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 A B S T R A C T

This study is dedicated to the multi-material topology optimization formulation (MMTO) for 
finite strain nonlocal elastoplasticity. The subloading surface model is newly incorporated 
into the primal problem to achieve the gradual change of the deformation process from pure 
elastic to material-specific plastic hardening. The stress–strain relationship of the model is a 
smooth continuous function, which is beneficial for elastoplastic topology optimization since the 
resulting continuous tangent is used in the adjoint problem to determine the sensitivity. Also, 
the nonlocal plastic modeling is introduced to resolve mesh-dependency issues in the evolution 
of plastic deformation.  In addition, in order to maintain computational stability and to avoid 
unrealistic plastic deformation occurring in voids (ersatz material), the concept of interpolating 
energy densities is introduced, by which linearly elastic material is chosen to represent voids. 
The continuous adjoint method is employed to derive the governing equations and sensitivity of 
the adjoint problem, and the resulting equations are valid at any position, boundary, or time in 
the continuum without relying on any discretization. An arbitrary number of design variables 
can be considered for multiple materials in the optimization problem, and by referring to the 
derived sensitivity, the multiple reaction–diffusion equations are solved to update the material 
distribution and configuration. The first numerical example demonstrates the ‘‘oscillation of 
deformation states’’ caused by the conventional plastic model and shows how the subloading 
surface model effectively resolves this issue, achieving stable optimization processes. Also, 
the second example presents the unconventional deformation magnitude-dependent stiffness 
maximization problems with multiple materials, in which the optimal designs are realized by 
referring to the same elastic but different plastic material properties. 

1. Introduction

Topology optimization [1] is a powerful computational method for designing structures and materials with desired performance. 
The core of topology optimization is an iterative process of determining the distribution and configuration of material within a 
given design domain to achieve the best possible performance according to the set design objectives. This methodology can be 
widely applied to various fields, including aerospace, automotive, civil engineering, and materials science. Topology optimization 
was originally studied to determine the optimal distribution and configuration of a single material, and this is called ‘‘single-material 
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topology optimization (SMTO)’’. However, the fact that many industries usually combine multiple materials to create structures has 
led to research in ‘‘multi-material topology optimization (MMTO)’’. The first idea about MMTO was from Bendsøe & Sigmund [2]. 
To date, the level-set-based and density-based methods are two widely known approaches.

Regarding the level-set-based method, the following studies are representative of MMTOs to address mechanical problems: Wang 
& Wang [3] proposed a level-set-based method for shape and topology optimization, in which the model eliminates the need for 
the material interpolation or phase mixing scheme and only requires 𝑚 level-set functions to represent a structure of 2𝑚 different 
materials. Wang et al. [4] presented a level-set-based method for topology and shape optimizations. In this method, there is only 
one material at each position, which does not allow two materials to overlap. Also, the sensitivity analysis is facilitated thanks to 
the explicit mathematical expression of the method. Liu et al. [5] developed an efficient MMTO strategy for seeking the optimal 
layout of structures considering the traction–separation relationship of the interface, for which the interface behavior is simulated 
by combining the extended finite element method and the cohesive zone model. Vogiatzis et al. [6] developed a level-set-based 
method for SMTO and MMTO to address the optimal design for materials with negative Poisson’s ratio, in which MMTO is simplified 
by making each individual material evolve with a single level-set function and reconciling the level-set field with the Merriman–
Bence–Osher operator. Ghasemi et al. [7] developed an MMTO framework for designing optimal multi-material-based flexoelectric 
composites, for which the multiphase vector level-set model is employed for satisfying multiple constraints and avoiding the overlap 
or vacuum among different phases. Gangl [8] proposed a level-set-based topology optimization algorithm for MMTO, in which 
the evolution of an optimization process for designing a structure constructed by multiple linear elastic materials is described by 
topological derivatives.

On the other hand, the following studies are relatively well-known among scholars as representatives of density-based MMTO: 
Zhou & Wang [9] proposed a phase-field method for MMTO, in which a Cahn–Hilliard type penalization function is inserted into 
the objective function to regularize the optimization problem and penalize material distribution. Hvejsel & Lund [10] presented 
two multi-material interpolation schemes as the direct generalizations of the Solid Isotropic Material with Penalization (SIMP) 
and Rational Approximation of Material Properties (RAMP) interpolation schemes, which rely on a large number of sparse linear 
constraints to enforce the selection of at most one material. Zuo & Saitou [11] proposed an ordered SIMP interpolation function 
for MMTO, by which one design variable can handle the interpolation of multiple material parameters so that the computational 
cost becomes independent of the number of materials under consideration. Lieu & Lee [12] presented a multi-resolution scheme 
for MMTO in the framework of isogeometric analysis, in which the high-resolution optimized design is realized by relying on the 
capability of the non-uniform rational B-spline basis functions. Gao et al. [13] proposed a multi-material isogeometric topology 
optimization method to address MMTO, in which the non-uniform rational B-splines basis functions are used to interpolate material 
properties, and the low complexity of numerical computations are achieved in MMTO. Liu et al. [14] presented a designable 
connective region method for creating connectable microstructures by considering repetitive unit cells and prescribed porosity, 
by which the connectivity between any two types of microstructures is naturally ensured. Xu et al. [15] employed the ordered 
SIMP method to address the stress-constrained MMTO, in which another ordered SIMP-like interpolation function is proposed to 
realize the relaxed and scaled stress interpolation. Han & Wei [16] developed an alternating active phase and objective algorithm 
for MMTO, by which the objective function is switched according to the active phases, and the proposed formulation resolves the 
convergence oscillation issue.

Many of the related studies to date, including those cited above, have mainly contributed to developing new and better 
methodologies/algorithms for MMTO. In other words, the motivation was to propose new and better MMTO frameworks, but it was 
not to tackle solving optimization problems while considering the advanced or complex primal problem. Thus, to the best of our 
knowledge, most of them simply assume linear elasticity for the material response, and the research primarily focused on material 
nonlinearity has not been the mainstream of MMTO development. However, considering the emergence of additive manufacturing 
and giga-casting for metallic materials, which have high affinities to MMTO, material nonlinearities, such as plastic material behavior 
with large deformation, can no longer be ignored. That is, there should be sufficient reason to study MMTO for elastoplastic 
materials. Unfortunately, however, even though elastoplastic topology optimization is one of the most intensively studied topics 
among researchers, to the best of our knowledge, it has yet to be enhanced in the direction of MMTO. As far as SMTO is concerned, 
numerous attempts have been made within the framework of small strain elastoplasticity, e.g., see Refs. [17–28]. However, as 
suggested above, since elastoplastic materials usually exhibit large deformation once plastic deformation occurs, the authors argue 
that kinematics should involve geometrical nonlinearity. From this perspective, Wallin et al. [29], Ivarsson et al. [30,31], Zhang & 
Khandelwal [32], Han et al. [33], and Kim et al. [34] developed finite strain SMTO for elastoplastic materials independently. It is 
worth mentioning that Han et al. [33] concisely review studies on elastoplastic topology optimization published up to that time. 
More recently, Han et al. [35] proposed a finite strain topology optimization formulation for nonlocal elastoplasticity to resolve 
mesh-dependency issues in the evolution of plastic deformation.

