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GAPS BETWEEN PRIME NUMBERS THAT SATISFY 
THE GOLDBACH EQUATION 

YUSUKE TSUDA 

1. INTRODUCTION 

In the theory of prime numbers, we are interested in the twin prime 
conjecture which states that there exist infinitely many prime numbers 
p such that p + 2 is also prime. If Pn denotes the n-th prime, the 
prime number theorem says the average of gaps between consecutive 
primes Pn+l - Pn is logpn. Thus the earlier approach to the twin prime 
conjecture involved comparing gaps to the average. The first non-trivial 
result that the inequality 

(1.1) Pn+l - Pn < (l - 5) logpn (for some t5 > 0) 

holds for infinitely many Pn was given by Erdos [3]. His proof is given by 
elementary argument with the sieve method. Bombieri and Davenport 
[1] proved that we can take t5 = 1/2 in the inequality (1.1) by using 
the circle method. Eventually Goldston, Pintz, and Y1ldmm [4] proved 
that, for any E > 0, we can take t5 = 1 - E by using the sieve method. 
One can find more details of the history in [4]. 

On the other hand, the Goldbach conjecture is also an important 
problem in the theory of prime numbers. If IP'(N) denotes the set of 
primes p :S N which N - pis also prime for a given positive integer N, 
The Goldbach conjecture says #IP'(N) > 0 for any even integer N 2 
4. Furthermore, Hardy and Littlewood conjectured the asymptotic 
formula 

N 
#IP'(N) = (logN) 2 (6(N) + o(l)) (N---+ oo). 

Here 6(N) is called the singular series for the Goldbach conjecture and 
it is defined by 

6(N)~6u;=~' 6~2v,(1-(p~l)') 
p>2 
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for even N and 6(N) = 0 for odd N. One can prove Hardy and 
Littlewood's conjecture for almost all even integers (cf.[8]). Thus we 
can say the average of gaps between consecutive elements in JP( N) is 
6(N)-1 (logN) 2 for almost all N. Mikawa and Nakamura proved (1.1) 
type result for the set JP( N) as 

(1.2) min IP- p'I :::; (~ + E) 6(N)-1(log N) 2 
p,p'ElP'(N) 6 

holds for almost all even integers and E > 0. 1 The author recently 
proved an improvement of (1.2) as follows. 

Theorem 1.1. Let E > 0 be an arbitrarily positive. Then, for any 
A> 0, we have 

. (20v'3 + 15v'5 ) mm IP- p'I < v'3 + E 6(N)-1 (logN) 2 
p,p'ElP'(N) 48 3 

for large enough X > 0 and all but O(X(logX)-A) even integers Nin 
the range X/2 < N:::; X. Here the constant 

20v'3 :/25v'5 = 0.8201 .... 
48 3 

is slightly smaller than 5/6. 

This note provides a short introduction to the proof of Theorem 1.1. 
As a remark we haven't managed to apply the method of [4] at the 
moment. Therefore we use Mikawa and Nakamura's idea and Rosser­
Iwaniec's linear sieve method. 

2. OUTLINE OF THE PROOF 

We define 

Z(N; 2n) = L (logp)(log(N - p))(logp')(log(N - p')) 
p,p'ElP'(N) 
p'=p+2n 

for an integer n. If we prove the positivity for Z(N; 2n), there exist 
primes p, p' that satisfy the Goldbach equation and p-p' = 2n. Mikawa 
and Nakamura proved the following average result. 

1This result has not been published. 
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Proposition 2.1. Let E > 0 be an arbitrarily positive and X > 0 
be large enough. We assume an integer k satisfies log k « log log X. 
Then we have2 

k 

2)k - n)Z(N; 2n) >k26(N)2 N - 1
5
2k6(N)N(log N) 2 

n=l 

+ 0 (k312+c:e(N)2 N(logXY) + !:::,.(N). 

We easily deduce (1.2) from Proposition 2.1 for almost all N. The 
proof of Proposition 2.1 is an application of the circle method inspired 
by Bombieri and Davenport [1]. Similar to some other cases, the proof 
depends on the famous Bombieri's prime number theorem. 

One of the ways to improve Mikawa and Nakamura's result (1.2) 
is calculating an upper bound for Z ( N; 2n). The singular series for 
Z ( N; 2n) is defined as follows. Let vN,n (p) be the size of the set 
{O, -2n, N, N - 2n} modulo p. Then we define the singular series 
'.t(N, n) for Z(N; 2n) such that 

'.f(N,n) - I] (1- vN,;(p)) (1- ~)-4 

The author proved the following upper bound for Z(N; 2n). 

Theorem 2.2. Let E > 0 be arbitrary and X > 0 be large enough. We 
assume an integer k satisfies log k « log log X. Then we have 

Z(N; 2n) ::; (16 + c)'.t(N, n)N + !:::,.(N) 

for uniformly inn ::; k. 

