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ABSTRACT. Let a > 1 be a non-integral real number. Let PS(a) be the set of positive 
integers of the form L n°' J for some n E N. In this article, we discuss the equation 
x + y = z, where (x, y, z) E PS(a)3. The author conjectures that for almost all or all 
2 <a< 3 the equation x+y = z has infinitely many solutions (x,y,z) E PS(a)3. In 
this article, we aim to present heuristic and numerical evidence of the conjecture. 

1. INTRODUCTION 

Let N be the set of all positive integers. We say that an integral sequence ( an)nEN is 
a Piatetski-Shapiro sequence if there exists a non-integral a > 1 such that an = l n° J for 
all n E N. Further, we define PS( a) = {l n° J : n E N}. In this article, we discuss the 
following equation: 

(1.1) X +y = z, 

where (x, y, z) E PS(a:)3 • The equation (1.1) is an extension of Fermat's equation (xn + 
yn = zn) from the integral powers to real powers of integers. By Fermat's last theorem, 
the equation (1.1) does not have any solutions (x, y, z) E PS(a:)3 if a 2: 3 and a EN. 

By using the result given by Frantzikinakis and Wierdl [FW09, Proposition 5.1], for 
every a E (1, 2), there are infinitely many solutions (x, y, z) E PS(a:)3 to (1.1). Further, 
the author [Sai] showed that for almost all a > 3 in the sense of the 1-dimensional Lebesgue 
measure, the equation (1.1) has at most finitely many solutions (x, y, z) E PS(a:)3 • We 
describe these results in the following figure. 
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Infinitely many sols. 
(for all o:) 

? 3 4 5 

Finitely many sols. 
(for almost all o:) 

For all real numbers s, t with 1 < s < t, we define 

(1.2) A(s,t) = {a E [s,t]: (1.1) has infinitely many solutions (x,y,z) E PS(a:)3}. 

Matsusaka and the author [MS21, Theorem 1.1] showed that for all real numbers s, t with 
2 < s < t, the Hausdorff dimension of A( s, t) is not less than 1 / s3 . In particular, A( s, t) is 
dense in [s, t]. However, we do not know whether A(2, 3) has positive Lebesgue measure 
or not. Here, the author conjectures the following. 

Conjecture 1.1. For almost all or all a E (2, 3), the equation (1.1) would have infinitely 
many solutions (x,y,z) E PS(a:) 3 . 
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The goal of this article is to give heuristic and numerical observations on Conjecture 1. 1. 
This problem was first proposed by Glasscock [Glal 7]. He investigated the equation 

(1.3) y = ax + b, 

where a and b are fixed real numbers satisfying that (1.3) has infinitely many solutions 
(x,y) E N2. In [Gla17, Gla20], he showed that for almost all CY> 1 

(1) if CY< 2, then (1.3) has infinitely many solutions (x,y) E PS(CY)2; 
(2) if CY> 2, then (1.3) has at most finitely many solutions (x, y) E PS(CY) 2 • 

The author also contributed to the solvability of (1.3) on PS(CY). In [Sai22], if we 
additionally assume O :::; b < a, then the author showed that for all 1 < CY < 2, we find 
infinitely many solutions (x, y) E PS(CY) 2 to (1.3). Thus, he improved (1) of Glasscock's 
result from "for almost all" to "for all" in the case 1 < CY < 2. Moreover, in the same 
article, the author showed that for all 2 < s < t, the Hausdorff dimension of the set 

{CY E [s,t]: (1.3) has infinitely many (x,y) E PS(CY)2} 

is coincident with 2/ s. Without the assumption O ::S: b < a, it is unknown whether his 
improvements are true or not. 

Glasssock successfully discovered that CY = 2 is a threshold for the infiniteness or finite
ness of solutions to (1.3) on PS(CY). Further, he proposed the following interesting ques
tion. 

Question 1.2 ([Glal 7, Question 6]). Does there exist <§ > 1 with the property that 
for almost every or all CY > 1, the equation x + y = z has infinitely many solutions 
(x, y, z) E PS( CY) 3 or not, according as CY < (§ or CY > <§? 

The result of Matsusaka and the author [MS21, Theorem 1.1] leads to a negative answer 
to the "all" version of Question 1.2. The "almost all" version is still open, which is directly 
connected with Conjecture 1. 1 

Notation 1.3. For x E JR, let { x} denote the fractional part of x. For all intervals I C JR, 
let fz = In Z. We write f(x) = g(x) + o(h(x)) if (f(x) - g(x))/h(x) --+ 0 as x --+ oo, 
where h(x) is a positive-valued function. 

2. HEURISTIC OBSERVATIONS 

For every CY> 1 and NE N, we define 

s(CY,N) = {(LP"J, Lq"J): p,q EN, p :=:; q :=:; N, LP"J + Lq"J = Lr"J for some r EN}. 

In this section, by heuristic calculation, we propose the following conjecture. If Conjec
ture 2.1 was true for every 2 < CY< 3, then Conjecture 1.1 would be also true. 

Conjecture 2.1. For almost all or all CY E (2, 3), we would have 

#s(CY, N) = ( C(CY) + o(l)) N 3-a (as N--+ oo), 
CY(3 - CY) 

where C(CY) := f01 (1 + x")1/a-l dx. 

