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ABSTRACT
Background: In this study, we compared outcomes of intensified myeloablative conditioning regimens using large registry data
from Japan (Japanese Society for Transplantation and Cellular Therapy) and the United States (Center for International Blood
and Marrow Transplant Research).
Methods: Adult patients who underwent their first myeloablative allogeneic hematopoietic stem cell transplantation (HSCT) for
acute leukemia in remission between 2010 and 2018 using conditioning regimens of cyclophosphamide plus total-body irradiation
(CY/TBI), CY/TBI+cytarabine (AraC), or CY/TBI+etoposide (VP16) were included.
Results: The acute myeloid leukemia (AML) cohort (N = 480, 38.8%) indicated that overall survival (OS) was poorer in
CY/TBI+AraC (hazard ratio [HR] 1.46, p < 0.001) and CY/TBI+VP16 (HR 1.39, p = 0.059) compared to CY/TBI. Relapse was not
suppressed, while treatment-related mortality (TRM) was significantly higher (HR 1.78 and 1.74, p< 0.001 and 0.018, respectively).
In the acute lymphoblastic leukemia (ALL) cohort (N = 3901, 61.2%), OS was comparable among these regimens. With intensified
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regimens, relapse was significantly suppressed in CY/TBI+VP16 (HR 0.74, p = 0.005), while TRMwas higher (HR 1.21, p = 0.077).
No interactions were observed regarding the country.
Conclusion: In AML adding AraC and VP16 to CY/TBI had an adverse effect on OS. Conversely, in ALL, adding VP16 or AraC to
CY/TBI did not affect survival, but the addition of VP16 reduced the risk of relapse.
Clinical Trial Registration: The authors have confirmed clinical trial registration is not needed for this submission.

1 Introduction

In allogeneic hematopoietic stem cell transplantation (HSCT)
for acute myeloid leukemia (AML) and acute lymphoblastic
leukemia (ALL), intensifiedmyeloablative conditioning regimens
have been explored in order to reduce the frequency of post-HSCT
relapse [1, 2]. These regimens do reduce post-transplant relapse;
however, they may induce higher treatment-related toxicity,
leading to poorer overall survival (OS) [3, 4].

Our group previously analyzed leukemia cases using the Japanese
registry database and found that the addition of high-dose cytara-
bine (AraC) showed superior OS comparedwith the conventional
myeloablative regimen (cyclophosphamide plus total-body irra-
diation [CY/TBI]) with decreased post-HSCT relapse and the
same level of TRM in cord blood transplantation (CBT) [1, 2],
but not with other sources like bone marrow or peripheral blood
stem cell (BMT/PBSCT) [3]. Moreover, the addition of etoposide
(VP16) to CY/TBI improved the outcome in bone marrow (BM)
or peripheral blood stem cell (PBSC) transplants in patients with
high-risk ALL in Japan [5].

These results had certain limitations, due to heterogenous donor
sources, variable conditioning regimens, and time-frame bias
(older vs. more recent years of HSCT). Moreover, CBT outcomes
in Japan are relatively better, partly because of the genetic
homogeneity of the Japanese population. These limitations led
us to validate previous results using a large international cohort
from the Center for International Blood and Marrow Transplant
Research (CIBMTR) in the United States (US) and the Japanese
Society for Transplantation and Cellular Therapy (JSTCT) to
compare the benefits and drawbacks of these regimens between
cohorts.

2 Patients andMethods

2.1 Study Cohort and Inclusion Criteria

We included adult patients (18 years or older at transplantation)
who underwent their first myeloablative allogeneic HSCT (BM or
PBSC) for acute leukemia in remission (CR1 or 2) between 2010
and 2018, either in Japan or the US using conditioning regimens
of CY/TBI, CY/TBI+AraC, or CY/TBI+VP16 without any ex vivo
T-cell depletion or post-transplant CY. The two datasets from the
US and Japan were merged for analysis.

The primary endpoint was OS, and secondary endpoints included
disease-free survival (DFS), treatment-related mortality (TRM),
disease relapse/progression, acute and chronic graft-versus-host

disease (GVHD), cumulative incidence of infections (bacterial
and viral) and veno-occlusive disease/sinusoidal obstruction
syndrome (VOD/SOS) by day 100 post-HSCT.

This study was approved by the Institutional Review Board of
Kyoto University and was conducted according to the principles
of the Declaration of Helsinki.

