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ON LEHMER'S PROBLEM AND RELATED PROBLEMS 

TOMOHIRO YAMADA 

ABSTRACT. We show that if N ± 1 = M1.p(N) with N =/= 15,255 composite, 
then M < 15.76515logloglogN and M < 16.03235loglogw(N), together 
with similar results for the unitary totient function, Dedekind function, and 
the sum of unitary divisors. 

1. INTRODUCTION 

As usual, let cp(N) denote the Euler totient function of N. Clearly, cp(p) = p-1 
for any prime p. 

Lehmer [13] conjectured that there exists no composite number N such that 
cp(N) divides N - 1 and showed that such an integer must be an odd squarefree 
integer with at least seven prime factors. In other words, if cp(N) I (N - 1) and 
N is composite, then N is odd and w(N) = D(N) ::::: 7, where w(N) and D(N) 
respectively denote the number of distinct and not necessarily distinct prime 
factors of N. 

For such an integer N, 

1. Cohen and Hagis [5] showed that w(N) ::::: 14 and N > 1020 , 

2. Renze's notebook [22] shows that w(N) ::::: 15 and N > 1026 , 

3. Pinch claims that N > 1030 at his research page [17]. 
4. Burcsi, Czirbusz, and Farkas [3] proved that if 3 I N, then w(N) ::::: 4 x 107 

and N > 103.6x10s. 

5. Burek and Zmija [4] showed that NS 22r - 22r-i if cp(n) divides N - 1 and 
2 S w(N) Sr. 

Pomerance [18] showed that the number of such integers N s xis O(x112 log314 x) 
and N s r2r if 2 s w(N) s r additionally. Luca and Pomerance [14] showed that 
the number of such integers N s x is at most x 112 / log112+o(l) x. 

For integers N such that N - 1 = M cp(N) with M a large integer, stronger 
results are known. Hagis [10] proved that if N - 1 = 3cp(N), then w(N) ::::: 
1991 and N > 108171 . For integers N = Mcp(N) + 1, M ::::: 4, Grytczuk and 
Wojtowicz [9] showed that w(N) ::::: 3049M/4 _ 1509 if 3 I N and w(N) ::::: 143M/4 _ 1 
otherwise. 
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Subbarao [25] considered the problem analogous to Lehmer's problem involving 
cp*, the unitary analogue of cp. So cp* is defined by 

(1.1) cp*(N) = II (pe - 1), 
PellN 

where the product is over all prime powers unitarily dividing N. We call the 
value cp*(N) the unitary totient of an integer N. Subbarao conjectured that 
cp*(N) divides N - l if and only if N is a prime power. This conjecture is still 
unsolved. However, Subbarao and Siva Rama Prasad [26] showed that N must 
have at least eleven distinct prime factors if N is not a prime power and cp* ( N) 
divides N - 1. Moreover, Siva Rama Prasad, Goverdhan, and Al-Aidroos [19] 
proved that for integers N = Mcp*(N) + 1 with M 2'. 4, 

1. w(N) > (800000)M/4 - 499883 and N > (k1M/3f)IW if 15 IN, 

2. w(N) > (597515)M/4 - 298668 and N > (k2Mf3f)f3f1 if 3 IN, 5 f N, 

3. w(N) > (1889)M/4 - 468 and N > (k3Mf3:1)f3!t if 3 f N, 5 IN, and 
4. w(N) > (608)M/4 - 3 and N > (k4M/3!f)f3!t otherwise, 

where (/31,/32,/33,/34) = (23.4,23.38,6.1,4.9) and k1 = (log/31)/3 for j 
1, 2, 3,4. 

We prove the following upper bounds for M. 

Theorem 1. Let N1 denote the product of prime factors p dividing N exactly once 
here and hereafter. If Mcp*(N) = N ± l, then M < 19.44947logloglogN1 for 
N 1 2'. 23 orN1 = 19. Moreover, if Mcp(N) = N±l, thenM < 15.76515logloglogN 
for N 2'. 19. 

