AN APPLICATION OF MELLIN-BARNES TYPE INTEGRALS TO THE MEAN SQUARES OF DIRICHLET-HURWITZ-LERCH *L*-FUNCTIONS

MASANORI KATSURADA DEPARTMENT OF MATHEMATICS, FACULTY OF ECONOMICS, KEIO UNIVERSITY

ABSTRACT. Complete asymptotic expansions associated with the mean squares, in the discrete and continuous forms, of Dirichlet-Hurwitz-Lerch *L*-functions are presented (Theorems 1 and 2), together with their outlined proofs.

1. INTRODUCTION

Throughout the paper, $s = \sigma + it$, u and v are complex variables, α and λ real parameters with $\alpha \geq 0$, χ any Dirichlet character modulo (arbitrary) $q \geq 1$, and $\overline{\chi}$ the complex conjugate of χ . We frequently use the notation $e(s) = e^{2\pi i s}$, $e_q(s) = e(s/q) = e^{2\pi i s/q}$, denote by ι the principal character modulo $q \geq 1$, and write $X_c(l) = X(c+l)$ ($c, l \in \mathbb{Z}$) for any Dirichlet character X.

The Dirichlet-Hurwitz-Lerch L-function $L_{\chi_c}(s, \alpha, \lambda)$ is defined by

(1.1)
$$L_{\chi_c}(s,\alpha,\lambda) = \sum_{l=0}^{\infty} \frac{\chi_c(l)e_f\{(\alpha+l)\lambda\}}{(\alpha+l)^s} \qquad (\operatorname{Re}(s) = \sigma > 1),$$

and its meromorphic continuation over the whole s-plane. The primed summation symbols hereafter indicate omission of the impossible terms of the form $1/0^s$ (if they occur). This reduces if $(q, \chi) = (1, \iota)$ to the Lerch zeta-function $\psi(s, \alpha, \lambda) = e(\alpha\lambda)\phi(s, \alpha, \lambda)$, and further if $(q, \lambda) = (1, 0)$ to the Hurwitz zeta-function $\zeta(s, \alpha)$, while if $(q, \alpha) = (1, 0)$ to the exponential zeta-function $\zeta_{\lambda}(s)$, if $(\alpha, \lambda) = (0, 0)$ to the (shifted) Dirichlet *L*-function $L_{\chi_c}(s)$, and hence if $(q, \chi) = (1, \lambda)$ and $(\alpha, \lambda) = (0, 0)$ to the Riemann zeta-function $\zeta(s)$.

A more flexible definition of the Dirichlet-Hurwitz-Lerch L-function, for any real α and λ , and for any integer c, asserts

(1.2)
$$L^*_{\chi_c}(s,\alpha,\lambda) = \sum_{-\alpha < l \in \mathbb{Z}} \frac{\chi_c(l)e_q\{(\alpha+l)\lambda\}}{(\alpha+l)^s} \qquad (\operatorname{Re}(s) = \sigma > 1),,$$

for which several results have recently been shown by Noda and the author [13]. Let $\Gamma(s)$ denote the gamma function, and $G_{\chi} = \sum_{h=0}^{q-1} \chi(h) e_q(h)$ Gauß' sum. We can show:

²⁰²⁰ Mathematics Subject Classification. Primary 11M06; Secondary 11E35, 11M32.

Key words and phrases. Riemann zeta-function, Dirichlet L-function, Hurwitz zeta-function, Lerch zeta-function, Euler double zeta-function, asymptotic expansion, Mellin-Barnes integral.

Research supported by Grant-in-Aid for Scientific Research No. 17K05182 from JSPS.

Theorem -2 ([13, Theorem 5]). For any real α and λ , any integer c, and any primitive character χ modulo $q \geq 1$, we have

$$L_{\chi_{c}}^{*}(s,\alpha,\lambda) = e_{q}\{\lambda(\alpha-c)\}\frac{G_{\chi}\Gamma(s)}{q^{s}(2\pi)^{1-s}}\Big\{\chi(-1)e^{\pi i(1-s)/2}L_{\overline{\chi}}^{*}(1-s,\lambda,-(\alpha-c)) + e^{-\pi i(1-s)/2}L_{\overline{\chi}}^{*}(1-s,-\lambda,\alpha-c)\Big\}.$$

Next let B_k (k = 0, 1, ...) be the Bernoulli numbers (cf [3, p.35, 1.13.(1)]), and τ a complex parameter in the sector $|\arg \tau| < \pi/2$. Then the celebrated formulae of Euler and Ramanujan for specific values of $\zeta(s)$ assert respectively that

$$\zeta(2k) = \frac{(-1)^{k-1}(2\pi)^{2k}}{2(2k)!} B_{2k} \qquad (k = 1, 2, \ldots)$$

and for any integer $k \neq 0$,

$$\begin{split} \zeta(2k+1) + 2\sum_{l=1}^{\infty} \frac{l^{-2k-1}e^{-2\pi l\tau}}{1 - e^{-2\pi l\tau}} + (2\pi)^{2k+1} \sum_{j=0}^{k+1} \frac{(-1)^{j}B_{2j}B_{2k+2-2j}}{(2j)!(2k+2-2j)!} \tau^{2k+1-2j} \\ &= (-1)^{k} \tau^{2k} \bigg\{ \zeta(2k+1) + 2\sum_{l=1}^{\infty} \frac{l^{-2k-1}e^{-2\pi l/\tau}}{1 - e^{-2\pi l/\tau}} \bigg\}. \end{split}$$

