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AN APPLICATION OF MELLIN-BARNES TYPE INTEGRALS TO 
THE MEAN SQUARES OF DIRICHLET-HURWITZ-LERCH 

£-FUNCTIONS 

MASANORIKATSURADA 
DEPARTMENT OF MATHEMATICS, FACULTY OF ECONOMICS, KEIO UNIVERSITY 

ABSTRACT. Complete asymptotic expansions associated with the mean squares, in the 
discrete and continuous forms, of Dirichlet-Hurwitz-Lerch L-functions are presented 
(Theorems 1 and 2), together with their outlined proofs. 

1. INTRODUCTION 

Throughout the paper, s = O"+it, u and v are complex variables, a and,\ real parameters 
with a 2: 0, x any Dirichlet character modulo (arbitrary) q 2: 1, and x the complex 
conjugate of X· We frequently use the notation e(s) = e21ris, eq(s) = e(s/q) = e21ris/q, 

denote by l the principal character modulo q 2: 1, and write Xc(l) = X(c + l) (c, l E Z) 
for any Dirichlet character X. 

The Dirichlet-Hurwitz-Lerch £-function LxJs, a, ,X.) is defined by 

(1.1) (Re(s) = O" > 1), 

and its meromorphic continuation over the wholes-plane. The primed summation symbols 
hereafter indicate omission of the impossible terms of the form 1/08 (if they occur). This 
reduces if (q, x) = (1, i) to the Lerch zeta-function 'l/J(s, a, ,\)=e(a,X.)¢(s, a,,\), and further 
if (q,,X.) = (1,0) to the Hurwitz zeta-function ((s,a), while if (q,a) = (1,0) to the 
exponential zeta-function (.>.(s), if (a, ,X.) = (0, 0) to the (shifted) Dirichlet £-function 
LxJs), and hence if (q, x) = (1, ,X.) and (a, ,X.) = (0, 0) to the Riemann zeta-function ((s). 

A more flexible definition of the Dirichlet-Hurwitz-Lerch £-function, for any real a and 
A, and for any integer c, asserts 

(1.2) (Re(s) = O" > 1),, 

for which several results have recently been shown by Noda and the author [13]. Let I'(s) 
denote the gamma function, and Gx = Lh:~ x(h)eq(h) Gauf3' sum. We can show: 
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Theorem -2 ([13, Theorem 5]). For any real a and.\ any integer c, and any primitive 
character x modulo q 2 1, we have 

L:Js, a:, .X) = eq{.X(a: - c)} q~;:;:L { x(-l)e'ri(l-s)/2 Li(l - s, .X, -(a: - c)) 

+ e-,ri(l-s)/2 Li(l - s, ->., a - c) }-

Next let Bk (k = 0, 1, ... ) be the Bernoulli numbers (cf [3, p.35, 1.13.(1)]), and , a 
complex parameter in the sector I arg ,I < 1r /2. Then the celebrated formulae of Euler 
and Ramanujan for specific values of ((s) assert respectively that 

(-l)k-1(2n)2k 
((2k) = 2(2k)! B 2k (k = 1, 2, ... ), 

and for any integer k # 0, 

((2k + 1) + 2 ~ l-2k-le-2,rlT + (2n)2k+l ~ (-l)j B2jB2k+2-2j ,2k+l-2j 
~ 1 - e-21flT ~ (2j)!(2k + 2 - 2j)! 
l=l J=O 

{ 

00 l-2k-1 -2,rl/T} 
= (-l)k,2k ((2k + 1) + 2 L l - e~2,rl/T . 

l=l 

Let L~Js,a:,µ) and L;b(s,/3,v) for any real a:, /3, µ and v, and any integers a and b 
be the Dirichlet-Hurwitz-Lerch £-functions (defined by (1.2)), attached to any (shifted) 
primitive characters Xa and 'l/Jb modulo f 2 1 and g 2 1 respectively. Then we can further 
show: 

Theorem -1 ([13, Theorem 4]). There exist various character analogues of Euler's for
mula for L~a (s, a,µ), as well as of Ramanujan's formula connecting specific values of 
L~Js, a:,µ) and L;b (s, /3, v) with any primitive characters of (possibly) different moduli. 