Theorem 2. If Mcp*(N) = N±l andw(N1) 2: 4, then M < 19.77911 loglogw(N1)
Moreover, if Mcp(N) = N ± l and w(N) 2'. 4, then M < 16.O3235loglogw(N). 

As Lehmer [13] observed, we see that M cp(N) = N ± l and w(N) '.S 3, then 
N must be prime or N = 15, 255. Hence, if M cp( N) = N ± l with N =/- 15, 255 
composite, then M < 15.76515logloglogN and M < 16.O3235loglogw(N). 

Subbarao [25] also studies similar problems for Dedekind function 'ljJ(N) = 
NIT Pe I IN pe-l (p + 1) and the sum a* ( N) = IT Pe I IN (pe + 1) of unitary divisors 
of N. Clearly, a* ( N) = N + l if and only if N is a prime power. Moreover, if 
'ljJ(N) = aN +band gcd(b, N) = 1 with a, b integers, then N must be squarefree 
and a*(N) = 'l/J(N) = aN + b. 

For integers N such that a*(N) =MN+ l with M > 1 and w(N) = r, 

1. Subbarao proved that M 2'. 3 must be odd, r 2'. 16, and 1020 < N < (r -
1)2r-l. 

2. Hasanalizade [11] proved that N > ((log3)M3M-l)3M andw(N) > 51M/3-l. 

3. Hasanalizade also proved that N > ((log 2)(AM2 - 1)2AM2 - 1 /3) 2AM
2

- 1 and 
w(N) > l578AM2

/ 9 /2, where A= 0.998 • • • when 3 divides N. 
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Subbarao also proved that if 'ljJ(N) = MN+ 1 with M > 1 and 3 I N, then 
w(N) 2: 185. 

We prove the following upper bounds for M. 

Theorem 3. If O"*(N) = MN ±1, then M < 18.87067log log log N1 for N1 2: 19. 
Moreover, if 'ljJ(N) =MN± 1, then M < 15.52051 log log log N for N 2'. 19. 

Theorem 4. lfO"*(N) = MN±l andw(N1 ) 2: 4, then M < 19.40333loglogw(N1). 
Moreover, if 'ljJ(N) = MN± 1 and w(N) 2: 4, then M < 15. 72775 log log w(N). 

Our upper bounds are eventually stronger than known bounds in the sense of 
being at least of triple-exponential and double-exponential order of M for N and 
w ( N) respectively. 

2. EXPLICIT SIEVE ESTIMATES 

We write the summatory function of an arithmetic function f for Mt(x) 
I:n::;x f(n). For a set U of primes, we put 

Pu(x) = IJ 
pEU,p::,;x 

( 1)-1 1 1 - P- , Su(x) = L -, 0u(x) = L logp, 
pEU,p::,;x p pEU,p::,;x 

and 1ru(x) = I:pEU,p::;x 1 to be the number of primes in U below x. 

Given an integer a, we call a set U of primes a-self-repulsive if for any two 
primes p and q in U, we have q ¢ a (mod p). 

Studies of 1-self-repulsive sets of primes have been begun by Golomb [8], who 
observed that if N is an integer such that gcd(N, c.p(N)) = 1 and Ube the set of 
prime factors of N, then, U must be 1-self-repulsive. Indeed, we can easily see 
that if gcd(N, c.p*(N)) = 1 and Ube the set of prime factors of N, then, U must 
be 1-self-repulsive. 

More generally, letting '-Pa(N) = ITPellN(P - a)pe-l, we can easily see that if 
gcd(N, '-Pa(N)) = 1, then N is squarefree, gcd(N, a) = 1, and the set of prime 
factors of N must be a-self-repulsive. 

Using Brun-Selberg upper bound sieve, Meijer [15], who used the term G
sequence to mean 1-self-repulsive set, proved that there exist some absolute con
stants ci and c2 such that, if U is a 1-self-repulsive set of primes, then 

(2.1) 

and 

(2.2) 

for X 2'. 3. 

C1X 
1ru(x)Pu(x) :S -1 -

ogx 
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Our purpose of this section is to prove the following explicit estimate for ±
self-repulsive sets. 

