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TOWARDS A CLASSIFICATION OF REGULAR SEQUENCES 

MICHAEL COONS 

ABSTRACT. In the mid-2000s, Adamczewski and Buguead proved the Cobham­
Loxton-van der Poorten conjecture by using the subspace theorem to show 
that any automatic number (a number whose base expansion is given by an 
automatic sequence) is either rational or transcendental. About 10 years 
later, again using the subspace theorem, Bell, Bugeaud, and Coons, extended 
this result to regular sequences-the (possibly unbounded) generalization of 
automatic sequences. In this survey, we discuss a further characterization 
of regular sequences by defining an associated measure, the so-called ghost 
measure, which is governed by the underlying properties of a related finite set 
of matrices. 

1. INTRODUCTION 

One of the common themes in the area of transcendence and Diophantine ap­
proximation goes like this. You pick a real number. Say you chose t ER Then ask, 
and try to answer the following questions: 

1. Is t rational? 
2. If not, is t even algebraic? 
3. If not, is t the special value of some function that I know about? 
4. If not, or even if so, can some base expansion oft be given by a process 

that I know or care about? 

Probably the answer to at least one of these questions is 'yes.' If the answer to all of 
these questions were 'no', then one would have to ask how you picked t in the first 
place. In the transcendence community, a common example is to choose a number 
t that is related to an automatic sequence. For example, a number whose base-b 
expansion, for some positive integer b ~ 2, that is produced by a finite automaton, 
or, in general, a number that is the special value of the generating function of an 
automatic sequence. A classical example comes from the Thue-Morse sequence. 

2. AUTOMATIC AND REGULAR SEQUENCES AND NUMBERS 

The Thue--Morse sequence {t(n)}n;;,o is defined on the alphabet {1, -1} by 
t(O) = 1 and for n ~ 1 by the recurrences t(2n) = t(n) and t(2n + 1) = -t(n). This 
sequence, which starts 

{t(n)}n;;,o = {1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1, ... }, 

is one of the most ubiquitous integer sequences and one of central importance in 
various areas within number theory, combinatorics, theoretical computer science 
and dynamical systems theory; in particular, it is paradigmatic in the areas of 
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complexity and symbolic dynamics. While the sequence goes back at least to the 
1851 paper of Prouhet [18], its interest in the context of complexity is usually 
attributed to Thue [19], who, in 1906, showed that t is cube-free; that is, viewing t 
as a one-sided infinite word, it contains no subword of the form www. This shows 
that the Thue-Morse sequence is not periodic, though the proof of non-periodicity is 
much less deep than the cube-freeness. This sequence is output by the deterministic 
finite automaton in Figure 1-here one inputs the binary expansion of n and reads 
off the value t( n) from the final state. 

0 0 
1 

1 

FIGURE 1. The 2-automaton producing the Thue-Morse sequence {t(n)}n;;,o-

Concerning transcendence, in 1930, Mahler [16] proved the following result. 

Theorem 1 (Mahler, 1930). Let a be a nonzero algebraic number with lal < 1. 
Then I::n;;,o t(n)an is transcendental over (Ql. 

Mahler's proof is highly dependent on the generating function of t satisfying the 
functional equation T(z) = I::n;;,o t(n)zn = (1 - z)T(z2 ). In fact, the generating 
function of any automatic sequence satisfies such a functional equation, which are 
now known as 'Mahler type'-a power series F(z) is called a Mahler function if 
there are integers d;;;, 1 and k ;;;, 2, and polynomials a0 (z), ... , ad(z) such that 

ao(z)F(z) + a1(z)F(zk) + · · · + ad(z)F(zkd) = 0. 

In the late 1920s and early 1930s, Mahler studied the transcendental properties 
of these functions and special values at algebraic points. Essentially, he showed 
that the transcendence of the function over (Ql(z) gave the transcendence of certain 
special values over (Ql-a property which is very special. A crowning achievement 
in the area of automatic sequences was the resolution of Cobham's conjecture by 
Adamczewski and Bugeaud [l]. 

Theorem 2 (Adamczewski and Bugeaud, 2007). An automatic number is either 
rational or transcendental. 

It is worth noting that, while a proof using Mahler functions now exists, the original 
proof of this result was accomplished using the Schmidt subspace theorem. 

Of course, due to the dependence of automatic sequences on being produced by a 
finite state automaton, they necessarily can take only a finite number of values. In 
1992, Allouche and Shallit [2] offered a generalisation of automatic sequences that 
can be unbounded, the so-called regular sequences. 

