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ARTICLE INFO ABSTRACT

Keywords: This study is dedicated to the multi-material topology optimization formulation (MMTO) for
Topology optimization finite strain nonlocal elastoplasticity. The subloading surface model is newly incorporated
N{“l“'mater‘al into the primal problem to achieve the gradual change of the deformation process from pure
Plasticity

elastic to material-specific plastic hardening. The stress—strain relationship of the model is a
smooth continuous function, which is beneficial for elastoplastic topology optimization since the
resulting continuous tangent is used in the adjoint problem to determine the sensitivity. Also,
the nonlocal plastic modeling is introduced to resolve mesh-dependency issues in the evolution
of plastic deformation. In addition, in order to maintain computational stability and to avoid
unrealistic plastic deformation occurring in voids (ersatz material), the concept of interpolating
energy densities is introduced, by which linearly elastic material is chosen to represent voids.
The continuous adjoint method is employed to derive the governing equations and sensitivity of
the adjoint problem, and the resulting equations are valid at any position, boundary, or time in
the continuum without relying on any discretization. An arbitrary number of design variables
can be considered for multiple materials in the optimization problem, and by referring to the
derived sensitivity, the multiple reaction—diffusion equations are solved to update the material
distribution and configuration. The first numerical example demonstrates the “oscillation of
deformation states” caused by the conventional plastic model and shows how the subloading
surface model effectively resolves this issue, achieving stable optimization processes. Also,
the second example presents the unconventional deformation magnitude-dependent stiffness
maximization problems with multiple materials, in which the optimal designs are realized by
referring to the same elastic but different plastic material properties.

Finite strain
Subloading surface model

1. Introduction

Topology optimization [1] is a powerful computational method for designing structures and materials with desired performance.
The core of topology optimization is an iterative process of determining the distribution and configuration of material within a
given design domain to achieve the best possible performance according to the set design objectives. This methodology can be
widely applied to various fields, including aerospace, automotive, civil engineering, and materials science. Topology optimization
was originally studied to determine the optimal distribution and configuration of a single material, and this is called ‘‘single-material
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topology optimization (SMTO)”. However, the fact that many industries usually combine multiple materials to create structures has
led to research in “multi-material topology optimization (MMTO)”. The first idea about MMTO was from Bendsge & Sigmund [2].
To date, the level-set-based and density-based methods are two widely known approaches.

Regarding the level-set-based method, the following studies are representative of MMTOs to address mechanical problems: Wang
& Wang [3] proposed a level-set-based method for shape and topology optimization, in which the model eliminates the need for
the material interpolation or phase mixing scheme and only requires m level-set functions to represent a structure of 2" different
materials. Wang et al. [4] presented a level-set-based method for topology and shape optimizations. In this method, there is only
one material at each position, which does not allow two materials to overlap. Also, the sensitivity analysis is facilitated thanks to
the explicit mathematical expression of the method. Liu et al. [5] developed an efficient MMTO strategy for seeking the optimal
layout of structures considering the traction—separation relationship of the interface, for which the interface behavior is simulated
by combining the extended finite element method and the cohesive zone model. Vogiatzis et al. [6] developed a level-set-based
method for SMTO and MMTO to address the optimal design for materials with negative Poisson’s ratio, in which MMTO is simplified
by making each individual material evolve with a single level-set function and reconciling the level-set field with the Merriman—
Bence-Osher operator. Ghasemi et al. [7] developed an MMTO framework for designing optimal multi-material-based flexoelectric
composites, for which the multiphase vector level-set model is employed for satisfying multiple constraints and avoiding the overlap
or vacuum among different phases. Gangl [8] proposed a level-set-based topology optimization algorithm for MMTO, in which
the evolution of an optimization process for designing a structure constructed by multiple linear elastic materials is described by
topological derivatives.

On the other hand, the following studies are relatively well-known among scholars as representatives of density-based MMTO:
Zhou & Wang [9] proposed a phase-field method for MMTO, in which a Cahn-Hilliard type penalization function is inserted into
the objective function to regularize the optimization problem and penalize material distribution. Hvejsel & Lund [10] presented
two multi-material interpolation schemes as the direct generalizations of the Solid Isotropic Material with Penalization (SIMP)
and Rational Approximation of Material Properties (RAMP) interpolation schemes, which rely on a large number of sparse linear
constraints to enforce the selection of at most one material. Zuo & Saitou [11] proposed an ordered SIMP interpolation function
for MMTO, by which one design variable can handle the interpolation of multiple material parameters so that the computational
cost becomes independent of the number of materials under consideration. Lieu & Lee [12] presented a multi-resolution scheme
for MMTO in the framework of isogeometric analysis, in which the high-resolution optimized design is realized by relying on the
capability of the non-uniform rational B-spline basis functions. Gao et al. [13] proposed a multi-material isogeometric topology
optimization method to address MMTO, in which the non-uniform rational B-splines basis functions are used to interpolate material
properties, and the low complexity of numerical computations are achieved in MMTO. Liu et al. [14] presented a designable
connective region method for creating connectable microstructures by considering repetitive unit cells and prescribed porosity,
by which the connectivity between any two types of microstructures is naturally ensured. Xu et al. [15] employed the ordered
SIMP method to address the stress-constrained MMTO, in which another ordered SIMP-like interpolation function is proposed to
realize the relaxed and scaled stress interpolation. Han & Wei [16] developed an alternating active phase and objective algorithm
for MMTO, by which the objective function is switched according to the active phases, and the proposed formulation resolves the
convergence oscillation issue.

Many of the related studies to date, including those cited above, have mainly contributed to developing new and better
methodologies/algorithms for MMTO. In other words, the motivation was to propose new and better MMTO frameworks, but it was
not to tackle solving optimization problems while considering the advanced or complex primal problem. Thus, to the best of our
knowledge, most of them simply assume linear elasticity for the material response, and the research primarily focused on material
nonlinearity has not been the mainstream of MMTO development. However, considering the emergence of additive manufacturing
and giga-casting for metallic materials, which have high affinities to MMTO, material nonlinearities, such as plastic material behavior
with large deformation, can no longer be ignored. That is, there should be sufficient reason to study MMTO for elastoplastic
materials. Unfortunately, however, even though elastoplastic topology optimization is one of the most intensively studied topics
among researchers, to the best of our knowledge, it has yet to be enhanced in the direction of MMTO. As far as SMTO is concerned,
numerous attempts have been made within the framework of small strain elastoplasticity, e.g., see Refs. [17-28]. However, as
suggested above, since elastoplastic materials usually exhibit large deformation once plastic deformation occurs, the authors argue
that kinematics should involve geometrical nonlinearity. From this perspective, Wallin et al. [29], Ivarsson et al. [30,31], Zhang &
Khandelwal [32], Han et al. [33], and Kim et al. [34] developed finite strain SMTO for elastoplastic materials independently. It is
worth mentioning that Han et al. [33] concisely review studies on elastoplastic topology optimization published up to that time.
More recently, Han et al. [35] proposed a finite strain topology optimization formulation for nonlocal elastoplasticity to resolve
mesh-dependency issues in the evolution of plastic deformation.

Meanwhile, it should be noted that all of the previous studies describe the elastoplastic material response by the “conventional
plastic model”. That is, the deformation process is completely divided into two states, i.e., the elastic and plastic deformation states,
at the plastic yielding point (initial yield stress). Assuming elastoplastic materials with linear plastic hardening, the corresponding
material Jacobians (elastic material Jacobian and elastoplastic material Jacobian) have different order values, and the stress—strain
relationship around the plastic yield point is nonsmooth, leading to a discontinuous material Jacobian; see the black-colored lines
in Fig. 1. This mathematical structure is extremely unpleasant from the viewpoint of the adjoint method, which uses local material
Jacobians (at material point level) of the primal problem to determine the adjoint variables and sensitivities for updating material
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Fig. 1. Elastoplastic responses of conventional plastic model (Con.) and subloading surface model (Sub.).

distributions. More precisely, the material Jacobian in the elastic deformation state generally has a much larger value than that in
the plastic deformation state, and the value may change dramatically around the plastic yield point. Thereby, the deformation state
may be repeatedly changed in the optimization process at locations having strain rate around the plastic yield point, making the
optimization process difficult to converge. This phenomenon was reported by Han et al. [35] and is again studied in Example 1 of this
study. Although this problem can be alleviated by relaxing the convergence threshold or introducing another stabilization technique,
one can also reconsider the elastoplastic constitutive law as a countermeasure. To this end, the subloading surface model [36-38]
can be a promising candidate to replace the conventional plastic model as its material response is smooth as illustrated by the
red-colored line in Fig. 1(a). This is because the subloading surface model has a transition range from the pure elastic deformation
to the material-specific plastic hardening behavior, leading to the continuous transition from the elastic Jacobian to the elastoplastic
Jacobian as shown by the red-colored line in Fig. 1(b). Hence, by enjoying the material response of the subloading surface model,
the aforementioned oscillatory behavior is expected to be mitigated, which is beneficial to realize a stable or robust topology
optimization process, as demonstrated in Example 1 of this study. It is also notable to note that the subloading surface model
and the conventional plastic model have equivalent material response expressions, except for the difference in deformation state
transitions.

With the above background, this study presents an MMTO framework for finite strain nonlocal elastoplasticity. As the primal
problem to describe the material response, the subloading surface model is incorporated with the standard hyperelastic constitutive
law. Also, following Han et al. [35], the nonlocal plastic modeling, say micromorphic regularization [39], is introduced to resolve
mesh-dependency issues in the evolution of plastic deformation. For the optimization problem, an arbitrary number of design
variables is considered to address MMTO. Interpolation of material parameters between actual materials follows the conventional
SIMP-based interpolation function, whereas the energy function interpolation [40,41] is adopted for interpolation between ersatz
(voids) and actual materials. Assuming that the ersatz material (voids) is purely elastic, the presence of voids does not reduce the
computational stability of the primal problem because it does not exhibit unrealistic plastic deformation. Meanwhile, the continuous
adjoint method is employed to derive the governing equations of the adjoint problem, from which the same number of sensitivities
as the design variables are obtained. In the end, the reaction-diffusion equation-based method [33,42,43] is enhanced to update
multiple design variables simultaneously.

This paper is organized as follows: In Section 2, MMTO for finite strain nonlocal elastoplasticity is formulated. The first half of
Section 3 presents the spatial and temporal discretizations applied to the governing equations of the primal and adjoint problems,
and the second half describes the design variable update. In Section 4, two numerical examples are presented: the first example
aims to demonstrate the capability of the subloading surface model in topology optimization, and the second one is dedicated to the
demonstration of MMTO realized by referring to different degrees of plastic hardening behavior. Finally, in Section 5, the summary
of this study is presented, and our future plans are briefly revealed.

2. Formulation

This section presents a formulation of multi-material topology optimization (MMTO) for finite strain nonlocal elastoplasticity. To
summarize the underlying kinematics, a nomenclature is prepared in Table 1, which covers most variables, parameters, and symbols
used in this study. In what follows, the governing equations of the primal problem are derived first and subsequently modified for
stable MMTO by employing the idea of the interpolation scheme for fictitious domain [40,41]. Then, the governing equations of the
adjoint problem and the resulting sensitivity for MMTO are derived based on the continuous adjoint method. It is worth mentioning
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Table 1
Nomenclature.
Name Letter Description
Real coordinate space R" n=273
Actual time for primal and adjoint problems T te7 =[0,T]
Pseudo time for optimization T ieT =0T
Initial configuration of a continuum body By By CR"
Initial boundary 0B, 0B, c R™!
Initial Neumann and Dirichlet boundaries 0B) and 9Bp 0BY UOBY = 0By, 0B NdB) =&
Points at the initial configuration X X e B,
Current configuration of a continuum body B, B, cR"
Current boundary B, B, c R™!
Current Neumann and Dirichlet boundaries oBY and oBP oBN UoBP =B, BN NdBP =@
Points at the current configuration x x € B,
Displacement vector u u=x-X
Deformation gradient tensor F F =0x/0X
Elastic and plastic deformation gradient tensors F¢ and FP det |[F®| = det[F] = J¢, det [F?] =1
Elastic left Cauchy-Green tensor b b = F°. F°T
Rate of deformation tensor d d =sym[F - F™"]
Rate of plastic deformation tensor d° d® = F® - sym[F" . FP~!]. Fe~!
Local and nonlocal plastic hardening variables « and a a is known as “accumulated plastic strain”.
Elastic strain energy density pe we (b°)
Plastic strain energy density pe ¥P (a)
Micromorphic regularization energy density ym ¥ (a,a, Va)
Kirchhoff stress tensor (or plastic force) T T =207 b°
First Piola-Kirchhoff stress tensor P 0P, P=1-F"
Plastic hardening force (or resistant force) P P =0,YP +9,¥™
Body force vector B w.r.t. initial configuration
Traction force vector T T=P-N
Prescribed traction force vector T w.r.t. initial configuration
Prescribed displacement vector 7 w.r.t. initial configuration
Outward unit normal vector N w.r.t. initial configuration
Yield functions @ and @ -
Plastic multiplier yP 7P >0
Flow tensor n n=nT
Normal-yield ratio R 0<R<I1
Normal-yield threshold and saturation parameter R® and RP -
Bulk and shear moduli x and u k=E/{3(1-2v)}
Young’s modulus and Poisson’s ratio E and v u=E/{2(1+v)}
Plastic hardening parameters Yo, by v, and s, -
Penalty and diffusion parameters for regularization py, and g, -
Initial design domain D, D, cR"
Initial design boundary 0D, 0D, c R™!
Initial Neumann design boundary oDy oD) U oDy = oD,
Initial Dirichlet design boundary oD? oD} NoDY =@
Design variable w; i=1,....,m
Objective function and objective density functions Fand fp &fop, -
Adjoint displacement vector w -
Adjoint plastic multiplier n -
Adjoint flow tensor r -
Adjoint nonlocal hardening variable p -
Adjoint deformation gradient tensor H H =ow/oX
Sensitivity SDyis SoDY i» and S i i=1,...,m

that although the elastoplastic formulation is mostly based on the conventional elastoplastic theory [44,45], the subloading surface
theory [36,37] (or the normal-yield ratio) is newly employed to stably treat elastoplastic material response during the optimization
process. Also, multiple design variables are defined to realize MMTO, each of which is updated by referring to the corresponding
sensitivity by the reaction—diffusion equation.