2.2 Generation of the Merged Database and
Definition of Variables

Two datasets from the US (through CIBMTR) and Japan
(JSTCT and Japanese Data Center for Hematopoietic Cell
Transplantation [JDCHCT]) were merged for analysis. The
JSTCT/JDCHCT database contained information on all
hematopoietic cell transplantations performed in Japan,
including pre-transplant patient characteristics, (underlying
disease, previous treatments and their outcomes, patient
performance status, etc.), transplantation procedures
(conditioning regimens, donor sources, GVHD prophylaxis,
etc.), and post-transplant status obtained by periodic follow-ups
(various complications such as infection, GVHD, disease
status, and survival) [6]. Overall, the JSTCT/JDCHCT
database has a very similar structure to the CIBMTR
database.

Regarding the US database, data were reported prospectively
to the CIBMTR. CIBMTR is a working group of more than
500 transplant centers worldwide that provide detailed patient,
disease, transplant characteristics, and outcomes of consecutive
allogeneic transplantations. The CIBMTR collects both Trans-
plant Essential Data (TED) and Comprehensive Report Form
(CRF) data before transplantation, 100 days and 6 months
after transplantation, and annually after that. CRF data are
collected only in a subset of patients determined by an algo-
rithm adjusted biannually to ensure representative samples.
All subjects whose data were included in this study provided
institutional review board-approved consent to participate in the
CIBMTR Research Database and to have their data included in
observational research studies [7]. Observational studies with
this database are performed in compliance with all applica-
ble federal regulations pertaining to the protection of human
research participants. Protected health information used in the
performance of such research is collected and maintained in
the researchers’ capacity as a public health authority under
the Health Insurance Portability and Accountability Act Privacy
Rule.

All necessary data regarding pre- and post-transplant data were
extracted from the JSTST/JDCHCT database and linked to the
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CIBMTR database. The de-identified dataset was forwarded from
JDCHCT and the included variables were modified to match
those used in CIBMTR. The modified dataset was simply added
to the CIBMRT database.

Types and doses of chemotherapeutants added to conven-
tional conditioning (CY/TBI) were summarized and categorized
into several groups. Each group was compared with conven-
tional regimens in terms of prognosis and regimen-related
complications.

2.3 Statistical Analyses

Patients were grouped based on the conditioning they received:
CY/TBI, CY/TBI+AraC, and CY/TBI+VP16. For each of the three
groups, OS and DFS probabilities were calculated using the
Kaplan-Meier method. The log-rank test was used to compare
survival curves between the CY/TBI and CY/TBI+AraC groups
and theCY/TBI andCY/TBI+VP16 groups. Cumulative incidence
of TRM was calculated considering relapse as a competing risk.
Cumulative incidence of acute and chronic GVHDwas calculated
considering death as a competing risk. After computing cumula-
tive incidence probabilities in the three patient groups, Gray’s test
was used to compare the CY/TBI and CY/TBI+AraC groups and
the CY/TBI and CY/TBI+VP16 groups over time [8].

Multivariable analyses were performed using the Cox pro-
portional hazards model. Conditioning regimens (CY/TBI,
CY/TBI+AraC, andCY/TBI+VP16) and country (US/Japan)were
included in the model at all times. A stepwise model selection
procedure was used to identify other significant factors to be
included in the final model. Interactions between conditioning
regimens and each of the variables included in the final model
were checked in order to identify patient groups in which
conditioning regimens had a different effect. This approach was
used to model OS, DFS, relapse, TRM, acute GVHD, and chronic
GVHD.

The cumulative incidence of post-transplant toxicities was calcu-
lated in each of the three patient groups defined by conditioning
regimens. Death was considered a competing risk.

3 Results

3.1 Patient Characteristics

In total, 6381 patients were included in this study (3469 from the
US, and 2912 from Japan) (Table 1). CY/TBI was most commonly
used (N = 5374, 84.2%), while CY/TBI+AraC was used in 389
patients and CY/TBI+VP16 in 618 patients. The median ages of
patients were 40, 36, and 35 years in CY/TBI, CY/TBI+AraC,
and CY/TBI+VP16, respectively. The majority of patients (N =
5007, 78.4%) were transplanted in CR1. The most frequently used
donor sources included HLA-matched unrelated donors (N =
2546, 39.8%), followed byHLA-matched siblings (N= 2522, 39.5%).
TBI dose distribution indicated that the median dosage was 1200
cGy.

TABLE 1 Patient characteristics.