Definition 3. An integer sequence f is called k-regular provided the set of subse-
quences 

kerk(f) := {(f(k£n + r)n;;,o: £;) 0, 0 ~ r < k£} 

is contained in a finitely generated Z-module. 
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Now, if kerk(f) is finite, then f is automatic, so the generalisation is clear. In fact, 
if f is k-regular and takes a finite number of values, then f is k-automatic. So this 
concept is robust. A (possibly) more enlightening way to see k-regular sequences is 
through their linear representation. 

Theorem 4 (Allouche and Shallit, 1992). An integer-valued sequence f is k-regular 
if, and only if, there is an integer d ~ 1, u, VE zdxl and Ao, A1, ... 'Ak E zdxd 

such that 
f (n) = UT Ai,Ai,_ 1 · · · Ai1 Aio v, 

where the base-k expansion of n is isis-1 · · · i1 io. 

My favourite example of a regular sequence is Stern's diatomic sequence s, 
which is defined by s(O) = 0, s(l) = 1, and for n ~ 1 by s(2n) = s(n) and 
s(2n + 1) = s(n) + s(n + 1). The sequence has many interesting properties, e.g., the 
ratios s(n)/s(n + 1) enumerate the nonnegative rational numbers, in reduced form 
and without repeats! The linear representation of s is given by 

uT = vT = (1 0), Ao = G ~) , A1 = G D . 
Following Mahler's classical method, in 2010, we showed [7] that for any nonzero 
algebraic number a with lal < 1, the number I:n;;,o s(n)an is transcendental. 

As an analogue to Cobham's conjecture, or more-correctly, to the theorem of 
Adamczewski and Bugeaud stated above, together with Bell and Bugeaud, we proved 
the following generalisation [5], as a consequence, again, of Schmidt's subspace 
theorem. 

Theorem 5 (Bell, Bugeaud and Coons, 2015). Let f be a k-regular sequence and 
b ~ 2 be a positive integer. Then I:n;;,o f(n)b-n is either rational or transcendental. 

All of the above results are in the area of transcendence theory called 'Mahler's 
Method' and are really a take-off of Mahler's original theory. But that's not how 
Mahler started looking at these objects. 

3. MAHLER AND MEASURE 

Like many of us, Mahler's first paper looks a bit out of place among his other 
work. At least at first glance. But this takes a little explanation. 

In 1926, Mahler was at Gottingen, which, as he describes it [17], "was at that 
time a centre of world mathematics." In that year, the renowned American applied 
mathematician Norbert Wiener had a Guggenheim Fellowship to work with Max 
Born at Gottingen. During his stay in Gottingen, Wiener was given 23-year-old 
Mahler as an unpaid assistant. The pair produced one (sort-of joint) paper. By 
'sort of', we mean that they each wrote, individually, one part of a two-part paper 
with one of the longest titles I've ever encountered, which, before the addition of the 
subtitles for each part is "The spectrum of an array and its application to the study 
of the translational properties of a simple class of arithmetical functions." Before 
getting to Mahler's contribution, which was Part Two, let's focus on Wiener's part. 

In Part One, Wiener [20] described how to use the concept of diffraction to 
associate a measure defined on the unit torus 1' = [O, 1) to a finite-valued integer 
sequence f-here, for ease, we will suppose f(n) E {-1,1}. We now call this the 
'diffraction measure', and write 9 := 91- This process is best described, these days, 
in reference to the Wiener diagram: 
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I . 12 
W~ ~ ------------- "( = W ® W 

where w is the (weighted) Dirac comb with weights w, ® represents convolution, F 
is Fourier transformation, and the values 

. 1 N 
71(m) := hm -- " f(i)f(i + m) 

N-+oo 2N + 1 L..,, 
i=-N 

are the autocorrelation coefficients. 
With 91 in hand, one now asks, what kind of measure is it? Recall that for 

reasonable measures, we have the following characterisation. 

Theorem 6 (Generalised Lebesgue decomposition). Any finite real Borel measure 
µ on 11' is the sum 

µ = µpp + µsc + µac, 

where µPP l_ µsc l_ µac, and with respect to Lebesgue measure>.., µPP is pure point 
(the so-called Bragg part), µsc is singular continuous and µac is absolutely continuous. 

In his part, Wiener gave some examples of sequences with values in { -1, 1} 
with pure spectral types. For a pure point measure, he showed that any eventually 
periodic sequence f has 11 = (11 )pp· Now, let f be all finite sequences of the values 
{ -1, 1} ordered lexicographically with 1 > -1; so, the sequence of f values here is 
the sequence 

1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, .... 