Let $L^*_{\chi_a}(s, \alpha, \mu)$ and $L^*_{\psi_b}(s, \beta, \nu)$ for any real α , β , μ and ν , and any integers a and b be the Dirichlet-Hurwitz-Lerch *L*-functions (defined by (1.2)), attached to any (shifted) primitive characters χ_a and ψ_b modulo $f \geq 1$ and $g \geq 1$ respectively. Then we can further show:

Theorem -1 ([13, Theorem 4]). There exist various character analogues of Euler's formula for $L^*_{\chi_a}(s, \alpha, \mu)$, as well as of Ramanujan's formula connecting specific values of $L^*_{\chi_a}(s, \alpha, \mu)$ and $L^*_{\psi_b}(s, \beta, \nu)$ with any primitive characters of (possibly) different moduli.

The observation above suggests that the following empirical 'theorem' seems to be true!

Theorem 0. It is worth pursuing the functional (or arithmetical) nature of a class of Dirichlet-Hurwitz-Lerch L-functions.

2. Asymptotics for the discrete mean square

Let $\varphi(n)$ denote Euler's totient function, $\mu(n)$ Möbius' function, and write, for any $n \in \mathbb{Z}$, the shifted factorial of s as

$$(s)_n = \frac{\Gamma(s+n)}{\Gamma(s)} = \begin{cases} s(s+1)\cdots(s+n-1) & \text{if } n \ge 0, \\ \frac{1}{(s-1)(s-2)\cdots(s-|n|)} & \text{if } n < 0. \end{cases}$$

The chief concern in this section is the asymptotic expansions for the discrete mean square

(2.1)
$$\varphi(q)^{-1} \sum_{\chi(\bmod q)} \left| L_{\chi_c}(\sigma + it, \alpha, \lambda) \right|^2,$$

averaged over all characters χ modulo $q \geq 1$.

We give here an overview of the results related to (2.1). Atkinson [1] first established a precise asymptotic formula for the error term E(T) of the mean square $\int_0^T |\zeta(1/2+it)|^2 dt$ in terms of an innovative dissection method applied to the product $\zeta(u)\zeta(v)$. Heath-Brown [5] derived, irrelevant to [1], an asymptotic series for $\sum_{\chi(\mod q)} |L_{\chi}(1/2)|^2$ (at the central point) as $q \to +\infty$. Motohashi [16] obtained, when q = p is a prime, an asymptotic formula for $(p-1)^{-1}\sum_{\chi(\mod p)} |L_{\chi}(1/2+it)|^2$ as $p \to +\infty$ with the error term $O(p^{-3/2})$, based Atkinson's dissection method. Matsumoto and the author [10] established a (ramified) asymptotic expansion for $\varphi(q)^{-1}\sum_{\chi(\mod q)} |L_{\chi}(\sigma + it)|^2$ as $q \to +\infty$, in the stripe $0 < \sigma < 1$, which further implies, when q = p is a prime, a complete asymptotic expansion for $(p-1)^{-1}\sum_{\chi(\mod p)} |L_{\chi}(\sigma + it)|^2$ as $p \to +\infty$ through the set of primes, in the same region of σ above, based on Atkinson's dissection method. They [11] derived, taking the limit $\sigma + it \to 1^-$ of the result above, a complete asymptotic expansion for $(p-1)^{-1}\sum_{\chi(\mod p), \chi \neq \iota} |L_{\chi}(1)|^2$ as $p \to +\infty$ through the set of primes. The author [7] gave a quite transparent treatment of the same discrete mean squares by joining Atkinson's dissection method to the Mellin-Barnes type integrals, which appropriate to the relevant settings. The reader is to be referred, e.g. to [9, Sect. 2] for a more detailed history.

We now proceed to state our first main result. For this, let $\langle x \rangle = x - \lfloor x \rfloor$ denote the fractional part of $x \in \mathbb{R}$, and define the (exceptional) set $E \subset \mathbb{C}$ as

(2.2)
$$E = \{ s \in \mathbb{C} \mid \operatorname{Re} s = 1 - n/2 \text{ or } s = 1 - n \quad (n = 0, 1, \ldots) \}.$$

Theorem 1. Let $c, q \in \mathbb{Z}$ and $\alpha, \lambda \in \mathbb{R}$ be arbitrary with $q \ge 1$ and $\alpha \ge 0$. Then for any integer $N \ge 0$, in the region $-N + 1 < \sigma < N + 1$ except the points $\sigma + it \in E$, we have