Yoshida [Yos, Corollary 1.2] gave a quantitative result on the number of solutions (1.1). 
For all 1 <CY< ( J2I + 4)/5 = 1.7165 ···,he showed that 

(2.1) #{(£, m, n) E N3 : £ < x, L£"J + Lm"J = Ln"J} = ((3CY-f3(((3) + o(l))xa(/3-l)+l 

as x--+ oo, where (3 = 1/(CY - 1) and ((s) denotes the Riemann zeta function. Note that 
the left-hand side of (2.1) is slightly different from #s(CY, N). 
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Heuristic evidence of Conjecture 2.1. By the definition of s(a, N), it follows that 

#s(a,N) = L L #[A,B)z, 
ls,qs,N ls,ps,q 

where A= (lP°'J + lq°'J)1fa and B = (lP°'J + lq°'J + 1)11°'. We now assume that 

(2.2) #[A, B)z = B - A. 

By 0 < B -A < l, the assumption (2.2) never holds. We ignore this problem to calculate 
heuristically, which is not a small gap. 

By ignoring the integral parts and applying Taylor's expansion, we see that 

B - Arv l(p°' + q°')l/a-1 = q2~a ( 1 + ( ~) °'Y/a-1 i· 
Remark that we do not give the precise definition of "X ~ Y". The symbol means that 
X and Y share the almost same magnitude. By Riemann sum, we obtain 

( ( ) °') 1/a-1 1 11 ii~ L l + !!.. - = (1 + x°') 1/a-l dx = C(a). 
lS,pS,q q q 0 

Therefore, we can expect that 

□ 

By the above calculation, we should consider the set of (p, q) E N2 such that [A, B)z is 
non-empty. However, the interval [A, B) would be too short to be investigated. 

3. NUMERICAL OBSERVATIONS 

In this section, we give numerical evidence on Conjectures 1.1 and 2.1. The author 
calculates #s(a, N) for N = 50000 and a = 2.00 + 0.05i (i = 1, 2, ... , 19) by using 
Mathematica. The used program will be described at the end of this article. Mathematica 
outputs the following. 

a 2.05 2.10 2.15 2.20 2.25 2.30 2.35 2.40 2.45 2.50 
#s(a,5 • 105 ) 13035 7754 4763 2739 1653 1060 647 356 247 153 

2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90 2.95 
93 69 41 22 17 7 4 0 1 

From the table, we do not guess the existence of a threshold like Glasscock's result on 
(1.3). Let us note that N = 50000 may be still small. Indeed by numerical calculation, 
for every a E {2.8, 2.85, 2.9, 2.95}, we obtain 

(3.1) C(a) 500003-°' < C(2-8) 500003- 2·8 = 13.70 · · · . 
a(3 - a) - 2.8(3 - 2.8) 

Thus, it is too small to guess whether Conjecture 1.1 is true or not. In the case a= 2.95, 
ifwe chose N 2: 1.671 x 1059 , then the most left-hand side of (3.1) would be greater than 
1000. 
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On the other hand, we expect that Conjecture 2.1 is true for small o: > 2. Indeed, for 
every o: > 1 and NE N, we define 

o:(3-o:) a-3 
c5(o:, N) = #s(o:, N) · C(o:) N - l. 

If c5(o:, N) ---+ 0 as N ---+ oo, then Conjecture 2.1 would be true for o:. The following 
figure describes {(N, c5(o:, N)) I N = l, 2, ... , 50000 and c5(o:, N) E [-0.10, 0.02]} for every 
o: E {2.05, 2.10, 2.15, 2.20, 2.25, 2.30}. 

(a) a= 2.05 (b) a= 2.10 

_,,.r 
_,,. 

--0 10. • 

(c) a:=2.20 (d) a:=2.15 

(e) a= 2.25 (f) a= 2.30 

Figure 1. Graphs of 8(0:, 50000) 

We also give the following table of c5(o:, 5-105)102 to exhibit the calculation more clearly. 
Remark that it is not c5(o:, 5 • 105), but c5(o:, 5. 105 ) x 102 . 

a 2.05 2.10 2.15 2.20 2.25 2.30 2.35 2.40 2.45 2.50 
8(a,5 • 105 )102 -0.970 -1.73 0.303 -4.55 -5.10 -0.258 -0.781 -0.116 -1.43 -2.73 

a 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90 2.95 
8(a,5 • 105 )102 -6.79 7.62 -2.07 -21.2 -11.2 -48.9 -61.7 -100 -90.3 
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Thus, o(a, N) seems small for several a's. This supports Conjecture 2.1. Moreover, 
we observe that almost all values in the table are negative. Thus, we expect that almost 
every ( or every) a E ( 2, 3) would satisfy that 

#s(a N) < C(a) N 3-a. 
' - a(3-a) 

for sufficiently large N. At last, we give a program to calculate #s(a, N) in Mathematica. 

ps[alpha_,n_] := Floor[n-alpha]; 

For[alpha = 2.05, alpha<= 2.95, alpha= alpha+ 0.05, 
sols={}; gamma= 1/alpha; 

For[p = 1, p <= 50000, p = p + 1, For[q = p, q <= 50000, q = q + 1, 
sum= ps[alpha,p] + ps[alpha,q]; r = Ceiling[sum-gamma]; 

If[sum == ps[alpha,r], 
sols= Join[sols, {{p,q}}J; 

J ; J ; J ; 
Print[{alpha, Length[sols]}J; Print[sols] ;] 
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