Characteristic CY/TBI
CY/TBI
+AraC

CY/TBI
+VP16

No. of patients 54 389 618
Country—no. (%)
US 3167 (59) 113 (29) 189 (31)
Japan 2207 (41) 276 (71) 429 (69)

Recipient age—no. (%)
Median (min–max) 40

(18–72)
36

(18–72)
35

(18–67)
−29 1380 (26) 141 (36) 228 (37)
30–39 1326 (25) 112 (29) 170 (28)
40–49 1646 (31) 81 (21) 154 (25)
50–59 946 (18) 42 (11) 61 (10)
60- 76 (1) 15 (4) 5 (1)

Recipient gender—no. (%)
Male 3022 (56) 226 (58) 367 (59)
Female 2352 (44) 163 (42) 251 (41)

Karnofsky score prior to
HCT—no. (%)
<90 1243 (23) 62 (16) 88 (14)
≥90 4100 (76) 327 (84) 526 (85)

Disease—no. (%)
AML 2189 (41) 223 (57) 68 (11)
ALL 3185 (59) 166 (43) 550 (89)

Disease status—no. (%)
AML CR1 1598 (30) 160 (41) 57 (9)
CR2 591 (11) 63 (16) 11 (2)
ALL CR1 2609 (49) 130 (33) 453 (73)
CR2 576 (11) 36 (9) 97 (16)

HCT-CI—no. (%)
AML 0–2 1714 (31) 199 (51) 57 (9)
3+ 468 (9) 24 (6) 11 (2)
ALL 0–2 2350 (54) 135 (34) 471 (76)
3+ 821 (15) 30 (8) 76 (12)

Cytogenetic score—no. (%)
AML Favorable 286 (5) 37 (10) 7 (1)
Intermediate 1109 (21) 120 (31) 26 (4)
Poor 282 (5) 33 (8) 15 (2)
ALL Normal 608 (11) 35 (9) 149 (24)
Poor 1748 (33) 82 (21) 315 (51)

Graft type—no. (%)
Bone Marrow 2252 (42) 241 (62) 365 (59)
Peripheral Blood 3122 (58) 148 (38) 253 (41)

(Continues)

3 of 10

 26886146, 2025, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jha2.70061 by C

ochrane Japan, W
iley O

nline L
ibrary on [29/05/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



TABLE 1 (Continued)

Characteristic CY/TBI
CY/TBI
+AraC

CY/TBI
+VP16

Donor type—no. (%)
HLA-identical sibling 2114 (39) 170 (44) 238 (39)
Well-matched unrelated
(8/8)

2207 (41) 131 (34) 208 (34)

Partially-matched
unrelated (7/8)

800 (15) 68 (17) 125 (20)

Mis-matched unrelated
(≤ 6/8)

129 (2) 12 (3) 30 (5)

Follow-up—median
(range), month

63 (0-151) 60 (1-139) 62 (0-143)

Abbreviations. ALL, acute lymphoblastic leukemia; AML, acute myelogenous
leukemia; AraC, cytarabine; CR, complete remission; CY, cyclophosphamide;
HCT, hematopoietic cell transplantation; HCT-CI, HCT commodity index;
TBI, total body irradiation; VP16, etoposide.

3.2 Post-HSCT Outcomes in AML According to
Conditioning Regimens

In the AML cohort (N = 2480, 38.8%), OS at 1 year was 76.9%
(95% confidence interval [CI] 75.1%–78.7%) in the CY/TBI group
while 73.0% (66.9%–78.8%) in the CY/TBI+AraC group and 67.6%
(56.1%–78.2%) in CY/TBI+VP16 group (p = 0.139) (Figure 1A).
The cumulative frequencies of relapse at 1 year in each group
were 20.3% (18.6%–22.0%), 15.7% (11.1%–20.8%), and 23.5% (14.2%–
34.4%), respectively (p = 0.166) (Figure 2A). TRM at 1 year was
significantly higher in the CY/TBI+AraC group (17.5% [12.7%–
22.8%]) and CY/TBI+VP16 group (19.1% [10.7%–29.3%]) than in
the CY/TBI group (11.2% [9.9%–12.5%]) (p = 0.018) (Figure 3A).