Meanwhile, it should be noted that all of the previous studies describe the elastoplastic material response by the ‘‘conventional 
plastic model’’. That is, the deformation process is completely divided into two states, i.e., the elastic and plastic deformation states, 
at the plastic yielding point (initial yield stress). Assuming elastoplastic materials with linear plastic hardening, the corresponding 
material Jacobians (elastic material Jacobian and elastoplastic material Jacobian) have different order values, and the stress–strain 
relationship around the plastic yield point is nonsmooth, leading to a discontinuous material Jacobian; see the black-colored lines 
in Fig.  1. This mathematical structure is extremely unpleasant from the viewpoint of the adjoint method, which uses local material 
Jacobians (at material point level) of the primal problem to determine the adjoint variables and sensitivities  for updating material 
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Fig. 1. Elastoplastic responses of conventional plastic model (Con.) and subloading surface model (Sub.).

distributions. More precisely, the material Jacobian in the elastic deformation state generally has a much larger value than that in 
the plastic deformation state, and the value may change dramatically around the plastic yield point. Thereby, the deformation state 
may be repeatedly changed in the optimization process at locations having strain rate around the plastic yield point, making the 
optimization process difficult to converge. This phenomenon was reported by Han et al. [35] and is again studied in Example 1 of this 
study. Although this problem can be alleviated by relaxing the convergence threshold or introducing another stabilization technique, 
one can also reconsider the elastoplastic constitutive law as a countermeasure. To this end, the subloading surface model [36–38] 
can be a promising candidate to replace the conventional plastic model as its material response is smooth as illustrated by the 
red-colored line in Fig.  1(a). This is because the subloading surface model has a transition range from the pure elastic deformation 
to the material-specific plastic hardening behavior, leading to the continuous transition from the elastic Jacobian to the elastoplastic 
Jacobian as shown by the red-colored line in Fig.  1(b). Hence, by enjoying the material response of the subloading surface model, 
the aforementioned oscillatory behavior is expected to be mitigated, which is beneficial to realize a stable or robust topology 
optimization process, as demonstrated in Example 1 of this study. It is also notable to note that the subloading surface model 
and the conventional plastic model have equivalent material response expressions, except for the difference in deformation state 
transitions.

With the above background, this study presents an MMTO framework for finite strain nonlocal elastoplasticity. As the primal 
problem to describe the material response, the subloading surface model is incorporated with the standard hyperelastic constitutive 
law. Also, following Han et al. [35], the nonlocal plastic modeling, say micromorphic regularization [39], is introduced to resolve 
mesh-dependency issues in the evolution of plastic deformation.  For the optimization problem, an arbitrary number of design 
variables is considered to address MMTO. Interpolation of material parameters between actual materials follows the conventional 
SIMP-based interpolation function, whereas the energy function interpolation [40,41] is adopted for interpolation between ersatz 
(voids) and actual materials. Assuming that the ersatz material (voids) is purely elastic, the presence of voids does not reduce the 
computational stability of the primal problem because it does not exhibit unrealistic plastic deformation. Meanwhile, the continuous 
adjoint method is employed to derive the governing equations of the adjoint problem, from which the same number of sensitivities 
as the design variables are obtained. In the end, the reaction–diffusion equation-based method [33,42,43] is enhanced to update 
multiple design variables simultaneously.

This paper is organized as follows: In Section 2, MMTO for finite strain nonlocal elastoplasticity is formulated. The first half of 
Section 3 presents the spatial and temporal discretizations applied to the governing equations of the primal and adjoint problems, 
and the second half describes the design variable update. In Section 4, two numerical examples are presented: the first example 
aims to demonstrate the capability of the subloading surface model in topology optimization, and the second one is dedicated to the 
demonstration of MMTO realized by referring to different degrees of plastic hardening behavior. Finally, in Section 5, the summary 
of this study is presented, and our future plans are briefly revealed.

2. Formulation

This section presents a formulation of multi-material topology optimization (MMTO) for finite strain nonlocal elastoplasticity. To 
summarize the underlying kinematics, a nomenclature is prepared in Table 1, which covers most variables, parameters, and symbols 
used in this study. In what follows, the governing equations of the primal problem are derived first and subsequently modified for 
stable MMTO by employing the idea of the interpolation scheme for fictitious domain [40,41]. Then, the governing equations of the 
adjoint problem and the resulting sensitivity for MMTO are derived based on the continuous adjoint method. It is worth mentioning 
3 
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Table 1
Nomenclature.
 Name Letter Description  
 Real coordinate space R𝑛 𝑛 = 2, 3  
 Actual time for primal and adjoint problems  𝑡 ∈  = [0, 𝑇 ]  
 Pseudo time for optimization ̃ 𝑡 ∈ ̃ =

[

0, 𝑇̃
]  

 Initial configuration of a continuum body 0 0 ⊂ R𝑛  
 Initial boundary 𝜕0 𝜕0 ⊂ R𝑛−1  
 Initial Neumann and Dirichlet boundaries 𝜕𝑁

0  and 𝜕𝐷
0 𝜕𝑁

0 ∪ 𝜕𝐷
0 = 𝜕0, 𝜕𝑁

0 ∩ 𝜕𝐷
0 = ∅  

 Points at the initial configuration 𝑿 𝑿 ∈ 0  
 Current configuration of a continuum body 𝑡 𝑡 ⊂ R𝑛  
 Current boundary 𝜕𝑡 𝜕𝑡 ⊂ R𝑛−1  
 Current Neumann and Dirichlet boundaries 𝜕𝑁

𝑡  and 𝜕𝐷
𝑡 𝜕𝑁

𝑡 ∪ 𝜕𝐷
𝑡 = 𝜕𝑡, 𝜕𝑁

𝑡 ∩ 𝜕𝐷
𝑡 = ∅  

 Points at the current configuration 𝒙 𝒙 ∈ 𝑡  
 Displacement vector 𝒖 𝒖 = 𝒙 −𝑿  
 Deformation gradient tensor 𝑭 𝑭 = 𝜕𝒙∕𝜕𝑿  
 Elastic and plastic deformation gradient tensors 𝑭 e and 𝑭 p det

[

𝑭 e] = det [𝑭 ] = 𝐽 e, det [𝑭 p] = 1  
 Elastic left Cauchy–Green tensor 𝒃e 𝒃e = 𝑭 e ⋅ 𝑭 eT  
 Rate of deformation tensor 𝒅 𝒅 = sym[𝑭̇ ⋅ 𝑭 −1]  
 Rate of plastic deformation tensor 𝒅p 𝒅p = 𝑭 e ⋅ sym[𝑭̇ p

⋅ 𝑭 p−1] ⋅ 𝑭 e−1  
 Local and nonlocal plastic hardening variables 𝛼 and 𝛼̄ 𝛼 is known as ‘‘accumulated plastic strain’’. 
 Elastic strain energy density 𝛹 e 𝛹 e (𝒃e

