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Prime numbers and Prime closed geodesics: 
Similarities and Differences 

Atsushi Katsuda (Kyushu University /Keio University) 

1 Similarities 

1.1 Prime Number Theorem and Prime Geodesic Theorem 

As is well known, Selberg [16] introduced the Selberg zeta function on weakly symmetric 
spaces and showed, for example, that the Riemann hypothesis holds for a compact Rie­
mann surface of constant negative curvature up to a finite number of exceptional points. 
Based on this result, Huber [4] derived the prime geodesic theorem as a geometric analogue 
of the prime number theorem. 

• 1r(T) = H{p : prime number Ip ::=; T}. 

THEOREM 1.1 (Prime number theorem). 

T 
1r(T) ~ -

logT 

• M:compact Rieman surface with negative curvature -1 

• 1r(x) = "{P: prime closed geodesic I £(p) ::=; x} 

THEOREM 1.2 (Prime geodesic theorem [4]). 

0This work was supported by the Research Institute for Mathematical Sciences, an International Joint 
Usage/Research Center located in Kyoto University. 



19

1.2 Chebotarev density Theorems 1n Number theory and Ge-
ometry : Finite extensions 

Further developments in geometry include the prime geodesic theorem for Riemannian 
manifolds with variable negative curvature and more generally and the prime orbit the­
orem for weakly mixing Anosov flows (cf. [13]). Furthermore, the geometric analogue 
of Dirichlet's theorems for arithmetic progression and its generalizations, the Chebotarev 
density theorem for finite algebraic extension were developed by many researchers. 

Chebotarev density Theorem in Number theory (finite extensions) 

• L : finite Galois extension of the number field K with Galois group r, o: : conjugacy 
class of an element in r 

• 1r(T,o:;£) = tt{p: (unramified) prime ideal in KIN(p) < T, [Frobp] Co:} 

• N(p) is the norm of p and [Frobp] is the conjugacy class of the Frobenius automor­
phism FrobP Er. 

• If r = (Z/£'1/.,)X = Gal(Q(e21rv'=I/£)/Q), then FrobP : ( f-+ (P with ( = e21rv'=I/£ and 
FrobpllQI = idlQI (the case of the Dirichlet density theorem). 

THEOREM 1.3 (Chebotarev). 

tto: T 
1r(T, o:; £) ~ ttr log T 

Chebotarev density Theorem in Geometry (finite extensions) 

• M : compact manifold with negative curvature. There exists 1 - 1 correspondence 

- Closed geodesics 

- Free homotopy classes of closed curves 

- Conjugacy classes of the elements in 1r1 (M) 

• r: finitely generated discrete group, o: : a conjugacy class of an element of r, 
<I> : 1r1 (M) ---+ r: surjective homomorphism . 

1r(x,o:) = tt{p: prime closed geodesic!£(µ)::::; x,<I>([p]) Co:} 

where [p] is the conjugacy class corresponding top. 

• If r is finite group, then 
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THEOREM 1.4 (Sunada [18], Adachi-Sunada [1], Parry-Pollicott [12]). 

(1) The methods to show necessary analytic properties of zeta or L-functions are dif­
ferent in Number theory or Geometry. 

(2) The procedures from (1) to obtain density theorems are similar. 

2 Difference 

2.1 Diffence for extention groups (Galois group) of infinite ex­
tesions 

• Geometry : Discrete, finitely generated : countable, i.e. noncompact in discrete 
topology 

• Number Theory : uncountable, totally disconnected, compact in Krull topology 

• (Yasutaka Ihara) There would be connection. It is important to consider countable 
group in Number theory: Comments in his Kodaira Prize Lecture, cf. MSJ Memoire 
vol 18, On Congruence Monodromy Problems, 2008. 230p. 

2.2 Chebotarev density Theorems in Geometry: Infinite exten­
sions 

Abelian extensions 

• I'= Z29 = H1(M,Z) 

THEOREM 2.1 (Phillips-Barnak [14]). Let M be a compact Riemann surface with 
constant negative curvature -l. For o: E H 1(M, Z), 

(g - l) 9 ex ( C1 C2 ) 
7r(x,o:) ~ xl+g l +-;; + x2 + ... as x-+ oo. 

where g is the genus of M and satisfies g = ½rank H 1(M, Z). 