(2.3)
$$\varphi(q)^{-1} \sum_{\chi \pmod{q}} \left| L_{\chi_c}(\sigma + it, \alpha, \lambda) \right|^2 \\= q^{-2\sigma} \sum_{k|q} \mu\left(\frac{q}{k}\right) k^{2\sigma} \zeta\left(2\sigma, \frac{\alpha k}{q} + \left\langle -\frac{ck}{q}\right\rangle\right) \\+ 2q^{-2\sigma} \varphi(q) \Gamma(2\sigma - 1) \operatorname{Re}\left\{\zeta_{\lambda}(2\sigma - 1) \frac{\Gamma(1 - \sigma + it)}{\Gamma(\sigma + it)}\right\} \\+ 2q^{-2\sigma} \sum_{k|q} \mu\left(\frac{q}{k}\right) \operatorname{Re}\left\{S_{c,q}(\sigma + it, \sigma - it; \alpha, \lambda; k)\right\},$$

where k runs through all positive divisors of q, and $S_{c,q}$ is given by

$$S_{c,q}(u;v;\alpha,\lambda;k) = \sum_{n=0}^{N-1} \frac{(-1)^n (u)_n}{n!} \zeta_\lambda(u+n) \zeta \left(v-n, \frac{\alpha k}{q} + \left\langle -\frac{ck}{q} \right\rangle \right) k^{v-n} + T_{c,q,N}(u,v;\alpha,\lambda;k).$$

Here $T_{c,q,N}$ is the reminder expressed by the Mellin-Barnes type integral in (2.9) below, and bounded above as

$$T_{c,q,N}(\sigma + it; \sigma - it; \alpha, \lambda; k) = \begin{cases} O\{k^{\sigma - N}(|t| + 1)^{2N + 1/2 - \sigma}\} & \text{if } -N + 1 < \sigma < N, \\ O\{k^{\sigma - N}(|t| + 1)^{(3N + 1 - \sigma)/2 + \varepsilon}\} & \text{if } N \le \sigma < N + 1 \end{cases}$$

for any $\varepsilon > 0$, where the implied O-constants depend at most on σ , q, N and ε .

Remark. The presence of the error bounds above is reasonable, since the *n*-th indexed term in the asymptotic series is of order

$$\ll \begin{cases} k^{\sigma-n}(|t|+1)^{2n+1/2-\sigma} & \text{if } -n+1 < \sigma < n, \\ k^{\sigma-n}(|t|+1)^{(3n+1-\sigma)/2+\varepsilon} & \text{if } n \le \sigma < n+1. \end{cases}$$

Let $\delta(x)$ is equal to 1 or 0 according to $x \in \mathbb{Z}$ or otherwise, and $\gamma_j(\alpha, \lambda)$ (j = 0, 1, ...) the *j*-th generalized Euler-Stieltjes constants defined by

$$\psi(s,\alpha,\lambda) = \frac{\delta(\lambda)}{s-1} + \sum_{j=0}^{\infty} \gamma_j(\alpha,\lambda)(s-1)^j$$

centered at s = 1, where $\gamma_j = \gamma_j(0,0) = \gamma_j(1,0)$ (j = 0,1,...) are the classical Euler-Stieltjes constant (cf. [3, p.34, 1.12.(17)]). The asymptotic expansions on the exceptional set E (see (2.2)) can then be deduced from Theorem 1 by taking appropriate limits, e.g., the following formulae are valid.

Corollary 1.1. Under the same settings as in Theorem 1, we have:

i) letting $\sigma \to 1/2$,

$$\begin{split} \varphi(q)^{-1} \sum_{\chi(\text{mod }q)} \left| L_{\chi_c} \left(\frac{1}{2} + it, \alpha, \lambda \right) \right|^2 \\ &= q^{-1} \sum_{k|q} \mu\left(\frac{q}{k}\right) k \gamma_0 \left(\frac{\alpha k}{q} + \left\langle -\frac{ck}{q} \right\rangle, 0\right) \\ &+ \frac{\varphi(q)}{q} \left[\log q + \sum_{p|q} \frac{\log p}{p-1} + \operatorname{Re}\left\{ \zeta_{\lambda}'(0) - \zeta_{\lambda}(0) \frac{\Gamma'}{\Gamma} \left(\frac{1}{2} + it\right) \right\} + \gamma_0 \right] \\ &+ 2q^{-1} \sum_{k|q} \mu\left(\frac{q}{k}\right) \operatorname{Re}\left\{ S_{c,q} \left(\frac{1}{2} + it, \frac{1}{2} - it; \alpha, \lambda; k\right) \right\}; \end{split}$$

ii) letting $\sigma \to 1$,

$$\begin{split} \varphi(q)^{-1} \sum_{\chi(\text{mod }q)} \left| L_{\chi_c}(1+it,\alpha,\lambda) \right|^2 \\ &= q^{-2} \sum_{k|q} \mu\left(\frac{q}{k}\right) k^2 \zeta\left(2,\frac{\alpha k}{q} + \left\langle-\frac{ck}{q}\right\rangle\right) \\ &+ \frac{\varphi(q)}{q^2} \left[-\delta(\lambda) \left\{2\operatorname{Re}\frac{1}{it}\frac{\Gamma'}{\Gamma}(1+it) + \frac{1}{t^2}\right\} + \frac{\operatorname{Im}\gamma_0(0,\lambda)}{t} \right] \\ &+ 2q^{-2} \sum_{k|q} \mu\left(\frac{q}{k}\right) \operatorname{Re}\left\{S_{c,q}(1+it,1-it;\alpha,\lambda;k)\right\}. \end{split}$$

Here k runs through all positive divisors of q, p through all prime divisors of q, and $S_{c,q}$ gives an asymptotic series as in Theorem 1.

