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On some analytic properties of a function associated with the Selberg
class satisfying certain special conditions

Hideto Iwata
Graduate School of Mathematics,*

Nagoya University

1 Introduction

J.Kaczorowski defined the associated Euler totient function for a class of generalized L-functions including the Rie-
mann zeta function, Dirichlet L-functions and obtained an asymptotic formula (see [4]) : By a polynomial Euler product

expressions we mean a function F(s) of a complex variable s = o + it which for o > 1 is defined by a Euler product

d -1
F<s>=ﬂFp<s)=ﬂH(1— ) : (L.D)
P pr =1

where p runs over primes and |a;(p)| < 1 forall p and 1 < j < d. We take the smallest d € Z such that there is at least

expressions of the form

aj(p)
p;\'

one prime py satisfying
d
[ Jestpo 0.
j=1
where d is called the Euler degree of F. Note that the L-functions from number theory including the Riemann zeta
function £(s) and Dirichlet L-function L(s, y) and Dedekind zeta and Hecke L-functions of algebraic number fields,
as well as the (normalized) L-functions of holomorphic modular forms and, conjecturally, many other L-functions are
polynomial Euler products expressions.
M.Rg¢kos described the analytic property of some function connected with the Euler totient function (see [6]) : Let H

be the upper half-plane. We describe basic analytic properties of the function f(z) defined for z € H as follows :

: Llp—1)
f@) = lim e (12)
s Zp: )

0<Im p<T,
where {T,} denotes a real sequence yielding appropriate groupings of the zeros, and the summation is over non-trivial
zeros of {(s) with positive imaginary part. For simplicity we assume here that all the zeros of {(s) have simple. M.Regko$
showed the holomorphy of f(z) for Im z > 0, meromorphic continuation to the whole z-plane with its principal part,
and a functional relation containing its reflection property. The functional equation for f(z) connects the values of the
function f at the points z and Z. Define a smooth curve 7 : [0, 1] 3 t = 7(¢) € C such that 7(0) = —1/4, 7(1) = 5/2 and
0 <Im7(#) < 1 fort e (0, 1), and define it by £(—1/4,5/2). The analytic property of f(z) is described by the following

theorems:
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Theorem 1.1 (Theorem 1.in [6]). The function f(z) is holomorphic on H and for z € H we have

)

i F(2) = : @)
27if(2) = i) + @) - & Z} G —logn)’ (13)
where the functions
174

-1
_ 2 ds, 1.4
£i@ £1/4+im 2(s) e (14

-1 o
= ——e%d 1.5
) L-1/4,5/2) 4(s) eas (1)

are holomorphic on H and on the whole z-plane respectively, and the last term is a meromorphic function on the whole
z-plane, whose poles are at 7 = logn of the second order with the residues —p(n)/2ni (n = 1,2,...). Here ¢(n) denotes

Euler’s totient function.

Theorem 1.2 (Theorem 2.in [6]). The function f(z) can be continued analytically to a meromorphic function on the

whole z-plane, which satisfies the functional equation

f@+ @ =B@) (1.6)
and .

B@) = _%ezz * # Z ;;(TIZ [(nkezl— et nkezz— 1t (nkezl+ 0 nke22+ ik (L.7)
where B(z) is a meromorphic function on the whole z-plane with the poles of the second order at 7 = —lognk, n,k =
1,2,... and u(k) is the Mobius function.

We now provide the Selberg class S defined as follows : f € Sif
(1) (ordinary Dirichlet series) f(s) = i ag(m)n~*, converges absolutely for o > 1;
(ii) (analytic continuation) there existsn ;; € Zso such that (s — 1)" f(s) is entire of finite order;
(iii) (functional equation) f(s) satisfies a functional equation of the form ®(s) = wm, where
() = Q" [ [ T(ys + upf(s) = ¥($)f(s), (1.8)

j=1
say, with7 > 0,0 > 0,4; >0,Re u; > 0 and |w| = 1;

(iv) (Ramanujan conjecture) ag(n) < n¢ holds for any € > 0 ;

v) (Euler product) f(s) = nexp[z ! (f )] for o > 1, where by(n) = O unless n = p™ with m > 1, and
p s
14 =0
by(n) < n? for some & < 1/2.