The observation above suggests that the following empirical 'theorem' seems to be true! 

Theorem 0. It is worth pursuing the functional ( or arithmetical) nature of a class 
of Dirichlet-Hurwitz-Lerch £-functions. 

2. ASYMPTOTICS FOR THE DISCRETE MEAN SQUARE 

Let <p(n) denote Euler's totient function, µ(n) Mobius' function, and write, for any 
n E Z, the shifted factorial of s as 

{
s(s + 1) • • • (s + n - l) 

(s)n = I'(s+n) = 1 
I'(s) 

(s - l)(s - 2) · · · (s - lnl) 

if n 2 0, 

if n < 0. 

The chief concern in this section is the asymptotic expansions for the discrete mean square 

(2.1) <p(q)-1 L ILxc(a + it, a:, >.)12, 
x( mod q) 

averaged over all characters x modulo q 2 1. 
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We give here an overview of the results related to (2.1). Atkinson [1] first established a 
precise asymptotic formula for the error term E(T) of the mean square ft 1((1/2 +it)l2dt 
in terms of an innovative dissection method applied to the product ( ( u )( ( v). Heath
Brown [5] derived, irrelevant to [1], an asymptotic series for Lx(modq) ILx(l/2)12 (at 
the central point) as q ----+ +oo. Motohashi [16] obtained, when q = p is a prime, an 
asymptotic formula for (p-1)-1 Lx( modp) ILx(l/2 +it)l 2 asp----+ +oo with the error term 
O(p-3/2), based Atkinson's dissection method. Matsumoto and the author [10] established 
a (ramified) asymptotic expansion for cp(q)-1 Lx(modq) 1Lx(o-+it)l2 as q----+ +oo, in the 
stripe O < o- < 1, which further implies, when q = p is a prime, a complete asymptotic 
expansion for (p - 1)-1 Lx( modp) ILx(o- + it)l2 asp----+ +oo through the set of primes, in 
the same region of o- above, based on Atkinson's dissection method. They [11] derived, 
taking the limit o- + it ----+ 1- of the result above, a complete asymptotic expansion for 
(p-1)-1 Lx( modp),x#i 1Lx(l)l2 asp----+ +oo through the set of primes. The author [7] gave 
a quite transparent treatment of the same discrete mean squares by joining Atkinson's 
dissection method to the Mellin-Barnes type integrals, which appropriate to the relevant 
settings. The reader is to be referred, e.g. to [9, Sect. 2] for a more detailed history. 

We now proceed to state our first main result. For this, let (x) = x - l x J denote the 
fractional part of x E IR, and define the ( exceptional) set E C C as 

( 2. 2) E = { s E C I Re s = l - n / 2 or s = l - n ( n = 0, l, ... )} . 

Theorem 1. Let c, q E Z and a,,\ E IR be arbitrary with q 2: 1 and a 2: 0. Then for any 
integer N 2: 0, in the region - N + l < a- < N + l except the points a- + it E E, we have 

(2.3) cp(q)-1 L ILxJo- + it, a,.-\) 1
2 

x( mod q) 

= q-2uLµ(f)k2"(( 2a-, ak +\_ck)) 
klq q q 

+ 2q-2" cp( q)I'(2o- - 1) Re{(,\ (2o- - 1) I'(l (- a-: )it)} 
I' 0- + it 

+ 2q-2" L µ(f) Re{ Sc,q(o- + it, a- - it; a,.-\; k) }, 
klq 

where k runs through all positive divisors of q, and Sc,q is given by 

Sc,q(u; v; a,.-\; k) = I: (-l:(u)n (,\(u + n)(( v - n, aqk + (-c:) )kv-n 
n=O 

+ Tc,q,N(u, v; a,.-\; k). 