The formula in Theorem 1 does not asserts (in a strict sense) a complete asymptotic expansion in the descending order of q itself; however it gives, if q = p is a prime, a (true)

complete asymptotic expansion in the descending order of p, since $S_{c,p}(u, v; \alpha, \lambda; 1)$ can be computed explicitly.

Corollary 1.2. Under the same settings as in Theorem 1, in the region $-N + 1 < \sigma < N + 1$ except the points $\sigma + it \in E$, we have

$$(2.4) \qquad (p-1)^{-1} \sum_{\chi(\text{mod } p)} \left| L_{\chi_c}(\sigma+it,\alpha,\lambda) \right|^2 \\ = (1+p^{-2\sigma})\zeta(2\sigma,\alpha) - p^{-2\sigma}\zeta\left(2\sigma,\frac{\alpha}{p} + \left\langle -\frac{c}{p} \right\rangle\right) - p^{-2\sigma} \left|\psi(\sigma+it,\alpha,\lambda)\right|^2 \\ + 2p^{1-2\sigma}\Gamma(2\sigma-1)\operatorname{Re}\left\{\zeta_\lambda(2\sigma-1)\frac{\Gamma(1-\sigma+it)}{\Gamma(\sigma+it)}\right\} \\ + 2p^{-2\sigma}\operatorname{Re}\left\{S_{c,p}(\sigma+it,\sigma-it;\alpha,\lambda;p)\right\},$$

whose limiting case $\sigma \to 1/2$ asserts

(2.5)
$$(p-1)^{-1} \sum_{\chi(\text{mod }p)} \left| L_{\chi_c} \left(\frac{1}{2} + it, \alpha, \lambda \right) \right|^2$$
$$= (1+p^{-1}) \gamma_0(\alpha, 0) - p^{-1} \gamma_0 \left(\frac{\alpha}{p} + \left\langle -\frac{c}{p} \right\rangle, 0 \right)$$
$$- 2 \operatorname{Re} \left\{ \zeta_{\lambda}'(0) + \zeta_{\lambda}(0) \frac{\Gamma'}{\Gamma} \left(\frac{1}{2} + it \right) \right\} + \gamma_0 + \log p - p^{-1} \left| \psi \left(\frac{1}{2} + it, \alpha, \lambda \right) \right|^2$$
$$+ 2p^{-1} \operatorname{Re} \left\{ S_{c,p} \left(\frac{1}{2} + it; \frac{1}{2} - it; \alpha, \lambda; p \right) \right\}.$$

Here the term $S_{c,p}$, both in (2.4) and (2.5), gives a complete asymptotic expansion in the descending order of p as $p \to +\infty$ through the set of primes.

We now proceed to outline of the proof Theorem 1. For this, we set

$$R(u, v; \lambda) = \Gamma(u + v - 1)\zeta_{\lambda}(u + v - 1)\frac{\Gamma(1 - v)}{\Gamma(u)},$$

use a (modified) Möbius' inversion

$$\sum_{\substack{l=0\\(c+l,q)=1}}^{\infty} \frac{1}{(\alpha+l)^s} = q^{-s} \sum_{k|q} \mu\left(\frac{q}{k}\right) k^s \zeta\left(s, \frac{\alpha k}{q} + \left\langle -\frac{ck}{q}\right\rangle\right) \qquad (\sigma > 1),$$

and write

$$\Gamma\begin{pmatrix}\alpha_1,\ldots,\alpha_m\\\beta_1,\ldots,\beta_n\end{pmatrix} = \frac{\prod_{h=1}^m \Gamma(\alpha_h)}{\prod_{k=1}^n \Gamma(\beta_k)}$$

KATSURADA

for $\alpha_h, \beta_k \in \mathbb{C}$ (h = 1, ..., m; k = 1, ..., n). The dissection formula, for $\operatorname{Re}(u) > 1$ and $\operatorname{Re}(v) > 1$,

$$\begin{aligned} \varphi(q)^{-1} \sum_{\chi(\text{mod }q)} L_{\chi_c}(u,\alpha,\lambda) L_{\overline{\chi}_c}(v,\alpha,-\lambda) \\ &= q^{-u-v} \sum_{k|q} \mu\left(\frac{q}{k}\right) k^{u+v} \zeta\left(u+v,\frac{\alpha k}{q} + \left\langle-\frac{ck}{q}\right\rangle\right) + f_{c,q}(u,v;\alpha,\lambda) \\ &+ f_{c,q}(v,u;\alpha,-\lambda), \end{aligned}$$