Theorem 5. Let U be an ±I-self-repulsive set of primes. Then, for x > e 73 , we 
have 

(2.3) 
Se'X ( 1 + lo~x) (1 + 21o~3 x) 

1ru(x) < 2 · 
R ( ) 1 g (1 _ loglogx-81) (i _ loglogx) 

U X O X log x log x 

We use the following notations: 

1. Let x be a positive number and A be a set of integers contained in an interval 
of length at most x. 

2. For each prime p, let nP be a set of residue classes modulo p and p(p) denote 
the number of residue classes in Dp. 

3. Z(A, w, D) denote the number of integers in A that do not belong to Dp for 
any prime p :S w. 

4. F = G + O*(H) means that IF - GI :SH 
5. gcd( n, U) = 1 means that no prime in U divides n. 
6. Let g(m) be the multiplicative function supported only on the squarefree 

integers m defined by g(p) = p(p)/(p - p(p)) for each prime p and 

M9 (z) = Lg(n). 
n~z 

In particular, if U is self-repulsive, then we take Dp = {O, 1 (mod p)} for primes 
pin U, Dp = {O (mod p)} for primes p outside U, and A to be the set of positive 
integers below x to obtain 

(2.4) 1ru(x) :S Z(A, w, D) + w 

for any real w. 

Instead of Brun-Selberg sieve, we use the large sieve method as in [7], [27], and 
[28]. As mentioned in the Introduction, Theorem 7.14 of [12] immediately gives 
the following estimate: 

Lemma 6. Assume that p(p) < p for any prime p. Then, for any w ~ 1 we have 

(2.5) 
x+w2 

Z(A,w,D) :S Mg(w)" 

So that, our concern is to obtain a lower estimate for M 9 (x) with p(n) = pu(n) 
the multiplicative function supported on squarefree integers defined by p(p) = 2 
for primes p in U and p(p) = 1 for primes p outside U. Our argument is based 
on the solution of Exercise 1.27 of [16]. Here we only give the digest of a proof 
for each lemma. 

Lemma 7. For a multiplicative function f(n) over positive integers, let M1,u(x) = 
I:n~x,gcd(n,U)=l f(n). In particular, we have M1(x) = M1,1(x) = I:n~x f(n). If 
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f(n) always takes nonnegative value, then 

(2.6) 

Proof Let Uo be the set of primes in U below x. Now the lemma can be proved 
by induction of the number of primes in Uo. □ 

Lemma 8. For y 2: 60, 

(2.7) L T(y) > log2 y + 2, logy+ 0.4. 
y 2 

m5_y 

Proof Theorem 1.2 of [1] gives that for all w 2: 9995, 

(2.8) L T(n) = wlogw + (21 - l)w + ~(w) 
n5_w 

with l~(w)I :S 0.764w113 logw. 

Now the lemma follows using partial summation and the approximate value 
21 - 1 + ft' ~(t)C2dt = 1 2 - 211 = 0.478809 · · · (see Lemma 1 of [23]), where ,1 = -0.072815 · · · is the first Stieltjes constant. 

We note that in Corollary 2.2 of [1] and Lemma 3.3 of [20], the constant term 
Bo is erroneously given as 1 2 - 11 , which should be 1 2 - 211 as in [23]. □ 

Now we would like to show the following lower bound for M9 (y). 

Lemma 9. For y > e30 , we have 

(2.9) ( logy 0.1 ) M9 (y) > Pu(y)e-'Y - + 2, + -1 - · 
2 ogy 

Proof We put Ou(n) be the number of prime factors in U of n counted with 
multiplicity, Tu(n) be the number of divisors of n composed of primes in U, and 
rad( n) = I]pln p be the product of distinct prime divisors of n. 

We put V to be the set of integers composed only of primes in U. Then, we 
see that 

(2.10) 
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where we observe that 2°u(k) 2:: Tu(k). Now the lemma follows using Lemma 7 
and Theorem 7 of [24]. □ 

Now we shall prove Theorem 5. Lemma 6 immediately gives 

(2.11) Z(A ") x + y2 e'Y(x + y2 ) 
'Y, H < ( ) < ( ) . - Mg y Pu(y) lo~y + 2")' + !~~! 