2.1. Primal problem

In order to describe the nonlocal elastoplastic response in the primal problem, the subloading surface theory is employed in this
study. It is worth mentioning that this theory has a long history and has been enhanced to fit various application targets, such as
Hashiguchi [36] and Toluei & Kharazi [46,47] for isotropic/anisotropic plastic materials, Darabi et al. [48] for viscoplastic materials,
Zhang et al. [49] for thermo-elastoplastic materials, Sun & Zhou [50] for multisurface elastoplastic materials, Asaoka et al. [51],
Nakai & Hinokio [52], Hashiguchi et al. [53], and Yamakawa et al. [54] for soils, Hashiguchi et al. [55] for glassy materials,
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Lai et al. [56] for damage evolutions, Hashiguchi & Ozaki [57] for friction problems, and so on. Since hundreds studies have
been reported, readers can refer to Hashiguchi [36] and Hashiguchi & Yamakawa [37] for theoretical development and Hashiguchi
et al. [38,58] for a comprehensive review.

First, the following energy density function corresponding to the elastoplastic material behavior represented by the subloading
surface model is defined:

Pt = e (b°) + PP () + P™ (2,2, V), @

where ¥¢, ¥P, and Y™ denote the elastic strain energy density, plastic strain energy (or plastic hardening energy) density, and
micromorphic regularization energy density, respectively. Although any material constitutive laws are possible, the following
Neo-Hookean material model and Voce hardening law are chosen to represent the elastic and plastic responses in this study:

we (5) = £ (J - Je) (2 ] - 3) @
and
PP (@) = /0 (h@ + (yo — ¥) (1 —exp (—s,@))) da. 3)

Also, referring to Forest [39] and Han et al. [59], the second-order regularization functional for plasticity is adopted:
oo 1 _ 1 _ _
Y™ (a,a, Va) = 2P (a—a) + Equa -Va. 4

It is noted that although the original subloading surface model is the so-called “local approach”, in which the plastic evolution
is solved at integration points, the micromorphic regularization [39] has been adopted to extend the model to be a “nonlocal
approach”. This extension can resolve the mesh-dependency issue of plasticity and has been demonstrated by Han et al. [35] for
the single-material topology optimization (SMTO) of standard elastoplastic materials. Roughly speaking, the procedure to introduce
micromorphic regularization into the subloading surface model is the same as the procedure for a standard elastoplastic model.
Thus, readers can also refer to Han et al. [35] for details.

Next, to represent the elastoplastic response in terms of the subloading surface theory, the following yield functions and evolution
laws of plasticity are postulated:

2 2
B0y = Vranll = Ry 2 0 47) . @8, = el = 82 (30477, ®

dP :yp T dev L a= \/E}'p. (6)
17 dev | 3

Notably, the plastic incompressibility (or the isochoric plastic flow) is ensured, i.e., det [FP] = 1. Also, the subloading surface model
has four deformation states, i.e., elastic loading, plastic loading, elastic unloading, and plastic reloading, which can be determined
algorithmically. Notably, because of this algorithmic treatment, the Karush-Kuhn-Tucker conditions (loading/unloading conditions)
are not needed here. The method of determining deformation states is explained in detail in Section 3.1. Also, the subloading surface
theory follows the associated flow rule, while the evolution law of plastic hardening variable in Eq. (6), is postulated independent
of the yield criterion. In this sense, the isotropic hardening law is considered non-associative.

In the end, after some manipulation [33,35], four governing equations of the primal problem are obtained as follows:

V-P+B=0inB,, P-N=TonoB), u=iaondB)

and

2 .
17 gey |l — R\/;(yo +rl’) =01in B,
Tdey . vi. (7)
n-— =0in B,
17 dev

py(@—a)—gq,V’a=0in By, ¢q,Va-N =0 on dB,

Notably, under the elastic loading/unloading states, Eq. (7),3 are not solved.
2.2. Modification by interpolation scheme for fictitious domain

To describe the MMTO for m+ 1 materials, m scalar-valued design variables w; (X) € [0, 1] with i = 1,2,...,m—1, m are introduced.
Then, one of the straightforward strategies for determining material properties in MMTOs is using the following SIMP-based
interpolation function:

12 mmtl =01 it (1= @) o
= o (o 1°1.2,..m=2m-1 T (1 —wz 1 on) ¥ (1= @) o

=ahoh (0] s010 meamrt (1= @) ) o) + @) (1= ) o+ (1= ), ) o ®

= (wa) " +z<k a)i) (1 —a)fil)-j + (1 —a)fn) Cmils
j= J

i=2 \ k=j
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where ¢, .1 denotes the resulting material constant interpolated by m + 1 base materials, and ¢, ;, and -, are the 1-st, jth,
and m+1-th base material constants, respectively. Readers can also refer to Appendix A.1 for some example cases of Eq. (9). However,
when the primal problem is formulated within the finite strain framework, and when the voids (fictitious domain) are assumed to
be one of the base materials, the appearance of voids (fictitious domains) significantly reduces the computational stability of the
global Newton-Raphson computation. This is mainly because the Young’s modulus of the fictitious domains is set much smaller
than those of the domains filled with actual materials. Also, the fictitious domain may exhibit unrealistic plastic deformation that
is unpleasant in terms of both physical and numerical aspects. Accordingly, the mesh distortion or displacement oscillation is easily
caused by the bad condition number of the global tangent matrix.

In this study, the primal problem is modified by introducing the interpolation scheme for fictitious domain [40,41] to maintain
computational stability. Specifically, the 1-st~m-th materials follow the SIMP-based interpolation function in Eq. (9), i.e.,

m—1 m—1 /m—1
wn= (ot ) o T (Tt ) (=)o 1= 2w ©
Jj=1 j=2 \k=j

Then, assuming that the void corresponds to the m + 1-th material, the energy density functional of the actual material ¥ and
a fictitious energy density functional representing the void ¥fi® are interpolated by the “last” design variable w,, to determine the
resulting energy density functional ¥ as follows:

P = P 4 (1 - )P = 0P (P°+PP +9™) + (1 - o )P, (103

See Egs. (2)~(4)

Notably, all material parameters of the 1-st~m-th materials, i.e., E, v, yg, h, Vo, Sys Pps dp> RS, and RP, follow the interpolation rule
in Eq. (9). Also, ¥fi¢ is supposed to take the linearly elastic component only as follows:

F+FT
T
in which «,, and y,, are the bulk and shear moduli of the fictitious domain, respectively, and ¢ denotes the small strain tensor. It is
worth mentioning that because the linearly elastic material is assumed for fictitious domains, the problem of reduced computational
stability pointed out above can be alleviated.
Reflecting the modified energy density function in Eq. (10) to the primal problem, the governing equations are rewritten as

g[/fic (e) = %K’mtr [8]2 + MpEdey : Edev with € = 1, (11)

V(0 P+(1-wh)o") +a? B=0in B,
P+(1-a?)o')-N=TonoB), u=aonadB)

2 .
wf,,<||fdev“_R\/;(J’0+rp)> =0in B, LVt (12)

T .
P — > =0in B,
”Tdcvll

@ (py(@—a)—q,V?@) =0in By, @ q,Va-N =0on B,

where 6f = dp¥f® = k,,tr [€]1 + 2u,,€4., denotes the fictitious stress tensor. Here, recalling the fact that the body force cannot be
defined in the fictitious domain, the following relationship has been adopted in Eq. (12):

Bio ume1 =@ By n+(1-ob) B, =obB. 13)

——
=:B =0

Also, the traction force T on the Dirichlet boundary is rewritten as
Tz(wfnP+(l—wfn)0'r)-N. (14)

It is worth noting that in the fictitious domain (w,, = 0), the above setup results in the following governing equations of the linear
elasticity problem:

V-o'=0inB;,, o'-N=TonoB)., u=aonoBl vt (15)
2.3. Optimization problem

Taking the design variables {,,®,, ..., ®,_,, ®, | into account, the following objective function F is defined for arbitrary design
objectives to realize:
F (@12 0seee 1. 0,)

(16)
:/ / I3, (u,F,yp,n,o‘c,V&,a)l,...,a)m)dV+/ fon, (u,T,&,a),,...,a)m)dA dt,
t |/, 2B,

where f and fyz denote the objective density functions inside the body and on the surface, respectively. To avoid losing the
generality of the optimization problem as much as possible, /5 and f,p, are written in abstract forms and assumed to accommodate
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A:w; =1, wy =1, w3 =1 = Material 1 |l
B:wi=1, wr=1, w3=0 = Material 4 ]
Ciw =0, wr =1, w3 =1 = Material 2 [l
D:w; =1, wy; =0, w3 =1 = Material 3

E:w =1, w, =0, w3 =0 = Material 4 []
Fiw =0, w, =1, w3 =0 = Material 4 [_]
Gw =0, w, =0, w3 =1 = Material 3

H:w; =0, w; =0, w3 =0 = Material 4[]

Fig. 2. Relationship between three design variables and four material placements. (m = 3).

multiple objectives. Also, it is worth mentioning that f,5, does not rely on Va since the Dirichlet boundary is not defined for the
micromorphic plastic field. Then, the optimization problem is defined as follows:

M . F (@0 o0,
o S e, T (OOt ) a7
subJecttoEq (12)and ¥, <0, ¥, <0,..., V,,_; <0,and V,, <0,

in which the plastic deformation state (plastic loading/reloading states) is assumed. Here, V; <0, ¥, <0,..., V,,_; <0, and V,, <0
are the volume constraints, and the left-hand side of each inequality is defined as

Vi=Vi~Vipa (=12...m—1m) (18)

where V; and V; ,,, denote the actual volume and allowable volume of the ith material, respectively, and D, is the design domain.
It is worth mentioning that the actual volume of ith material is calculated by

=/ <ﬁa}k— ﬂ a)k>dV (19)
Do \ k=i k=i—1

=j—

when the SIMP-based interpolation function in Eq. (9) is used for interpolating material parameters; see Fig. 2 for better
understanding. An additional explanation is prepared in Appendix A.2. Also, the algorithmic treatment for volume constraints will
be explained in Section 3.3.

2.4. Adjoint problem

Recalling the method of Lagrange multipliers (or adjoint method), the optimization problem in Eq. (17) can be rewritten by an
equivalent form (Lagrangian) as follows:

i‘:/[/ fBOdV+/ fon,dA
t|J By B,

+/ H: (ol P+(1-0)0")dV- w~coandV—/ w~TdA—/ w-TdA
Bo By aBY oD
(20)
—/ nP cofn [T gev |l —R\/z(yo+rp) dV—/ T <wfn <n— Tdev ))dV
By 3 By ”Tdcv”
+/ (0 (ppB (@ —a)+q, V- V&))dv] dt-9-v,
By
in which four adjoint variables, w, #P, =, and § have been introduced, and H := Vw denotes the adjoint deformation gradient

tensor. Also, V = [V},V,,...,V,_;,V,] is an array of Eq. (19), and 6 = [0,.6,,...,0,,_.9,,] is the array of the corresponding penalty

parameters, for which the following manipulation is possible:

m

V=300 3= Fasiun =S [ (TTox- T o0 )av- Fovin @
=1 I=1

k=i-1
Subsequently, the first variation of the Lagranglan in Eq. (20) yields

(Z@J’) (8,F +6,0F +8,F +6,F). (22)
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Here, the four components in the second bracket are written as, respectively,
5 of of 9fony 0fonp
5,,F=// < Bo . bu+ —20 :5F>dV+/ 0 -5udA+/ O . 5TdA
| /B, \ ou JoF Y Ju aBD oT
P do
H : P — 1 —wf SFAV — STdA
+/B0 <wmaF+( )0F> / w- (23)
7}
—/ npwfnw :5de+/ wopr L sRav | dt,
By oF By OF |7l
. 9
5,pr=/ / Lospave [ H:awr 2L 5prav
| /B, OrP B, oyP
O Tgeyll 2 (dR orP
- Pl | ——— —/Z | — P)+ R— | ) 6yPdv 24
/Bon m< P 3 ayp(y0+r)+ o Y 24

0 Tge =0
+ o) — ———5yPdV — / o’ p. f—6yPdV | dt,
/BU o Traall” s, ol o

. af
5,,?:/[/ %o sndv+ | H:or 2P snav
B, on

By on

(25)
a
_/ npwfnm:éndV—/ x wp<l® O Tdev ) sndv | dt,
B, on By on [[7gel
and
~ af af 0f9nN ofyp D
5&7?:/ / 5o 55+ —2 . Vsa dV+/ L 5&dA+/ 0 sadA
B oa oVa BY oJx oD O
0 0
(26)
- w- —5(1dA+ PP R(—éadv+/ b (ppﬁéﬁc +q,VB- Véa) dV] dt,
oBY Bo
in which the following relationship has been adopted for the sake of strict representation:
fop. dA = / f NdA+/ f>ppdA. 27)
0By o oBY o oBp By