is crucial in proving Theorem 1, where $f_{c,q}$ is a variant of Euler's double zeta-function (see [1] for the case of $\zeta(u)\zeta(v)$). This further splits into

$$f_{c,q}(u,v;\alpha,\lambda) = q^{-u-v}\varphi(q)R(u,v;\lambda) + g_{c,q}(u,v;\alpha,\lambda),$$

where $g_{c,q}$ is given by

$$g_{c,q}(u,v;\alpha,\lambda) = q^{-u-v} \sum_{k|q} \mu\left(\frac{q}{k}\right) S_{c,q}(u,v;\alpha,\lambda;k)$$

with $S_{c,q}$ being expressed as the Mellin-Barnes type integral of the form

(2.6)
$$S_{c,q}(u,v;\alpha,\lambda;k) = \frac{1}{2\pi i} \int_{\mathcal{C}} \Gamma\binom{u+s,-s}{u} \zeta_{\lambda}(-s) \times \zeta \left(u+v+s,\frac{\alpha k}{q} + \left\langle -\frac{ck}{q} \right\rangle \right) k^{u+v+s} ds,$$

where the path C separates the poles of the integrand at s = 1 - u - v and s = -1 + m(m = 0, 1, ...) from those at s = -u - n (n = 0, 1, ...).

We proceed further along the lines above, moving appropriately the path C to the left, and eventually obtain the formula (2.8) below, which yields, upon setting $(u, v) = (\sigma + it, \sigma - it)$, various *complete* asymptotic expansions for the discrete mean square (2.1). Let (σ) for any $\sigma \in \mathbb{R}$ denote the vertical straight path from $\sigma - i\infty$ to $\sigma + i\infty$, and define the (exceptional) set $\widetilde{E} \subset \mathbb{C}^2$ as

(2.7)
$$\widetilde{E} = \Big\{ (u,v) \in \mathbb{C}^2 \mid u+v=2-n \text{ or } u=1-n \text{ or } v=1-n \ (n=0,1,2,\ldots) \Big\}.$$

We can then show the following formula. For any integer $N \ge 0$, in the region $-N + 1 < \operatorname{Re}(u) < N + 1$ and $-N + 1 < \operatorname{Re}(v) < N + 1$ except the points $(u, v) \in \widetilde{E}$, we have

$$(2.8) \quad \varphi(q)^{-1} \sum_{\chi(\text{mod } q)} L_{\chi_c}(u, \alpha, \lambda) L_{\overline{\chi}_c}(v, \alpha, -\lambda)$$

$$= q^{-u-v} \sum_{k|q} \mu\left(\frac{q}{k}\right) k^{u+v} \zeta\left(u+v, \frac{\alpha k}{q} + \left\langle-\frac{ck}{q}\right\rangle\right) + q^{-u-v} \varphi(q) \{R(u, v; \lambda)$$

$$+ R(v, u; -\lambda)\} + q^{-u-v} \sum_{k|q} \mu\left(\frac{q}{k}\right) \{S_{c,q}(u, v; \alpha, \lambda; k) + S_{c,q}(v, u; \alpha, -\lambda; k)\},$$

where $S_{c,q}$ is expressed as

$$S_{c,q}(u,v;\alpha,\lambda;k) = \sum_{n=0}^{N-1} \frac{(-1)^n (u)_n}{n!} \zeta_\lambda(u+n) \zeta\left(v-n,\frac{\alpha k}{q} + \left\langle\frac{ck}{q}\right\rangle\right) k^{v-n} + T_{c,q,N}(u,v;\alpha,\lambda;k),$$

and $T_{c,q,N}$ is given by the Mellin-Barnes type integral

(2.9)
$$T_{c,q,N}(u,v;\alpha,\lambda;k) = \frac{1}{2\pi i} \int_{(\sigma_N)} \Gamma\binom{u+s,-s}{u} \zeta_{\lambda}(-s) \\ \times \zeta \left(u+v+s,\frac{\alpha k}{q} + \left\langle -\frac{ck}{q} \right\rangle \right) k^{u+v+s} ds$$

with σ_N satisfying $-\operatorname{Re}(u) - N < \sigma_N < \min(-\operatorname{Re}(u) - N + 1, -1, -\operatorname{Re}(u+v))$. Theorem 1 is in fact a direct consequence of (2.8) upon setting $(u, v) = (\sigma + it, \sigma - it)$.

3. Asymptotic expansions for the continuous mean square

The chief concern in this section is the asymptotic expansions for the continuous mean square

(3.1)
$$\int_0^1 \left| L_{\chi_c}(\sigma + it, \alpha + q\xi, \lambda) \right|^2 d\xi$$