)  
 Plastic strain energy density 𝛹 p 𝛹 p (𝛼)  
 Micromorphic regularization energy density 𝛹m 𝛹m (𝛼, 𝛼̄,∇𝛼̄)  
 Kirchhoff stress tensor (or plastic force) 𝝉 𝝉 = 2𝜕𝒃e𝛹 e ⋅ 𝒃e  
 First Piola–Kirchhoff stress tensor 𝑷 𝜕𝑭𝛹 e, 𝑷 = 𝝉 ⋅ 𝑭 −T  
 Plastic hardening force (or resistant force) 𝑟p 𝑟p = 𝜕𝛼𝛹 p + 𝜕𝛼𝛹m  
 Body force vector 𝑩 w.r.t. initial configuration  
 Traction force vector 𝑻 𝑻 = 𝑷 ⋅𝑵  
 Prescribed traction force vector 𝑻̄ w.r.t. initial configuration  
 Prescribed displacement vector 𝒖̄ w.r.t. initial configuration  
 Outward unit normal vector 𝑵 w.r.t. initial configuration  
 Yield functions 𝛷p

sub. and 𝛷p
ela. –  

 Plastic multiplier 𝛾p 𝛾̇p ≥ 0  
 Flow tensor n n = nT  
 Normal-yield ratio 𝑅 0 ≤ 𝑅 ≤ 1  
 Normal-yield threshold and saturation parameter 𝑅e and 𝑅p –  
 Bulk and shear moduli 𝜅 and 𝜇 𝜅 = 𝐸∕ {3 (1 − 2𝜈)}  
 Young’s modulus and Poisson’s ratio 𝐸 and 𝜈 𝜇 = 𝐸∕ {2 (1 + 𝜈)}  
 Plastic hardening parameters 𝑦0, ℎ, 𝑦∞, and 𝑠y –  
 Penalty and diffusion parameters for regularization 𝑝p and 𝑞p –  
 Initial design domain 0 0 ⊂ R𝑛  
 Initial design boundary 𝜕0 𝜕0 ⊂ R𝑛−1  
 Initial Neumann design boundary 𝜕𝑁

0 𝜕𝑁
0 ∪ 𝜕𝐷

0 = 𝜕0  
 Initial Dirichlet design boundary 𝜕𝐷

0 𝜕𝑁
0 ∩ 𝜕𝐷

0 = ∅  
 Design variable 𝜔𝑖 𝑖 = 1,… , 𝑚  
 Objective function and objective density functions  and 𝑓0

&𝑓𝜕0
–  

 Adjoint displacement vector 𝒘 –  
 Adjoint plastic multiplier 𝜂p –  
 Adjoint flow tensor 𝝅 –  
 Adjoint nonlocal hardening variable 𝛽 –  
 Adjoint deformation gradient tensor 𝑯 𝑯 = 𝜕𝒘∕𝜕𝑿  
 Sensitivity 𝑠0 ,𝑖, 𝑠𝜕𝑁

0 ,𝑖, and 𝑠𝜕𝐷
0 ,𝑖

𝑖 = 1,… , 𝑚  

that although the elastoplastic formulation is mostly based on the conventional elastoplastic theory [44,45], the subloading surface 
theory [36,37] (or the normal-yield ratio) is newly employed to stably treat elastoplastic material response during the optimization 
process. Also, multiple design variables are defined to realize MMTO, each of which is updated by referring to the corresponding 
sensitivity by the reaction–diffusion equation.

2.1. Primal problem

In order to describe the nonlocal elastoplastic response in the primal problem, the subloading surface theory is employed in this 
study. It is worth mentioning that this theory has a long history and has been enhanced to fit various application targets, such as 
Hashiguchi [36] and Toluei & Kharazi [46,47] for isotropic/anisotropic plastic materials, Darabi et al. [48] for viscoplastic materials, 
Zhang et al. [49] for thermo-elastoplastic materials, Sun & Zhou [50] for multisurface elastoplastic materials, Asaoka et al. [51], 
Nakai & Hinokio [52], Hashiguchi et al. [53], and Yamakawa et al. [54] for soils, Hashiguchi et al. [55] for glassy materials, 
4 
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Lai et al. [56] for damage evolutions, Hashiguchi & Ozaki [57] for friction problems, and so on.  Since hundreds studies have 
been reported, readers can refer to Hashiguchi [36] and Hashiguchi & Yamakawa [37] for theoretical development and Hashiguchi 
et al. [38,58] for a comprehensive review.

First, the following energy density function corresponding to the elastoplastic material behavior represented by the subloading 
surface model is defined: 

𝛹 act = 𝛹 e (𝒃e
)

+ 𝛹 p (𝛼) + 𝛹m (𝛼, 𝛼̄,∇𝛼̄) , (1)

where 𝛹 e, 𝛹 p, and 𝛹m denote the elastic strain energy density, plastic strain energy (or plastic hardening energy) density, and 
micromorphic regularization energy density, respectively. Although any material constitutive laws are possible, the following 
Neo-Hookean material model and Voce hardening law are chosen to represent the elastic and plastic responses in this study: 

𝛹 e (𝒃e
)

= 𝜅
2

(

𝐽 e2 − 1
2

− ln 𝐽 e
)

+
𝜇
2
(

𝐽 e−2∕3tr
[

𝒃e
]

− 3
)

(2)

and 
𝛹 p (𝛼) = ∫

𝛼

0

(

ℎ𝛼̃ +
(

𝑦∞ − 𝑦0
) (

1 − exp
(

−𝑠y𝛼̃
)))

d𝛼̃. (3)

Also, referring to Forest [39] and Han et al. [59], the second-order regularization functional for plasticity is adopted: 

𝛹m (𝛼, 𝛼̄,∇𝛼̄) = 1
2
𝑝p (𝛼 − 𝛼̄)2 + 1

2
𝑞p∇𝛼̄ ⋅ ∇𝛼̄. (4)

It is noted that although the original subloading surface model is the so-called ‘‘local approach’’, in which the plastic evolution 
is solved at integration points, the micromorphic regularization [39] has been adopted to extend the model to be a ‘‘nonlocal 
approach’’. This extension can resolve the mesh-dependency issue of plasticity and has been demonstrated by Han et al. [35] for 
the single-material topology optimization (SMTO) of standard elastoplastic materials. Roughly speaking, the procedure to introduce 
micromorphic regularization into the subloading surface model is the same as the procedure for a standard elastoplastic model. 
Thus, readers can also refer to Han et al. [35] for details.

Next, to represent the elastoplastic response in terms of the subloading surface theory, the following yield functions and evolution 
laws of plasticity are postulated: 

𝛷p
sub. = ‖𝝉dev‖ − 𝑅

√

2
3
(

𝑦0 + 𝑟p
)

, 𝛷p
ela. = ‖𝝉dev‖ − 𝑅e

√

2
3
(

𝑦0 + 𝑟p
)

, (5)

and 

𝒅p = 𝛾p
𝝉dev

‖𝝉dev‖
, 𝛼̇ =

√

2
3
𝛾p. (6)

Notably, the plastic incompressibility (or the isochoric plastic flow) is ensured, i.e., det [𝑭 p] = 1. Also, the subloading surface model 
has four deformation states, i.e., elastic loading, plastic loading, elastic unloading, and plastic reloading, which can be determined 
algorithmically. Notably, because of this algorithmic treatment, the Karush–Kuhn–Tucker conditions (loading/unloading conditions) 
are not needed here. The method of determining deformation states is explained in detail in Section 3.1. Also, the subloading surface 
theory follows the associated flow rule, while the evolution law of plastic hardening variable in Eq. (6)2 is postulated independent 
of the yield criterion. In this sense, the isotropic hardening law is considered non-associative.