Here, ® in Eq. (25) denotes the dyadic-up product operator, i.e., <1 ® 1)"k1 = 6;.;;- Accordingly, the governing equations of the
~ ~ ~ ~ 1j
adjoint problem are obtained by forcing §,F, 6,0 F, 6,F, and §;F to be zero as follows:

9fp, 0fp, ) oP do’
ou _V'< oF TH: <a’fnﬁ+(l_”ﬁt)ﬁ>

d||t T
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"OF |74yl
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2.5. Sensitivity

Reflecting the above formulation in Section 2.4, the first variation of the Lagrangian 7 in Eq. (22) is simplified as

m
= (Z 5wj’> =6, F+6,F+-+5, F+5,F,
i=1

(29)
where
for i=1,2,....m—1
5 af 9o 0f 50
5w,r=/ / L 5a),-dV+/ Y e, dA+/ " 50,dA
: t |/, 90; apY 00 opP 0w,
+ H: o Qéa} dv - w-wiﬁéa},—dv
Dy 0] Dy 6(0
- ﬂﬁwdA / wp— Néw,dA
oDN 0w; opP
Il Tgey I \/' R 9y orP
_ Pp [ dvE _ P) + R — Sw;dV
/Do”w'"( 90, 3 (Gay 0t R (G0 * 5y @i
+/ p<ﬁppﬁ-(- )+"‘1pwg V—)g dv| dt zi“(a 0 / H Sw;dV, (30)
w —fpa—«a — - Va | ow; - - W ow;
Dy, "\ 0w Jw; ' =1 et Dy @i 5 ‘
for i=m

5wf=/
" '

of 0f3n N 0f,30
/ BO&a),,,dV+/ — 5o dA+/ — 50,,dA
D, 00y, DY Jw 9 0
+

m D(l)) (™ "
ot ot
/ H:ﬂ(P—af)(swmdv—/ w- 20 B, dV
Dy awm Dy da}m
- F) p
 w Ly aan [ w2

oY dwy, o 0wy,

00)[:,, _ ~ m 1 m
+/ S (ppB (@ =)+ g,V Va) 5a)de] dt- Z —041) / — Ha)kécomdv.
Dy m Dy

DO 4y

Here, the manipulation in Appendix A.3 has been performed for the volume constraints. It is noted that the overlapping boundaries

ie, oD = 0B} naD, and 0D = 0B N D, are allowed in Eq. (30) for ensuring generality. Accordingly, the sensitivity for the
multi-material topology optimization yields

i

5Dg.i = 5Dgi — 2 ~6111) Hwk in D,
i=1 i k2l

/[fzs0 ,,<H.ap w. 9B

Jdw a_a),

Ol gey |l \/5 OR 9y, | orP
- [ —= - +”®)+R +—
. g < 9, 3 \ 0w, (o +77) 9w,
with 57, ; = 1

Jw;
opy 9q, _
+—pﬂ(&—a)+—pVﬁ~Vé>]dt for i=1,2,...,m—1

Jw; dw;
af 0 ] B (31)
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SypD ; =
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'
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Additionally, the SIMP-based interpolation function in Eq. (9) can be divided as

m—1 m—1 /m—1
ta. 0= (o1 )3 (T1e2) (-0
j=1 =2 \k=j —— (32)

N——— Term C

Term A Term B

and the partial derivatives of these three terms with respect to all design variables are calculated as, respectively,

-1
a(Term A) _ 9 < ’i—[ p>
—_— = = o) ey, (33)
0w; 0w; i J
—1 m—1
d(Term B) N 7} » p
o =2\ 5 (1 (‘—w ) Z Hwk (‘—,1) °
' =2 \ %01 \k=j =i
()w‘_ (Term B1) ()w‘_ (Term B2)
. 1 (34)
d(Term B1) Lowf [T » , .
oo~ 2w \ JL ek ) (1=al)e for iz
i =2 0@ \ k) ki

- *i4l for i=j—1,

o(Term B2) _ ( ml >
_— [0}
0 k=i+1

d(Term C) _ 0o}

o0w;

and

oy for i=m-1. (35)

o0w;

2.6. Reaction—diffusion equation-based design variable update method

Suppose that the sensitivity in Eq. (31) is proportional to the time evolution of design variables. Then, following Otomori
et al. [42], we employ the following reaction—diffusion equations for updating m design variables:

for i=1,2,....m—1,m

. 22 .
@; = Cp, i5p,; + 13V w; in D,

Vo, N = Copy iSopyy s OD oD} gz (36)

iVo,- N = Copp iSopp.i OO oDp

where 13 is the diffusion coefficient, and Cpo.i> CopN 5 and C,;,p ; are normalization factors.
’ 0 0’

3. Discretization

This section is devoted to the discretization of the primal problem, adjoint problem, and design variable update, which follows
the standard finite element (FE) context. In the end, the overall optimization algorithm is explained. The linear finite element is
employed for spatial discretization, and the backward difference method is applied for temporal discretization.

3.1. Discretization of the primal problem

Conventionally, the displacement vector u and nonlocal plastic hardening variable a are defined as nodal variables, whereas
the plastic multiplier yP and flow tensor n are treated as internal state variables. Following this setting, the weak forms of the
displacement and micromorphic plastic fields in Eq. (12),,4 yield

/ ((@np+(1-ep) o) : ‘”—"—wan.au)dV—/ T 6udA=0 Vou,
By X oBN
_déa ’ 87
_ P L
/B0 (co"pp (@-a)éa+wha, =~ ()X X )dV 0 Véa.

10
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Considering the standard finite element approximation using the shape function N, the finite element discretization of the left-hand
side of Eq. (37) and its linearization lead to the following node-level global residual vectors and tangent matrices:

Rl =-A PP+ (1- o) ot ONT _ wghNT) dv - T! N'dA
u;n e=1 m "~ ian m ia,n 0X m i N b ’
Bo,e a dBU‘e
Nele —
oa I
Rén:—A / "Pph (o‘cf—ah)N1+wh”qh n ON av ;,
A R S n m I 5X, oxX,
Kot h h h h h fh
K:,[J _ X BNI Cohp aPia,n + aPia,n ay}: + 0Pia,n ancd,n + (1 _ a)h") aO'ia,n 6NJdV
wipn = o=l [ 90X, \"™ \ 9F;, ' oyp 9F,  ong OF, m/) 9F, ) ox,
ot h h h h
IC[J — X/ 0N1 a)h” aPia,n a}’s + aPia,n ancd,n NJdV
wen = ool Jp 90X, ™\ 0P oa | ong oa :

Nele h h
da, dyy" \ aNY
1J — 1 hp h n n
IC"'“/’" - LAl N <_wmpp" oyP dF;, | 90X, av,
=1JB. 4 jb b

Nele h
day oyF ONT ONY
Kt = A mph NT (1= ) NI ghrgh av,
w@n ol g, “m P ayP oa O dp X, 0X,

where A is the finite element assembling operator, ng, is the total number of finite elements, and +" denotes the approximation
of «. Here, the subscripts for scalars, vectors, and tensors are written in the following order: those describing variables, those
corresponding to spatial dimensions, and those related to time steps. Also, the time interval is denoted by 4t, = 1, — ¢
the quantity at the time step 7, and its increment are denoted by ., and 4.,, respectively.

On the other hand, to solve Eq. (12), for the plastic multiplier y? and flow tensor n, the integration point-level local residual
vectors and tangent matrices are written as

g _ h 200 ( h ., ph
RyP,n - <||Tdev,n” - \/;Rn (y() + )> ’
h Télev ij.n
g _ 5L
R ==\ " i)
dev,n

(38)

a1, and

39
h h h h

A R o ) (I . ol |
Koown=""735 " "13 Yotrn )+ R == ), K, = ———

PYP, oyP 3\ oyp oyP Yot My

h h

g _ 2 Tdev,ij,n g 5.8 2 Tdev,ij,n

P T T aop > nngn = ikl T 3 .

KA e o |7,

Some components derived in the above discretization are detailed in Appendix B.1.

It is noted that the subloading surface model behaves differently from the conventional plastic model, as summarized in Fig. 3.
As shown in Fig. 3(a), the deformation state of the subloading surface model consists of four parts. Specifically, recalling the yield
criteria in Eq. (5), the four parts are distinguished by the following rules:

o” <0 and ®”" <0, 0<R, <R,
Part A sub..n ela.n

elastic loading R, = \/E M’
2y

& >0 and & >0, RE<R, <1,
ela.,n n

Part B sub..n

. . 2 (R,_; — R%) RP
plastic loading R, =R+ — (1 - R®) arccos (cos <§,11—Re exp —% e yhat, ) ),

(40)
Part oP <0 or @NY <0, 0<R, <1,
ar N .
elastic unloading | R, = 3 ”Tde“"“,
2 yo+rh

Part D o >0 and @0 >0, R°<R, <1,

: . 2 7z (R, — R°) 7 RP
plastic reloading |R, = R® + - (1 - R®) arccos (cos <§ ’i_—Re e yhat, ) ),

where the superscript “tr” denotes the trial stress state at each Newton-Raphson iteration. Particularly, enjoying the evolution of the
normal-yield ratio R, the deformation process gradually shifts from the purely elastic deformation to the plastic deformation that
exhibits hardening behavior; see the blue-colored line in Fig. 3(a). Here, the slope of the stress—strain curve is a continuous function
after the initial plastic yield. Also, unlike the conventional plastic model, the plastic deformation evolves in the cyclic loadings even

11
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Fig. 3. Detailed elastoplastic responses of conventional plastic model (Con.) and subloading surface model (Sub.).

if the kinematic hardening is not introduced; see Figs. 3(b) and (c). This is because the normal-yield ratio increases and decreases

along with plastic loading and elastic unloading, respectively; see Fig. 3(d).
In addition, Figs. 3(e) and (f) show the stress—strain relationships of changing the values of the normal-yield threshold R and

normal-yield saturation parameter RP. As can be seen from Fig. 3(e), R® determines the range of the transition of deformation
states, and a larger value of R® shortens the range, making it recover to the conventional plastic model. Also, from Fig. 3(f), one
finds that RP changes the saturation behavior of the transition of deformation states, and giving a larger value of RP recovers to
the conventional plastic model. Notably, by introducing the normal-yield ratio R, the stress-strain relationship around the original
plastic yield point becomes smooth, which is beneficial for a stable elastoplastic topology optimization process. Also, the case with

1.00 or R? — oo corresponds to the response of the conventional plastic model. The detailed investigations are provided in

Section 4.1.

3.2. Discretization of the adjoint problem

Similar to the primal problem, the adjoint displacement vector w and adjoint nonlocal plastic hardening variable § are defined
as nodal variables, whereas the adjoint plastic multiplier #° and adjoint flow tensor x are treated as internal state variables. Then,
the weak forms for the adjoint displacement and adjoint micromorphic plastic fields in Eq. (28);_3¢ g become

/ iy (w0 28 1 (1— ) 29| g Waell sy 0 T ) dOw gy
oF moF m/ 9F m oF "OF [|Tgeyll oX
df 3N
/ O .swdA=0 Véw,
BN Ou
6f 058 of 96p “n
4 20 208 Pw”R\/za—rpﬁ_ v (p, s 28 )av

./BO( 52 Pt ava ax TR\ 55t en (mPOl+ g gy Gy

0f o 0f 50 or
+/ 5ﬂdA+/ < _—w- SpdA =0 V&8
Y oD\ o o
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Using the same shape function N, the node-level global residual vectors and tangent matrices of the adjoint problem are

expressed as

Nele afh 0Ph Jo fh
By.,n d.n cdn
Rl - _ A 0 Hh hp __cd.n 1— hp
Wi T em] [/b’o< oF, "+ edn\ “m G, t1-)) 0F,
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_rlph hp ” devn” +7z-h hp d dev,cd,n 0N’
n m aFi cdn maF ||Th ”
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tomImy 3 o D ox, ox,
h
afaB(’]V " foBD | " ;
+/ —N dA+/ —— —w, —— |N'dA|, (42)
BY, oa B, oa Moa
Nele h fh
yid - A IN' Cthapjb,n + (1 —a)hp) do jbn
w,w,n e=1 Boe z)Xa m ()F m ()Fm
h h
_ ar/sh C() dllrdevn” + a’7"czin hp 0 dev ,cd,n aNJ
o, " ToF, | oM, ™ 0F, [\ ) ax,

Nele ph h h
O . (R oV T R Y
wifn =1 By, 0Xa ap 0F,a ap aFla ”T [I

Nele ph ph
K = A aia)h”Rh\/? I ) ONY gy,
ﬂu’/” e=1 0. aHjb m-n 3 Jda aXb
Nele 1 J
A N[arln hpRh \/76" NY +whp thINJ + qh ON” oN dv.
e=1Jp), of 30 P PoX, 0X,

Meanwhile, to solve Eq. (28), 5 for the adjoint plastic multiplier #° and adjoint flow tensor , the following integration point-level

dev,n

local residual vectors and tangent matrices are written as

h h h
—— S By gt thaPahyn o iz clev,,II _ 2 oR} ( . ph>+Rharp
wPa oyP ab,n"m oyP M @y 03/'3 3 oyP Yo n oyP
h ot
. h hp J Tdevabn _ hp hﬂha
an " 0},17 ”Tdevn” " ()yp
ofy oPh olizh o
By.n ab,n devn 0 dev ab,n
RE = 2y gh he b phghp — devn o 50y 43
. < an, O on,, " ) on,, Tapn@n | Oaidh; = dn,/ [ gernl (43)

h ph h
P a”Tdevn” _ 2 oR; (yh N rph) LR orh P 9 Tdev.kl.n
nPyP,n m ayp 3 ayp 0 n n 0}/p ’ Py .n m ayp ||T ” ’

dev,n
ollzh I o
g __ hp dev,n g __ hp s 0 dev Jkln
Kogon = =On 50— Kaymun = =On’ | Oidly = 5 <" )

g ij dev,n

Some of the detailed components of the above discretization are presented in Appendix B.2.

