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AN APPLICATION OF MELLIN-BARNES TYPE INTEGRALS TO
THE MEAN SQUARES OF DIRICHLET-HURWITZ-LERCH
L-FUNCTIONS

MASANORI KATSURADA
DEPARTMENT OF MATHEMATICS, FACULTY OF ECONOMICS, KEIO UNIVERSITY

ABSTRACT. Complete asymptotic expansions associated with the mean squares, in the
discrete and continuous forms, of Dirichlet-Hurwitz-Lerch L-functions are presented
(Theorems 1 and 2), together with their outlined proofs.

1. INTRODUCTION

Throughout the paper, s = o+it, u and v are complex variables, o and A real parameters
with @ > 0, x any Dirichlet character modulo (arbitrary) ¢ > 1, and X the complex
conjugate of y. We frequently use the notation e(s) = 2™ Pq(e) = c(s/q) = ¥/,
denote by ¢ the principal character modulo ¢ > 1, and write X.(I) = X(c+1) (¢,l € Z)
for any Dirichlet character X.

The Dirichlet-Hurwitz-Lerch L-function L, (s, «. A) is defined by

ef{ a+ A}

ot (Re(s) =0 > 1),

(1.1) Ly (s, \) = Z Xell

and its meromorphic continuation over the whole s-plane. The primed summation symbols
hereafter indicate omission of the impossible terms of the form 1/0° (if they occur). This
reduces if (g, x) = (1,¢) to the Lerch zeta-function ¢ (s, a, \)=e(aX)d(s, a. A), and further
if (¢,\) = (1,0) to the Hurwitz zeta-function ((s,«), while if (¢,a) = (1,0) to the
exponential zeta-function ()(s), if (v, A) = (0,0) to the (shifted) Dirichlet L-function
Ly (s), and hence if (¢, x) = (1, A) and (o, \) = (0,0) to the Riemann zeta-function ((s).

A more flexible definition of the Dirichlet-Hurwitz-Lerch L-function, for any real ac and
A, and for any integer c, asserts

. Xe(Deg{(a+ DA
(1.2) Ly (s, N) = Y ;{H ! (Re(s) =0 > 1),,
—a<l€eZ

for which several results have recently been shown by Noda and the author [13]. Let I'(s)
denote the gamma function, and Gy, = 32971 x(h)e,(h) GauB’ sum. We can show:
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Theorem -2 ([13, Theorem 5]). For any real a and X\, any integer ¢, and any primitive
character x modulo ¢ > 1, we have

Gy I'(s)
qs(2ﬂ—)1—s

+ e_m(l_s)/zL%(l — s, =X a—c) }

L (s.a,\) = e {Ma—¢)}

Xe

{X(—l)e’”(l_s)/zL;(l —s. A —(a—0))

Next let By (k = 0,1,...) be the Bernoulli numbers (cf [3, p.35, 1.13.(1)]), and 7 a
complex parameter in the sector |arg 7| < m/2. Then the celebrated formulae of Euler

and Ramanujan for specific values of ((s) assert respectively that
(~1) 2m)
2k) = ——n——
C(2k) 2(2k)!

and for any integer k # 0,

ng (k=1,2),

> [-2k—1p—27iT k+1

e 4 (=1) BajBok12-9j _ojy1-2
C(2k+1)+22—_2m+(2ﬂ)2k+12 T + J
P 1—e ;

(22 +2 - 2))!

L ok o l—2k—16—27rl/7
:(—1) T {C(2k+1)+221_€——27—d/7—}
=1

Let Ly (s,a,p) and Ly, (s,B,v) for any real o, §, p and v, and any integers a and b
be the Dirichlet-Hurwitz-Lerch L-functions (defined by (1.2)), attached to any (shifted)
primitive characters x, and ¥, modulo f > 1 and g > 1 respectively. Then we can further
show:

Theorem -1 ([13, Theorem 4]). There exist various character analogues of Euler’s for-
mula for Ly (s,a,p), as well as of Ramanujan’s formula connecting specific values of
L} (s,a,p) and Ly, (s, 8, v) with any primitive characters of (possibly) different moduli.

The observation above suggests that the following empirical ‘theorem’ seems to be true!

Theorem 0. [t is worth pursuing the functional (or arithmetical) nature of a class
of Dirichlet-Hurwitz-Lerch L-functions.