With the aid of Theorem 5.9 of [6], we have 

(2.12) Pu(x) IT p logx ( 1 ) 2 
--< --<-- l+-~-
Pu(y) - p- l logy 5log3 y 

y<p~x 

(but Ramare's zero density estimate in [21], on which Dusart's estimates in [6] 
are based, is objected by [2]. Corollary 11.2 in [2] can instead be used to obtain 
Dusart's estimates), and therefore 

(2.13) Z(A ") e'Y(x+y2)logx (i 1 ) 2 
, Y, H < 2 + 3 

Pu(x)(1°~ Y +21logy+0.12) 5log Y 

Taking y = J x / log x ( we note that y > e30 since we have assumed that 
x > e73 ), we have 

(2.14) 
8e'Y x (1 + - 1-) (1 + 0-19 ) 

Z(A ") logx log x 
,Y,H < 2 . 

p., ( ) 1 g (1 _ loglogx-87) (i _ loglogx) 
U X O X log x log x 

Now Theorem 5 immediately follows from (2.4). 

3. PROOFS OF THEOREMS 

Here we only give the proof of Theorem 1. We put U to be the set of prime 
factors p of N such that p2 does not divide N, so that N1 = ITpEU p. As we 
noted in the last section, U must be I-self-repulsive if M cp* ( N) = N ± 1 and 
(-1)-self-repulsive if N = Ma-*(N) ± l. 

Assume that N is a positive integer satisfying M cp* ( N) = N ± 1 for some 
integer M 2:: 2. Let x1 be the largest prime factor of N1. We note that Pu(x1) = 
ITpEU p/(p - 1) = Ni/cp(N1) and 0u(x1) = LpEU logp = logN1. 

We begin by proving that Ni/cp(N1) < 15.68996logloglogN1. Let x0 = e73 . 

We discuss three cases: (i) x1 :S xo, (ii) x1 > xo, 0u(x1) 2:: xifloglogx1, and 
(iii) x1 > xo, 0u(x1) < xi/loglogx1. In the case (iii), we put x2 be the largest 
number x such that 0u ( x) 2:: x / log log x and x3 = 0u ( x1). Then we settle four 
subcases. (a) x3 > x2 and x2 :S xo, (b) x3 > x2 > xo, (c) x3 :S x2 :S xo, and (d) 
x3 :S x2 and x2 > xo. 
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3.1. Case (i). putting Pl to be the largest prime such that rrP~Pl p :::; N1, the 
Corollary of Theorem 8 in [24] gives that 

(3.1) N1 e1 ( 1 ) 
(N) :::; P(p1) < - logp1 + -1 - < 15.15486loglogp1, 

<p 1 2 ogp1 

where the last inequality follows from the fact that Pl :::; x1 :::; xo . If Pl > 
500000, then Theorem 1 of [2] gives that Pl < l.02680(p1) < 1.0268 log N1 
and we obtain Ni/<p(N1) < 15.56102logloglogN1, which is more than we de
sired. If Pl < 500000 and N1 > 3704, then we have P(p1) < 11.68731 < 
15.68996logloglogN1. If N1 = 19 or 23 :::; N1 :::; 3703, then we can confirm 
Ni/ <p( N 1 ) < 7 .34 789 log log log N1 by calculation. 

3.2. General remarks for Cases (ii) and (iii). Assume that x1 > xo. As 
we have seen in the last section, U must be 1-self-repulsive. Let x be a real 
number such that xo:::; x:::; x1 and 0u(x) 2: x/loglogx. Observing that 1ru(x) 2: 
0u ( x) / log x > x / (log x log log x), Theorem 5 immediately gives that 

8e1 (1 + - 1 ) (1 + - 1-) 
n ( ) log x 2 log3 x I l rux < 2 ogogx. 