In the end, after some manipulation [33,35], four governing equations of the primal problem are obtained as follows: 
∇ ⋅ 𝑷 + 𝑩 = 𝟎 in 0, 𝑷 ⋅𝑵 = 𝑻̄ on 𝜕𝑁

0 , 𝒖 = 𝒖̄ on 𝜕𝐷
0

‖𝝉dev‖ − 𝑅
√

2
3
(

𝑦0 + 𝑟p
)

= 0 in 0

n −
𝝉dev

‖𝝉dev‖
= 𝟎 in 0

𝑝p (𝛼̄ − 𝛼) − 𝑞p∇2𝛼̄ = 0 in 0, 𝑞p∇𝛼̄ ⋅𝑵 = 0 on 𝜕0

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

∀𝑡. (7)

Notably, under the elastic loading/unloading states, Eq. (7)2,3 are not solved.

2.2. Modification by interpolation scheme for fictitious domain

To describe the MMTO for 𝑚+1 materials, 𝑚 scalar-valued design variables 𝜔𝑖 (𝑿) ∈ [0, 1] with 𝑖 = 1, 2,… , 𝑚−1, 𝑚 are introduced. 
Then, one of the straightforward strategies for determining material properties in MMTOs is using the following SIMP-based 
interpolation function: 

∙1,2,…,𝑚,𝑚+1 = 𝜔𝑝
𝑚∙1,2,…,𝑚−1,𝑚 +

(

1 − 𝜔𝑝
𝑚
)

∙𝑚+1
= 𝜔𝑝

𝑚
(

𝜔𝑝
𝑚−1∙1,2,…,𝑚−2,𝑚−1 +

(

1 − 𝜔𝑝
𝑚−1

)

∙𝑚
)

+
(

1 − 𝜔𝑝
𝑚
)

∙𝑚+1
= 𝜔𝑝

𝑚𝜔
𝑝
𝑚−1

(

𝜔𝑝
𝑚−2∙1,2,…,𝑚−3,𝑚−2 +

(

1 − 𝜔𝑝
𝑚−2

)

∙𝑚−1
)

+ 𝜔𝑝
𝑚
(

1 − 𝜔𝑝
𝑚−1

)

∙𝑚 +
(

1 − 𝜔𝑝
𝑚
)

∙𝑚+1
= ⋯

=

( 𝑚
∏

𝜔𝑝
𝑗

)

∙1 +
𝑚
∑

( 𝑚
∏

𝜔𝑝
𝑘

)

(

1 − 𝜔𝑝
𝑗−1

)

∙𝑗 +
(

1 − 𝜔𝑝
𝑚
)

∙𝑚+1,

(8)
𝑗=1 𝑗=2 𝑘=𝑗

5 
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where ∙1,2,…,𝑚,𝑚+1 denotes the resulting material constant interpolated by 𝑚+ 1 base materials, and ∙1, ∙𝑗 , and ∙𝑚+1 are the 1-st, 𝑗th, 
and 𝑚+1-th base material constants, respectively. Readers can also refer to Appendix  A.1 for some example cases of Eq. (9). However, 
when the primal problem is formulated within the finite strain framework, and when the voids (fictitious domain) are assumed to 
be one of the base materials, the appearance of voids (fictitious domains) significantly reduces the computational stability of the 
global Newton–Raphson computation. This is mainly because the Young’s modulus of the fictitious domains is set much smaller 
than those of the domains filled with actual materials. Also, the fictitious domain may exhibit unrealistic plastic deformation that 
is unpleasant in terms of both physical and numerical aspects. Accordingly, the mesh distortion or displacement oscillation is easily 
caused by the bad condition number of the global tangent matrix.

In this study, the primal problem is modified by introducing the interpolation scheme for fictitious domain [40,41] to maintain 
computational stability. Specifically, the 1-st∼𝑚-th materials follow the SIMP-based interpolation function in Eq. (9), i.e., 

∙1,2,…,𝑚 =

(𝑚−1
∏

𝑗=1
𝜔𝑝
𝑗

)

∙1 +
𝑚−1
∑

𝑗=2

(𝑚−1
∏

𝑘=𝑗
𝜔𝑝
𝑘

)

(

1 − 𝜔𝑝
𝑗−1

)

∙𝑗 +
(

1 − 𝜔𝑝
𝑚−1

)

∙𝑚. (9)

Then, assuming that the void corresponds to the 𝑚 + 1-th material, the energy density functional of the actual material 𝛹 act and 
a fictitious energy density functional representing the void 𝛹 f ic are interpolated by the ‘‘last’’ design variable 𝜔𝑚 to determine the 
resulting energy density functional 𝛹 as follows: 

𝛹 = 𝜔𝑝
𝑚𝛹

act +
(

1 − 𝜔𝑝
𝑚
)

𝛹 f ic = 𝜔𝑝
𝑚
(

𝛹 e + 𝛹 p + 𝛹m)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
See Eqs. (2)∼(4)

+
(

1 − 𝜔𝑝
𝑚
)

𝛹 f ic. (10)

Notably, all material parameters of the 1-st∼𝑚-th materials, i.e., 𝐸, 𝜈, 𝑦0, ℎ, 𝑦∞, 𝑠y, 𝑝p, 𝑞p, 𝑅e, and 𝑅p, follow the interpolation rule 
in Eq. (9). Also, 𝛹 f ic is supposed to take the linearly elastic component only as follows: 

𝛹 f ic (𝜺) = 1
2
𝜅𝑚tr [𝜺]2 + 𝜇𝑚𝜺dev ∶ 𝜺dev with 𝜺 = 𝑭 + 𝑭 T

2
− 𝟏, (11)

in which 𝜅𝑚 and 𝜇𝑚 are the bulk and shear moduli of the fictitious domain, respectively, and 𝜺 denotes the small strain tensor. It is 
worth mentioning that because the linearly elastic material is assumed for fictitious domains, the problem of reduced computational 
stability pointed out above can be alleviated.

Reflecting the modified energy density function in Eq. (10) to the primal problem, the governing equations are rewritten as 

∇ ⋅
(

𝜔𝑝
𝑚𝑷 +

(

1 − 𝜔𝑝
𝑚
)

𝝈f) + 𝜔𝑝
𝑚𝑩 = 𝟎 in 0,

(

𝜔𝑝
𝑚𝑷 +

(

1 − 𝜔𝑝
𝑚
)

𝝈f) ⋅𝑵 = 𝑻̄ on 𝜕𝑁
0 , 𝒖 = 𝒖̄ on 𝜕𝐷

0

𝜔𝑝
𝑚

(

‖𝝉dev‖ − 𝑅
√

2
3
(

𝑦0 + 𝑟p
)

)

= 0 in 0

𝜔𝑝
𝑚

(

n −
𝝉dev

‖𝝉dev‖

)

= 𝟎 in 0

𝜔𝑝
𝑚
(

𝑝p (𝛼̄ − 𝛼) − 𝑞p∇2𝛼̄
)