2. ASYMPTOTICS FOR THE DISCRETE MEAN SQUARE

Let ¢(n) denote Euler’s totient function, p(n) Mobius’ function, and write, for any
n € 7Z, the shifted factorial of s as

s S < ) — M >
sty JETDocGan=l) if n >0,

(S)n—T— 1 .
R (e e A

The chief concern in this section is the asymptotic expansions for the discrete mean square

(2.1) e@) D |Llo it N[,

X( mod q)

averaged over all characters y modulo ¢ > 1.
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We give here an overview of the results related to (2.1). Atkinson [1] first established a
precise asymptotic formula for the error term E(T") of the mean square fOT |C(1/24t)|dt
in terms of an innovative dissection method applied to the product {(u)((v). Heath-
Brown [5] derived, irrelevant to [1], an asymptotic series for 37 .40 [Lx(1/2)[° (at
the central point) as ¢ — 4o0o. Motohashi [16] obtained, when ¢ = p is a prime, an
asymptotic formula for (p—1)7" 37 | oa, [Lx(1/2+it)[* as p — +oc with the error term
O(p~3/?), based Atkinson’s dissection method. Matsumoto and the author [10] established
a (ramified) asymptotic expansion for v(q)™" 32 (0 g [Lx(o + il)|* as ¢ — +oo, in the
stripe 0 < ¢ < 1, which further implies, when ¢ = p is a prime, a complete asymptotic
expansion for (p —1)7' 37 oap) | Lx(0 +it)|* as p — +oo through the set of primes, in
the same region of o above, based on Atkinson’s dissection method. They [11] derived,
taking the limit o + it — 1~ of the result above, a complete asymptotic expansion for
(P=1) 7132 mod p). e [ Ex(1)[? as p — 400 through the set of primes. The author [7] gave
a quite transparent treatment of the same discrete mean squares by joining Atkinson’s
dissection method to the Mellin-Barnes type integrals, which appropriate to the relevant
settings. The reader is to be referred, e.g. to [9, Sect. 2] for a more detailed history.

We now proceed to state our first main result. For this, let (x) = z — [x] denote the
fractional part of x € R, and define the (exceptional) set E C C as

(2.2) E={se€C|Res=1-n/2ors=1-n (n=0,1,...)}.

Theorem 1. Let ¢,q € Z and a, A € R be arbitrary with ¢ > 1 and a > 0. Then for any
integer N > 0, in the region —N +1 < o < N + 1 except the points 0 + it € E, we have

(2.3) e Y Lo tita N
x(mod q)
o q\ ;2 ak ck
=q = k* (|20, — +( — —
kzlq'u(k> ( q < q >>
oo I'l—o+1t
+2q7*7p(q) (20 — 1)RG{CA(20 - 1)%}
—20 q . .
+2¢2 kzl:u<%> Re{Scﬂq(g +it, 0 — it o, A k)},
a
where k runs through all positive divisors of q, and S, 4 is given by

N-1
_1 n D
Seq(u;v;a, A k) = Z (1+“)

n=0

+ T gn (w0500 X E).

Gt ) (v —n, %’f N <_%>>k

Here 1. 4 n is the reminder expressed by the Mellin-Barnes type integral in (2.9) below,
and bounded above as

Tegn(o+it;o —it;a, A\ k)
(){ka—]v(|t| + 1)2N+1/2—a} Zf Nilco< ]\/T’
O{k7 N (|t| + 1)BNF1=a)/24eh N <o < N +1

for any £ > 0, where the implied O-constants depend at most on o, q, N and €.
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Remark . The presence of the error bounds above is reasonable, since the n-th indexed
term in the asymptotic series is of order

ko (|t| 4 1)2n+1/2-0 if —n+1<o0<n,
o ([t +1)Brt1i=a)/24e if p < o < n+ 1.

Let d(xz) is equal to 1 or 0 according to x € Z or otherwise, and v;(c, A) (7 =0,1,...)
the j-th generalized Euler-Stieltjes constants defined by

v =2 LS -1y

centered at s = 1, where v; = 7;(0,0) = v,;(1,0) (j = 0,1,...) are the classical Euler-
Stieltjes constant (cf. [3, p.34, 1.12.(17)]). The asymptotic expansions on the exceptional
set E (see (2.2)) can then be deduced from Theorem 1 by taking appropriate limits, e.g.,
the following formulae are valid.