Multivariable analyses indicated that OS was inferior in
CY/TBI+AraC (hazard ratio [HR] 1.46, p < 0.001) and
CY/TBI+VP16 (HR 1.39, p = 0.059) compared to CY/TBI,
where country, recipient age, cytogenetic score, donor, HCT-
CI, and year of HSCT were included in the model. DFS was
significantly inferior in these intensified regimens (HR 1.32
and 1.39, p = 0.008 and 0.049, respectively). Relapse was not
suppressed (HR 0.98 and 1.16, p = 0.913 and 0.528), while TRM
was significantly higher (HR 1.78 and 1.74, p < 0.001 and 0.018,
respectively) (Table 2).

Frequencies of other complicationswere also calculated (Table 3).
Incidence of GVHD (acute grades 2–4 and 3–4, and chronic) and
infections (viral, bacterial, fungal) were comparable among the
regimens. VOD/SOS could not be evaluated due to the small
number of events. Interactions regarding the country were not
observed.

3.3 Post-HSCT Outcomes in ALL According to
each Conditioning Regimen

In the ALL cohort (N = 3901, 61.2%), OS at 1 year was 79.5%
(95% CI 78.0%–80.9%) in the CY/TBI group while 79.1% (72.5%–
85.0%) in the CY/TBI+AraC group and 79.6% (76.1%–82.9%) in

TABLE 2 Multivariate analyses for various outcome measures in
acute myelogenous leukemia (AML).

Outcomes N HR (95% CI) p

Overall survival
CY/TBI 2187 Reference
CY/TBI+AraC 223 1.46 (1.17–1.82) <0.001*

CY/TBI+VP16 68 1.39 (0.99–1.95) 0.059
Disease-free survival
CY/TBI 2174 Reference
CY/TBI+AraC 223 1.32 (1.07–1.63) 0.008*

CY/TBI+VP16 68 1.39 (1.00–1.92) 0.049*

Relapse
CY/TBI 2174 Reference
CY/TBI+AraC 223 0.98 (0.73–1.33) 0.913
CY/TBI+VP16 68 1.16 (0.74–1.81) 0.528

TRM
CY/TBI 2174 Reference
CY/TBI+AraC 223 1.78 (1.32–2.39) <0.001*

CY/TBI+VP16 68 1.74 (1.10–2.75) 0.018*

Abbreviations: CI, confidence interval; HR, hazard ratio; TRM, treatment-
related mortality.
* indicates statistically significant.

the CY/TBI+VP16 group (p = 0.991) (Figure 1B). The cumulative
incidence of relapse at 1 year in each group was 17.4% (16.1%–
18.7%) in CY/TBI and 15.9% (10.7%–21.9%) in CY/TBI+AraC,
which is significantly higher than that in CY/TBI+VP16 (13.0%
[10.3%–16.0%] (p = 0.024) (Figure 2B). TRM at 1 year was 12.7%
(11.6%–13.9%) in CY/TBI, 14.7% (9.7%–20.5%) in CY/TBI+AraC,
and 13.8% (11.0%–16.8%) in CY/TBI+VP16, respectively (p= 0.665)
(Figure 3B).

Multivariate analyses demonstrated that OS was comparable
among the regimens (HR 1.02, p = 0.880 in CY/TBI+AraC and
HR 1.02, p = 0.841 in CY/TBI+VP16, compared to CY/TBI),
where country, recipient age, cytogenetic score, disease status,
donor/recipient sex match, HCT-CI, and year of HSCT were
included in the model. DFS was also comparable. Benefits
of intensified regimens were observed in relapse, which was
significantly reduced inCY/TBI+VP16 (HR0.74, p= 0.005), while
TRMwas higher with borderline significance (HR 1.21, p= 0.077)
(Table 4).

Frequencies of post-HSCT complications are shown in Table 5.
Viral infection was significantly less frequent in the cohort
with CY/TBI+VP16. No interactions were observed regarding the
country.

4 Discussion

Our analyses using international datasets from the US and Japan
provided three new insights regarding intensified myeloablative
conditioning regimens for patients undergoing BMT or PBSCT.
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FIGURE 1 Overall survival: OS in (A) acutemyelogenous leukemia (AML) and (B) acute lymphoblastic leukemia (ALL) conditionedwith CY/TBI,
CY/TBI+AraC, and CY/TBI+VP16 are shown separately.

(1) In AML, adding AraC to CY/TBI increased TRM without
reducing the relapse rate; thus, it had an adverse effect on OS. (2)
In ALL, adding VP16 or AraC to CY/TBI did not affect survival,
but the addition of VP16 reduced the risk of relapse. (3) These
trends were comparable between the US and Japanese cohorts.