Here Tc,q,N is the reminder expressed by the Mellin-Barnes type integral in (2.9} below, 
and bounded above as 

Tc,q,N(o- + it; a- - it; a,.-\; k) 

{
o{ ku-N (ltl + 1)2N+l/2-u} 

- o{ ku-N (ltl + 1)(3N+l-u)/2+s} 

if - N + l < a- < N, 

if N :S: o- < N + l 
for any E > 0, where the implied 0-constants depend at most on a-, q, N and E. 
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Remark. The presence of the error bounds above is reasonable, since the n-th indexed 
term in the asymptotic series is of order 

{
ko--n(ltl + l) 2n+1/2-o- if -n + 1 <a< n, 

« k"-n(ltl + l)(3n+1-o-)/2+s if n :Sa< n + l. 

Let 8(x) is equal to 1 or 0 according to x E Z or otherwise, and ,Yj(a, >.) (j = 0, 1, .. . ) 
the j-th generalized Euler-Stieltjes constants defined by 

8(>.) 00 

'ljJ(s, a,>.)= - + '°' ,Yj(a, >.)(s - l)j 
s-1 ~ 

j=O 

centered at s = 1, where ,Yj = ,Yj(0,0) = ,Yj(l,0) (j = 0, 1, .. . ) are the classical Euler
Stieltjes constant (cf. [3, p.34, 1.12.(17)]). The asymptotic expansions on the exceptional 
set E (see (2.2)) can then be deduced from Theorem 1 by taking appropriate limits, e.g., 
the following formulae are valid. 

Corollary 1.1. Under the same settings as in Theorem 1, we have: 

i) letting a ---+ l /2, 

<p(q)-1 L ILxc G + it, a,>-) 12 
x( mod q) 

= q-1 L µ ( *) kro ( ak + \ - ck)' 0) 
klq q q 

+ <p~q) [logq + L ~o~~ + Re{ (~(0) - (>.(0)~ G +it)}+ 10] 
Plq 

+ 2q-1 Lµ(*) Re{ Sc,qG + it, 1- it; a,>.; k) }; 
klq 

ii) letting u ---+ 1, 

<p(q)-1 L ILxJl + it, a,>.) 1
2 

x( mod q) 

= q_2 Lµ(*)k 2((2, ak + (-ck)) 
klq q q 

+ <p(q) [-8(>.){2Re~ I" (1 +it)+!._}+ Imro(O,>.)l 
q2 it I' t2 t 

+ 2q-2 L µ(*) Re{ Sc,q(l + it, 1 - it; a,>.; k) }. 
klq 

Here k runs through all positive divisors of q, p through all prime divisors of q, and Sc,q 
gives an asymptotic series as in Theorem 1. 

The formula in Theorem 1 does not asserts (in a strict sense) a complete asymptotic 
expansion in the descending order of q itself; however it gives, if q =pis a prime, a (true) 
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complete asymptotic expansion in the descending order of p, since Sc,p(u, v; o:, .:\; 1) can 
be computed explicitly. 

Corollary 1.2. Under the same settings as in Theorem 1, in the region -N + 1 < O" < 
N + l except the points O" + it E E, we have 

x( mod p) 

= (1 + p-20')((20", o:) - p-20' ( ( 20", ~ + \ -~)) - p-20' 1'1/;(0" + it, o:, .:\) 12 

+ 2p1- 20' I'(20" - 1) Re{(>.(20" - 1) I'(l (- O": )it)} 
I' (J + it 

+ 2p-20' Re{ Sc,p(O" + it, O" - it; o:, .:\;p) }, 

whose limiting case O"----+ 1/2 asserts 

(2.5) (p - 1)-l L ILxc G + it, o:, A) 1

2 

x( mod p) 

= (1 + P-1ho(o:, 0) - P-1'Yo(~ + \ - ~), 0) 

- 2 Re{(~ (0) + (>. (0) ~ G + it) } + 'Yo + log p - p-1
1 'lj; G + it, o:, ,\) I 

2 

+ 2p-1 Re{ Sc,p G +it;~ - it; o:, .:\;p) }. 