Corollary 1.1. Under the same settings as in Theorem 1, we have:
i) letting o — 1/2,

go(q)*l Z ‘LXC(%—l—it,a,)\)’z

x( mod q)
= S+ (<))
klq
llo -|-Z logp { C\(0) = ¢x(0 )%(1 +2t)}+“/0
p\q
+2q—1z (k) Re{ch< +11‘ —at;a, A k)}
klg

i) letting o — 1,

Pl Y |Ln+ita, )|

x( mod q)
=g q\ . ak ck
o 2 klq #(E>A2C(2’7+< q >)
+%[ o0 ){QR %%(H t)+t2}+w]

+20723 p ( ) Re{Sug(1+it. 1= it o, Aik)

klq

Here k runs through all positive divisors of q, p through all prime divisors of q, and S.,
gives an asymptotic series as in Theorem 1.

The formula in Theorem 1 does not asserts (in a strict sense) a complete asymptotic
expansion in the descending order of ¢ itself; however it gives, if ¢ = p is a prime, a (true)
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complete asymptotic expansion in the descending order of p, since S.,(u,v;a, A;1) can
be computed explicitly.

Corollary 1.2. Under the same settings as in Theorem 1, in the region —N +1 < 0 <
N + 1 except the points o + it € E, we have

(2.4) -7 > |Lulo+ita N

x( mod p)

= (1+p7)C(20,0) =7 (20. 7+ (=7 )) = [uo it 0. )]

) I'(l—o+it)
2120195 — 1 20 - 1)—F~—
+2p (20 )Re{(,\( o1 I'(o +1it) }

+ 292 Re{Sup(0 + it, o — ity 0, A p) ).

whose limiting case o — 1/2 asserts

25 -1 >

x( mod p)

1 2
LXC<§ +it,a, A)’

Cc

= (1+p Y(a,0) —P_l%(% * < B 13>’0)

- zRe{g;(O) + Q(O)FT(% + zt)} + 7 +logp —p!

2

w(% + it,a,/\)

1 1
+2pt Re{Sc’p (5 + it; 3~ it; a, )\;p) }

Here the term S.,p, both in (2.4) and (2.5), gives a complete asymptotic expansion in the
descending order of p as p — 400 through the set of primes.

We now proceed to outline of the proof Theorem 1. For this, we set

I'(l—w)

Ru,v;\) =T'u+v—1)O(u+v—1) T

use a (modified) Mobius’ inversion

(R ) I

1=0 klq
(CJFIJI):I

and write

(o wany Lo

/617-"7671 B HZ:]_ F(/Bk)
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for ap, B € C(h=1,...,m;k =1,...,n). The dissection formula, for Re(u) > 1 and
Re(v) > 1,

W(Q)_l Z LXc (u» «, )‘)LYL (Uv «, _)‘)

x( mod q)

(D) 2 (BN i

klq
+ f(:,q(/U, u; o, —)\)

is crucial in proving Theorem 1, where f., is a variant of Euler’s double zeta-function
(see [1] for the case of ((u)((v)). This further splits into

feq(u,vi0,A) = ¢ " p(q) R(u, v; A) + geg(u, v; s A),
where g, , is given by
—UuU—v q
Geg(u, 0300 0) = 7" “(E) Se,q(, v3 0, As k)
klq

with S., being expressed as the Mellin-Barnes type integral of the form

(2.6) gt vy 0, Ay ) = L/cr(“J“S’_S)Q(—s)

274 (0
vk k
X C(u +v+s, &y <—(—>>k"+”+sds,
q q

where the path C separates the poles of the integrand at s =1 —u—wv and s = —1+m
(m=0,1,...) from those at s = —u—n (n=0,1,...).

We proceed further along the lines above, moving appropriately the path C to the
left, and eventually obtain the formula (2.8) below, which yields, upon setting (u,v) =
(o +1it, 0 —it), various complete asymptotic expansions for the discrete mean square (2.1).
Let (o) for any o € R denote the vertical straight path from o —ico to o+ ioco, and define
the (exceptional) set E C C2 as

(2.7) E:{(u,v)e(cz|u+v=2fnoru:17norv:17n(n:O,l,Q,...)}.