= 0 in 0, 𝜔𝑝
𝑚𝑞p∇𝛼̄ ⋅𝑵 = 0 on 𝜕0

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

∀𝑡, (12)

where 𝝈f = 𝜕𝑭𝛹 f ic = 𝜅𝑚tr [𝜺] 𝟏 + 2𝜇𝑚𝜺dev denotes the fictitious stress tensor. Here, recalling the fact that the body force cannot be 
defined in the fictitious domain, the following relationship has been adopted in Eq. (12): 

𝑩1,2,…,𝑚,𝑚+1 = 𝜔𝑝
𝑚 𝑩1,2,…,𝑚
⏟⏞⏟⏞⏟

=∶𝑩

+
(

1 − 𝜔𝑝
𝑚
)

𝑩𝑚+1
⏟⏟⏟

=𝟎

= 𝜔𝑝
𝑚𝑩. (13)

Also, the traction force 𝑻  on the Dirichlet boundary is rewritten as 
𝑻 =

(

𝜔𝑝
𝑚𝑷 +

(

1 − 𝜔𝑝
𝑚
)

𝝈f) ⋅𝑵 . (14)

It is worth noting that in the fictitious domain (𝜔𝑚 = 0), the above setup results in the following governing equations of the linear 
elasticity problem: 

∇ ⋅ 𝝈f = 𝟎 in 0, 𝝈f ⋅𝑵 = 𝑻̄ on 𝜕𝑁
0 , 𝒖 = 𝒖̄ on 𝜕𝐷

0 ∀𝑡. (15)

2.3. Optimization problem

Taking the design variables {𝜔1, 𝜔2,… , 𝜔𝑚−1, 𝜔𝑚
} into account, the following objective function  is defined for arbitrary design 

objectives to realize: 

(

𝜔1, 𝜔2,… , 𝜔𝑚−1, 𝜔𝑚
)

= ∫𝑡

[

∫0

𝑓0

(

𝒖,𝑭 , 𝛾p,n, 𝛼̄,∇𝛼̄, 𝜔1,… , 𝜔𝑚
)

dV + ∫𝜕0

𝑓𝜕0

(

𝒖,𝑻 , 𝛼̄, 𝜔1,… , 𝜔𝑚
)

dA
]

dt,
(16)

where 𝑓0
 and 𝑓𝜕0

 denote the objective density functions inside the body and on the surface, respectively. To avoid losing the 
generality of the optimization problem as much as possible, 𝑓  and 𝑓  are written in abstract forms and assumed to accommodate 
0 𝜕0

6 
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Fig. 2. Relationship between three design variables and four material placements. (𝑚 = 3).

multiple objectives. Also, it is worth mentioning that 𝑓𝜕0
 does not rely on ∇𝛼̄ since the Dirichlet boundary is not defined for the 

micromorphic plastic field. Then, the optimization problem is defined as follows: 
Maximize

∀𝜔1 ,𝜔2 ,…,𝜔𝑚−1 ,𝜔𝑚∈0

(

𝜔1, 𝜔2,… , 𝜔𝑚−1, 𝜔𝑚
)

subject to Eq. (12) and 𝑉1 ≤ 0, 𝑉2 ≤ 0,. . . , 𝑉𝑚−1 ≤ 0, and 𝑉𝑚 ≤ 0,
(17)

in which the plastic deformation state (plastic loading/reloading states) is assumed. Here, 𝑉1 ≤ 0, 𝑉2 ≤ 0,. . . , 𝑉𝑚−1 ≤ 0, and 𝑉𝑚 ≤ 0
are the volume constraints, and the left-hand side of each inequality is defined as 

𝑉𝑖 = 𝑉𝑖 − 𝑉𝑖,max, (𝑖 = 1, 2,… , 𝑚 − 1, 𝑚), (18)

where 𝑉𝑖 and 𝑉𝑖,max denote the actual volume and allowable volume of the 𝑖th material, respectively, and 0 is the design domain. 
It is worth mentioning that the actual volume of 𝑖th material is calculated by 

𝑉𝑖 = ∫0

( 𝑚
∏

𝑘=𝑖
𝜔𝑘 −

𝑚
∏

𝑘=𝑖−1
𝜔𝑘

)

dV (19)

when the SIMP-based interpolation function in Eq. (9) is used for interpolating material parameters; see Fig.  2 for better 
understanding. An additional explanation is prepared in Appendix  A.2. Also, the algorithmic treatment for volume constraints will 
be explained in Section 3.3.

2.4. Adjoint problem

Recalling the method of Lagrange multipliers (or adjoint method), the optimization problem in Eq. (17) can be rewritten by an 
equivalent form (Lagrangian) as follows: 

̃ = ∫𝑡

[

∫0

𝑓0
dV + ∫𝜕0

𝑓𝜕0
dA

+∫0

𝑯 ∶
(

𝜔𝑝
𝑚𝑷 +

(

1 − 𝜔𝑝
𝑚
)

𝝈f)dV − ∫0

𝒘 ⋅ 𝜔𝑝
𝑚𝑩dV − ∫𝜕𝑁

0

𝒘 ⋅ 𝑻̄ dA − ∫𝜕𝐷
0

𝒘 ⋅ 𝑻 dA

−∫0

𝜂p
(

𝜔𝑝
𝑚

(

‖𝝉dev‖ − 𝑅
√

2
3
(

𝑦0 + 𝑟p
)

))

dV − ∫0

𝝅 ∶
(

𝜔𝑝
𝑚

(

n −
𝝉dev

‖𝝉dev‖

))

dV

+∫0

(

𝜔𝑝
𝑚
(

𝑝p𝛽 (𝛼̄ − 𝛼) + 𝑞p∇𝛽 ⋅ ∇𝛼̄
))

dV
]

dt − 𝜽 ⋅ 𝑽̄ ,

(20)

in which four adjoint variables, 𝒘, 𝜂p, 𝝅, and 𝛽 have been introduced, and 𝑯 ∶= ∇𝒘 denotes the adjoint deformation gradient 
tensor. Also, 𝑽̄ =

[

𝑉1, 𝑉2,… , 𝑉𝑚−1, 𝑉𝑚
] is an array of Eq. (19), and 𝜽 =

[

𝜃1, 𝜃2,… , 𝜃𝑚−1, 𝜃𝑚
] is the array of the corresponding penalty 

parameters, for which the following manipulation is possible: 

𝜽 ⋅ 𝑽̄ =
𝑚
∑

𝑙=1
𝜃𝑙𝑉𝑙 =

𝑚
∑

𝑙=1
𝜃𝑙𝑉𝑙 −

𝑚
∑

𝑙=1
𝜃𝑙𝑉𝑙,max =

𝑚
∑

𝑙=1
𝜃𝑙 ∫0

( 𝑚
∏

𝑘=𝑙
𝜔𝑘 −

𝑚
∏

𝑘=𝑙−1
𝜔𝑘

)

dV −
𝑚
∑

𝑙=1
𝜃𝑙𝑉𝑙,max. (21)

Subsequently, the first variation of the Lagrangian in Eq. (20) yields 

𝛿̃ =

( 𝑚
∑

𝛿𝜔𝑖
̃

)

+
(

𝛿𝒖̃ + 𝛿𝛾p ̃ + 𝛿n̃ + 𝛿𝛼̄̃
)