Here the term Sc,p, both in (2.4) and (2.5), gives a complete asymptotic expansion in the 
descending order of p asp ----+ +oo through the set of primes. 

We now proceed to outline of the proof Theorem 1. For this, we set 

I'(l - v) 
R(u, v; ,\) = I'(u + v - l)(>.(u + v - l) I'(u) , 

use a (modified) Mi:ibius' inversion 

and write 

(O" > 1), 
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for exh, f3k E <C (h = 1, ... , m; k = l, ... , n). The dissection formula, for Re(u) > 1 and 
Re(v) > 1, 

x( mod q) 

= q-u-v L µ(f) ku+v(( u + v, exk + (-ck)) + fc,q(u, v; ex,>.) 
klq q q 

+ f~,q(v, u; ex,->.), 

is crucial in proving Theorem 1, where fc,q is a variant of Euler's double zeta-function 
(see [1] for the case of ((u)((v)). This further splits into 

fc,q(u, v; ex,>.) = q-u-vcp(q)R(u, v; >.) + 9c,q(u, v; ex,>.), 

where 9c,q is given by 

9c,q(u, v; ex,>.)= q-u-v L µ(f )sc,q(u, v; ex,>.; k) 
klq 

with Sc,q being expressed as the Mellin-Barnes type integral of the form 

(2.6) Scq(u,v;ex,>.;k) = ~ f r(u+s,-s)(;.(-s) 
' 2Kzk u 

X (( u + v + s, exqk + (- c;) )ku+v+sds, 

where the path C separates the poles of the integrand at s = 1 - u - v and s = -1 + m 
(m = 0, 1, .. . ) from those at s = -u - n (n = 0, 1, ... ). 

We proceed further along the lines above, moving appropriately the path C to the 
left, and eventually obtain the formula (2.8) below, which yields, upon setting ( u, v) = 
(a +it, a - 'it), various complete asymptotic expansions for the discrete mean square (2.1). 
Let (a) for any a E R denote the vertical straight path from a - ioo to a+ ioo, and define 
the (exceptional) set E c <C2 as 

(2.7) E = { (u, v) E <C2 I u + v = 2 - nor u = l - nor v = l - n (n = 0, 1, 2, ... ) }. 

We can then show the following formula. For any integer N 2: 0, in the region - N + l < 
Re(u) < N +land -N + 1 < Re(v) < N + l except the points (u,v) EE, we have 

x( mod q) 

= q-u-v L µ(f) ku+v( ( u + v, exk + (-ck)) + q-u-vcp(q){ R(u, v; >.) 
klq q q 

+ R(v, u; ->.)} + q-u-v L µ(f) { Sc,q(u, v; ex,>.; k) + Sc,q(v, u; ex,->.; k) }, 
klq 
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where Sc,q is expressed as 

( ) ~ (-lt(u)n ( ) ( ak ;ck)) v-n 
Sc,q u, v; a,>-.; k = ~ n! (.>- u + n ( v - n, q + \ q k 

n=O 

+ Tc,q,N(u, v; a,>-.; k), 

and Tc,q,N is given by the Mellin-Barnes type integral 

(2.9) Tc,q,N(u, v; a,>-.; k) = ~ r r(u + ~' -s)(;_(-s) 
27fi }(<IN) 

X (( U + V + s, aqk + (-c:) )ku+v+sds 

with o-N satisfying - Re(u)-N < o-N < min(- Re(u)-N + 1, -1, - Re(u+v)). Theorem 1 
is in fact a direct consequence of (2.8) upon setting (u, v) = (o- + it, a- - it). 