We can then show the following formula. For any integer N > 0, in the region —N +1 <
Re(u) < N4+ 1 and —N + 1 < Re(v) < N + 1 except the points (u,v) € E, we have

(2.8) (g Z Ly, (u, 0, N) Ly (v, 0, =N)

x(mod q)
e S () ot
klg

+ R(U, u; —)\)} + q_u_v Z ﬂ(%) {Sc,q<u7 v @, )\: k) + SC,Q(/Uﬁ us _)\7 k)}?

klq
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where S, is expressed as

N1 qyng), ) By
Seq(u, v, A k) = ; (?’%Cx(u +n)¢(v—n, % + <%>)k

+ Togn(u, vy, A K),

and T, n is given by the Mellin-Barnes type integral

1 _
(2.9) T (u,v30, A5 k) = _/ ("R
(on)

2mi u
k -k
X g(u Yots, % n <—(E>)ku+”+3ds

with oy satisfying — Re(u)— N < oy < min(— Re(u)—N+1, —1, — Re(u+wv)). Theorem 1
is in fact a direct consequence of (2.8) upon setting (u,v) = (o +it, o — it).

3. ASYMPTOTIC EXPANSIONS FOR THE CONTINUOUS MEAN SQUARE

The chief concern in this section is the asymptotic expansions for the continuous mean
square

1
(3.1) / Lo (o +it, o+ g¢. ) Pde.
0

We give here an overview of the results on (3.1), mainly when (¢, x) = (1,¢), (o, \) =
(1,0), i.c. the case of the continuous mean square of (s, 1+¢). Koksma-Lekkerkerker [14]
initiated the study into the direction to obtain the asymptotic bound O(logt) as t — 400
on the critical line ¢ = 1/2. Subsequent research are made by Gallagher [4], Balasub-
ramanian [2], Rane [17], Klush [15], Zhang [18][19]. Matsumoto and the author [11]
established, for the case above, a complete asymptotic expansion in the descending or-
der of Ims =t as t — 400, by means of Atkinson’s dissection method. The author [6]
derived a complete asymptotic expansion when (¢, x) = (1,¢) and a = 1, i.e. for the
case of the continuous mean square of ¢(s,1 + & \), by means of Atkinson’s dissection
method enhanced by Mellin-Barnes type integrals. The author [8] established a complete
asymptotic expansion, when (g, x) = (1,¢), for the multiple mean square of the form

1 1
/"‘/|¢>(5=04+51+"'+§m,)\)|2d§1-~d§m (m=1,2,..)
0 0

in the descending order of Im s = t as t — 400, by means of Atkinson’s dissection method,
enhanced by Mellin-Barnes type integrals. These are further manipulated with several
properties of (generalized) hypergeometric functions. The reader is to be referred, e.g. to
[9, Sect. 3] for a more detailed history.
We proceed to state our second main result. We set, for any (u,v) € C2\ E (see (2.7)),
q—1
Ry (u,v;A) =T'u+v — 1)% Z Xe(l+a+ b)%c(b)w<u +v—1, iqa, /\).

a,b=0
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Theorem 2. Let ¢,q € Z and a, X\ € R be arbitrary with ¢ > 1 and o > 0. Then for any
integer N > 0, in the region —N +1 < 0 < N +1 except the points o +it € E (see (2.2)),
we have

1
(3.2) / | Ly (0 +it, a + g€, \)[Pde
0

—20

= _1q_ ZUZM(%)kZ ( < >)1 o g Re{Ry (0 +it,o —it; \)}

klq
—2¢7% Re{S ~N(o+it,o—it;o,\) + Ty n(o +it, 0 —it; a, )\)},

where Sy, n and Ty, N are given by

—1

1 b
SXC,N(U7U;O‘ )‘ Z Xe 1+a+b)Xc( )SV< +a7 ot 7)\)7
a,b=0 q q
—
1 b
Tenlwva ) = 3 xc<1+a+b>xc<bm(u,v; toar ,A>
a,b=0 q q
with
N-1 , n+1 v
(3.3) Sy (u,v;z,y,\) = % l—v n+1 (—yNv(u+n;z+y. \),
Wy v e{(@ + DAY nitv?
34 T 7/;(~'.7)\ - d
B4 Tnlwvry ) =Ty 20 Gt | G et

=0

Note that the last expression converges absolutely for Re(u) > —N+1 and Re(v) < N+1.
This further asserts

(35) TN(U) vx, Y, >‘)

_ N4l = (D2 —u+v)ra(u)ni e{(x +1)A}
—Y Z Z (z + [)F1-

P (1 _'U)N u+v(x+y+l)u+N—k
+(—1)K2—U+U U)N- Kie (x+ DA} yutv—K=2 J
L — /77 )
(1= o)y = D e (y+n)l+N "

which gives upon (u,v) = (o +it, o —it) the asymptotic expansion in the descending order
ofIms =1t ast — +o0.