The negative impacts of intensified regimens are compatible
with those previously shown in the Japanese registry database
analysis [3]. Detailed analyses for various post-HSCT complica-
tions indicated no significant correlation between the specific
complications and the intensity of conditioning regimens. How-
ever, mucosal damage, including stomatitis, enterocolitis, and

cystitis, is expected to increase in accordance with the intensity
of conditioning regimens [9]. This damage, if not resolved early,
can induce infections, which may ultimately lead to significantly
higher TRM for both AML and ALL [10]. In addition, high-dose
AraC used in conditioning regimens can cause pulmonary com-
plications, such as interstitial pneumonitis [11]. Post-transplant
pneumonitis can lead to respiratory failure or can increase
the incidence of pulmonary infections, which may result in
significantly higher TRM [12].

On the other hand, additional anti-leukemic effects of intensified
regimens were only partially demonstrated in this study, which
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FIGURE 2 Relapse: The cumulative incidence of relapse in (A) acute myelogenous leukemia (AML) and (B) acute lymphoblastic leukemia (ALL)
conditioned with CY/TBI, CY/TBI+AraC, and CY/TBI+VP16 are shown separately.

differs from our original hypothesis that intensified regimens
can reduce relapse in all situations. High-dose AraC or VP16
can induce greater marrow ablation; thereby eliminating sur-
viving leukemia cells [13, 14]. However, post-HSCT relapse risk
reduction is more likely dependent on graft-versus-leukemia
(GVL) effects after transplant, rather than intensification of MAC
regimens that perhaps can be overcome by leukemia cells in
the absence of GVL [14, 15]. In spite of the limited effects
of conditioning regimens on post-HSCT relapse, an additional
benefit of VP16 in ALL was clearly shown, and this is compatible
with recent reports from Japan [16, 17] and reported for the first
time using the large cohort data. Augmentation of the dose of

TBI to 1320 cGy as opposed to 1200 cGy might overcome the
risk of relapse [18], but in our study, almost all TBI dosages were
1200 cGy, so no further analyses were possible. Non-TBI MAC
regimens were not included in this study.

The final, but most important finding in this study is that the
impacts of intensified conditioning regimens were comparable
between the US and Japanese cohorts because there were no
statistically significant interactions. It is often asserted that
the Japanese people are more “genetically homogeneous” than
populations of the US and European countries and that they may
experience a lower incidence of GVHDand related adverse events

6 of 10 eJHaem, 2025
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FIGURE 3 TRM: Cumulative incidence of treatment-related mortality (TRM) in (A) acute myelogenous leukemia (AML) and (B) acute
lymphoblastic leukemia (ALL) conditioned with CY/TBI, CY/TBI+AraC, and CY/TBI+VP16 are shown separately.

[2, 14]. Our study, merging both the Japanese and American
registry databases, suggests that the results of the HSCT registry
are interchangeable between the two countries. A previous study,
performed in a similar manner [19], also indicated a similarity
between the two cohorts.

There are some limitations in this study due to the retrospective
nature of data from both registries. Bias in regard to the selection
of conditioning regimens for acute leukemia patients and at
different HSCT centers is an important limitation. The choice
of conditioning regimen depends on the attending physicians in
each institution, indicating that the clinical experiences of each

transplant center can be a source of bias. In our analysis, we
adjusted for country, however, the use of intensified MAC was
significantly higher in Japan compared to the US, which might
indicate that residual confounding might be present despite the
regression analysis. It is possible that patients who received AraC
and VP16 were given an intensified regimen due to the perceived
high risk of relapse or the perceived low TRM risk or due to
institutional protocol. Given the nonrandomized nature of the
study, a degree of selection bias cannot be ruled out. Furthermore,
the dose of radiation and each chemotherapeutic drug were not
analyzed in this study, but it can have an impact on relapse risk
and TRM (usually inverse-related) [20]. Only TBI-based regimens
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TABLE 3 Incidence of post-hematopoietic stem cell transplantation (post-HSCT) complications in acute myelogenous leukemia (AML).