. (22)

𝑖=1

7 
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Here, the four components in the second bracket are written as, respectively, 

𝛿𝒖̃ = ∫𝑡

[

∫0

( 𝜕𝑓0

𝜕𝒖
⋅ 𝛿𝒖 +

𝜕𝑓0

𝜕𝑭
∶ 𝛿𝑭

)

dV + ∫𝜕𝑁
0

𝜕𝑓𝜕𝑁
0

𝜕𝒖
⋅ 𝛿𝒖dA + ∫𝜕𝐷

0

𝜕𝑓𝜕𝐷
0

𝜕𝑻
⋅ 𝛿𝑻 dA

+∫0

𝑯 ∶
(

𝜔𝑝
𝑚
𝜕𝑷
𝜕𝑭

+
(

1 − 𝜔𝑝
𝑚
) 𝜕𝝈f

𝜕𝑭

)

∶ 𝛿𝑭dV − ∫𝜕𝐷
0

𝒘 ⋅ 𝛿𝑻 dA

−∫0

𝜂p𝜔𝑝
𝑚
𝜕‖𝝉dev‖
𝜕𝑭

∶ 𝛿𝑭dV + ∫0

𝝅 ∶ 𝜔𝑝
𝑚

𝜕
𝜕𝑭

𝝉dev
‖𝝉dev‖

∶ 𝛿𝑭dV
]

dt,

(23)

𝛿𝛾p ̃ = ∫𝑡

[

∫0

𝜕𝑓0

𝜕𝛾p
𝛿𝛾pdV + ∫0

𝑯 ∶ 𝜔𝑝
𝑚
𝜕𝑷
𝜕𝛾p

𝛿𝛾pdV

−∫0

𝜂p𝜔𝑝
𝑚

(

𝜕‖𝝉dev‖
𝜕𝛾p

−
√

2
3

(

𝜕𝑅
𝜕𝛾p

(

𝑦0 + 𝑟p
)

+ 𝑅 𝜕𝑟p

𝜕𝛾p

)

)

𝛿𝛾pdV

+∫0

𝝅 ∶ 𝜔𝑝
𝑚

𝜕
𝜕𝛾p

𝝉dev
‖𝝉dev‖

𝛿𝛾pdV − ∫0

𝜔𝑝
𝑚𝑝p𝛽

𝜕𝛼
𝜕𝛾p

𝛿𝛾pdV
]

dt,

(24)

𝛿n̃ = ∫𝑡

[

∫0

𝜕𝑓0

𝜕n
∶ 𝛿ndV + ∫0

𝑯 ∶ 𝜔𝑝
𝑚
𝜕𝑷
𝜕n

∶ 𝛿ndV

−∫0

𝜂p𝜔𝑝
𝑚
𝜕‖𝝉dev‖

𝜕n
∶ 𝛿ndV − ∫0

𝝅 ∶ 𝜔𝑝
𝑚

(

𝟏 ⊗ 𝟏 − 𝜕
𝜕n

𝝉dev
‖𝝉dev‖

)

∶ 𝛿ndV
]

dt,
(25)

and 

𝛿𝛼̄̃ = ∫𝑡

[

∫0

( 𝜕𝑓0

𝜕𝛼̄
𝛿𝛼̄ +

𝜕𝑓0

𝜕∇𝛼̄
⋅ ∇𝛿𝛼̄

)

dV + ∫𝜕𝑁
0

𝜕𝑓𝜕𝑁
0

𝜕𝛼̄
𝛿𝛼̄dA + ∫𝜕𝐷

0

𝜕𝑓𝜕𝐷
0

𝜕𝛼̄
𝛿𝛼̄dA

−∫𝜕𝐷
0

𝒘 ⋅
𝜕𝑻
𝜕𝛼̄

𝛿𝛼̄dA + ∫0

𝜂p𝜔𝑝
𝑚𝑅

√

2
3
𝜕𝑟p

𝜕𝛼̄
𝛿𝛼̄dV + ∫0

𝜔𝑝
𝑚
(

𝑝p𝛽𝛿𝛼̄ + 𝑞p∇𝛽 ⋅ ∇𝛿𝛼̄
)

dV
]

dt,
(26)

in which the following relationship has been adopted for the sake of strict representation: 

∫𝜕0

𝑓𝜕0
dA = ∫𝜕𝑁

0

𝑓𝜕𝑁
0
dA + ∫𝜕𝐷

0

𝑓𝜕𝐷
0
dA. (27)

Here, ⊗  in Eq. (25) denotes the dyadic-up product operator, i.e., 
(

𝟏 ⊗ 𝟏
)

𝑖𝑗𝑘𝑙
= 𝛿𝑖𝑘𝛿𝑗𝑙. Accordingly, the governing equations of the 

adjoint problem are obtained by forcing 𝛿𝒖̃ , 𝛿𝛾p ̃ , 𝛿n̃ , and 𝛿𝛼̄̃ to be zero as follows: 
𝜕𝑓0

𝜕𝒖
− ∇ ⋅

( 𝜕𝑓0

𝜕𝑭
+𝑯 ∶

(

𝜔𝑝
𝑚
𝜕𝑷
𝜕𝑭

+
(

1 − 𝜔𝑝
𝑚
) 𝜕𝝈f

𝜕𝑭

)

−𝜂p𝜔𝑝
𝑚
𝜕‖𝝉dev‖
𝜕𝑭

+ 𝝅 ∶ 𝜔𝑝
𝑚

𝜕
𝜕𝑭

𝝉dev
‖𝝉dev‖

)

= 𝟎 in 0

𝜕𝑓𝜕𝑁
0

𝜕𝒖
+
( 𝜕𝑓0

𝜕𝑭
+𝑯 ∶

(

𝜔𝑝
𝑚
𝜕𝑷
𝜕𝑭

+
(

1 − 𝜔𝑝
𝑚
) 𝜕𝝈f

𝜕𝑭

)

−𝜂p𝜔𝑝
𝑚
𝜕‖𝝉dev‖
𝜕𝑭

+ 𝝅 ∶ 𝜔𝑝
𝑚

𝜕
𝜕𝑭

𝝉dev
‖𝝉dev‖

)

⋅𝑵 = 𝟎 on 𝜕𝑁
0

𝜕𝑓𝜕𝐷
0

𝜕𝑻
−𝒘 = 𝟎 on 𝜕𝐷

0

𝜕𝑓0

𝜕𝛾p
+𝑯 ∶ 𝜔𝑝

𝑚
𝜕𝑷
𝜕𝛾p

− 𝜂p𝜔𝑝
𝑚

(

𝜕‖𝝉dev‖
𝜕𝛾p

−
√

2
3

(

𝜕𝑅
𝜕𝛾p

(

𝑦0 + 𝑟p
)

+ 𝑅 𝜕𝑟p

𝜕𝛾p

)

)

+ 𝝅 ∶ 𝜔𝑝
𝑚

𝜕
𝜕𝛾p

𝝉dev
‖𝝉dev‖

− 𝜔𝑝
𝑚𝑝p𝛽

𝜕𝛼
𝜕𝛾p

= 0 in 0

𝜕𝑓0

𝜕n
+𝑯 ∶ 𝜔𝑝

𝑚
𝜕𝑷
𝜕n

− 𝜂p𝜔𝑝
𝑚
𝜕‖𝝉dev‖

𝜕n
− 𝝅 ∶ 𝜔𝑝

𝑚

(

𝟏 ⊗ 𝟏 − 𝜕
𝜕n

𝝉dev
‖𝝉dev‖

)