For this f, we have that 11 = (11 )ac• This is a bit unsurprising as this sequence is 
normal-all patterns of length n occur and they occur with frequency 2-n. What 
Wiener did not do in his part, was provide and example of a sequence that is purely 
singular continuous-enter Mahler. 

In his part, Mahler [15] showed the following. 

Theorem 7 (Mahler, 1927). If tis the Thue-Morse sequence, then 1t = (9t)pp· 

The diffraction measure is only developed for sequences that take finitely many 
values, and is often applied to automatic sequences; see the monograph 'Aperiodic 
Order' by Baake and Grimm [3] for several detailed examples. In the next section, 
inspired by Wiener's construction, we construct a measure for an unbounded regular 
sequence. 

4. MEASURES ASSOCIATED TO REGULAR SEQUENCES 

When thinking about associated a measure to regular sequences, one thing that 
stood out for us, was, analogous with forming the volume averaged convolution 
w ® w, a need to be able to volume average. In work with Michael Baake [4], we 
realised that a property of the Stern sequence could be used to accomplish this-that 
s satisfies, for all n ~ 0, that 

2n-l 

(1) Ls(2n+m)=3n. 
m=O 
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Using this we defined a sequence of pure point measures 
2n-l 

µs,n := 3~ L s(2n + m )bm;2n, 
m=O 

where bx denotes the unit Dirac measure at x. We can view (µs,n)nENo as a sequence 
of probability measures on the 1-torus, the latter written as 'lr = [O, 1) with addition 
modulo 1. Here, we have simply re-interpreted the (normalised) values of the 
Stern sequence (s(n))n:;,o between 2n and 2n+1 - 1 as the weights of a pure point 
probability measure on 'lr supported on { m/2n : 0 ~ m < 2n }. With this set up, 
we proved the following result [4]. 

Theorem 8 (Baake and Coons, 2018). The sequence (µs,n)nENo of probability 
measures on 'll' converges weakly to a probability measure µs, which is purely singular 
continuous. 

It turns out, an equality analogous to (1) holds for any regular sequence f. That 
is, if f is k-regular, the sum off between powers of k is a linear recurrent sequence, 
and so, for nonnegative k-regular sequences f, this value can be used to volume 
average. In particular, given a linear representation u, Ao, A1, ... , Ak-1, v of a 
nonnegative k-regular sequence f, set 

kn+l_l 

L-J(n) := L f(m) 
m=kn 

where bx denotes the unit Dirac measure at x. We can view (µ 1,n)nENo as a sequence 
of probability measures on the 1-torus, the latter written as 'lr = [O, 1) with addition 
modulo 1. Here, each of these pure point probability measures on 'lr is supported on 
{ m/(kn(k - 1)) : 0 ~ m < kn(k - 1) }. Note that µf,n is only well-defined if L-J(n) 
is nonzero. 

To extend Theorem 8 to a larger set of regular sequences, we need a bit more 
notation, and a few assumptions. To consider properties of these measures, for the 
purpose of this short survey, we will suppose that each of u, A, v has only nonnegative 
entries, where A= {Ao, A1, ... , Ak-1}. Also, set A:= Ao+ A1 + · · · + Ak-1 and 
define the spectral radius p := p(A) and the joint spectral radius p* of A by 

p*=p*(A):=lim . max IIAi1 Ai2 ···AiJ 11n. 
n➔oo O~i1,i2,.,,,in~k-l 

These radii satisfy the fundamental inequality 

t ~ p* ~ p. 

The spectral properties of the measures we will form are impacted directly by how 
this inequality holds, that is, which parts are strict inequalities and which are 
equalities. With Evans, Gohlke and Maiiibo, we showed the following [8]. 

Theorem 9 ( Coons, Evans, Gohlke and Maiiibo, 2023+c). Let f be a regular 
sequence and suppose that the set A is irreducible and that A is nonnegative and 
primitive. Then the sequence (µf,n)nENo of probability measures on 'll' converges 
weakly to a probability measure µf, which is spectrally pure. Moreover, 

(i) p* = p if, and only if, µf is pure point, 
(ii) p/k < p* -Ip if, and only if, µf is singular continuous and 

(iii) p / k = p* if, and only if, µ f is absolutely continuous. 
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To see that this theorem is a generalisation of Theorem 8, one notes that in the 
situation of the Stern sequence s, we have that A is irreducible, and A has only 
positive entries, so is primitive, and as well p = 3, p* = (1 + ,./5)/2, so that the 
fundamental inequality holds with 

p * 1+,./5 
- = 1.5 < p = -- < p = 3. 
2 2 

Thus Theorem 9 directly implies Theorem 8. 