3. ASYMPTOTIC EXPANSIONS FOR THE CONTINUOUS MEAN SQUARE 

The chief concern in this section is the asymptotic expansions for the continuous mean 
square 

(3.1) 11 ILxc(o- + it, a+ q~, >-.) 12d~. 

We give here an overview of the results on (3.1), mainly when (q, x) = (1, L), (a,>-.) = 
(1, 0), i.e. the case of the continuous mean square of ((s, 1 +~)- Koksma-Lekkerkerker [14] 
initiated the study into the direction to obtain the asymptotic bound O(log t) as t ➔ +oo 
on the critical line o- = 1/2. Subsequent research are made by Gallagher [4], Balasub
ramanian [2], Rane [17], Klush [15], Zhang [18][19]. Matsumoto and the author [11] 
established, for the case above, a complete asymptotic expansion in the descending or
der of Im s = t as t ➔ +oo, by means of Atkinson's dissection method. The author [6] 
derived a complete asymptotic expansion when (q, x) = (1, l) and a = 1, i.e. for the 
case of the continuous mean square of ¢(s, 1 + (, >-.), by means of Atkinson's dissection 
method enhanced by Mellin-Barnes type integrals. The author [8] established a complete 
asymptotic expansion, when (q, x) = (1, l), for the multiple mean square of the form 

in the descending order of Im s = t as t ➔ ±oo, by means of Atkinson's dissection method, 
enhanced by Mellin-Barnes type integrals. These are further manipulated with several 
properties of (generalized) hypergeometric functions. The reader is to be referred, e.g. to 
[9, Sect. 3] for a more detailed history. 

We proceed to state our second main result. We set, for any ( u, v) E C2 \ E (see (2. 7)), 

q-1 
I'(l - v) '""" _ ( 1 + a ) RxJu, v; >-.) = I'(u + v - l) I'(u) ~ Xc(l +a+ b)xc(b)'lf' u + v - l, -q-, A . 

a,b=O 
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Theorem 2. Let c, q E Z and a,,,\ E IR be arbitrary with q 2: 1 and a 2: 0. Then for any 
integer N 2: 0, in the region -N + 1 < a < N + l except the points a+ it E E ( see (2.2)), 
we have 

(3.2) fo 1 
ILxJa + it, a+ qf:,, >..) 1

2 de, 

q-2u (q) (ak / ck))l-2u 
=- 1 _ 2aLµ k k2u q+\-q +2q-2uRe{RxJa+it,a-it;>..)} 

klq 

- 2q-2u Re{ SXc,N(a + it, a - it; a,>..)+ 'xc,N(a + it, a - it; a,>..)}, 

where SXc,N and 'xc,N are given by 

with 

(3.3) 

(3.4) 

q-1 ( ) l+a a+b 
'xc,N(u,v;a,>..) = L Xc(l+a+b)xc(b)TN u,v;--,--,A 

a,b=O q q 

N-l ( ) n+l-v 
SN(u, v; x, y, ..\) = ~ (~ ~yv)n+1 e(-y..\)'lj.!(u + n; x + y, ..\), 

(u)NYN+l-v oo, e{(x + l)..\} loo 'f/u+v-2 
TN(u,v;x,y,..\) = (l-v)N ~ (x+l)u+v-1 x+l (y+rJ)u+N-ld'f). 

Nate that the last expression converges absolutely for Re( u) > - N + l and Re( v) < N + l. 
This further asserts 

(3.5) TN(u,v;x,y,>..) 

= N+l-v [~ (-l)k-1 (2 - u + v)k_1(u)N-k ~ e{(x + l)..\} 
y ~ (l - v)N ~ (x + l)k+l-u+v(x + y + l)u+N-k 

k=l l=O 

+ (-l)K(2-u+v)K(u)N-K~ e{(x+l)..\} 100 yu+v-K-2 d] 
(1 - v)N ~ (x + l)u+v-1 x+l (y + rJt+N-K 'f/ , 

which gives upon ( u, v) = (a+ it, a - it) the asymptotic expansion in the descending order 
of Ims = t as t ➔ ±oo. 