(l _ loglogx-81 ) (l _ loglogx) 
logx logx 

(3.2) 

Hence, (3.2) gives that 

(3.3) Pu(x) < 8e1 8(log x) log log 0u(x ), 

where 

(3.4) 8(t) = }1 + ½) (1 + ~) . 
(1 _ logt-81) (1 _ ~) (l _ l.OlOllloglogt) 

t t t~gt 

For t > 73, we can see that 

(3.5) 

J(t) 1 3logt-7.75695 (3logt-7.75695)2 

< + t + 2(1 - 0.07007)t2 

1 3 log t - 7.55957 
< + t 

3.3. Case (ii). Taking x = x1, we have Pu(x1) = Ni/<p*(N1) and 0u(x1) 
log N1 as we noted above. Hence, (3.3) together with (3.5) yield that 

7~) < 8e' (1 + 3loglogt1 - 7.55957) logloglogN1 
(3.6) <p* l og X1 

< 15.28538 log log log N1. 

3.4. Cases (iii-a) and (iii-b). Since x3 > x2, partial summation gives 

(3.7) 

S ( ) S ( ) _ 0u(x2) 0u(x1) 1xi 0u(t)(l + log t) d 
U X1 - U X2 - ---- ---+ ---~-- t 

x2 log x2 x1 log x1 x 2 t2 log2 t 
1 1 

< log log log x3 - log log log x2 + 1 1 1 + -1 --, 
ogx2 og ogx2 ogx2 
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where we see that 0u(t) ::; x3 fort::; x1, and therefore 

(3.S) Pu(x1) < loglogx3 exp (1.233076). 
Pu ( x2) log log x2 log xo 

In the case (a), then, with the aid of the Corollary of Theorem 8 in [24] and 
we can obtain Ni/cp(N1) = Pu(x1) < 15.41303logloglogN1, which is more than 
desired. In the other case (b), then, taking x = x2 in (3.3), we can obtain 
Nifcp(N1) = Pu(x1) < 15.54576logloglogN1 with the aid of (3.5) as desired. 

3.5. Cases (iii-c) and (iii-d). If x3 < x2, then we have 

1 1xi 1 + logt 
Su(x1) - Su(x2) < ----- + x3 ---dt 

log x2 log log x2 x 2 t2 log2 t 
1 1 

(3.9) 

<-----+--. 
log x2 log log x2 log x2 

In the case (c), we proceed like in the case (a) to obtain Ni/cp(N1) = Pu(x1) < 
15.63054logloglogN1. In the case (d), we proceed like in the case (b) to obtain 
Nifcp(N1) = Pu(x1) < 15.76514logloglogN1. 

3.6. Conclusion. Hence, we have Ni/cp(N1) < 15.76514logloglogN1 in any 
case and conclude that 

N + 1 1 N1 p 2 

(3.10) M::; -( -) ::; - +-(-)IT - 2- < 19.44947logloglogN1. 
cp* N N cp N1 p - l 

P21N 

Moreover, if Mcp(N) = N ± 1, then N = N1 and therefore M = (N ± 1)/cp(N) < 
15.76515logloglogN, which completes the proof of Theorem 1. 

We can prove Theorem 3 in a quite similar way with xo = e95 instead of e73 . 

3. 7. Proofs of Theorems 2 and 4. Proofs of other Theorems are similar 
to proofs of Theorems 1 and 3 but needs some modification. Let x 0 = e 72 

and r = w(N1) ~ 4. We discuss three cases: (i) x1 ::; xo, (ii) x1 > xo, 
1ru(x1) ~ xi/(logx1loglogx1), and (iii) x1 > xo, 1ru(x1) > xi/(logxiloglogx1). 
Moreover, in the case (iii), we put x2 be the largest number x such that 1ru(x) ~ 
x / (log x log log x) and settle four subcases. (a) r log r > x2 and x2 ::; xo, (b) 
rlogr > x2 > xo, (c) rlogr::; x2::; xo, and (d) rlogr::; x2 and x2 > xo. 

Then we can prove Theorem 2. Moreover, we can prove Theorem 4 in a quite 
similar way with x0 = e93 instead of e 72 . 
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