5. SOME FINAL COMMENTS 

In this short survey, we described some ways to associate measures to integer 
sequences, in particular, we described Wiener's diffraction measure construction 
for finite-valued sequences (such as automatic sequences), and our construction 
of a measure related to (unbounded) regular sequences. The measures from our 
construction are called ghost measures in the literature1. 

With these measures in hand, one asks questions about their spectral type, 
and those answers give us some information about the structure of the sequence. 
Considering our measure for regular sequences, in a very concrete way, 

• a sequence with nonzero pure point component has some extremely large 
values comparable to the average value, 

• a sequence with nonzero absolutely continuous component has some very 
smooth parts, and 

• a sequence with nonzero singular continuous component has some self-similar 
or fractal behaviour. 

This type of characterisation is in stark contrast to what one gains by asking 
the questions raised in the introduction. For example, if you know a number is 
transcendental (here, maybe your number is a special value of the generating function 
of a regular sequences), then you know it is not algebraic. And that's it. While 
it's great to show such a thing, it doesn't really give you any information about 
properties of the number. In fact, it tells you it doesn't have a certain kind of 
structure, which is not nothing, but is also not a lot. Our hope with associating these 
measures to regular sequences is to provide more information about the structure, 
and this method could be seen either as an alternative to the classical algebraic 
classification or as a complementary approach. 

An immediate question is whether there is a relation between the spectral type 
of the measure and the algebraic properties of the number. 

It turns out that regular sequences with transcendental special values can have 
any pure spectral type, and so also, by addition, be of any mixed spectral type. For 
example, we have already seen that for Stern's diatomic sequence s, the measure µ 8 

is purely singular continuous, and the number I:n>-l s(n)an is transcendental for 
any nonzero algebraic number a with lal < 1. Fo(a pure point measure, we can 

1The name ghost measure came from my former PhD student James Evans. For him [11], this 
was reminiscent of Berkeley's critique of infinitesimals in The Analyst, when he says that they are 
"neither finite quantities nor quantities infinitely small, nor yet nothing. May we not call them the 
ghosts of departed quantities?'' The values f(m) are (usually) much smaller than the sum of all 
terms, so the individual pure points of the µn disappear in the averaging as n tends to infinity. 
The measureµ is the ethereal imprint left behind, the ghost of the departed pure points of the µn. 
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look at the sequence 

a(n) = { ~ if n = 2k for some k ~ 0 

otherwise. 

In this case, a classical 1916 result of Kempner [13], A(z) = I:n;,o a(n)zn = 

I:n;,o o:2n is transcendental for o: = 1/b for any positive integer b ~ 2, and using 
Mahler's method, for any nonzero algebraic number o: with lo:I < 1. It is quite clear 
as well, that a(n) is 2-regular and that µa= c50 . While there are many options for 
absolutely continuous measures, for us, one stands out. If one takes t to be the 
Thue--Morse sequence, but now with values in {O, 1}, then since the values 1 are 
extremely evenly distributed-there are never three zeros in a row, and the density 
of ones is 1/2-we necessarily have that µt = (µt)ac is purely absolutely continuous. 
Note that this is in contrast to the result for the diffraction measure 1t = (9t)sc, 
which is purely singular continuous. Transcendence follows from Theorem 1 above. 
As a complementary example, the sequence of positive integers gives rise to an 
example of a number that is rational at rational values and irrational algebraic at 
irrational algebraic values, and which gives an absolutely continuous measure. It 
may very well be the case that every (not eventually zero) linear recurrent sequence 
of nonnegative integers gives rise to an absolutely continuous measure-we have yet 
to fully examine this question. 

As a final comment, let us mention one of our favourite questions, the finiteness 
conjecture. Here, a finite set of matrices A= {Ao, ... , Ak-i} is said to satisfy the 
finiteness property provided there is a finite product Aio · · · Ai,,,_1 of these matrices 
such that 

p(Aio • • · Ai,,,_1)1/m = p*(A). 

Arising from the work of Daubechies and Lagarias [9, 10], Lagarias and Wang [14] 
conjectured that the finiteness property holds for all finite sets of real matrices. 
This was shown to be false, in general, first by Bausch and Mairesse [6], then 
constructively by Hare, Morris, Sidorov and Theys [12]. The finiteness conjecture 
for rational matrices----equivalent to that for integer matrices-remains open. In our 
joint work with Evans, Gohlke and Maiiibo [8], in relation to our work with the 
ghost measure, we established a new case of the finiteness conjecture. 

Theorem 10. Let A be a finite set ofdxd nonnegative matrices withp*(A) = p(A). 
Then A has the finiteness property. 
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