The empty products are hereafter to be equal to 1.

2 The extension of f(z) to the subclass of S

If a functions F € S has a polynomial Euler product expressions (1.1), the subclass of S of the functions with
polynomial Euler product expressions is denoted by SP°Y. Establishing the results which extend TheoremlI.1 and 1.2
to the function F € SP°Y are the main aim of the present paper. Let {p} denote the non-trivial zeros of F with positive
imaginary parts, and assume that each p is simple. Moreover, let {T,} denote a real sequence yielding appropriate
groupings of the zeros, where its precise definition is to be given by (3.2) below. For Im z > 0 and F € SPY, we consider

the function defined by
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' : eLp-1)
f(z F) = lim Ler— .1)
n—oo ; F (p)

0<Im p<T,

If there are trivial zeros of F(s) on the imaginary axis in H, they are to be incorporated in the summation. The reason
why {(s) appears in the numerator on the right hand side is that the Barnes type integral (5.3) below for the Whittaker
function can then be applied under the hypothesis (r, 4;) = (1, 1) for all jin (1.8) (see Lemma 5.1 and Section 6).

Fact 2.1 (Fact 2.1 in [3]). The limit in (2.1) exists for all z € H.

We will prove Fact 2.1 in the next section.

3 Proof of Fact 2.1.

We prove Fact 2.1, for which the following Lemma is used.

Lemma 3.1 (Lemma 4. in [8]). Let F € S and let T be sufficiently large, and fix H = Dloglog T with a large constant
D > 0. We take any subinterval [n,n + 1] with n chosen such that n € Z.o N [T — H,T + H]. Then, there are the lines

t = to such that
|F(c + ito)| " = O(exp(C(log T)*)), 3.1)

uniformly in o > =2, where C is a positive constant.

Let T be sufficiently large. We fix H = DloglogT, where D is a large positive constant. We take any subinterval

[n,n + 1], where n is a positive integer in [T — H, T + H]. Then, by Lemma 3.1 there are the lines ¢t = T, such that

|F(o +iT,)|”" = O(exp(Ci(log T)*)) (3.2)
uniformly for o > -2, where C) is a positive constant. Since 7, is contained in the interval [T — H, T + H], we can see
that 7, ~ T as n tends to infinity. Let @ = min{Im p > 0}/2 and .Z denote the contour consisting of the line segments

[b,b+iT,], [b+iT,,a+iT,], [a+iTy,al, [a,(a+b)/2+ia], [(a+D)/2+ia,b],

where max {-3/2, max {Re p < 0} /2} < a < 0,b > 5/2. We assume that the real part of s = a + it (t € R) does not
coincide the poles of T'(s + p)['(s — ). We consider the following contour integral round .% :

Js=1)
» F(s)

Since we assume the order of p is simple, we have by residue theorem

e%ds. (3.3)

(=1 ey (7 Ls=D o [Es=D
» F(s) avit, F($) L F(s)
b+iT, _ +iT,, _
+f —4’(3 1)e”ds+\f“ g 1)e“ds
b F(s) peit,  F($)
. Lp-1)
=2ni —_— (3.4)
2 Tre
0<Im p<T,

where the path L above consists of joining the two line segments [a, (@ + b)/2 + ia] and [(a + b)/2 + ia, b]. We now

estimate the integral along the line segment [b + iT,,,a + iT,]. For a < o < b, we have by (3.2),

|F(c +iT,)I”" = O(exp(C(log T)*)),
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which, with the vertical estimate for (s — 1), shows with z = x + iy that

fb+iT,, s — ])e“ds
arit, ()

for T, T, > 1 with a constant ¢ = c(a, b) > 0, where the last bound tends to zero as n — co. By Theorem 4.1 below, the