It is worth mentioning that while the above Egs. (42) and (43), in the adjoint problem can be straightforwardly solved, these

can be rewritten to improve computational efficiency: some derivatives appearing in the above equations need not be computed.
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To be specific, since the local adjoint problem is linear, 7 and x, can be directly calculated from Eq. (43),, as

o i .
afBo,n h whp aPab,n _ hﬂh
()},p abn " m ayp n 0},]3
h h
afBO’" + Hh hp aPabn
r,ph on ab,n D on
M 11 11
afh h
”fll,n fBO*" + Hh hp aPabn
h ony) aba "oy
. ol op
adjoint ™ 1 % h = Bo.
=W, nloial " with &, =75, | and W, = - 0"+ HY P abn . (44)
on abn on
h h33 31
Eq. (77) 23, 9
¢ h fBo" 12H" o hdeabn
1;"' dnys abn”m “onye
T h h
L% 12,0 2af30vn ol o hpapabn
m
ony3 abn T onyg
aft h
2 By.n + 2Hh hp Pab,n
| n) b ony,

Accordingly, the substitutions of Egs. (44), (65), and (70) into (42) yield

n h h
RI _ K / afBO,n n afBO,n By,'fh " afB n efn
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Sn B
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It should be noted that the above equations do not involve the derivatives dynh, dyx,, 61;;15, and dgm, as required in Eq. (42).
That is, calculating additional vectors and tensors for the adjoint problem are unnecessary, except for w and f. Also, the tangent
matrix of the adjoint problem is the transpose of the tangent matrix of the primal problem, and this relationship is a well-known

mathematical fact. Therefore, the derivations presented so far are presumed to be correct.
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3.3. Discretization of the design variable update method

The weak forms for the reaction-diffusion equations in Eq. (36) can be written as

for i=1,2,....m—1,m

/ < s, + 12220 259 _ ¢ 5 >dV
CU CU Ay 0Q;
Dy 49X Tox Dol Do (46)
- C . Sw;dA — C . Sw,dA = 0.
/aug’ oY iSoD i0@i /aD(’)V opP.i%oDP 0%

For the temporal discretization of the optimization problem, the pseudo time 7 is introduced, and a quantity at the pseudo time step
i; and its increment are denoted by «; and 4e;, respectively, with 4A7; = 7; —7;_, being the pseudo time interval. Notably, the pseudo
time interval A7; is an input parameter in actual optimization calculations, and its value cannot be set too large. From our experience,
0.01 < 47; < 0.1 can realize a relatively stable optimization process for elastoplastic problems. This is because Cypn ;sypn ,; in Eq. (46)
usually has the value in the range of —1 ~ +1, and thus, the maximum value of |C;,n ;sypn ;475 can be limited within 0.01 ~ 0.1.
Thereby, the material configuration is not dramatically changed in one design iteration, avoiding the divergence of the optimization
process.

Also, in this study, the design variables {®;,,,...,®,_,®, } are defined as nodal variables, i.e., {w{ Lol ol ! w!}. Then,
by applying standard FE approximation in space and backward Euler scheme in time to the left-hand side of Eq. (46), the following
node-level global residual vectors and tangent matrices for the optimization problem are obtained:

for i=1,2,....m—1,m

Nele h h h
o' -l o't I
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Fig. 4. Relationship between algorithmic allowable volumes and design iteration for five materials. (Also, refer to Eq. (50)).

Here, Ny, denotes the total time steps of the primal and adjoint problems. It should be emphasized that the subscript i in the above
equations is not an index of tensor components but an ID of the design variable under consideration. Also, it is worth mentioning
that the semi-implicit method is employed to update the design variables. That is, the sensitivity is fixed at 7 = 7;, and only the
design variable w, ;,, is the unknown. Accordingly, the derivatives, 0w/_s'50,iﬁ and a“’/s%o,iﬁ (j # ), do not appear, and the coupled
problem of m design variables has a global tangent matrix with only diagonal terms.

On the other hand, the following algorithmic process is adopted for multi-material volume constraints:

for i=1,2,....m—1,m

_i,n" = -/D (H [ H wkﬁ) dv - <Vi,max + (Vi,ini - Vi,max) max |:0’1 - ~n ]>’ (49)
o o ;

Nyol

V- Vivmax,ﬁ

where V,;;; and V., denote the initial and actual allowable volumes for the ith material, respectively, and 7, is the number of

design iterations to reduce the allowable volume from V,;;; to V; ,x- Suppose the design domain D, has the total volume of 1 mm?3

and five materials construct the domain (m + 1 = 5), and the following allowable volumes are given:

Vl,ini + VZ,ini + Vlini + V4'im + VS,ini =0.10+0.20 + 0.30 + 0.40 + 0.00,
Vimas + Vamax + Vamax + Vamas + Vamax = 020 +0.25 4 0.10 + 0.05 + 0.40.

(50)

The relationships between the algorithmic allowable volumes V;
fiye = 50 is given.
Meanwhile, following Otomori et al. [42], the penalty parameters 6, ; are calculated as follows:

max; and the design iteration 7 are presented in Fig. 4, where

for i=1,2,....m—1,m

i V.
5= 0, exp<sv > (51)

R,-J i,max,i
=0, ; in Eq. (88)

where s, denotes the saturation parameter to determine the exponential penalty function. Here, 0, ; in Eq. (51) are the solutions of
the system of m linear equations, which is derived in Appendix B.3. Also, it is worth mentioning that the multipliers 6, ; work as the
average sensitivity of the design domain at the design iteration 7, which is compared with the local sensitivity 5p, ;; to determine if
the design variable w, 5, increases or decreases. Additionally, the normalization factor Cyp, ; ; in Eq. (47) is calculated by Eq. (89).

3.4. Optimization algorithm

Algorithm 1 presents the overall optimization algorithm to address MMTO, which has been enhanced from the optimization
algorithm employed in our previous studies [33,35]. The pseudo-time steps (design iterations) construct the outermost loop in the
optimization process. At every pseudo-time step (design iteration) 7, the SIMP-based interpolation function in Eq. (9) is used to
update the material properties.

Subsequently, the nonlinear primal and linear adjoint problems are solved in the loop of the actual-time steps. To be specific,
the internal state variables and nodal variables are solved by the local and global Newton-Raphson schemes, respectively. In the
meantime, at each incremental step (time step), the increment of sensitivity is calculated at every integration point. At the end of
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Algorithm 1 Optimization algorithm

1: while The convergence criterion in Eq. (52) is not satisfied do

2 A=i+1 (7 denotes the current design iteration (pseudo-time step))

3: Create the material distribution of 7i-th design iteration by Eq. (9) with {a)fj,coiﬁ, ,a)”n 5 l,ﬁ’wrln )
4 for incremental step (time step) n (< Nge,) do

5: n=n+1 (n denotes the current actual-time step)

6: for Newton-Raphson loop do

7: k=k+1 (k denotes the current global Newton-Raphson iteration)

8: for Finite element assembling do

9: Solve Eq. (39) and Eq. (43) to determine {y,',’ h,n,'f, nﬁh,nf} at every integration point
10: Calculate the increments of the sensitivity in Eq. (48)

11: end for

12: Solve Eq. (38) and Eq. (45) to determine {u!,&!, w!, f7} at every node

13: If the Newton-Raphson scheme is converged: exit

14: end for

15: end for

16: Solve Eq. (36) for determining {w{,ﬁﬂ,wéﬁﬂ, ’a)rIn—lﬁ+1’wrlrtﬁ+l }

17: If the convergence criterion in Eq. (52) is satisfied: exit

18: end while

every design iteration, m reaction—diffusion equations are solved to update m design variables. Then, the following relative error is
also calculated to check if the optimization is converged or not:

IF error; > TOL : Not converged
IF error; < TOL : Converged
1 40;]]

(52)

. _ Io_ 1 _
with error; = and do;;, = o, | —;;

Nnode

For convenience, we call error; “optimization error” hereafter.

4. Numerical examples

In this section, two numerical examples are prepared to demonstrate the capability of the proposed method. To this end, the
following objective function is adopted:

P:/ —/ wf’nB~udV—/ T~udA+/ T -adA]| dt, (53)
' By oBN aBP

0

which corresponds to the conventional stiffness maximization problem. Particularly, Example 1 and Example 2 have different
objectives to show the ability of the proposed method.

Example 1 discusses the computational stability of the optimization process using the conventional plastic model and the
subloading surface model. Single-material topology optimization for a cantilever beam is studied, in which the difficulty in
convergence due to the conventional plastic model is demonstrated, and the benefit of the subloading surface model on the stable
optimization process is revealed afterward.

Example 2 aims to study unconventional multi-material topology optimization for a wedge specimen, say displacement
magnitude-dependent MMTO. The uniqueness of this example is the underlying optimization concept for stiffness maximization
problems. Specifically, Young’s modulus and Poisson’s ratios are identical for all base materials, and the material distribution and
arrangement are determined by referring to the different degrees of plastic hardening behavior.

For all numerical examples, p = 3 is chosen for the SIMP-based interpolation function in Eq. (9). Also, the condition y;/yo 4 =
Ppi/Ppi+1 = dpi/dpir1 (=1,2,...,m—1) is postulated to maintain the even contributions of the penalty and diffusive terms in Egs.
(12)4, (28)4_g for micromorphic regularization; refer to Han et al. [35] for details. Additionally, the material parameters for the
ersatz material are set to E,,.; = 107 E; and v,,,; = v,. The body force and prescribed traction force vectors, B and T, respectively,
are neglected in the following numerical examples.

Remark 1. In the following numerical examples, the benefit of employing nonlocal plasticity to address the mesh-dependency
problem is not discussed since this issue is not the main concern of this study. Readers can refer to Han et al. [35] for the detailed

investigation of nonlocal plasticity in elastoplastic topology optimization.
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Table 2
Material and optimization parameters for Example 1.
Material parameter* Value Unit
Young’s modulus E, 200000 [MPa]
Poisson’s ratio v 0.3 -]
Initial yield stress You 500 [MPa]
Linear hardening parameter h, 100, 1000, 10000, 100000 [MPa]
Normal-yield threshold Re1 0.3, 0.5, 0.7 [-1
Normal-yield saturation parameter R 300, 500, 700 [-]
Penalty parameter Pp.t 10000 [MPa]
Diffusion parameter o1 72000 [MPa mm?2]
Optimization parameter Value Unit
Allowance volume V] max 0.50 [-]
Saturation parameter Sy 10 [-1
Iteration number Tyl 50 [iter.]
Pseudo-time increment AT 0.05 [s]
Diffusion coefficient 13 42 [mm?]
Convergence tolerance TOL. 107 [-1
Table 3
Optimization cases for Example 1.

Case* R [-] R [-] h, [MPa]

Section 4.1.1

Case h10?-con - - 100

Case h10’-con - - 1000

Case h10*-con - - 10000

Case h10°-con - - 100000

Section 4.1.2

Case h10?-sub** 0.5 500 100

Case h10-sub 0.5 500 1000

Case h10*-sub 0.5 500 10000

Case h10°-sub 0.5 500 100000

Section 4.1.3

Case Re03 0.3 500 100

Case Re05** 0.5 500 100

Case Re07 0.7 500 100

Section 4.1.4

Case Rp300 0.5 300 100

Case Rp500** 0.5 500 100

Case Rp700 0.5 700 100

* The letters beginning with “h” mean the value of the plastic hardening variable (accumulated plastic strain).
The part “Re” or “Rp” presents what parametric studies are under consideration. The letters “con” and “sub”
correspond to the conventional plastic model and subloading surface model.

** Case Re05 and Case Rp500 are identical to Case h10?-sub.

4.1. Example 1: Single-material topology optimization for a cantilever beam

As illustrated in Fig. 5, the first example considers a cantilever beam-like 2D structure subjected to a vertical deformation of
10 mm, and the single-material topology optimization (topology optimization of ersatz and actual materials) is demonstrated. That is,
only the interpolation of the nonlocal elastoplastic material and linearly elastic material is considered by referring to Eq. (10). Thus,
unrealistic plastic deformation does not occur in the void regions. Also, the linear plastic hardening is assumed for the elastoplastic
response. The material and optimization parameters are listed in Table 2. Here, the diffusion coefficient /3 = 4 mm is given since
we have confirmed that if the value is almost the same as the mesh size (4 mm), the obtained optimal design can properly reflect
the mesh size. If a larger value is given, the optimal design becomes what can be obtained by coarser mesh, whereas a smaller
value leads to a noisy material distribution; also see Otomori et al. [42] and Han et al. [35] for the parametric studies of the
diffusion coefficient /4. Also, given a sufficiently small convergence criterion TOL. = 1074, it does not regard the optimization as
converged for an averaged absolute error of 0.01 % of design variables; see Han et al. [33] for details. This is beneficial for finding
the underlying problem of the conventional plastic model in what follows. Additionally, different values of the linear hardening
parameter, normal-yield threshold, and normal-yield saturation parameter are provided so that a parametric study can be made, for
which the optimization cases are presented in Table 3.
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Fig. 5. Target design domain of Example 1: Geometry and boundary conditions (Meshsize: 4 mm).