We give here an overview of the results on (3.1), mainly when $(q, \chi) = (1, \iota)$, $(\alpha, \lambda) = (1, 0)$, i.e. the case of the continuous mean square of $\zeta(s, 1+\xi)$. Koksma-Lekkerkerker [14] initiated the study into the direction to obtain the asymptotic bound $O(\log t)$ as $t \to +\infty$ on the critical line $\sigma = 1/2$. Subsequent research are made by Gallagher [4], Balasubramanian [2], Rane [17], Klush [15], Zhang [18][19]. Matsumoto and the author [11] established, for the case above, a complete asymptotic expansion in the descending order of Im s = t as $t \to +\infty$, by means of Atkinson's dissection method. The author [6] derived a complete asymptotic expansion when $(q, \chi) = (1, \iota)$ and $\alpha = 1$, i.e. for the case of the continuous mean square of $\phi(s, 1 + \xi, \lambda)$, by means of Atkinson's dissection method a complete asymptotic expansion, when $(q, \chi) = (1, \iota)$, for the multiple mean square of the form

$$\int_0^1 \cdots \int_0^1 \left| \phi(s, \alpha + \xi_1 + \dots + \xi_m, \lambda) \right|^2 d\xi_1 \cdots d\xi_m \quad (m = 1, 2, \dots)$$

in the descending order of $\text{Im } s = t \text{ as } t \to \pm \infty$, by means of Atkinson's dissection method, enhanced by Mellin-Barnes type integrals. These are further manipulated with several properties of (generalized) hypergeometric functions. The reader is to be referred, e.g. to [9, Sect. 3] for a more detailed history.

We proceed to state our second main result. We set, for any $(u, v) \in \mathbb{C}^2 \setminus \widetilde{E}$ (see (2.7)),

$$\mathcal{R}_{\chi_c}(u,v;\lambda) = \Gamma(u+v-1)\frac{\Gamma(1-v)}{\Gamma(u)} \sum_{a,b=0}^{q-1} \chi_c(1+a+b)\overline{\chi}_c(b)\psi\Big(u+v-1,\frac{1+a}{q},\lambda\Big).$$

KATSURADA

Theorem 2. Let $c, q \in \mathbb{Z}$ and $\alpha, \lambda \in \mathbb{R}$ be arbitrary with $q \ge 1$ and $\alpha \ge 0$. Then for any integer $N \ge 0$, in the region $-N+1 < \sigma < N+1$ except the points $\sigma + it \in E$ (see (2.2)), we have

$$(3.2) \quad \int_{0}^{1} \left| L_{\chi_{c}}(\sigma + it, \alpha + q\xi, \lambda) \right|^{2} d\xi$$
$$= -\frac{q^{-2\sigma}}{1 - 2\sigma} \sum_{k|q} \mu\left(\frac{q}{k}\right) k^{2\sigma} \left(\frac{\alpha k}{q} + \left\langle -\frac{ck}{q}\right\rangle\right)^{1 - 2\sigma} + 2q^{-2\sigma} \operatorname{Re}\left\{\mathcal{R}_{\chi_{c}}(\sigma + it, \sigma - it; \lambda)\right\}$$
$$- 2q^{-2\sigma} \operatorname{Re}\left\{\mathcal{S}_{\chi_{c},N}(\sigma + it, \sigma - it; \alpha, \lambda) + \mathcal{T}_{\chi_{c},N}(\sigma + it, \sigma - it; \alpha, \lambda)\right\},$$

where $\mathcal{S}_{\chi_c,N}$ and $\mathcal{T}_{\chi_c,N}$ are given by

$$\mathcal{S}_{\chi_c,N}(u,v;\alpha,\lambda) = \sum_{a,b=0}^{q-1} \chi_c(1+a+b)\overline{\chi}_c(b)\mathcal{S}_N\left(u,v;\frac{1+a}{q},\frac{\alpha+b}{q},\lambda\right),$$
$$\mathcal{T}_{\chi_c,N}(u,v;\alpha,\lambda) = \sum_{a,b=0}^{q-1} \chi_c(1+a+b)\overline{\chi}_c(b)\mathcal{T}_N\left(u,v;\frac{1+a}{q},\frac{\alpha+b}{q},\lambda\right)$$

with

(3.3)
$$S_N(u,v;x,y,\lambda) = \sum_{n=0}^{N-1} \frac{(u)_n y^{n+1-v}}{(1-v)_{n+1}} e(-y\lambda)\psi(u+n;x+y,\lambda),$$

(3.4)
$$\mathcal{T}_N(u,v;x,y,\lambda) = \frac{(u)_N y^{N+1-v}}{(1-v)_N} \sum_{l=0}^{\infty} \frac{e\{(x+l)\lambda\}}{(x+l)^{u+v-1}} \int_{x+l}^{\infty} \frac{\eta^{u+v-2}}{(y+\eta)^{u+N-1}} d\eta.$$

Note that the last expression converges absolutely for $\operatorname{Re}(u) > -N+1$ and $\operatorname{Re}(v) < N+1$. This further asserts

$$(3.5) \quad \mathcal{T}_{N}(u,v;x,y,\lambda) = y^{N+1-v} \left[\sum_{k=1}^{K} \frac{(-1)^{k-1}(2-u+v)_{k-1}(u)_{N-k}}{(1-v)_{N}} \sum_{l=0}^{\infty} \frac{e\{(x+l)\lambda\}}{(x+l)^{k+1-u+v}(x+y+l)^{u+N-k}} + \frac{(-1)^{K}(2-u+v)_{K}(u)_{N-K}}{(1-v)_{N}} \sum_{l=0}^{\infty} \frac{e\{(x+l)\lambda\}}{(x+l)^{u+v-1}} \int_{x+l}^{\infty} \frac{y^{u+v-K-2}}{(y+\eta)^{u+N-K}} d\eta \right],$$

which gives upon $(u, v) = (\sigma + it, \sigma - it)$ the asymptotic expansion in the descending order of $\text{Im } s = t \text{ as } t \to \pm \infty$.