< (b—a)T;, exp{C(log Ty — yT,, + |x|(la] + |b])} (3.5

convergence of the other integrals in (3.4) are ensured (see (4.5)-(4.7)). The limit in (2.1) therefore exists. O

4 Main theorems

Letting n — oo, we have

B _ b+ico _
S0 =D g [(£8=D sy 4 f 0D s = 2rifi, ), @.1)
b

a+ico F(S) L F(S) F(S)

with f(z, F) in (2.1). To evaluate the integral along the vertical line with s = b+t (¢ > 0), we prepare the Dirichlet series

expansion of {(s — 1)/F(s) for o > 2.

Definition 4.1 (p.34 in [4]). For o > 1 and F € SP°Y, we define the Dirichlet coefficients s as follows :

I V0 :]—[ﬁ(l—‘”(”)) 42
F(s) & n ps ) ’

r j=1

Remark 4.2 (p.34 in [4]). By (4.2), lup(n)| < 74(n), where t,4(n) is the divisor function of order d, so that { d(s) =
Yy Ta(m)/n® for o > 1. In particular 7,(n) = 1 for all n.
Using (4.2) in o > 2, we obtain

=1 _ g

CERP I 4.3)

where

g = ) pur(d). 4.4)

dn
Theorem 4.1 (Theorem 4.1 in [3]). Let max{-3/2,max{Re p < 0}/2} < a < 0,b > 5/2. Then, the function (2.1) is

holomorphic on H, and for z € H the formula

. o . kN g(n)
2mif(z. F) = fi(z. F) + fo(z. F) — ¢ Z; T Toan) 4.5)
is valid, where the functions
s—1) ..
filz, F) = , %es“ds, 4.6)
-1
fz F) = {(;_(s) )es‘"'ds 4.7)

are holomorphic on H and on the whole z-plane, and the last term on the right is a meromorphic function on the whole

z-plane with the poles at z =logn (n = 1,2, ...).
We need not use the condition of a which does not coincide the poles of I'(s + ¢)['(s — u) in proving of Theorem 4.1.

Theorem 4.2 (Theorem 4.2 in [3]). For any F € S with (r, A)) =1,1) forall jin(1.8) and 0 < u < 1, the function

(2.1) has a meromorphic continuation to'y > —m.

The complex number y; when r = 1 in (1.8) is hereafter referred to as u. The L-functions associated with holomorphic
cusp forms and Dedekind zeta functions of the imaginary quadratic fields are the examples of F considered in Theorem

4.2. Letting
H ={zeC:Imz<0}, 4.8)
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we next study the function, for z € H~,
- . -1
[ (z, F) = lim _—
n—o0 ; F’(p)

—T,,<Im p<0

4.9)

If there are trivial zeros of F(s) on the imaginary axis in H™, they are incorporated in the summation. The existence of

the limit on the right hand side of (4.9) is proved similarly to Fact 2.1.

Corollary 4.3 (Corollary 4.3 in [3]). For any F € SP°Y satisfying the same conditions as in Theorem 4.2, the function

(4.9) has a meromorphic continuation to 'y < m.

Theorem 4.4 (Theorem 4.4 in [3]). For any F € SP°Y satisfying the same conditions as in Theorem 4.2, the function
(2.1) can be continued analytically to the whole z- plane. In addition to the condition as in Theorem 4.2, we assume that
the Dirichlet series coefficients ap(n) of F € SPY is real-valued for all n. Then, the function (2.1) satisfies the functional
equation

f@F)+ f@Z, F) = B(z, F), (4.10)

where
ez:

e A.11)

1
Bz F) = 5= (i@ F) + fy . F)) =

for all z € C and the function f{ (z, F) is holomorphic on H™.

5 Some auxiliary results on the Whittaker function

We first introduce the Whittaker function W, ,(z) (via the confluent hypergeometric function (e, y; z) below), which is
necessary to prove our main theorems, and then prepare some auxiliary results, i.e.its integral expression and asymptotic

expansions.