4.1.1. Difficulty in convergence for conventional plastic model

First, we demonstrate the difficulty in convergence of the optimization process when using the conventional plastic model. Here,
the conventional plastic model can be created by giving R = 1.0 or R'l’ — oo in the subloading surface model and used for the first
four cases in Table 3; also see the fifth and sixth panels in Fig. 3. Fig. 6(a) shows the optimization error versus design iteration
for these cases with different values of the linear plastic hardening parameter 4. As can be seen from this figure, all four cases
do not converge until two thousand design iterations. Specifically, the optimization error gradually decreases initially but oscillates
afterward. To quantify the oscillation behavior, the following oscillation factor is defined:

Ofactori + 1 if  (errory,, —error;) (error; — error; ;) > 0
Otactorit1 = (54

Ofactor,ﬁ —1 otherwise,

which is set to increase by one if the optimization error increases or decreases two consecutive times. In other words, the larger the
oscillation of the optimization error is, the smaller the value of the oscillation factor is; the optimization case with larger oscillations
yields a downward curve to the right. Fig. 6(b) shows the oscillation factor versus design iteration of these four cases. It can be
seen from this figure that the value of the oscillation factor decreases as the design iteration increases. Indeed, by giving a larger
convergence tolerance, e.g., TOL. = 1072, the optimization process can converge even if the oscillatory tendency of the optimization
error is confirmed. However, recalling the definition of the optimization error in Eq. (52), TOL. = 102 allows 1% averaged absolute
error for design variables Aw!. As can be seen from Figs. 6(c) and (d), this large convergence tolerance also allows that the maximum
absolute error of the design variable |4w!|,,, changes more than |4w!|,,, > 0.1 and allow that the relative error of the objective
function |AF| changes more than 0.1% between two consecutive design iterations. In short, it ignores changes of the design variable
(or material distribution) that are not so small. In this study, we do not regard this situation to be a converged state and only allow
0.01% averaged absolute error (TOL. = 10~%).

This oscillatory tendency of the optimization error is due to the repeated changes in the deformation state; see Fig. 7 that shows
the distributions of deformation state during the design iterations /i = 2001 ~ 2006 for Case h102-con. Here, the blue- and red-colored
regions in the bottom snapshot exhibit elastic and plastic deformations, respectively. As shown in this figure, the circled regions show
alternating deformation states, and such a trend is found in several locations within the design region. Additionally, the oscillations
in the deformation state and the resulting oscillation in the optimization error can be explained by reference to the material Jacobian
of the primal problem because it is used to determine the adjoint variables in the adjoint problem. In the following, we attempt to
explain this.

To simplify the discussion, we consider the following one-directional setup considering linear plastic hardening:

0E e
Material Jacobian in elastic deformation state: g—a = al =E|,
€ |e B3
(55)
0E, (¢ — €P Eh
Material Jacobian in plastic deformation state: do| _ 20 ( ) =L
€ |p 3 E|+hy

Here, assuming the Young’s modulus and initial yield stress as above, the values of the material Jacobian in the plastic deformation
state are E h;/ (El + hl) = 99.95, 995.02, 9523.81, 66666.67 MPa with A, = 100, 1000, 10000, 100000 MPa, respectively. In
the conventional plastic model, the material Jacobian changes dramatically around the plastic yield point, which is believed to
significantly reduce the convergence tendency of the optimization process. For instance, a typical story leading to oscillation in the
optimization error can be summarized in the following five events:

1. Supposing that the location X exhibits elastic deformation at design iteration 7, the material Jacobian is relatively large
(Eq. (55);), and thus relatively smaller adjoint variables are computed.

2. Roughly speaking, if the adjoint variables are relatively small, the resulting sensitivity becomes small. Accordingly, the design
variable w; ;,; at X tends to decrease, i.e., 4w, ; < 0.

3. Once the design variable w; ;. becomes small, the region around X becomes softer than the previous design iteration 7. This
tendency can lead to a large local deformation (or strain) at X at design iteration 7 + 1.

4. The large local deformation leads to plastic yielding at X, which results in relatively small material Jacobian, and accordingly,
relatively large adjoint variables to be computed.

5. Contrary to the 2nd event, relatively larger adjoint variables lead to a larger value of sensitivity, and then the design variable
o1 7, at X increases, i.e., Ao ;,; > 0. Eventually, the situation goes back to the 1st event.
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Fig. 6. Optimization error, oscillation factor, maximum absolute error of the design variable |4dw’|,,,, relative error of the objective function |AF| versus design
iteration for Example 1: Conventional plastic model. The black-colored line in (a) denotes the convergence tolerance “TOL”. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Elastic deformation region (blue) Plastic deformation region (red)

Fig. 7. Oscillation of deformation states: Case c-h10%-con. The blue-/red-colored region exhibits elastic/plastic deformation.

It is worth mentioning that a larger value of linear hardening parameter 4 is likely to mitigate the oscillation of the optimization
error to some extent. In fact, for the current four cases, as the value of the linear hardening parameter & increases, the oscillation
trend of the optimization error is alleviated; compare the magenta- and green-colored curves with the red- and blue-colored curves
in Fig. 6(b).

4.1.2. Stabilization of optimization process with subloading surface model

Hereafter, the subloading surface model is used in the primal problem for elastoplastic topology optimization. To this end, the
normal-yield threshold R{ and normal-yield saturation parameter R‘l’ are set to 0.5 and 500, respectively. Fig. 8 shows the histories of
the optimization error, oscillation factor, maximum absolute error of the design variable |Aw’|,,,,, and relative error of the objective
function |AF| with respect to the design iterations and the reaction force-displacement curves for the second four cases in Table 3
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Fig. 8. Optimization error versus design iteration, oscillation factor versus design iteration, maximum absolute error of the design variable |Aw!|,,, versus design
iteration, relative error of the objective function |AF| versus design iteration, and reaction force-displacement curve for Example 1: Subloading surface model.
The black-colored line in (a) denotes the convergence tolerance “TOL”. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

with different values of the linear plastic hardening parameter #,. Readers interested in the history of the objective function can
refer to Fig. 34(a) in Appendix C. As can be seen from panels (a) and (b) of Fig. 8, the optimization error does not oscillate, and all
of these four cases successfully converge over a wide range of plastic hardening responses, i.e., h; = 10*> ~ 10’ MPa. Also, from the
figure (c), only a small value (i.e., 0.001) of the maximum absolute error of the design variable |4w’|,,,, is found. In addition, the
relative error of the objective function |AF| is almost less than 0.001% (|AF| ~ 107%) for all the four cases; see figure (d). As shown
in Fig. 3, the success is due to the fact that the subloading surface model does not have a definite yielding point that significantly
changes the material Jacobian of the primal problem and that its material Jacobian continuously changes during the transition
from the elastic to plastic deformation state. Therefore, incorporating the subloading surface model into the elastoplastic topology
optimization framework is essential to ensure stability.

On the other hand, Fig. 9 presents the optimal designs with distributions of deformation states, nonlocal plastic hardening
variable, and normal-yield rate. Here, the optimal design obtained from the linear elastic topology optimization is presented as
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Fig. 9. Optimization results for Example 1: Subloading surface model. The region having », > 0.5 is displayed, and voids are not shown. Deformed configurations
are also shown for all optimal designs.

a reference solution in panel (e). As can be seen from these figures, the optimal design in all cases exhibits plastic deformation
throughout its entire region; see the second figure in each panel. Also, setting h; larger allows for a milder accumulation of
the nonlocal plastic hardening variable (plastic strain); compare the third figure in each panel of Fig. 9 and the reaction force—
displacement curves in Fig. 8(e). Additionally, it can be confirmed from the fourth figure in each panel that the region of high
stress concentration exhibits the material-specific plastic deformation associated with hardening (R =~ 1). Furthermore, due to the
geometrical nonlinearity considering finite strain and material nonlinearity in plasticity, the optimal designs in the current four
cases do not resemble the reference solution; the current four cases tend to have thicker members than the reference solution. This
is likely because the optimization process tries to avoid buckling, which causes undesirable plastic deformation and significantly
reduces the stiffness of the cantilever.

Remark 2. This study derives the governing equations of the adjoint problem by considering the local plastic evolution is exclusively
determined by the magnitude y? and direction n. Thereby, as explained in Section 3.4, the primal and adjoint problems are solved
in the same time direction from r = 0 to 7 = T. It should be noted that this approach leads to small relative errors between the
analytical and approximated sensitivities; one comparison is presented in Fig. 33 in Appendix C. Regarding this issue, Han et al. [60]
recently made analytical and numerical investigations, and thus detailed explanation is not provided here.

4.1.3. Parametric study on normal-yield threshold

As shown in Fig. 3(e), the normal-yield threshold R® determines the range of the transition of deformation states. Thus, a
parameter study of R} with topology optimization is conducted in this subsubsection. The normal-yield saturation parameter R';’
is set to 500, and the plastic hardening parameter 4, is set to 100 MPa. Fig. 10 shows the optimization error versus design iteration
and the reaction force-displacement curves for the third three cases in Table 3 with different values of Rf, i.e., Cases Re03, Re05,
and Re07.
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Fig. 10. Optimization error versus design iteration and reaction force-displacement curve for Example 1: Parametric study of the normal-yield threshold Rf.
The black-colored line in (a) denotes the convergence tolerance “TOL”. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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Fig. 11. Optimization results for Example 1: Parametric study of the normal-yield threshold R{. The region having w, > 0.5 is displayed, and voids are not
shown. Deformed configurations are also shown for all optimal designs.

As shown in Fig. 10(a), oscillation is only observed at the beginning of the evolution of optimization error versus design iteration
in Case Re07 but not in the remaining two cases. These responses are reasonable since the normal-yield threshold R{ determines the
transition range from the complete elastic to plastic states; a small value of Rf leads to a wide transition range. That is, Case Re07 has
the narrowest transition range, which may lead to oscillation to some extent. Also, it is found from the reaction force-displacement
curves in Fig. 10(b) that the smaller the value of the normal yield threshold Rf is, the smaller the stiffness is. Additionally, for
reference, the histories of the objective function for the current three cases are shown in Fig. 34(b) in Appendix C.

Meanwhile, Fig. 11 presents the optimal designs with distributions of deformation states, nonlocal plastic hardening variable,
and normal-yield ratio for these three cases. As can be seen from the second figure in each panel, plastic deformation occurs in most
regions, but in Case Re07, slight elastic deformation is also visible. Also, from the third figure, it is found that when the normal-yield
threshold R is large, the accumulation of plastic strain that corresponds to the nonlocal hardening variable becomes significant for
the same amount of deformation. This trend, on the other hand, affects the evolution of the normal-yield ratio R. In other words,
the larger R{ is, the faster the evolution of plastic deformation becomes; see the fourth figure in each panel.

4.1.4. Parametric study on normal-yield saturation parameter
A parametric study of the normal-yield saturation parameter le is conducted. As demonstrated in Fig. 3(f), RP changes the

saturation behavior of the transition of deformation states, and giving a larger value of RP recovers to the conventional plastic
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Fig. 12. Optimization error versus design iteration and reaction force-displacement curve for Example 1: Parametric study of the normal-yield saturation
parameter RP. The black-colored line in (a) denotes the convergence tolerance “TOL”.
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Fig. 13. Optimization results for Example 1: Parametric study of the normal-yield saturation parameter RP. The region having w, > 0.5 is displayed, and voids
are not shown. Deformed configurations are also shown for all optimal designs.

model. The normal-yield threshold RY is set to 0.5, and the plastic hardening parameter 4, is set to 100 MPa. Fig. 12 presents
the optimization error versus design iteration and the reaction force-displacement curves for the last three cases in Table 3 with
different values of Rll’ , i.e., Cases Rp300, Rp500, and Rp700.

Broadly speaking, a similar discussion to the previous parametric study can be made. That is, thanks to the characteristic of the
subloading surface model, i.e., the smooth transition range between the complete elastic to plastic states, the optimization errors of
the current three cases reach the tolerance “TOL”. without severe oscillations; see Fig. 12(a). On the other hand, the value of the
normal-yield saturation parameter R‘l) affects the plastic hardening behavior, in which the stress increases during the elastic—plastic
transition. However, since the normal-yield threshold is fixed, the transition range does not change, and the transition only speeds
up when the normal-yield saturation parameter le is set to a large value; see Fig. 12(b) and also refer to Fig. 3(f). This trend can also
be seen from Fig. 13, which shows the optimal designs with distributions of deformation states, nonlocal plastic hardening variable,
and normal-yield ratio for the current five cases. In fact, it is found that when the normal-yield saturation parameter R‘l’ is large,
the accumulation of plastic strain that corresponds to the nonlocal hardening variable and the evolution of the normal-yield ratio is
accelerated. For reference, the histories of the objective function for the current three cases are shown in Fig. 34(c) in Appendix C.

4.2. Example 2: Multi-material topology optimization for a wedge specimen

The second example is for multi-material topology optimization (MMTO: topology optimization of one ersatz and m actual
materials), for which a wedge-shaped specimen is subject to vertical deformation, as shown in Fig. 14. Different magnitudes of the
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Fig. 14. Target design domain for Example 2: Geometry and boundary conditions (Meshsize: 6 mm).

Table 4

Common material and optimization parameters for Example 2.
Material parameter Value Unit
Young’s modulus E 200000 [MPa]
Poisson’s ratio v 0.3 [-1
Normal-yield threshold R® 0.5 -1
Normal-yield saturation parameter RP 500 [-]
Optimization parameter Value Unit
Saturation parameter Sy 10 [-1
Iteration number Tyl 50 [iter.]
Pseudo-time increment AT 0.05 [s]
Diffusion coefficient /(2j 6% [mm?2]
Convergence tolerance TOL. 104 -]

Table 5

Plastic material parameters and allowance volume for Example 2: One-material topology optimization.
Parameter Value Unit
Initial yield stress You 500 [MPa]
Linear hardening parameter hy 500 [MPa]
Nonlinear hardening parameter Veorl 1000 [MPa]
Saturation parameter Syl 10 [-1
Penalty parameter Pp.1 10000 [MPa]
Diffusion parameter .1 72000 [MPa mm?]
Allowance volume Vi max 0.40 [-]

vertical deformation are given to the specimen, i.e., 5 mm, 20 mm, 35 mm, and 50 mm, in order to see the effects of geometrical
and material nonlinearities on the optimal design. The common material and optimization parameters are listed in Table 4. Note
that the Young’s modulus and Poisson’s ratios are the same for all actual materials, and the optimal designs are only determined by
changing plastic material parameters. Thus, even if the stiffness maximization problem is discussed in this example, the optimization
problem is different from conventional ones obtained only using elastic materials.