= 𝟎 in 0

𝜕𝑓0

𝜕𝛼̄
− ∇ ⋅

𝜕𝑓0

𝜕∇𝛼̄
+ 𝜂p𝜔𝑝

𝑚𝑅
√

2
3
𝜕𝑟p

𝜕𝛼̄
+ 𝜔𝑝

𝑚
(

𝑝p𝛽 − 𝑞p∇2𝛽
)

= 0 in 0

𝜕𝑓𝜕𝑁
0

𝜕𝛼̄
+

𝜕𝑓0

𝜕∇𝛼̄
⋅𝑵 + 𝜔𝑝

𝑚𝑞p∇𝛽 ⋅𝑵 = 0 on 𝜕𝑁
0

𝜕𝑓𝜕𝐷
0 −𝒘 ⋅

𝜕𝑻 +
𝜕𝑓0 ⋅𝑵 + 𝜔𝑝 𝑞 ∇𝛽 ⋅𝑵 = 0 on 𝜕𝐷

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

∀𝑡. (28)
𝜕𝛼̄ 𝜕𝛼̄ 𝜕∇𝛼̄ 𝑚 p 0 ⎭

8 
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2.5. Sensitivity

Reflecting the above formulation in Section 2.4, the first variation of the Lagrangian ̃ in Eq. (22) is simplified as 

𝛿̃ =

( 𝑚
∑

𝑖=1
𝛿𝜔𝑖

̃

)

= 𝛿𝜔1
̃ + 𝛿𝜔2

̃ +⋯ + 𝛿𝜔𝑚−1
̃ + 𝛿𝜔𝑚

̃ , (29)

where 

for 𝑖 =1, 2,… , 𝑚 − 1

𝛿𝜔𝑖
̃ = ∫𝑡

[

∫0

𝜕𝑓0

𝜕𝜔𝑖
𝛿𝜔𝑖dV + ∫𝜕𝑁

0

𝜕𝑓𝜕𝑁
0

𝜕𝜔𝑖
𝛿𝜔𝑖dA + ∫𝜕𝐷

0

𝜕𝑓𝜕𝐷
0

𝜕𝜔𝑖
𝛿𝜔𝑖dA

+∫0

𝑯 ∶ 𝜔𝑝
𝑚
𝜕𝑷
𝜕𝜔𝑖

𝛿𝜔𝑖dV − ∫0

𝒘 ⋅ 𝜔𝑝
𝑚
𝜕𝑩
𝜕𝜔𝑖

𝛿𝜔𝑖dV

−∫𝜕𝑁
0

𝒘 ⋅
𝜕𝑻̄
𝜕𝜔𝑖

𝛿𝜔𝑖dA − ∫𝜕𝐷
0

𝒘 ⋅ 𝜔𝑝
𝑚
𝜕𝑷
𝜕𝜔𝑖

⋅𝑵𝛿𝜔𝑖dA

−∫0

𝜂p𝜔𝑝
𝑚

(

𝜕‖𝝉dev‖
𝜕𝜔𝑖

−
√

2
3

(

𝜕𝑅
𝜕𝜔𝑖

(

𝑦0 + 𝑟p
)

+ 𝑅
(

𝜕𝑦0
𝜕𝜔𝑖

+ 𝜕𝑟p

𝜕𝜔𝑖

))

)

𝛿𝜔𝑖dV

+∫0

𝜔𝑝
𝑚

( 𝜕𝑝p
𝜕𝜔𝑖

𝛽 (𝛼̄ − 𝛼) +
𝜕𝑞p
𝜕𝜔𝑖

∇𝛽 ⋅ ∇𝛼̄
)

𝛿𝜔𝑖dV
]

dt −
𝑖

∑

𝑙=1

(

𝜃𝑙 − 𝜃𝑙+1
)

∫0

1
𝜔𝑖

𝑚
∏

𝑘=𝑙
𝜔𝑘𝛿𝜔𝑖dV,

for 𝑖 =𝑚

𝛿𝜔𝑚
̃ = ∫𝑡

[

∫0

𝜕𝑓0

𝜕𝜔𝑚
𝛿𝜔𝑚dV + ∫𝜕𝑁

0

𝜕𝑓𝜕𝑁
0

𝜕𝜔𝑚
𝛿𝜔𝑚dA + ∫𝜕𝐷

0

𝜕𝑓𝜕𝐷
0

𝜕𝜔𝑚
𝛿𝜔𝑚dA

+∫0

𝑯 ∶
𝜕𝜔𝑝

𝑚
𝜕𝜔𝑚

(

𝑷 − 𝝈f) 𝛿𝜔𝑚dV − ∫0

𝒘 ⋅
𝜕𝜔𝑝

𝑚
𝜕𝜔𝑚

𝑩𝛿𝜔𝑚dV

−∫𝜕𝑁
0

𝒘 ⋅
𝜕𝑻̄
𝜕𝜔𝑚

𝛿𝜔𝑚dA − ∫𝜕𝐷
0

𝒘 ⋅
𝜕𝜔𝑝

𝑚
𝜕𝜔𝑚

(

𝑷 − 𝝈f) ⋅𝑵𝛿𝜔𝑚dA

+∫0

𝜕𝜔𝑝
𝑚

𝜕𝜔𝑚

(

𝑝p𝛽 (𝛼̄ − 𝛼) + 𝑞p∇𝛽 ⋅ ∇𝛼̄
)

𝛿𝜔𝑚dV
]

dt −
𝑚
∑

𝑙=1

(

𝜃𝑙 − 𝜃𝑙+1
)

∫0

1
𝜔𝑚

𝑚
∏

𝑘=𝑙
𝜔𝑘𝛿𝜔𝑚dV.

(30)

Here, the manipulation in Appendix  A.3 has been performed for the volume constraints. It is noted that the overlapping boundaries, 
i.e., 𝜕𝑁

0 = 𝜕𝑁
0 ∩ 𝜕0 and 𝜕𝐷

0 = 𝜕𝐷
0 ∩ 𝜕0, are allowed in Eq. (30) for ensuring generality. Accordingly, the sensitivity for the 

multi-material topology optimization yields 

𝑠0 ,𝑖 = 𝑠̄0 ,𝑖 −
𝑖

∑

𝑙=1

(

𝜃𝑙 − 𝜃𝑙+1
) 1
𝜔𝑖

𝑚
∏

𝑘=𝑙
𝜔𝑘 in 0

with 𝑠̄0 ,𝑖 =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

∫𝑡

[ 𝜕𝑓0

𝜕𝜔𝑖
+ 𝜔𝑝

𝑚

(

𝑯 ∶ 𝜕𝑷
𝜕𝜔𝑖

−𝒘 ⋅
𝜕𝑩
𝜕𝜔𝑖

−𝜂p
(

𝜕‖𝝉dev‖
𝜕𝜔𝑖

−
√

2
3

(

𝜕𝑅
𝜕𝜔𝑖

(

𝑦0 + 𝑟p
)