• The leading term is also obtained by K.-Sunada [9]. This theorem is generalized to 
the case of variable negative curvature or (more generally) weakly mixing Anosov 
flows on compact manifolds by many people [10], [11], [15]. 
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• Proof consists of 

- the Selberg trace formula, 

- Floquet Bloch Theory (based on Fourier analysis of 71.,29 c:::'. H1 (M, Z)), 

- Perturbative analysis of eigenvalues of the twisted Laplacian on the flat line 
bundle (i.e. local system) associated to unitary character of r. 

Abelian vs. Nilpotent 

• Why nilpotent? 

- Abelian : r = 1ri/[1r1, n1] = H1(M, Z) with n1 = n1(M) (Hurwicz) 

- Nilpotent : r = 1ri/[1r1, [1r1, 1r1]] 

• Difficulty 

- Abelian case : 

* Discrete abelian group : Type I 
* (Tractable) "Fourier Analysis" is available (Bloch theory) 
* Nilpotent Lie group : Type I 

- Nilpotent case : 

- non abelian infinite discrete group (including the Heisenberg group): non type 
I (type II1) 

- Complete understanding of representation theory of non type I groups is be­
yond the ability of human being 

- Our strategy: 
Relate finite dim. rep's of discrete nilpotent group r to infinite dim. rep. of 
simply connected Lie group which contains r as a lattice. ( G ia called Malcev 
completion of r. ) 

Nilpotent extension : Conjecture 

CONJECTURE 2.2. [6] Let M be a compact manifold with negative curvature and r 
be finitely generated discrete nilpotent group and a be a conjugacy class of an element 
in the center of r. 

Cehx ( C1 C2 ) 
n(x,a) ~ xl+d/2 1 +-;; + x2 + ... 

where dis an exponent of (polynomial) volume growth and C can be written as a combina­
tion of "the volume of Jacobi torus" and a special value of spectral zeta function (H(d/2) 
associated with a hypo-elliptic operator H coming from irreducible representations related 
r. c1 , c2 , ... are also written as geometric quantities related to Chen's iterated integrals. 
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Nilpotent extension : Examples 

EXAMPLE 2.3 (Discrete Heisenberg group r = Heis3 (Z)). 

( 
1 X Z) 

(x,y,z)= 0 1 y , 
0 0 1 

with x, y, z E Z.(If we replace them with x, y, z E R , then the group is the Heisenberg 
Lie group G = Heis3 (R). Let Lie(Heis3 (R)) be the Lie algebra of G = Heis3 (R). 

• Dilatation Ot: Lie(Heis3 (R))--+ Lie(Heis3 (R)). 

Lie(Heis3 (R)) is generated by 

u 1 

D u 0 n u 0 n X:= 0 Y= 0 Z= 0 
0 0 0 

with the commutater relation [X, Y] = XY - Y X = Z and Ot is defined by 

• Exponent of volume growth of Heis3 (Z) = d = 1 + 1 + 2 = 4. 

• The hypo-elliptic operator H = - f 2 + u2 (the harmonic oscillator), d = 4 and 
(H(2) = 3((2)/16 where ( is the Riemann zeta function and ((2) = '7f2 /6 by Euler. 

EXAMPLE 2.4 (Engel group (discrete) E4 and (Lie) E4(R)). 
[X,Y] = Z) 

• Lie(E4(R)) = (W, X, Y, Z I [W, X] = Y, [W, Y] = Z) 

• E4 = some lattice of E4 (R) 

• Dilatation Ot: Lie(E4(R))--+ Lie(E4(R)) 

• Lie(Heis3 (R)) = (X, Y.Z I 

<5t(W) = tW, <5t(X) = tX, <5t(Y) = t 2Y, <5t(Z) = t3 Z 

• Exponent of volume growth of E 4 = d = 1 + 1 + 2 + 3 = 7. 

• The hypo-elliptic operator H = - d~2 +u4 (the quartic oscillator), d = 7 and (H(7/2) 
can be written in terms of the Bessel functions (Voros et al [19].). 
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Nilpoten extension : Results 

THEOREM 2.5 (K.[6], [7]). Ifr = Heis3 (Z), a is the conjugacy class of central element 
and M is compact Riemann surface with constant negative curvature -1, then the above 
conjecture holds. 

Cex ( C1 C2 ) n(x,a) rv - 3 1 + - + 2 + ... 
X X X 

PROPOSITION 2.6 (K. [6], [7]). If a does not come from central elements, then we have 

Cex ( C1 C2 ) n(x,a) rv -2 1 + - + 2 + ... 
X X X 

THEOREM 2.7 (Main result [8]). Conjecture 2.2 holds for compact Riemann surface 
with constant negative curvature -1. 