For convenience, the optimization cases discussed in this example are named by the following rule: “X” and “YY” of Case X-YY
represent the number of actual materials and the magnitude of the prescribed displacement, respectively. For instance, Case 2-35
considers two actual materials and a prescribed displacement of 35 mm, respectively.

Remark 3. Indeed, larger displacement loadings, e.g., 65 mm, 80 mm, are possible, but the defects of materials should be newly
taken into account by referring to damage evaluation criteria such as continuum damage models [61,62]. This is because several
actual metallic materials exhibit material deterioration from a ~ 0.1. Also, buckling behavior may appear due to low-density elements
in the optimization process, and additional stabilization techniques [63,64] should be employed. Since the current magnitudes of
deformation (5 mm~50 mm) can demonstrate the plastic deformation-dependent (or plastic strain-dependent) optimal designs, the
afore-suggested issues are placed in our future studies.

4.2.1. One-material topology optimization

Before tackling MMTO, one-material topology optimization is presented to show that the subloading surface model does not
cause oscillations of the optimization error even for the structure targeted here. The plastic material parameters and allowance
volume are listed in Table 5, and the stress—strain curve of the material is shown in Fig. 15. As can be seen, the stress—strain curve
does not have a distinct yielding point to switch the deformation states from complete elastic to plastic ones, which is beneficial for
the adjoint problem, as demonstrated in the previous example.
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Fig. 15. True stress—true strain curve of base material for Example 2: One-material topology optimization.
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Fig. 16. Optimization error versus design iteration, oscillation factor versus design iteration, and reaction force—displacement curve for Example 2: One-material
topology optimization. The black-colored line in (a) denotes the convergence tolerance “TOL”.

Figs. 16(a) and 16(b) show the optimization error and oscillation factor versus design iteration, respectively, of Case 1-5, Case
1-20, Case 1-35, and Case 1-50, where oscillation in optimization error is not observed. Also, the reaction force-displacement curves
of the optimized design iteration are improved compared with those of the 50-th design iteration, at which the actual allowance
volume is imposed; see Fig. 16(c).

Additionally, Fig. 17 shows the optimization results of the current four cases, where panel (e) is the reference solution obtained
from the purely elastic setup. For reference, the non-binarized distribution of the design variable is shown in Fig. 37 in Appendix
C. As can be seen from the middle figure in each panel of Fig. 17, plastic deformation occurs in all regions of the specimen in the
remaining three cases except Case 1-5. In other words, the optimal designs are strongly affected by both geometric and material
nonlinearities. In fact, as the prescribed deformation increases, the optimal design becomes less similar to the reference solution.

4.2.2. Two-material topology optimization

Here, we address two-material topology optimization. The plastic material parameters and allowance volumes are presented in
Table 6, and the stress—plastic hardening curves of base materials are shown in Fig. 18. As can be seen from the curves, the initial
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Fig. 17. Optimization results for Example 2: One-material topology optimization. The region having w, > 0.5 is displayed, and voids are not shown. Deformed
configurations are also shown for all optimal designs.

Table 6

Plastic material parameters and allowance volume for Example 2: Two-material topology optimization.
Parameter Value Unit
Initial yield stress Yous Yoz 500, 200 [MPa]
Linear hardening parameter hy, h, 500, 200 [MPa]
Nonlinear hardening parameter Yeol» Voo 1000, 3000 [MPa]
Saturation parameter Syls Sya 10, 10 [-1
Penalty parameter Pots Pp2 10000, 4000 [MPa]
Diffusion parameter 1> Gp2 72000, 28800 [MPa mm?]
Allowance volume Vimax Vamax 0.20, 0.20 [-]

yield stress of Material 2 is less than that of Material 1, but Material 2 exhibits a stronger plastic hardening behavior. Accordingly,
before and after the intersection (pl) of the two curves in Fig. 18, the preferred material should vary in terms of the stiffness
maximization problem. That is if the plastic deformation at a certain location is small or large, Material 1 or Material 2 would be
selectively placed, meaning that the switching criterion is (p1).

Figs. 19 and 20 present the reaction force-displacement curves and the optimization results of Case 2-5, Case 2-20, Case 2-35,
and Case 2-50, respectively. For reference, the optimization error and oscillation factor versus design iteration are shown in Fig.
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Fig. 18. True stress—accumulated plastic strain curve of base materials for Example 2: Two-material topology optimization.
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Fig. 19. Reaction force-displacement curve for Example 2: Two-material topology optimization. The black-colored dashed line in each panel is from the 50-th
design iteration. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 20. Optimization results for Example 2: Two-material topology optimization. The left and right figures denote the distributions of the base materials and

nonlocal plastic hardening variable. The region having @, > 0.5 is displayed, and voids are not shown. Deformed configurations are also shown for all optimal
designs.
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Fig. 21. Material distributions depending on the magnitude of the accumulated plastic strain « for Example 2: Two-material topology optimization. Only half
of each specimen is displayed. Also, see Fig. 18.

Table 7

Plastic material parameters and allowance volume for Example 2: Three-material topology optimization.
Parameter Value Unit
Initial yield stress Yoi» Yoar Yo3 500, 350, 200 [MPa]
Linear hardening parameter hy, h,, hy 500, 350, 200 [MPa]
Nonlinear hardening parameter Yootr Yoo Yooss 1000, 850, 3000 [MPa]
Saturation parameter Sets Syas Sy3 10, 10, 10 [-1
Penalty parameter Pots Pp2s Pp3 10000, 7000, 4000 [MPa]
Diffusion parameter Q15 2 3 72000, 50400, 28800 [MPa mm?]
Allowance volume Vimao: Vamaxs Vamax 0.133, 0.133, 0.133 [-]

35(a) and Fig. 36(a) in Appendix C, respectively. As can be seen from Fig. 19, for all cases, the reaction force-displacement curves of
the optimized design iteration are improved compared to those at the 50-th design iteration, at which the actual volume constraint
is imposed by Eq. (49). Also, different optimal designs are obtained depending on the magnitude of the prescribed displacement; see
the left figure in each panel of Fig. 20. For reference, the non-binarized distributions of the design variables, w, and w,, are shown
in Fig. 38 in Appendix C. It should be noted that the material arrangement follows the material behavior in Fig. 18, and Material 2
is placed where large plastic deformation occurs as the prescribed displacement increases; e.g., see (d) in Fig. 20. This trend cannot
be realized by the conventional elastic MMTO, for which Figs. 20(e) and (f) show the optimal designs. Here, only the linear elastic
deformation is considered, and the Young’s modulus of Material 2 is half the value of the Young’s modulus of Material 1. As shown
in these figures, Material 1 is placed where the stress concentration occurs regardless of the deformation magnitude. Notably, even
if the finite strain elastic MMTO is conducted, Material 1 is still placed where the stress concentration occurs.

For further investigations, Fig. 21 is presented to show the material arrangement depending on the magnitude of plastic
deformation. As can be seen from Fig. 18, the true stress of Material 2 becomes larger than that of Material 1 for the range
approximately « > 0.0205. Thus, in terms of the stiffness maximization problem, Material 2 should be selected for regions exhibiting
stronger stress concentrations. This trend is indeed confirmed. That is, Material 2 is placed where the plastic hardening variable
(accumulated plastic strain) « is greater than 0.0205; see the right figure in each panel of Fig. 21. Also, this trend becomes more
distinct along with the increase of the prescribed displacement. In fact, the middle part of the specimen is totally filled with Material
2 in Case 2-50.

4.2.3. Three-material topology optimization

Subsequently, one material is added. That is, three-material topology optimization is discussed. The plastic material parameters
and allowance volumes are summarized in Table 7, and the stress—strain curves of the base materials are shown in Fig. 22. This is
a setting where the original and preferred materials are swapped at two points, (p2) and (p3), regarding the stiffness maximization
problem. Specifically, when « is smaller than 0.0098, the preferred material order is “Material 1, Material 2, and Material 3”. In the
range 0.0098 < « < 0.0205, the order is “Material 1, Material 3, and Material 2”, and in the range 0.0205 < «, the order is “Material
3, Material 1, and Material 2”.

Fig. 23 shows the reaction force-displacement curves of Cases 3-5, 3-20, 3-35, and 3-50. As can be seen, the stiffness of the
specimen is improved for all cases. For reference, the optimization error and oscillation factor for the design iterations are shown
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Fig. 22. True stress—accumulated plastic strain curve of base materials for Example 2: Three-material topology optimization.
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Fig. 24. Optimization results for Example 2: Three-material topology optimization. The left and right figures denote the distributions of the base materials and

nonlocal plastic hardening variable. The region having w; > 0.5 is displayed, and voids are not shown. Deformed configurations are also shown for all optimal
designs.
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Fig. 25. Material distributions depending on the magnitude of plastic hardening variable « for Example 2: Three-material topology optimization. Only half of
each specimen is displayed. Also, see Fig. 22.

Table 8

Plastic material parameters and allowance volume for Example 2: Four-material topology optimization.
Parameter Value Unit
Initial yield stress Yoir Yo2r Yo3» Yoa 500, 400, 300, 200 [MPa]
Linear hardening parameter hy, hy, hy, hy 500, 400, 300, 200 [MPa]
Nonlinear hardening parameter Yoo 10 Vo210 Veo3r Voou 1000, 900, 800, 3000 [MPa]
Saturation parameter Syls Sy2s Sy3s Sy4 10, 10, 10, 10 [-1
Penalty parameter Ppts Pp2s Ppas Ppa 10000, 8000, 6000, 4000 [MPa]
Diffusion parameter Gots B2 3> Gpa 72000, 57600, 43200, 28800 [MPa mm?]
Allowance volume Vimae: Vamaer Vamaes Vimax 0.1, 0.1, 0.1, 0.1 -1

in Figs. 35(b) and 36(b) in Appendix C, respectively. On the other hand, Fig. 24 shows the optimization results of these four cases,
in which figures (e) and (f) show the reference solutions obtained from the linear elastic MMTO with E, =2/3E, and E; = 1/3E,.
As can be seen, different optimal topologies are obtained for the proposed elastoplastic MMTO, whereas the optimal designs do not
change with different displacement magnitudes for the linear elastic MMTO. In addition to the geometry of the optimal structure,
the material distribution is also strongly affected by the accumulation of plastic strain. To be specific, Material 3 is placed in regions
that exhibit large plastic deformation. To support this investigation, Fig. 25 is useful for understanding of the material arrangements
determined by the magnitude of plastic deformation. For reference, the non-binarized distributions of the design variables w; ~ w;
are presented in Fig. 39. As explained in Section 4.2.3, in the conventional elastic MMTO, a material having a large Young’s modulus
is placed where the stress concentration occurs to address the stiffness maximization problem. Hence, the material distribution does
not change by the deformation magnitude. In contrast, in the proposed elastoplastic MMTO, the plastic hardening properties are
referred to in the stiffness maximization problem. Thus, the optimal structure is unique on the imposed deformation magnitude.

4.2.4. Four-material topology optimization

Finally, one additional material is added, and four-material topology optimization is discussed. The plastic material parameters
and allowance volumes are presented in Table 8, and the stress—strain curves of the base materials, optimization error-design
iteration curves, and reaction force-displacement curves are shown in Fig. 26. As can be seen, this is a setting where the original and
preferred materials are swapped at three points, (p4), (p5), and (p6), in the figure in terms of the stiffness maximization problem.
For instance, the preferred material order is “Material 1, Material 4, Material 2, and Material 3” between the points (p5) and (p6).

Fig. 27 shows the reaction force-displacement curves of Cases 4-5, 4-20, 4-35, and 4-50. As can be seen, the peak reaction forces
are improved for all cases. For reference, the convergence trends of these cases are shown in Figs. 35(c) and 36(c) in Appendix
C. The obtained optimal topologies are shown in Fig. 28 along with the distributions of the base materials and nonlocal plastic
hardening variable, in which figures (e) and (f) show the reference solutions obtained from the linear elastic MMTO with E, = 3/4E|,
E; =2/4E,, and E, = 1/4E,. As in the previous examples, the material distribution varies with the magnitude of plastic deformation
in terms of the stiffness maximization problem. This trend can be clearly observed from Fig. 29 that shows the material arrangements
determined by the magnitude of plastic deformation. In particular, Material 4 tends to be placed where stress concentration occurs.
However, it should be noted that this trend does not apply to the conventional elastic MMTO in figures (e) and (f) since the material
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Fig. 26. True stress-accumulated plastic strain curve of base materials for Example 2: Four-material topology optimization.
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Fig. 27. Reaction force—displacement curve for Example 2: Four-material topology optimization. The black-colored dashed line in each panel is from the 50-th
design iteration.
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Fig. 28. Optimization results for Example 2: Four-material topology optimization. The left and right figures denote the distributions of the base materials and

nonlocal plastic hardening variable. The region having w, > 0.5 is displayed, and voids are not shown. Deformed configurations are also shown for all optimal
designs.