We proceed to outline the proof of Theorem 2. The dissection formula, for $\operatorname{Re}(u) > 1$ and $\operatorname{Re}(v) > 1$,

$$\begin{split} L_{\chi_c}(u,\alpha,\lambda) L_{\overline{\chi}_c}(v,\alpha,-\lambda) \\ &= q^{-u-v} \sum_{k|q} \mu\Big(\frac{q}{k}\Big) k^{u+v} \zeta\Big(u+v,\frac{\alpha k}{q} + \Big\langle -\frac{ck}{q}\Big\rangle\Big) + f_{\chi_c}(u,v;\alpha,\lambda) + f_{\overline{\chi}_c}(v,u;\alpha,-\lambda) \end{split}$$

is crucial in proving Theorem 2, where f_{χ_c} (or $f_{\overline{\chi}_c}$) is a variant of Euler's double zetafunction (see [1] for the case of $\zeta(u)\zeta(v)$). This further splits into

$$f_{\chi_c}(u,v;\alpha,\lambda) = q^{-u-v} \mathcal{R}_{\chi_c}(u,v;\lambda) + g_{\chi_c}(u,v;\alpha,\lambda),$$

where

$$g_{\chi_c}(u,v;\alpha,\lambda) = q^{-u-v} \sum_{a,b=0}^{q-1} \chi_c(1+a+b)\overline{\chi}_c(b)g\left(u,v;\frac{1+a}{q},\frac{\alpha+b}{q},\lambda\right)$$

with

$$g(u,v;x,y,\lambda) = \frac{1}{2\pi i} \int_{\mathcal{C}} \Gamma\binom{u+s,-s}{u} \psi(-s,x,\lambda)\zeta(u+v+s,y)ds,$$

where C is the same contour as in (2.6).

We suppose now that $\operatorname{Re}(u) > 1$ and $\operatorname{Re}(v) < 1$, under which the path \mathcal{C} can be taken as a straight line $\mathcal{C} = (\sigma_0)$ with σ_0 satisfying $-\operatorname{Re}(u) < \sigma_0 < \min(-1, 1 - \operatorname{Re}(u+v))$. It suffices, for the treatment of the continuous mean square (3.1), to evaluate the integral

$$\int_0^1 g_{\chi_c}(u,v;\alpha+q\xi,\lambda)d\xi = -q^{-u-v}\sum_{a,b=0}^{q-1} \chi_c(1+a+b)\overline{\chi}_c(b)\widetilde{g}\Big(u,v;\frac{1+a}{q},\frac{\alpha+b}{q},\lambda\Big),$$

say, where the relation, for any complex $s \neq 1$,

$$\int_0^1 \zeta(s, y+\xi) d\xi = -\frac{y^{1-s}}{1-s}$$

(cf. [8, Lemma 2]) is used to integrate the Mellin-Barnes type expression of $g(u, v; x, y, \lambda)$. This gives

$$\widetilde{g}(u,v;x,y,\lambda) = \frac{1}{2\pi i} \int_{(\sigma_0)} \Gamma\binom{u+s,-s}{u} \psi(-s,x,\lambda) \frac{y^{1-u-v-s}}{1-u-v-s} ds.$$

Note further that the Mellin-Barnes formula, for $0 < \operatorname{Re}(z) < \operatorname{Re}(w)$,

$$\frac{1}{w-z} = \frac{1}{2\pi i} \int_{(\rho)} \Gamma\binom{z+r, w, 1+r, -r}{z, w+1+r} e^{\pi i r} dr$$

holds with a constant ρ satisfying max $(-\operatorname{Re} z, -1) < \rho < 0$ (cf. [6, Lemma 3]). This upon z = u + s and w = 1 - v is substituted into the denominator factor 1/(1 - u - v - s) above to transform the s-integral expression of \tilde{g} as

$$\widetilde{g}(u,v;x,y,\lambda) = \frac{1}{2\pi i} \int_{(\rho_0)} \Gamma\left(\begin{matrix} u+r,1-v,1+r,-r\\ u,2-v+r \end{matrix} \right) e^{\pi i r} e(-y\lambda) \psi(u+r,x,\lambda) y^{1-v+r} dr$$

with ρ_0 satisfying max $(-\operatorname{Re}(u), -\sigma_0, -1) < \rho_0 < 0$. Moving the path (ρ_0) to the right appropriately, we obtain

$$\widetilde{g}(u, v; x, y, \lambda) = \mathcal{S}_N(u, v; x, y, \lambda) + \mathcal{T}_N(u, v; x, y, \lambda)$$

with the expression in (3.3) and

(3.6)
$$\mathcal{T}_{N}(u,v;x,y,\lambda) = \frac{(u)_{N}y^{N+1-v}}{(1-v)_{N+1}} \sum_{l=0}^{\infty} \frac{e\{(x+l)\lambda\}}{(x+y+l)^{u+N}} {}_{2}F_{1}\left(\begin{matrix} u+N,1\\N+2-v \end{matrix}; \frac{y}{x+y+l} \end{matrix} \right),$$