Definition 5.1 (The confluent hypergeometric function of the second kind ( [1])). Let W(a,y; z) be the confluent hyper-

geometric function of the second kind defined by

1 (0+)
p ; e —zw. a—1 1 yfafld 5.1
@72 F(a)(em_l)L WL+ Wy 5.1)

for any (a,y) € C? and for |argz] < m. Here the path of integration is a contour in the w-plane which consists of the
upper real axis from e*co to ¢%'§ with a small § > 0, the circle with the center w = 0 and the radius & through which

arg w varies from 0 to 27, and the lower real axis from e>™§ to ¢ co.

Definition 5.2 (The Whittaker function ( [5])). The Whittaker function Wy ,(z), which has large applicability, e.g. in
number theory and physics, is defined by

1
W, u(2) = 2ot (E — K4, 2u+ l;z) (largz| < m), 5.2)

where (to avoid many-valuedness) the domain of z is to be restricted in the z-plane cut along the negative real axis with

|argz| < 7.

Lemma 5.1 (Barnes type integral for the Whittaker function ( [7], [9])). The Barnes integral for W, ,(2) asserts

2K f<?+°°i I'(s)l (—s —K—u+ %)F(—s —Kk+u+ %)
c

R ol W ey wavrvy

Z'ds, (5.3)

for|argzl < 3m/2, and k = u + 1/2 # 0,1,2,...; the contour has loops if necessary so that the poles of I'(s) from those
of T'(—s —k—pu+1/2) XI'(—=s — k + p + 1/2) are on opposite sides of it.
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In (5.3), it holds for all finite values of ¢ provided that the contour of integration can always be deformed so as to
separate the poles I'(s) and those of the other I'-factors. By Stirling’s formula for I'(s) (cf. [2]), the integral in (5.3)
represents a function of z which is holomorphic at all points in the domain | arg z| < 37/2 — @ with any small @ > 0. The

asymptotic expansions for W(a;7y; z) as z — 0 readily asserts the following proposition.

Proposition 5.2 (The asymptotic expansions for W(a; b; z) as z — 0 ([7])). We have the asymptotic expansions, as 7 — 0

through |arg z| < m,

W(a: b z) = %zl_h +0(R?2?) (Reb>2,b%2), G4
- %z'*b +0(logz) (b=2), (-3
- F(ﬁ(;)l)zl-b +o(l) (1<Reb<?2), (5.6)
= r(E(Jlr Z f)b) i r(llz(;)l)zlib POk ®eb=Lo# D, o7
_ _% {logz + @+ zco} +O0(zlogz) (b=1), (5:8)

where Cy is Euler’s constant.
By the definition (5.2) and Proposition 5.2, we have the following asymptotic expansions as z — 0 for W, ,(z).

Proposition 5.3 (The asymptotic expansions in z — 0 for W, ,(2)).

e,
Wea(@) = = A2 0P Repz 12, % 1/2). 59
I(z+u-x)
1
T o +O(zlogzl) (u=1/2), (5.10)
I,
= — ) 22 ORI (0 <Rep < 1/2), (5.11)
I3 +u-x)
- T(_zﬂ) 12 m’{’ L 4 o(RHR) (Re = 0,4 # 0), (5.12)
T(3-p-«) Fu+3-4)
7' I (1 32
=—— [logz+ —= (= — k| +2C | + O log2l)  (u = 0). (.13)
l"(l —K) A2
2

6 Proof of Theorem 4.2

We prove that the function f(z, F) (z = x + iy) has a meromorphic continuation to y > —z. By Theorem 4.1, the

B =1 0 (MU=
f‘(Z’F)‘j;m o) ¢ BT f o ¢

function

is convergent for y > 0. We recall the hypotheses that (r,4;) = (1, 1) for all jin (1.8) and 0 < u < 1. We rewrite the

functional equation (1.8) under these hypotheses as follows :