32



J. Han et al. Computer Methods in Applied Mechanics and Engineering 442 (2025) 118038

Mat. I Mat. 2 Mat. 3 Mat. 4 Void
- h

—
/ S 2
N S ///\\\\ Lol ///\‘\_‘ o
Y/2RNE4 /AN V/ARNE S
B> /S = /S s
I [/ ’//L,‘wf,[,//’) /g‘#/ ,{’;)
} J —— I i
| | |
J ( ("

(a) Case 4-5 (« < 0.0064, 0.0064 < a < 0.0132, 0.0132 < a < 0.0205, and 0.0205 < a)

Fig. 29. Material distributions depending on the magnitude of plastic hardening variable a for Example 2: Four-material topology optimization. Only half of
each specimen is displayed. Also, see Fig. 26.

distributions are exclusively determined by the values of Young’s moduli of base materials, which are not related to the deformation
magnitude.

Before closing this subsubsection, a few shortcomings of MMTO as formulated in this study should be mentioned. Comparing
the optimal designs of Case 4-5 and Case 4-50 in Fig. 28, we notice that Case 4-50 has thinner members than Case 4-5. This is
because the optimal design of Case 4-50 is more “grayscale” pronounced than in Case 4-5; see also Fig. 40 in Appendix C for
reference. The main reason for the pronounced grayscale can be due to the SIMP-based interpolation method in Eq. (9). Precisely,
the employed function is continuous and cannot represent discrete material distributions, even though the order “p” in Eq. (9) works
as penalization to avoid intermediate material densities. It should also be noted that the SIMP-based interpolation function has a
“nested structure”. That is, the kth material is less likely to be selected than k + 1-th material since the material distribution is
determined by the design variable w,. On the other hand, it is also strongly affected by the design variables {w;, @142, ... @y, |-
Accordingly, obtaining proper material distribution may not be guaranteed. For instance, when the accumulated plastic strain « is
larger than 0.0205, the appropriate material order should be Material 4, Material 1, Material 2, and Material 3. However, as can be
seen in the last figure in Fig. 29(d), Material 2 and Material 3 have larger areas than Material 1. Nevertheless, such a discrepancy is
common for SIMP-based interpolation, and a similar discussion can be found in the literature. Therefore, it is safe to conclude that
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Table 9
Objective functions and numerical comparisons for Example 2. ObjX denotes the value of objective function obtained from X-th base material. ObjX/Obj indicates
the ratio of ObjX to Obj as a percentage.

Disp. [mm] Obj [J] Objl [J] Obj2 [J] Obj1/0bj Obj2/0bj
Case 2-5 (@ =15) 130.3 143.7 97.7 110% 75%
Case 2-50 (i = 50) 24747.8 26 066.1 25009.3 105% 101%
Disp. [mm] Obj [J] Obj1 [J] Obj2 [J] Obj3 [J] Obj1/0bj Obj2/0bj Obj3/0bj
Case 3-5 (#=5) 120.4 133.6 114.4 90.4 111% 95% 75%
Case 3-50 (# = 50) 20421.3 22041.3 16686.1 21109.5 108% 82% 103%
Disp. [mm] Obj [J] Obj1 [J] Obj2 [J] Obj3 [J] Obj4 [J] Obj1/0bj Obj2/0bj Obj3/0bj Obj4/0bj
Case 4-5 (i =5) 110.0 122.6 112.3 96.0 83.0 111% 102% 87% 75%
Case 4-50 (z = 50) 17 685.6 18913.7 15876.9 12787.4 18215.4 107% 90% 72% 103%
Mat. 1 Mat. 2 Void
0.0 0013 00 0015 00 0.011
——— ' ew ¢ est——t e ¢ ——— @
(a0) Case 2-5 in Fig. 20(a) (al) Mat. 1 (a2) Mat. 2

Mat. 1 Mat. 2 Void

(b0) Case 2-50 in Fig. 20(d) (b1) Mat. 1 (b2) Mat. 2

Fig. 30. Deformed configurations and distributions of the nonlocal plastic hardening variable of the optimal structures and structures made from base materials
for Example 2: Two-material topology optimization in Section 4.2.2.

apart from the issues related to interpolation functions, the proposed framework is promising in terms of the MMTO considering
finite strain nonlocal elastoplasticity.

4.2.5. Discussion

As discussed above, the proposed MMTO method can realize the optimal material configuration and distribution according to
the magnitude of imposed displacement; see Figs. 21, 25, and 29. Before closing this numerical example, we furthermore provide
overall discussions on the optimization results by referring to the smallest and largest deformation cases (5 mm and 50 mm).

Now, the optimal structures obtained from the two, three, and four-material topology optimizations are re-constructed by the
base materials (Mat. 1~ Mat. 4). Then, the values of the objective functions are calculated given the prescribed deformations of
5 mm and 50 mm, and those values are summarized in Table 9. Here, “ObjX” denotes the objective function obtained from X-th
base material, e.g., “Obj3 = 96.0 [J]” for Case 4-5 is calculated from the optimal shape of Case 4-5 in Fig. 28(d) that is, however,
made from Mat. 3. Also, “ObjX/Obj” indicates the ratio of ObjX to Obj as a percentage. As shown in the table, for the cases with
the small deformation (5 mm), since the yield stress is higher in the order of Mat. 1, Mat. 2, Mat. 3, and Mat. 4, the values of the
objective function “ObjX” are also larger in that order; also refer to Figs. 18, 22, and 26. Therefore, it is desirable to use only Mat. 1
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Mat.1 Mat.2 Mat.3 Void
—
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s ——— PR ——— R ——— R ——— a
(a0) Case 3-5 in Fig. 24(a) (al) Mat. 1 (a2) Mat. 2 (a3) Mat. 3

Mat.1  Mat.2 Mat.3 Void
L

(b0) Case 3-50 in Fig. 24(d) (b1) Mat. 1 (b2) Mat. 2 (b3) Mat. 3

Fig. 31. Deformed configurations and distributions of the nonlocal plastic hardening variable of the optimal structures and structures made from base materials
for Example 2: Three-material topology optimization in Section 4.2.3.

to manufacture the strongest wedge specimen, but in actual manufacturing, it is not always possible to use as much of one material
as desired. Then, one advantage of MMTOs is that if we can combine several materials (e.g., strong and weak materials, expensive
and cheap materials) to find the optimal shape, this situation may be avoided, and the resulting optimal structure may still fulfill
the design objective. In fact, although only 1/2, 1/3, and 1/4 of Mat. 1 is used in the optimal designs, the values of “Objl” in
Table 9 for the cases with i = 5 mm are just slightly larger than the values of “Obj”, i.e., the optimal structure itself is not so weak,
despite the use of weaker materials. However, it should be noted that the optimal structures obtained from MMTO are used here,
and thus, the values of the objective function calculated for the structures represented by a single base material are not equal to
those obtained when optimizing with a single material.

Meanwhile, as shown in Table 9, when the large deformation (50 mm) is considered, Mat. 2 in Case 2-50, Mat. 3 in Case 3-50,
and Mat. 4 in Case 4-50 are no more the weakest material. This is because they exhibit the largest plastic hardening behavior
among base materials in each MMTO in Sections 4.2.2, 4.2.3, and 4.2.4; also refer to Figs. 18, 22, and 26. In short, if they can be
placed where high-stress concentrations occur, weakness of low yield stress is offset by its high plastic hardening behavior, and the
best performance can be achieved. For a better understanding, Figs. 30-32 present deformed configurations and distributions of the
nonlocal plastic hardening variable a. As can be seen from these figures, Mat. 2 in Case 2-50, Mat. 3 in Case 3-50, and Mat. 4 in
Case 4-50 exhibit the smallest plastic accumulations among base materials, which implies the plastic dissipation rate (y,a) is also
the smallest. Also, it turns out that the magnitudes of the nonlocal plastic hardening variable a in the figures (b0) are closest to
those in figure (b2) in Fig. 30, figure (b3) in Fig. 31, and figure (b4) in 32. This can be said to be a reasonable realization of stiffness
optimization, i.e., finding a structure that resists external forces as much as possible. Notably, the optimal material configuration
and distribution should change once the plastic dissipation problem is alternatively involved in the objective function; readers can
refer to Han et al. [33,35] for several investigations within the single-design variable topology optimization. Since the current study
is enough to explain the ability of the proposed elastoplastic MMTO, additional investigations will be included in our future studies.

5. Conclusion
This study has developed a new multi-material topology optimization (MMTO) formulation incorporated with finite strain
nonlocal elastoplasticity. A distinctive novelty is the incorporation of the subloading surface model into the primal problem to

achieve the gradual change from pure elastic deformation state to fully plastic deformation state. Also, the idea of interpolating
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Mat. 1 Mat. 2 Mat. 3 Mat. 4 Void
- e

0.0 0.011
———————— oW @

0.010
Lemw @

(a0) Case 4-5 in Fig. 28(a) (al) Mat. 1 (a2) Mat. 2 (a3) Mat. 3 (a4) Mat. 4

Mat. 1 Mat. 2 Mat. 3 Mat. 4 Void
— ——

(b0) Case 4-50 in Fig. 28(d) (b1) Mat. 1 (b2) Mat. 2 (b3) Mat. 3 (b4) Mat. 4

Fig. 32. Deformed configurations and distributions of the nonlocal plastic hardening variable of the optimal structures and structures made from base materials
for Example 2: Four-material topology optimization in Section 4.2.4.

energy densities was employed to ensure computational stability and to avoid unrealistic plastic deformation occurring in voids
(ersatz material). In addition, for the first time, the continuous adjoint method was formulated to derive the governing equations
and sensitivity of the adjoint problem of MMTO considering elastoplasticity. Accordingly, the obtained equations do not depend on
any discretization and are valid at any location in a continuum body, on its boundary, and at any moment. An arbitrary number
of design variables was considered in the formulation, and by referring to the derived sensitivity, the multiple reaction—diffusion
equations were introduced to update the material distribution and configuration. In the first numerical example, the capability of
the subloading surface model is investigated. In particular, the stable optimization process is realized by employing the feature of
the material Jacobians in the subloading surface model continuous functions. In the second numerical example, several topology
optimization problems were solved for multiple materials with the same elasticity but different plastic material properties. In
particular, we were able to illustrate that the distribution of base materials within the optimum structure changes with the magnitude
of plastic deformation by setting the stresses in the base materials to switch between large and small during the hardening process.
Note that although no example was given, the mesh-dependency problem has been solved by the application of nonlocal plasticity
theory.

We conclude this paper with a discussion of future directions. First, for better MMTO, the material interpolation function should
be reconsidered. To the best of the authors’ knowledge, if we have an interpolation method that does not have the “nested structure”
like the employed SIMP-based function, even if the number of base materials increases, it is expected that the grayscale can be
mitigated, and the proper material order can be achieved. Second, the idea of interpolating energy densities is extended to describe
MMTO for different types of material combinations, such as rubbers, concretes, metals, and so on. This direction should be especially
helpful when discussing the optimal geometry and location of fibers for composite materials or the optimal placement and amount
of rebars for reinforced concrete. Third, if MMTO can take into account the damage of several base materials in a multi-material
structure, it is expected that a new optimal design that controls or takes advantage of their fracture behavior will be realized. If this
kind of optimization is established, the failure behavior of products can be “pre-designed” while keeping the desired capability, and
thus, the industry can save a lot of resources for actual experiments to investigate the failure behavior. These topics are left for our
future challenges.
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Appendix A. Supplemental information for the interpolation of multiple material parameters

A.1. Examples of the SIMP-based interpolation function

IR
)

Suppose one material parameter is determined by m+1 =2, m+1 =3, or m+ 1 = 4 base material parameters, Eq. (9) recovers

to
'='1,2=w11]'1+<1_wl;)'2’

—of) o+ (1= wf)es. (56)

p

_ _ P P _ P P

C= 23 =Wyt (1 wz) 03 = W,w 0 T W,
_ . — PP

*=01234 = W3003F (1- w3) %4 = W30,

A.2. Supplemental explanation for Fig. 2

As shown in Fig. 2, the domain filled with Material 1 is calculated by
v, = / (0 0,03) dV. (57)
Dy

On the other hand, the domain calculated by /Do (wy@3) dV covers both domains A and C, the former of which is V;. Thus, the
domain filled with Material 2 is calculated by

V, = / (@wym5) AV =V =/ (wyw3) dV —/ (wy0y03) dV. (58)
Dy Dy Dy
Similarly, the domain filled with Material 3 is calculated by
1/3:/ (a)3)dV—Vl—V2:/ (ca3)dV—/ (a3 dV. 59)
Dy Do Dy
In this way, Eq. (19) can be obtained inductively.
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A.3. Derivatives of the volume constraints with respect to design variables

The derivatives of the volume constraints for multiple materials in Eq. (21) with respect to design variable w; with i
1,2,...,m —1,m are calculated as follows:

k= -1
a m m m m
_ £< 1/0 Q‘[lwk_ﬂwk o, | QI“’“II. >dv+
m m
+0,_1/ (H o — H wk)dV
Do \ k=i-1 k=i-2
m m m m
+9i/ <Hwk— H wk>dV+0i+1/ (H wk—Hwk)dV+‘..
Do \ k=i k=i-1 Dy \k=i+1 k=i (60)
m m m m
+9m_1/ (H o= [] @ )dv+9m/ <Ha)k— 11 a;k)dv)&w,.
Dy \ k=m—1 k=m—2 Dy \k= k=m—1
m
50
=—| (6,-6 ®, dV+ 9 @, dV + ..
awf(m ) [, o ) [, o
m
- 6;) H @ dV + (6 0,+1)/ Ha}de> bw
Do f=i-1 Dy k=i
i
=2 (6= 011) / Hwkdvaw = ~6141) / Hwkaw dv.
I=1 @i i Dy @i
Appendix B. Components for numerical implementation
B.1. Components for the primal problem
The integrand in Eq. (38); is expanded as
aPia,n aPia,n 33’5 + aPmn ancd,n
OF;, = oyP 0F; ' ong OF;
aT:cn abefn " ab:f,n 0}’5 ab:f.n dngh,n -1 _ P F 1 (61)
S obS, \ 9F,  orP OFy  dng, OF, | o TienLajn ben
0Tic,n a‘L-vol,ic,n aTdev,ic,n 2 — 2/3 1 —1
abef = abef abef = EJC 51cbzfn + ”"e (ldev,icef - gbgevﬂic,nbzf,n) :
e e e

Here, the superscript “h” representing the FE approximation is omitted for convenience. Also, the derivatives of b° with respect to
F, y?, and n in Eq. (61) are calculated by

ob° _ T
0—1;' =exp (—24t,75n,) ® (Cz:i . FI) + {exp (-24t,70m,) - F, - CZ:; } ®1,
0bi P e,tr
Pl {Dexp (=24t,75n,) : (-24t,m,)} - b, 62)
0bf’ P . p e,tr
T = {Dexp (=241,75m,,) (—2Atnynlsym)} * bt

N —

iakl aj

in which ® is the dyadic-down product operator, i.e., (1 ® 1) = 6,61, and * denotes the tensor product operator to realize
hid — Jijki
the above suggested manipulation, respectively.