By combining Proposition 2.1 and Theorem 2.2, we can prove The­
orem 1.1. The proof of Theorem 1.1 almost follows the argument of 
Bombieri and Davenport [1]. 

3. APPLICATION OF THE LINEAR SIEVE TO Z(N; 2n) 

We use 

L (log P1) (log P2) 
P1+p2=N 

P1+2nElP'(N) 

instead of Z(N; 2n). The upper bound for Z 1(N; 2n) is calculated by 
the combination of the sieve method and the circle method. If >..a is an 

2When we write f(N) = l::!..(N) for a function J(N), then J(N) is small in average 
namely LN::;x IJ(N)l 2 «A X 3 (logx)-A for any A> 0. 
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upper bound sieve weight of level D > 0, then one can see 

where P(z) = ITp<zP and 2 :::; z ::; x 1/ 2 . Thus we apply the circle 
method to the last sum and then we have to estimate the type of 
trigonometric sum with sieve weight 

L(logp) ( L Ad) e(ap) 
p-5_X dlP(z) 

dlp+h 

= L Ad L (logp)e(ap) 
dlP(z) p-5_X 
d-5_D P=-h (mod d) 

for h E Z, a E R The main term that occurs from the major arc 
integration is 

N 
'.f(N, n) (log D) 2 (4 + o(l)), 

thus we need to find large D which we can deal with the minor arc 
integral. A good estimate of our trigonometric sum on the minor arc 
was given by Matomaki when Ad is well-factorable. 

If we say an arithmetic function A is well-factorable of level D, then 
for any decomposition MN = D with M, N ?: 1 we can find arithmetic 
functions a and /3 supported on [1, M] and [1, N] respectively that 
satisfy 

A= a* /3, la(m)I :::; 1, l,B(n)I :::; 1 

where a* /3 is the Dirichlet convolution of a and /3. This property was 
first introduced by Iwaniec [5] and he found a well-factorable structure 
for the linear sieve. The strength of the well-factorable property is the 
following Matomaki's minor arc estimate. 

Proposition 3.1 (K. Matomaki, [6]). Let c be an integer. Then, for 
any A > 0, there exists B > 0 such that if A is a well-factorable function 
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of level X 1l 2 (log x)-B and a satisfies la - a/qi ~ q-2 for 

we have 

B X 
(logX) ~q~ (logX)B' l~a~q, (a,q)=l 

d:"::X112 (logX)-B 
(d,c)=l 

p'."::X 
P=-C (mod d) 

X 
(logp)e(ap) « (logX)A. 

The minor arc estimate of such trigonometric sum was first given 
by Mikawa [7] with a well-factorable function of level X 419 (log x)-B. 
Thus we employ the linear sieve to estimate Z 1(N; 2n) and Matomaki's 
result allows us to take D ~ X 112 (logX)-B. As a technical remark, 
we need some asymptotic formula and an idea of the vector sieve in­
troduced by Briidern and Fouvry [2] to deal with the major and minor 
arc calculation. These arguments give a basis for the proof of Theorem 
2.2. 

ACKNOWLEDGEMENT 

The author would like to thank the organizers Yu Yasufuku and 
Maki N akasuji for giving me the opportunity to give a talk at RIMS 
Workshop 2023 Analytic Number Theory and Related Topics. This 
work was supported by JST SPRING, Grant Number JPMJSP2124. 

REFERENCES 

[1] E. Bombieri, H. Davenport, Small differences between prime numbers. Proc. 
Roy. Soc. London Ser. A 293 (1966), 1-18. 

[2] J. Bri.idern, E. Fouvry, Lagrange's four squares theorem with almost prime 
variables. J. Reine Angew. Math. 454 (1994), 59-96. 

[3] P. Erdos, The difference of consecutive primes. Dukue MAth. j. 6 (1940), 423-
441. 

[4] D. A. Goldston, J. Pintz, C. Y. Yildmm, Primes in tuples. I. Ann. of Math. 
(2) 170 (2009), no. 2, 819-862. 

[5] H. Iwaniec, A new form of the error term in the linear sieve. Acta Arith. 37 
(1980), 307-320. 

[6] K. Matomaki, A Bombieri- Vinogradov type exponential sum result with appli­
cations. J. Number Theory 129 (2009), no 9, 2214-2225. 

[7] H. Mikawa, On exponential sums over primes in arithmetic progression, 
Tsukuba J. Math. 24 (2000), 351-360. 

[8] R. C. Vaughan, The Hardy-Littlewood method. Second edition. Cambridge 
Tracts in Mathematics, 125. 

INSTITUTE OF MATHEMATICS, UNIVERSITY OF TSUKUBA, JAPAN 

E-mail address: tsuday©math.tsukuba.ac.jp 