CY/TBI CY/TBI+AraC CY/TBI+VP16 p

Incidence (95% CI), %
aGVHD (grades 2–4) 35.9 (33.6–38.3) 40.8 (34.1–47.7) 40.4 (26.8–54.9) 0.353
(grades 3–4) 10.7 (9.3–12.3) 10 (6.2–14.5) 14.9 (6.2–26.5) 0.686
cGVHD
100-day 5.4 (4.5–6.4) 6.8 (3.9–10.5) 3.1 (0.3–8.7) 0.398
6 months 25.0 (23.2–26.8) 22.5 (17.2–28.3) 21.5 (12.4–32.4) 0.595

Viral infection 10.6 (9.1–12.1) 7.0 (3.9–10.9) 12.8 (4.8–23.8) 0.157
Bacterial infection 51.8 (49.3–54.2) 49.7 (42.8–56.7) 50 (35.2–64.8) 0.851
Fungal infection 3.9 (3–4.9) 5.6 (2.8–9.3) 8.5 (2.3–18.2) 0.339
SOS/VOD 1.9 (1.3–2.6) 2.0 (0.5–4.4) 0.0 (0.0–0.0) <0.001*

Abbreviations. GVHD, graft-versus-host disease; SOS/VOD, sinusoidal obstruction syndrome/veno-occlusive disease. The incidence of various infections is
reported on Day 100.

TABLE 4 Multivariate analyses for various outcome measures in
acute lymphoblastic leukemia (ALL).

Outcomes N HR (95%CI) p

Overall survival
CY/TBI 3185 Reference
CY/TBI+AraC 166 1.02 (0.79–1.32) 0.880
CY/TBI+VP16 550 1.02 (0.86–1.20) 0.841

Disease-free survival
CY/TBI 3185 Reference
CY/TBI+AraC 166 1.00 (0.79–1.27) 0.967
CY/TBI+VP16 548 0.94 (0.81–1.10) 0.458

Relapse
CY/TBI 3185 Reference
CY/TBI+AraC 166 0.85 (0.61–1.18) 0.337
CY/TBI+VP16 548 0.74 (0.60–0.92) 0.005*

TRM
CY/TBI 3185 Reference
CY/TBI+AraC 166 1.20 (0.85–1.69) 0.297
CY/TBI+VP16 548 1.21 (0.98–1.49) 0.077

were included, and busulfan-based regimens were excluded due
to the small number of patients with intensified MAC regimens.
Therefore, the conditioning regimens in this study do not mirror
the currentmost frequently used regimens in theUS. Increasingly
prevalent GVHD prophylaxis regimens, such as post-transplant
cyclophosphamide, and to a lesser degree, the use of abatacept,
were not included in this study. Pediatric patients were not
included. Moreover, minimal residual disease (MRD) data were
not available; MRD data can influence the choice of conditioning
regimen in the real-world setting.

In conclusion, this international collaborative study indicated
that intensified myeloablative regimens are inferior in BM or
PBSC HSCT, except for CY/TBI+VP16 in ALL. There may be

a limit to the intensification of conditioning in AML beyond
CY/TBI, but some gains can be made in ALL with such. This
goes along with the long-held belief that AML relies more
on GVL relative to ALL, and we should view these diseases
differently from an HSCT standpoint in how to reduce disease
relapse. The emergence of novel molecularly targeted drugs,
antibody-based drugs, or cytotherapies, but not intensification of
cytotoxic chemotherapies with off-target toxicities, can be game
changers in induction, consolidation, and conditioning regimens.
Therefore, our results should be revisited in the future.
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TABLE 5 Incidence of post-hematopoietic stem cell transplantation (post-HSCT) complications in acute lymphoblastic leukemia (ALL).

CY/TBI CY/TBI+AraC CY/TBI+VP16 p
Incidence (95% CI), %

aGVHD (grades 2–4) 38.3 (35.9–40.6) 47.9 (38–58) 40.9 (36.2–45.6) 0.139
(grades 3–4) 11 (9.5–12.5) 7.4 (3–13.6) 12.1 (9.2–15.4) 0.334
cGVHD
100-day 5.8 (5.0–6.7) 5.5 (2.5–9.5) 6.5 (4.6–8.8) 0.813
6 months 24.1 (22.6–25.6) 24.4 (18.1–31.3) 25.5 (21.9–29.3) 0.767

Viral infection 14.7 (13.1–16.5) 12.5 (6.6–19.8) 8.5 (6.1–11.4) <0.001*
Bacterial infection 52.4 (50–54.9) 53.9 (43.8–63.8) 53.9 (49.1–58.7) 0.852
Fungal infection 4.6 (3.6–5.6) 2.1 (0.2–5.9) 3.8 (2.2–5.9) 0.254
SOS/VOD 1.9 (1.3–2.7) 5.1 (1.6–10.4) 1.4 (0.5–2.8) 0.252
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