O°T(s + WF(s) = wQ'=T(1 =5+ W)F(1 =)
= wQ'"T(1 - s+ WF(1 -73),

where the conditions of Q and w are the same as noted in (1.8). Hence

L Tt 1
s mraTy

Fo) - 6.1)
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which yields, from the reciprocal relation I'(s)I'(1 — s) = &/ sin s, that

L = EQZ‘FI sin (s — /J)F(S + p)F(s - /l) . (62)
F(s) =« F(1-5%)
By (6.2) and the functional equation for £(s), on setting
H(s,w) = 2nQ*)°4(2 = T (s — )T (s + )2 — 5)e™,
H
K(s.w) = 289 6.3)
F(1-5%)
we have
i . . i
G F) = J_(z+ §)+J+(z— §)+J_(z 7;)+J+(z— ;)
4
= > fii@F), (6.4)
=1
say, where
+le*’”“a) a-+ico
J.(w) = (27r)3Q K(s,w)ds. (6.5)
It follows from, by Stirling’s formula,
I'(s + )(s — IR — §) = e M2e412 (a5t — +00), (6.6)

max {—-3/2, max{Re p < 0}/2} < a < 0, and the vertical estimates for (2 — s) and F(1 —5) that fi;(z, F) (j = 1,...,4)
are holomorphic for y > -3, for y > —n, for y > —27 and for y > 0O respectively. We next show that f4(z, F) can be
continued to 0 <y < 3x. Splitting the integral in fi4(z, F), we have

fiuz, F) = J; (z— %)

wekmi| 3ni
" 2mo {fm fm} (Z'_)ds

=1Lz, F)+ L(z, F),

say, where
nery = 2 M (g3 6.7)
T 00 Jue T2 '
wek “ 3mi
Lz, F) = ——— K|s,z——|ds. .
X B = oo fa_,-w (” 2 )‘“ ©®

Here, we recall the hypothesis that the real part of s = a + it (# € R) does not coincide with the poles of I'(s + t)I'(s — ).
From (6.6), we can see that the integral I;(z, F) is convergent for y < 3. From (6.6) again, /,(z, F) converges absolutely
for 0 < y < 3x. Substituting the Dirichlet series expansions in (4.2) and {(2 — s), and then integrating term-by-term, we

have

we I‘F(k) NI08@mnkQ?)+2=37if2)s
WP = G Z yrall A I(s + (s = T2 = 5)ds, (69)

where the interchange of the order of integration and summation can be justified by absolute convergence as follows :

For 0 < y < 3m, each s-integral in (6.9) is bounded as

< (nk)aeaxf 67<y737{/2)t73”‘t|/2(|t| + ])a+1/2d[ < (nk)a’
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and hence the series in (6.9) is bounded above as

s (R

1-ap2-a
k,n=1 k n

by (4.2) and a < 0. We next prepare the following notations which is used to describe the residues of the integrand in

(6.9) and also used later in similar situations : for u ¢ {0, 1/2},

D"

S knm(ws p) = ——TQ2u = m)[Q2 = pt + m)2ankQ?y' """ (6.10)
m:
and for u = 0,
Sewmw.0) = ML omnk0?) + +i1 Com — 6.11)
nm(W, = mn w - — — .
k. ml QankQoy" | 8 Zip~ N T w1

with Euler’s constant C, and also for u = 1/2,

1y TG+m) pan-mw 3
Sknm (W, 5) = 2 ZankQRyI2 {m (z//(z + m) - 2¢(m + 1))

— m(log(2mnkQ?) + w) + 1} 6.12)

with Euler’s psi function ¢(s) = (I’ /T')(s). Then we have the following lemma.
Lemma 6.1 (Lemma 7.1 in [3]). The residues of the integrand in (6.9) are given as follows :

(1) for u ¢ {0,1/2}, those at s = tu—m(m =0,1,...) equal

3ni
R (@tp) = Sipm (z -5 i/z);