We proceed to outline the proof of Theorem 2. The dissection formula, for Re(u) > 1
and Re(v) > 1,
Ly (u, 0, \) Ly (v. v, = X)

:q—“_”z (k>k“+”§’(u+v a_k+< qu>) + fro(w, 050, N) + fx (v, u;a, =)

klq 7
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is crucial in proving Theorem 2, where f,, (or f; ) is a variant of Euler’s double zeta-
function (see [1] for the case of {(u)((v)). This further splits into

Fro(w,v30,N) = ¢ Ry (u, 05 ) + gy (u, v5 0, A),

where
q—1
. 1 +b
Ix. (W vy, A) = g7 Z Xc(1+a+0b)X.(b)g <u.v, —;— a, QT )\>
a,b=0
with

1 _
g(u,v;z,y,\) = —/F(u *s 8)1/}(—5,1,/\){'(11 + v+ s,y)ds,
c

2m1 U

where C is the same contour as in (2.6).

We suppose now that Re(u) > 1 and Re(v) < 1, under which the path C can be taken
as a straight line C = (oy) with o satisfying — Re(u) < 0y < min(—1,1 — Re(u +v)). 1
suffices, for the treatment of the continuous mean square (3.1), to evaluate the integral

1 q—1
—u—v 1+a Ol+b
/ e (1,050 4+ g6, N)dE = =7 Y xe(1+ a+ b)X,(b)g (u “ /\)
0 a,b=0

say, where the relation, for any complex s # 1,
' y
. de = —
| et e = —2—

(cf. [8, Lemma 2]) is used to integrate the Mellin-Barnes type expression of g(u, v;x,y, A).
This gives

1-s

~ 1 U+ s, —5 ylmuo=s
wony N =g [ r("T T s N s
ey = gm [ (" e
Note further that the Mellin-Barnes formula, for 0 < Re(z) < Re(w),

1 1 (z+r,w,1+1“,
)

= =T\ nir
w—2z  2mi z,2w+ 147 )e dr

(o

holds with a constant p satisfying max(— Re z, —1) < p < 0 (cf. [6, Lemma 3]). This upon
z =u+s and w = 1 — v is substituted into the denominator factor 1/(1 —u —v —s)
above to transform the s-integral expression of § as

~ . _ 1 u—i—nl—v,l—i—r,— T 1—v+r
g(ua%ff»y»/\)—%/(po)r< w2— vt ) e(—yAN)(u+r,z, Ny dr

with pg satisfying max(— Re(u), —0¢, —1) < pg < 0. Moving the path (py) to the right
appropriately, we obtain

5(% v,T, Y, A) = SN'(U7 v;T, Y, >\) + TN(U7 v;T, Y, )\)
with the expression in (3.3) and

(g™ o~ _eflm+ DA} F(“+N,1, L)

3.6 Tn(u,v;z,y, A) = ST )
B ) = g S o W 2 S
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where 5 F} denotes Gaufl’ hypergeometric function (cf. [3, p.59, 2.1.1(12)]). This is further
transformed, through Euler’s formula for oF; (cf. [3, p.59, 2.1.3.(10)]), to imply (3.4).
The asymptotic expansion in (3.5) for 7y is obtained by substituting the formula, coming
from a repeated use of a contiguity relation of o Fy (cf. [3, p.103, 2.8.(37)]),

u)N u+ N, 1 K (—1)12 =y — () N— -
oG 2 7) = g ety g

(=152 —u—v)g(u)y_xk u+N—K,1.Z)
(1_7’)N+1 N+2_U !

with Z = y/(x +y+1) into each term of the series expression of Ty in (3.6) to yield (3.5).

(1— Z)-KQFl(
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