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ABSTRACT: Cobalt-catalyzed metal hydride hydrogen atom transfer (MHAT) in combination with photoredox catalysis has 
emerged as a powerful synthetic method, owing to its redox nature and applicability to various radical precursors. Herein, 
we describe a cross-radical coupling reaction under cobalt/photoredox dual catalysis. MHAT and homolytic substitution (SH2) 
processes enabled Markovnikov-selective hydrobenzylation of di/tri-substituted alkenes, affording products with a quater-
nary carbon center in a redox-neutral manner. 

Metal hydride hydrogen atom transfer (MHAT)-type Markov-

nikov-selective hydrofunctionalization reactions of alkenes, 

catalyzed by first-row transition metal hydride species (e.g., 

manganese, iron, cobalt hydrides), have been extensively inves-

tigated since the pioneering report of the Drago-Mukaiyama hy-

dration reaction.1,2 These reactions, initiated by the formation of 

radical intermediates through hydrogen atom transfer (HAT) of 

alkenes, are useful for synthesizing complex molecules, includ-

ing natural products, due to their mild and selective conditions 

in contrast to hydrofunctionalization in harsh acidic conditions. 

Among these reactions, C–C bond-forming reactions via 

MHAT of alkenes have attracted attention as an efficient and 

chemoselective approach, especially for constructing quater-

nary carbons.3 For example, Shenvi and co-workers reported 

hydroarylation and hydroalkylation reactions employing dual 

catalysis with Ni/Co, Ni/Fe, and Ni/Mn.4 More recently, the 

same group developed a novel MHAT cross-coupling reaction 

using an iron-iron dual catalyst system to facilitate MHAT of 

inert alkenes and to form benzyl-iron species generated from 

benzyl bromides.5a A homolytic substitution (SH2) reaction pro-

vided hydrobenzylated products (Figure 1a). In addition, SH2-

type reactions have gained notice for their chemoselectivity, 

which enables cross-coupling of highly substituted tertiary or 

secondary alkyl radicals with less substituted primary radicals.6  

The combination of cobalt MHAT catalysis with either photo-

redox or electrochemical conditions is useful and widely 

adopted for various alkene hydrofunctionalization reactions.7-9 

In the cobalt/photoredox dual catalysis system, the cobalt(II) 

catalyst is reduced by the photoredox catalyst (PC) and sequen-

tially protonated to afford active cobalt(III) hydride species. 

The reductive generation of cobalt(III) hydride species under 

photoredox conditions is complementary to the oxidative 

metal(III) hydride generation system, in which a metal(II) cata-

lyst undergoes one-electron oxidation with external oxidants 

and is subsequently transformed into metal(III) hydride species 

with organosilane reagents. Photoredox catalysts enable the use 

of various redox-active radical precursors;10,11 thus, studies to 

expand the scope of MHAT hydrofunctionalization processes 

under cobalt/photoredox dual catalysis have been actively in-

vestigated by several groups since our contribution in 2021.8,12 

In this context, we envisioned the utility of cobalt/photoredox 

dual catalysis for hydroalkylation reactions of alkenes via a 

MHAT-SH2 process. During our preparation of this manuscript, 

Shenvi,5a–c Baran,5c and MacMillan5d reported closely related 

hydroalkylation reactions of alkenes via a MHAT-SH2 process 

utilizing single iron catalysis (Figures 1b,1c) and manganese-

nickel-photoredox triple catalysis (Figure 1d). In their reports, 

benzyl bromides, redox-active NHPI esters, and alcohols, re-

spectively, were used as precursors for the cross-coupling reac-

tions. To further broaden the utility of MHAT-SH2 type hy-

droalkylation reactions of alkenes, we report our efforts using 



 

Hantzsch esters as a coupling partner under cobalt/photoredox 

dual catalysis (Figure 1e). 

 

Figure 1. Examples of MHAT-SH2 hydroalkylation reactions 

of alkenes. 

 

Our reaction scheme for the hydroalkylation of alkene 1 is il-

lustrated in Figure 2a. Through one-electron oxidation by 

photo-excited PC, Hantzsch ester 2 is converted into a primary 

alkyl radical, pyridine, and proton. The free radical would be 

efficiently captured by the cobalt(II) (A), forming a medium-

lifetime alkyl-cobalt(III) complex (B) in equilibrium, which is 

equivalent to a persistent radical. Another cobalt(II) (A’) cata-

lyst is reduced by the radical anion of PC into cobalt(I) (C) and 

protonated, thus generating the MHAT-active cobalt(III) hy-

dride [CoIII–H] (D). [CoIII–H] promotes MHAT to alkene 1, pro-

ducing a transient tertiary-alkyl radical intermediate. This spe-

cies exists in equilibrium with an alkylcobalt(III) intermediate 

(E). Subsequently, the radical intermediate and the aforemen-

tioned alkylcobalt(III) (B) would undergo an SH2 reaction,13 

providing hydroalkylated product 3 and regenerating the co-

balt(II) catalyst (A). 