(ii) for u = 0, those at s = —m (m =0, 1,...) equal

37
R;:i)z,m(z’ 0) = Sk,n,m (Z - T, 0) 5
(iii) for u = 1/2, those at s = 1/2 —m (m = 0,1, ...) equal
3mi 1
R,(:,Lm(z, 1/2) = Sknm (z - T’ E) X

Proof. The reciprocal relation I'(s) shows that I'(—m + €) = (=1)"7/T'(1 + m — €) sin(ne) (m = 0, 1,...), and this implies

the Laurent series expansion, as € — 0,

I'(-m+e) = %e"{l + (1 + me + O(?))}, (6.13)
which with the Taylor series expansion
TQ+m—e) = @m+ DY -2+ me + O(E)}. (6.14)

Readily asserts the cases (i) and (ii), by substituting (6.13) and (6.14) into the integrand in (6.9), and by noting ¥/(1 +m) =
ey (L/h) + (1) with y(1) = —Co, while (iii) by noting I'(s — 1/2)['(s + 1/2) = (s = 1/2)I'(s — 1/2)? and by substituting

(6.13), instead of (6.14), the Taylor series expansion, as € — 0,

3 -r(3 e 2
F(§+m—e)—l"(2+m){1 w(2+m)6+0(e)}.
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a£ico

Since lim7_ 4+ f

i = 0 for 0 <y <3min (6.9), we obtain if i ¢ {0, 1/2}, by the residue theorem,

oo 3 3ni
Kls,z- =|ds=- | K[s,z- =
j:iw (s,z ) )ds j; (s,z > )ds

M, M
2l S e 5 e, 619
0

my= mp=0
where C is a contour separating the poles of I'(2 — s) from those of I'(s + ¢)['(s — u) in opposite sides, and M; and M, are
the integers chosen correspondingly . Here the split residual terms in (6.15) when u € {0, 1/2} are to be understood as
M

w
DR @O (ifu=0) Y RY (1/2) (ifu=1/2), (6.16)
m=0 m=0

where the same convention is used hereafter. The integral over C in (6.15) can be evaluated, on replacing s with 2 — s,

by the formula (5.3), and this shows that it equals
Ty (z—3mi/2),

where and in the sequel

eV w
+ p—

drnkQ? 2

Tin(W) = 2mi(2mnkQ*)1/? exp( )r(z — TR + W32, (#:Qz) ) (6.17)

Therefore, we have

we™i O pp(k)
Qr)*Q A kn?

M,
(1)
+ Z Ry, @ —u)}

my=0

Ii(z, F) =

3 S
. . (1)
Tin (z - Em) —2mi { Z Ry, @ 1)

m;=0

_ (6.18)

The following lemma ensures the convergence for the series on the right hand side in (6.18).

Lemma 6.2 (Lemma 7.2 in [3]). For F € 8" with (r, 4) = (1,1) forall jand 0 < u < 1in (1.8), the series on the

right hand side in (6.18) is absolutely and uniformly convergent on every compact subset on the whole z-plane.

By Lemma 6.2, for any F € SP° with (r, A)) =(1,1) forall jin (1.8) and 0 < u < 1, we have the following analytic

continuation of fi(z, F) fory > —x:

3mi i T\, weri
fieF)=1. (z+ 7) # o= Z) () Gag

2
o T 3T M,
(k) 3. .
X Z “];2 Tin (z - zm) — 2mi { Z Ri}i,ml (z,p)

k=1 my=0
+ f RD )} N wet f" K( 3m’)d 6.19)
o, (=1 | 5,2 - —|ds, .
PR 21701 Juin 2

where the first integral is holomorphic for y > -3, the second for y > —, the third for y > -2, the fourth double sum
for y > —oo by Lemma 6.2, and the last for y < 3x. Therefore, (6.19) completes the proof of the continuation of f(z, F)
to the region y > —x. O
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