KATSURADA

where ${}_{2}F_{1}$ denotes Gauß' hypergeometric function (cf. [3, p.59, 2.1.1(12)]). This is further transformed, through Euler's formula for ${}_{2}F_{1}$ (cf. [3, p.59, 2.1.3.(10)]), to imply (3.4). The asymptotic expansion in (3.5) for \mathcal{T}_{N} is obtained by substituting the formula, coming from a repeated use of a contiguity relation of ${}_{2}F_{1}$ (cf. [3, p.103, 2.8.(37)]),

$$\frac{(u)_N}{(1-v)_{N+1}} {}_2F_1\left(\frac{u+N,1}{N+2-v};Z\right) = \sum_{k=1}^K \frac{(-1)^{k-1}(2-u-v)_{k-1}(u)_{N-k}}{(1-v)_{N+1}} (1-Z)^{-k} + \frac{(-1)^K(2-u-v)_K(u)_{N-K}}{(1-v)_{N+1}} (1-Z)^{-K} {}_2F_1\left(\frac{u+N-K,1}{N+2-v};Z\right)$$

with Z = y/(x+y+l) into each term of the series expression of \mathcal{T}_N in (3.6) to yield (3.5).

References

- [1] F. V. Atkinson, The mean-value of the Riemann zeta function, Acta Math. 81, 353–376.
- [2] R. Balasubramanian, A note on Hurwitz's zeta-function, Ann. Acad. Sci. Fenn. Ser. A I Math. 4 (1979), 41–44.
- [3] A. Eldélyi (ed.), W. Magnus, F. Oberhettinger and F. G. Tricomi, *Higher Transcendental Functions*, Vol. I, McGraw-Hill, New York, 1953.
- [4] P. X. Gallagher, Local mean value and density estimates for Dirichlet L-functions, Indag. Math. 37 (1975), 259-264.
- [5] D. R. Heath-Brown, An asymptotic series for the mean value of Dirichlet L-functions, Comment. Math. Helv. 56 (1981), 148–161.
- [6] M. Katsurada, An application of Mellin-Barnes' type integrals to the mean square of Lerch zetafunctions, Collect. Math. 48 (1997), 137–153.
- M. Katsurada, An application of Mellin-Barnes type of integrals to the mean square of L-functions, Liet. Mat. Rink. 38 (1998), 98–112.
- [8] M. Katsurada, An application of Mellin-Barnes type integrals to the mean square of Lerch zetafunctions II, Collect. Math. 56 (2005), 57–83.
- [9] M. Katsurada, Complete asymptotic expansions associated with various zeta-functions, in "Various Aspects of Multiple Zeta Functions — in honor of Professor Kohji Matsumoto's 60th birthday," Adv. Stud. in Pure Math. 84, pp. 205–262, Math. Soc. Japan, 2020.
- [10] M. Katsurada and K. Matsumoto, Asymptotic expansions of the mean values of Dirichlet L-functions, Math. Z. 208 (1991), 23–39.
- [11] M. Katsurada and K. Matsumoto, The mean values of Dirichlet L-functions at integer points and class numbers of cyclotomic fields, Nagoya Math. J. 134, 151–172.
- [12] M. Katsurada and K. Matsumoto, Explicit formulas and asymptotic expansions for certain mean square of Hurwitz zeta-functions I, Math. Scand. 78 (1996), 161–177.
- [13] M. Katsurada and T. Noda, Asymptotics for a class of holomorphic Dirichlet-Hurwitz-Lerch Eisenstein series and Ramanujan's formula for $\zeta(2k+1)$, preprint.
- [14] J. F. Koksma and C. G. Lekkerkeker, A mean value theorem for $\zeta(s, w)$, Indag. Math. 14 (1952), 446–452.
- [15] D. Klush, Asymptotic equalities for the Lipschitz-Lerch zeta-function, Arch. Math. (Basel) 49 (1987), 38–43.
- [16] Y. Motohashi, A note on the mean value of the zeta and L-functions I, Proc. Japan Acad., Ser. A (1985), 222-224.
- [17] V. V. Rane, On Hurwitz zeta-function, Math. Ann. 264 (1983), 147–151.
- [18] W.-P. Zhang, On the Hurwitz zeta-function, Illinois J. Math. **35** (1991), 569–576.
- [19] W.-P. Zhang, On the mean square value of the Hurwitz zeta-function, ibid. 38 (1994), 71–78.

Department of Mathematics, Faculty of Economics, Keio University, 4–1–1 Hiyoshi, Kouhoku-ku, Yokohama 223–8521, Japan

Email address: katsurad@z3.keio.jp; katsurad@hc.cc.keio.ac.jp