- [12] M. Uchida and N. Yoshida. Quasi likelihood analysis of volatility and nondegeneracy of statistical random field. *Stochastic Process. Appl.*, 123(7):2851–2876, 2013.