We proceed to outline the proof of Theorem 2. The dissection formula, for Re( u) > 1 
and Re(v) > 1, 

LxJu, a, >..)LxJv, a,->..) 

_ -u-v~ (q) u+v ( ak / ck)) f ( . ) -I' ( . ) - q ~ µ k k ( u + v, - + \ - - + Xe u, v, a, A + Jxc v, u, a,-,,\ 
klq q q 
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is crucial in proving Theorem 2, where fxc (or fxJ is a variant of Euler's double zeta
function (see [1] for the case of ((u)((v)). This further splits into 

fxJu, v; a,>..)= q-u-vRxJu, v; >..) + gxJu, v; a,>..), 

where 

with 

g(u, v; x, Y, >..) = ~ r r(u + s, -s)'l/J(-s, x, >..)((u + V + s, y)ds, 
2ni le u 

where C is the same contour as in (2.6). 
We suppose now that Re(u) > 1 and Re(v) < 1, under which the path C can be taken 

as a straight line C = (o-0 ) with o-0 satisfying - Re(u) < o-0 < min(-1, 1 - Re(u + v)). It 
suffices, for the treatment of the continuous mean square (3.1), to evaluate the integral 

1 q-1 

f 9xJu, v; a+ q~, >..)d~ = -q-u-v L Xc(l +a+ b)xc(b)'g( u, v; l +a, a+ b, >..), 
lo a,b=O q q 

say, where the relation, for any complex s i- 1, 

(1 ((s, y + ~)d~ = _ lyl-s 
lo - s 

(cf. [8, Lemma 2]) is used to integrate the Mellin-Barnes type expression of g(u, v; x, y, >..). 
This gives 

- 1 1 (u + s, -s) yl-u-v-s 
g(u,v;x,y,>..) = -. I' '1/J(-s,x,>..)-----ds. 

2m (uo) U 1 - U - V - S 

Note further that the Mellin-Barnes formula, for O < Re(z) < Re(w), 

_1_ = _1_ 1 I' (z + r, w, 1 + r, -r) e1rir dr 
w - z 2ni (p) z, w + 1 + r 

holds with a constant p satisfying max(- Re z, -1) < p < 0 ( cf. [6, Lemma 3]). This upon 
z = u + s and w = 1 - v is substituted into the denominator factor 1/(1 - u - v - s) 
above to transform the s-integral expression of g as 

1 1 (u + r 1 - v 1 + r -r) . 1 + g(u,v;x,y,>..) = -2 . I' ; 2 -~+r' emre(-y>..)'ljJ(u+r,x,>..)y-v rdr 
ni (po) , 

with p0 satisfying max(-Re(u),-o-0,-1) < p0 < 0. Moving the path (p0 ) to the right 
appropriately, we obtain 

g(u, v; x, y, >..) = SN(u, v; x, y, >..) + TN(u, v; x, y, >..) 

with the expression in (3.3) and 

(u)NYN+l-v ~ e{(x + l)>..} ( u + N, 1 Y ) 
(3.6) TN(u,v;x,y,>..)= (l-v)N+1 ~(x+y+l)u+N2F1 N+2-v;x+y+l' 

l=O 
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where 2Fi denotes Gauf3' hypergeometric function (cf. [3, p.59, 2.1.1(12)]). This is further 
transformed, through Euler's formula for 2Fi (cf. [3, p.59, 2.1.3.(10)]), to imply (3.4). 
The asymptotic expansion in (3.5) for TN is obtained by substituting the formula, coming 
from a repeated use of a contiguity relation of 2Fi (cf. [3, p.103, 2.8.(37)]), 

(u)N 2Fi( u+N,l ;z) = ~(-1)k-1(2-u-v)k_1(u)N-k(l-z)-k 
(1 - v)N+l N + 2 - v 8_ (1 - v)N+l 

+ (-l)K(2 - u - v)K(u)N-K (1 - z)-K2Fi (u + N - K, l; z) 
(1 - v)N+l N + 2 - v 

with Z = y/(x+y+l) into each term of the series expression of TN in (3.6) to yield (3.5). 