2.3 Chebotarev Theorems for infinite extension Positive den­
sity 

Chebotarev Theorems for infinite extension : Positive density 

• L / K: infinite extension unramified outside a finite set S of primes of K 

• Galois group r : compact ⇒ :3! Haar measure µ on r 

• C : a subset of r stable under conjugation and whose boundary has Haar measure 
zero. Then, the cardinality n(x, C) of the set of primes p of K \ S such that the 
Frobenius conjugacy class Frp C X has positive density. 

• Then we have 

THEOREM 2.8. 

• This reduces to the finite case when L/ K is finite (the Haar measure is then just 
the counting measure). 

Chebotarev Theorems for infinite extension : Zero density 

• A naive analogy to the above situations in geometry is break down. For example, 
if we consider the distribution of the p-Frobenius conjugate class belonging to the 
inverse image of the surjective homomorphism 

<I> : GQ ---+ G~b 

from the absolute Galois group GQ to its abelian quotient G~b := GQ/[GQ, GQ], 
then, by almost trivial reasons, the counting problem doesn't make sense. 
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• Answer 1: Extension Q/Q is totally ramified. The Frobenius conjugacy class is not 
well defined. 

• Answer 2: Even if we modify the definition of Frobenius conjugacy class with con­
sidering inertia group, it is trivial since <1>- 1 ( e) = 0 ( e is identity element in G~b). 
(cf. Geometric case: 1r(x, 0) ~ ex /x 9+1 by Phillips-Sarnak) 

• (Explanation in the case of Dirichlet) If we first fix£, then we find p satisfying p = l 
(mod £). However, if we first fix p and £ > p, then p -=jc l (mod £). This kind of 

situation happens in the above problem, since G~b c:::: Z c:::: ITP ZP has arbitarily 
large quotient group. 

Lang-Trotter conjecture 

• The Lang-Trotter conjecture is known as a substantially meaningful Chebotarev­
type density theorem for infinite extensions of density zero. It is considered as a 
difficult question since it gives more detailed information of the distribution than 
the Sato-Tate conjecture in some cases. 

• E : elliptic curve defined by Y2 - Y = X 3 - X 2 

f = q rr:=l (1 - qn)2(l - q11n)2 = I::=l anqn: modular form associated to E, weight 
2, level 11. 

P(x) := ~{plaP = O} = ~{plreduction Eat pis supersingular elliptic} 

• Lang-Trotter conjecture cf. [17] : P(x) ~ cE~~; 
• Serre [17]: P(x) = O(x/(logx)312-s (unconditional) 

P(x) = O(x314 ) (under GRH) 

• Proof 1: Approximation by effective Chebotarev for finite extensions. (indirect but 
applicable beyond supersingular case) 

• Elkies [3]: P(x) = O(x314 ) (uncondition) 

• Proof 2: based on Kaneko's work [5]. Simple but it seems to be valid only for 
supersingular case 

• ( cf. Geometric case : directly consider infinite extension over universal covering.) 

• (Another formulation [17]) £ positive prime number i- p Pe : GQ ---+ GL2 (Ze) : £-adic 
rep. defined by en-division points of E. 

• ap is the trace of pe(Frobp) 

• GL2 (Ze) is compact profinite (=; pronilopotent) {= hopefully relate our analysis on 
nilpotent groups in geometry 
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Other examples of the Chebotarev density theorem for infinite extensions of 
density zero 

• I have asked experts about another example of Chebotarev-type density Theorem 
for infinte extension with zero density. 

• N. Kurokawa: Bateman-Horn Conjecture(cf. [2]) 

It implies several results including Twin prime conjecture, Green-Tao Theorem, 
... etc. 

• P. Sarnak : Watch the video of Talk 1 of the following Serre's Lecture series. 

It is important to notice that motivated or non motivated question. Lang-Trotter 
conjecture is motivated. 

• Minerva Lectures 2012 - J.P. Serre Talk 1: Equidistribution : 

https://www.youtube.com/watch?v=RxI3BemTjfk 

Talk 2: How to use linear algebraic groups : 

https://www.youtube.com/watch?v=5IWogUgYoZI&t=43s 

Talk 3: Counting solutions mod p and letting p tend to infinity : 

https://www.youtube.com/watch?v=vyVbMmm73hg&t=191s 
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