The derivatives gy} and dgn, can be calculated from Eq. (39). To be specific, the following relationships hold:

0R§p n ay? on,

OF lepyp,,aF +K:7Pnn . a_F’ 63)
IR a7 om,

o~ Kera® G Kt GE
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where
g
aRyPn _ _a”Tdev,n” _ _a”Tdev,n” . abz
JF oF ob° oF ~
——
Eq. (62
. @ (62 . 64)
aRn.n _ i Tdev,n _ 1 aTdev,n _ Tdev.n allrdev,n” . %
oF oF “Tdev,n“ ”Tdev,n“ ob° ”Tdev,nllz ob° oF
Eq. (62),
Thus, recalling the relationship n = n", dpy} and dpn, are obtained from
g
9¢, __ goprimal-1 ()ngn (65)
oF  localn " TGF
where
T
9 _ ﬁ onyy, Onyp, Odng, Onyg, Ong, a“lZ.n]
oF oF oF oF oF oF doF oF 66)
oR¢ g T
&on [aRyP n aRﬁn n aRﬁzz n aRig n ang\23 n 2 aRﬁlg n Zanf‘lz n ] R
oF oF oF oF oF oF oF oF
and
[ ]CVPWJ' ]CYP“U»" ’C}’pnzz-" ICV""33<," ZICYP“ZM 2]C}’p"13-" ZICW"lzs" |
IC"an" nppngn nypnog.n npn3z.n ZIC“llnzss" 21C“11"13J’ 2]C“n“lz»"
primal lC"sz" n nppnyn nppnoo.n nn33.n nno3.n npny3.n nypnyo.n
local,n = ]C"337"»" IC"}z"nv'l ]C"33"22~" ]C“33"33v" 216“33"231" 2]C"33“13a" 2IC“33“|2»" (67)
21C"23?"J’ 2’an3“11»" zn“zznzz-" 2]C"23“33v" 4IC"23"23~" 4]C"23“13J’ 41C“23“12v"
ZIcnlele 2]C"13“11»V' 2lC“ls"zz-" 21C“13“33s" 4K:“13“23q" 41C"13"13Jl 4]C“13“12»"
L ZIC"WPJ' 2K“]2"11»" ZIC“lzﬂzzs" 21C"12“33s" 4IC“12"23," 4IC"12“13J7 4K“]2"12»" -
Similarly, the derivatives d;y} and d;n, can be calculated from Eq. (39), and the following relationships hold:
oR; P om
ALy . o + Koyt =
oJa vy oa 4 oJa (68)
IR? ay? on
o = Kot + Ky, o
oJa Jda T Ja
where
n 2 arﬂ \/3 (.)Ri n
=R\/2—=-R+/Zp, ? = 69
— n\/g 9% "\ 3P FP (69)
Thus, 9,7} and d;n, are obtained as
g
9, _ goprimal-1 aRf.n (70)
o localn gy °
where
T
9 _ [ﬁ onyy, Onyp, Ong,  Onyg,  Ongy, aan,n]
o oa oa o0& oa o0& oa o0&
ORS¢ 8 g g g g g g T 71)
&n — [aRyP,n aRn“ n aanz n aRn;; n 20Rn2; n 2 aRnH n zaR“IZ n] .
oa oa oa oa oa oa oa oa
B.2. Components for the adjoint problem
Eq. (28),5 can be modified as follows:
ofp ot T ey nll oR orh
O b hy, o —2 — P loevn? _ /2 2 (yy+rh) + R,
dyP m QyP n dyP 3\ oyp ayP
0 Tdevn = 6(1"
+x, o — — -’ p.f,— =0, (72)
" " ayp ”Tdev,n” P 0}/]3
5y or M7 gev.nll — 9 T ow
- fal e — g i (1®@1- - —"_ ) =0 withh, = —
on M oon me om " ’"( ® om || Tgeyull " ox
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Then, from Egs. (43) and (72), the following relationships hold:

8
0R,,p,,, _ (3115 K _ Om,
on = Kmra gy FKowma Gy
oRS on? on
”’nznﬂpn® Vln+ ==,
oh A L PT
where
‘)Rip,n 01, oR5 , - o or,
oh ~ moyr’  oh ~  Mmon’

Accordingly, d,4, and 9, x, are calculated from

- g
9¢, _ nadjoint—l aR&Jl
oh  localn T op
where
% T
96, _ [0_115 0myy, Omyp, Omss, Oy, 0T, a”lz,n]
oOh oh oh oh oh oh oh oh
ORG, [0R%,  oRE . oRL., ORE RS RS IRE
— = [ nP.n TN oM 733,01 T3 LIELL S
oh oh oh oh oh oh oh oh
and
[ ]Cvp.n K:’lpﬂllv” ]C’?pﬂzzﬂ ]Cﬂpﬂssq" 21C'1P7r23s" 216'1"”1&"
K””np’n K”]l”]l’" K”II”ZZJ’ K”ll”33’" ZK”]]”B»" ZK”II”IB’"
adjoint K’[ZZ'IPW” K:”ZZ”] 1" K:”ZZ”ZZ n K”ZZ”}} SN 2K”22”23 Sn 2K”22”l3~"
localn — Ic’fzwpﬂ ’C”33”11’" IC”33”22," ]C”33”33," Zlc’fz,%”zzv” 21C”33”13=“
K:”23'7p~” 2K”ZZ&”II'” 2K”237[22'n 2K”23”33*” 4K”23”23v" 4‘ICJTZS”IS’"
”l3’lps” T37ppsn 2K”13”22’n T3733,1 1372351 T3713,n
L 21C”12'lpv" 2K”lZ”]lvn 2K”l2”221n ZK”Q”}BJ’ 4K”]2”23v" 4’K”]Z”l}v"
Thus, dy 4} and dyx, in Eq. (42) are calculated from the following relationship:
0715 _ 0715 _r Om, _ on, T
OH oh "’ O0H oh "~
Meanwhile, from Eq. (43), the following relationship is written:
g
a7z'lp-" =K 'IE K . 01!.'"
Y = np;,p,na—ﬁ- +Kypan - B_ﬁ’
()Ri’,, 6775 n
— =Kppp—=+K,., " —
ap op T
where
g
OR o , Oa, oRS
— =P = =
ap ayP op
Thus, 05115 and 9d;x, are obtained as follows:
- g
0§n __ padjoint—1 R&s"
a_ﬂ_ ~ ™local,n ' aﬁ_ ’
where
z T
08, _[om  9miua  9mpn Oz, Oy, Om, 0”12,n]
ap af af ap ap af ap af
oRE g
En _|Rp, ORG . ORL,, ORL.,  ORG.,  ORG.,  OR; .,
dp op of of f of of op
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(a) Overview (There are 30000 integration points in the design domain, and only some of them
are plotted at equal intervals along the x- and y-axes. The red and blue colors mean that the
curves are drawn with fixed y and x coordinates, respectively.)
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Fig. 33. Comparison of analytical and approximated sensitivity for Example 1: Case h10?-sub.

B.3. Supplemental explanation for how to determine the penalty multipliers

Suppose m = 1 is given. Then, the penalty multiplier 6, is calculated as follows:

/DU 5py1dV

1
§ dV:/S—IdeV:;»S:
/DUDO,I - 15 k 1

1

1 k=1

[ 4V

When m = 2 is considered, the penalty multipliers §, and 6, are calculated as follows:

/D 50,0V = [y @20V f, () V] [Z;] ,
/DO 50020V = [Jp, @1dV [y (1= 1) aV] [Z;]

=[]

[ /Do w,dV

/DU (—wy)dvV
Jo, @AV [p, (1-w)dv

Il

fvo §p.1dV
/Do §py2dV|
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Fig. 36. Oscillation factor versus design iteration for Example 2: Sections 4.2.2~4.2.4; see Eq. (54).
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Fig. 37. Distributions of design variables for Example 2: One-material TO. Only half of each specimen is displayed.

42



J. Han et al. Computer Methods in Applied Mechanics and Engineering 442 (2025) 118038

0.0 0.2 04 0.6 0.8 1.0
———— |

w, of Case 2-5 ; of Case 2-20 @, of Case 2-35 w; of Case 2-50
0.0 0.2 0.4 0.6 0.8 1.0

w, of Case 2-5 w, of Case 2-20 w, of Case 2-35 w, of Case 2-50

Fig. 38. Distributions of design variables for Example 2: Two-material TO. Only half of each specimen is displayed.
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Fig. 39. Distributions of design variables for Example 2: Three-material TO. Only half of each specimen is displayed.
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Fig. 40. Distributions of design variables for Example 2: Four-material TO. Only half of each specimen is displayed.

Also, if m = 3 is given, the penalty multipliers ,, 6,, and 6; are calculated as follows:

6,
/ 5p,1dV = ['/DO wy3dV -/Do (—wyw3) AV 0] 0,1,
D, o,
6,
/D 5py2dV = [fDO 03dV [} (~o 103 +03) AV [, (~w3) dV] 0>,
o 0,
6,
/D 5p,3dV = [/Do @ w,dV /Do (w0, + @y) dV /Do (—wy +1) dV] 0,1, (85)
0 93
W)Wy 3 (—a’lwzws) B
fpy —oERAV [, ——mdv 0 _
0, o ( @) ) ( ) /Do 5p,adV
WyW3 — O WD -, _
= 92 = fDn wlZZCO3 av fDn = [0} — av -/D() w2 > dv /DU SDO’de :
05 2 2 ; Jp, 5,34V
W Wy 3 (w2w3 - w1w2w3) (w3 - w2w3) Dy ~Pos
fDO a)—3dv fDO w, av ./DO w; av
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Based on these relationships, the following relationship is inductively obtained:

5p, AV
AO Dy,i

=/ 1= 6,) Ha)de+/ (6, - 05) Hwkdv+ /(,. 041) Ha)de
Do

inde =i 0

:

i =i
where
_[ 10 21 i~1,i-2 ii-1 i+1,i m-lm-2  _ mm-1
X,-—[;(i e X X e X X ]
T
9:[91 L 9m1 9m] ’
with 7 = [ L [aav - / I @av.
Dy @i k=j @ k=j—1

Accordingly, the penalty multipliers of multiple materials are obtained as

_ N 2,1 1!
0, x x 0...
1,0 2.1 32
92 12 /1/2 12 0...
_ 1,0 2,1 32 ii—1 i+1,i
0 (=] x X X X X 0...
9 1,0 2,1 3.2 ii—1 i+1,i m—1,m—2 m,m—1
m—1 ){m—l 'Ym—l ){m—l 'Ym 1 ){m 1 'Ym—l m—1
2] 1,0 2,1 32 ii—1 i+1,i m—1,m-2 m,m—1
- Tm 71m Xm Am Xm Xm Xm Am

[ fvo 5py1dV ]

Jp, $D4.m1dV

L /Do EDO,de ]

H wde>

m
=0 / a)dV / codV +6‘2 w, dV — /
]<D0 tklk DU/H/k DO zﬂk Dow’k

/DO 5p,2dV

/DO 5p,.dV
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(86)

(87)

(88)

It is noted that the original penalty multipliers in Eq. (88) are multiplied by exponential functions for imposing the volume
constraints effectively. Thus, in the main part of this paper, 6 in Eq. (88) is written by 0.

Similarly, the normalization factor Cp, ; is calculated by

- 1 .
CDO,I
1 M.10 2,1
C 0 x 0...
Do:2 10 2,1 32
e X 4
1 10 2,1 32 ii—1 i+1
— B s ¥ ii— i+1,i
Cp,i |74 X Ai Ai i 0...
) 1,0 2,1 3,2 ii—1 i+1,i m—1,m-2
1 ){mfl /mel ){mfl /mel ){mfl /mel
C 1,0 2,1 32 ii—1 i+1,i m—1,m-2
Do.mfl »Xm Xm Zm )(m m Xm
1
L CDO’m J

m,m—1
m—1
mm—1
m

fDO |§DO,2|dv
‘/DO |§D0,i|dv

I, 15Dym-11dV

—1r _ ~
I, l5pya1dV

L /DO |§D0,m|dv ]

(89)

It is noted other normalization factors CBDN 1.5 and CaDu 1.5 can be calculated by a similar manner as in Eq. (89). Since the sensitivity
on the Neumann and Dirichlet boundaries eventually vanishes in numerical examples, corresponding manipulations are omitted in

this study.

Appendix C. Supplemental information for the numerical examples
See Figs. 33-40.
Data availability

Data will be made available on request.
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