REFERENCES 

[1] F. V. Atkinson, The mean-value of the Riemann zeta function, Acta Math. 81, 353-376. 
[2] R. Balasubramanian, A note on Hurwitz's zeta-function, Ann. Acad. Sci. Fenn. Ser. A I Math. 4 

(1979), 41-44. 
[3] A. Eldelyi (ed.), W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, 

Vol. I, McGraw-Hill, New York, 1953. 
[4] P. X. Gallagher, Local mean value and density estimates for Dirichlet L-functions, Indag. Math. 37 

(1975), 259-264. 
[5] D. R. Heath-Brown, An asymptotic series for the mean value of Dirichlet L-functions, Com

ment. Math. Helv. 56 (1981), 148-161. 
[6] M. Katsurada, An application of Mellin-Barnes' type integrals to the mean square of Lerch zeta

/unctions, Collect. Math. 48 (1997), 137-153. 
[7] M. Katsurada, An application of Mellin-Barnes type of integrals to the mean square of L-functions, 

Liet. Mat. Rink. 38 (1998), 98-112. 
[8] M. Katsurada, An application of Mellin-Barnes type integrals to the mean square of Lerch zeta

functions II, Collect. Math. 56 (2005), 57-83. 
[9] M. Katsurada, Complete asymptotic expansions associated with various zeta-functions, in "Various 

Aspects of Multiple Zeta Functions - in honor of Professor Kohji Matsumoto's 60th birthday," 
Adv. Stud. in Pure Math. 84, pp. 205-262, Math. Soc. Japan, 2020. 

[10] M. Katsurada and K. Matsumoto, Asymptotic expansions of the mean values of Dirichlet L-functions, 
Math. Z. 208 (1991), 23-39. 

[11] M. Katsurada and K. Matsumoto, The mean values of Dirichlet L-functions at integer points and 
class numbers of cyclotomic fields, Nagoya Math. J. 134, 151-172. 

[12] M. Katsurada and K. Matsumoto, Explicit formulas and asymptotic expansions for certain mean 
square of Hurwitz zeta-functions I, Math. Scand. 78 (1996), 161-177. 

[13] M. Katsurada and T. Noda, Asymptotics for a class of holomorphic Dirichlet-Hurwitz-Lerch Eisen
stein series and Ramanujan's formula for ((2k + 1), preprint. 

[14] J. F. Koksma and C. G. Lekkerkeker, A mean value theorem for ((s, w), Indag. Math. 14 (1952), 
446-452. 

[15] D. Klush, Asymptotic equalities for the Lipschitz-Lerch zeta-function, Arch. Math. (Basel) 49 (1987), 
38-43. 

[16] Y. Motohashi, A note on the mean value of the zeta and L-functions I, Proc. Japan Acad., Ser. A 
(1985), 222-224. 

[17] V. V. Rane, On Hurwitz zeta-function, Math. Ann. 264 (1983), 147-151. 
[18] W.-P. Zhang, On the Hurwitz zeta-function, Illinois J. Math. 35 (1991), 569-576. 
[19] W.-P. Zhang, On the mean square value of the Hurwitz zeta-function, ibid. 38 (1994), 71-78. 

DEPARTMENT OF MATHEMATICS, FACULTY OF ECONOMICS, KEIO UNIVERSITY, 4-1-1 HIYOSHI, 
KOUHOKU-KU, YOKOHAMA 223-8521, JAPAN 

Email address: katsurad@z3. keio. jp; katsurad@hc.cc. keio. ac. jp 