 

Based on the working hypothesis shown in Figure 2a, we ex-

plored the optimal reaction conditions using alkene 1a and 

Hantzsch ester 2a as model substrates (Table 1). A bulky and 

electron-deficient cobalt salophen complex 4a (Figure 2b), pre-

viously identified as an optimal catalyst for our MHAT enamide 

synthesis,8g gave hydrobenzylated product 3aa in 85% isolated 

yield when combined with Ir(dFppy)3 as a photoredox catalyst 

(entry 1). The use of a different cobalt salen 4b, cobalt salophen 

complexes 4c-4d, and cobalt tetraphenylporphyrin complex 

Co(TPP) resulted in a decreased yield (entries 2–5). Electron-

withdrawing trifluoromethyl groups in 4a improved the 

reaction efficiency (entry 1 vs entries 3, 4). We assume that 

electron-deficient cobalt 4a would be more favorable in the SH2 

process from the alkyl-cobalt(III) complex (B) to release co-

balt(II) species (A), as shown in Figure 2a. In entry 6, the iron-

tetraphenylporphyrin complex Fe(TPP)Cl also promoted the 

MHAT-SH2 process, albeit with modest efficiency. Finally, 

control experiments were performed (entries 7–9). In the ab-

sence of a photoredox catalyst, cobalt catalyst, or blue LED ir-

radiation, the reaction did not proceed at all. Thus, all catalyst 

components and photoirradiation were essential for promoting 

the present hydrobenzylation reaction. 

 

 

Figure 2. (a) Hypothetical catalytic cycle to realize MHAT-SH2 

hydrobenzylation of alkenes with Hantzsch esters under cobalt-

photoredox dual catalysis; (b) Catalysts used in this study. 

 

  



 

Table 1. Optimized conditions and their variations. 

 

 

 

Entry Deviation from the above conditions  % yielda 

1 none 80 (85)b 

2 Co cat. 4b instead of 4a 45 

3 Co cat. 4c instead of 4a 70 

4 Co cat. 4d instead of 4a 61 

5 Co(TPP) instead of 4a 37 

6 Fe(TPP)Cl instead of 4a 13 

7 without PC N.D. 

8 without Co catalyst N.D. 

9 without blue LED irradiation (dark) N.D. 
a Determined by 1H NMR analysis using 1,1,2,2-tetrachloro-

ethane as an internal standard. b Isolated yield after purification 

by column chromatography. 

 

 

Table 2. Substrate scope of hydrobenzylation.a 

  
aReaction conditions (unless otherwise noted): 1 (0.20 mmol), 
2 (0.40 mmol), Ir(dFppy)3 (2.0 mol) and 4a (5.0 mol) in ben-
zene (2.0 mL) at 25 ºC under irradiation with blue LEDs. Iso-
lated yields are shown. bIr(dFppy)3 (0.50 mol) was used. c1.0 
mmol scale at 45 ºC. dIsolated yield was determined after epox-
idation of remaining starting alkene in the crude mixture 
[mCPBA (0.20 mmol), DCM (0.20 M)] and purification by silica 
gel column chromatography. e20 hours. 

 

 

To demonstrate the utility of this hydrobenzylation method, we 

next investigated the substrate scope (Table 2). The reaction of 

alkene 1a was successfully carried out on a 1.0-mmol scale, giv-

ing product 3aa in 77% yield. In addition to terminal 2,2-disub-

stituted alkene 1a, the reaction proceeded with internal tri-sub-

stituted alkenes to afford products with various functional 

groups, including electron-donating (3ca–3ea), electron-with-

drawing (3fa–3ha), and halide groups (3ia, 3ja). A natural ter-

pene, -citronellol, was also converted into benzylated product 

3ka in a moderate yield. A coordinative nitrile and a free alco-

hol group did not interfere with this reaction (3ha, 3ka). Alkene 

with an amino acid unit also yielded the corresponding hydro-

benzylated product (3la). Next, we investigated the scope of 

Hantzsch esters 2b–2i. Several benzyl radicals were tolerated, 

and hydrobenzylated products 3ab-3ag were obtained from 4-, 

3-, or 2-substituted benzyl radical precursors. Additionally, 

benzyl radicals with both electron-donating (4-OMe) and elec-

tron-withdrawing (3-OMe) substituents were tolerated (3ah and 

3ai). 

 

In conclusion, we established a hydrobenzylation method under 

cobalt/photoredox dual catalysis. In this system, Hantzsch es-

ters served as one-electron reductants and as a source of ben-

zylic radicals and protons to generate the cobalt-hydride species. 

Thus, two distinct alkyl radicals were generated in situ, leading 

to cross-radical coupling for constructing a quaternary carbon 

center in a redox-neutral manner. Further application of co-

balt/photoredox dual catalysis in MHAT-SH2 type reactions is 

ongoing in our group. 
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