+ 𝑅
(

𝜕𝑦0
𝜕𝜔𝑖

+ 𝜕𝑟p

𝜕𝜔𝑖

))

)

+
𝜕𝑝p
𝜕𝜔𝑖

𝛽 (𝛼̄ − 𝛼) +
𝜕𝑞p
𝜕𝜔𝑖

∇𝛽 ⋅ ∇𝛼̄
)]

dt for 𝑖 = 1, 2,… , 𝑚 − 1

∫𝑡

[ 𝜕𝑓0

𝜕𝜔𝑚
+

𝜕𝜔𝑝
𝑚

𝜕𝜔𝑝
𝑚

(

𝑯 ∶
(

𝑷 − 𝝈f) −𝒘 ⋅ 𝑩 + 𝑝p𝛽 (𝛼̄ − 𝛼) + 𝑞p∇𝛽 ⋅ ∇𝛼̄
)

]

dt for 𝑖 = 𝑚,

𝑠𝜕𝑁
0 ,𝑖 = ∫𝑡

[ 𝜕𝑓𝜕𝑁
0

𝜕𝜔𝑖
−𝒘 𝜕𝑻̄

𝜕𝜔𝑖

]

dt on 𝜕𝑁
0 ,

𝑠𝜕𝐷
0 ,𝑖 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∫𝑡

[ 𝜕𝑓𝜕𝐷
0

𝜕𝜔𝑖
− 𝜔𝑝

𝑚𝒘 ⋅
𝜕𝑷
𝜕𝜔𝑖

⋅𝑵

]

dt for 𝑖 = 1, 2,… , 𝑚 − 1

∫𝑡

[ 𝜕𝑓𝜕𝐷
0

𝜕𝜔𝑚
−

𝜕𝜔𝑝
𝑚

𝜕𝜔𝑚
𝒘 ⋅

(

𝑷 − 𝝈f) ⋅𝑵

]

dt for 𝑖 = 𝑚

on 𝜕𝐷
0 .

(31)
9 
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Additionally, the SIMP-based interpolation function in Eq. (9) can be divided as 

Eq. (9) =
(𝑚−1
∏

𝑗=1
𝜔𝑝
𝑗

)

∙1

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
Term A

+
𝑚−1
∑

𝑗=2

(𝑚−1
∏

𝑘=𝑗
𝜔𝑝
𝑘

)

(

1 − 𝜔𝑝
𝑗−1

)

∙𝑗

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Term B

+
(

1 − 𝜔𝑝
𝑚−1

)

∙𝑚
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

Term C

,
(32)

and the partial derivatives of these three terms with respect to all design variables are calculated as, respectively, 

𝜕(Term A)
𝜕𝜔𝑖

=
𝜕𝜔𝑝

𝑖
𝜕𝜔𝑖

( 𝑚−1
∏

𝑗=1,𝑗≠𝑖
𝜔𝑝
𝑗

)

∙1, (33)

𝜕(Term B)
𝜕𝜔𝑖

=
𝑚−1
∑

𝑗=2

(

𝜕
𝜕𝜔𝑖

(𝑚−1
∏

𝑘=𝑗
𝜔𝑝
𝑘

))

(

1 − 𝜔𝑝
𝑗−1

)

∙𝑗

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜕𝜔𝑖 (Term B1)

+
𝑚−1
∑

𝑗=2

(𝑚−1
∏

𝑘=𝑗
𝜔𝑝
𝑘

)

(

𝜕
𝜕𝜔𝑖

(

1 − 𝜔𝑝
𝑗−1

)

)

∙𝑗

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜕𝜔𝑖 (Term B2)

,

𝜕(Term B1)
𝜕𝜔𝑖

=
𝑖

∑

𝑗=2

𝜕𝜔𝑝
𝑖

𝜕𝜔𝑖

( 𝑚−1
∏

𝑘=𝑗,𝑘≠𝑖
𝜔𝑝
𝑘

)

(

1 − 𝜔𝑝
𝑗−1

)

∙𝑗 for 𝑖 ≥ 2,

𝜕(Term B2)
𝜕𝜔𝑖

= −

( 𝑚−1
∏

𝑘=𝑖+1
𝜔𝑝
𝑘

)

𝜕𝜔𝑝
𝑖

𝜕𝜔𝑖
∙𝑖+1 for 𝑖 = 𝑗 − 1,

(34)

and 
𝜕(Term C)

𝜕𝜔𝑖
= −

𝜕𝜔𝑝
𝑖

𝜕𝜔𝑖
∙𝑖+1 for 𝑖 = 𝑚 − 1. (35)

2.6. Reaction–diffusion equation-based design variable update method

Suppose that the sensitivity in Eq. (31) is proportional to the time evolution of design variables. Then, following Otomori 
et al. [42], we employ the following reaction–diffusion equations for updating 𝑚 design variables: 

for 𝑖 = 1, 2,… , 𝑚 − 1, 𝑚

𝜔̇𝑖 = 𝐶0 ,𝑖𝑠0 ,𝑖 + 𝑙2d∇
2𝜔𝑖 in 0

𝑙2d∇𝜔𝑖 ⋅𝑵 = 𝐶𝜕𝑁
0 ,𝑖𝑠𝜕𝑁

0 ,𝑖 on 𝜕𝑁
0

𝑙2d∇𝜔𝑖 ⋅𝑵 = 𝐶𝜕𝐷
0 ,𝑖𝑠𝜕𝐷

0 ,𝑖 on 𝜕𝐷
0

⎫

⎪

⎪

⎬

⎪

⎪

⎭

∀𝑡,
(36)

where 𝑙2d is the diffusion coefficient, and 𝐶0 ,𝑖, 𝐶𝜕𝑁
0 ,𝑖, and 𝐶𝜕𝐷

0 ,𝑖 are normalization factors.

3. Discretization

This section is devoted to the discretization of the primal problem, adjoint problem, and design variable update, which follows 
the standard finite element (FE) context. In the end, the overall optimization algorithm is explained. The linear finite element is 
employed for spatial discretization, and the backward difference method is applied for temporal discretization.

3.1. Discretization of the primal problem

Conventionally, the displacement vector 𝒖 and nonlocal plastic hardening variable 𝛼̄ are defined as nodal variables, whereas 
the plastic multiplier 𝛾p and flow tensor n are treated as internal state variables. Following this setting, the weak forms of the 
displacement and micromorphic plastic fields in Eq. (12)1,2,4 yield 

∫0

(

(

𝜔𝑝
𝑚𝑷 +

(

1 − 𝜔𝑝
𝑚
)

𝝈f) ∶ 𝜕𝛿𝒖
𝜕𝑿

− 𝜔𝑝
𝑚𝑩 ⋅ 𝛿𝒖

)

dV − ∫𝜕𝑁
0

𝑻̄ ⋅ 𝛿𝒖dA = 0 ∀𝛿𝒖,

(

𝜔𝑝
𝑚𝑝p (𝛼̄ − 𝛼) 𝛿𝛼̄ + 𝜔𝑝

𝑚𝑞p
𝜕𝛼̄

⋅
𝜕𝛿𝛼̄ )dV = 0 ∀𝛿𝛼̄.

(37)
∫0
𝜕𝑿 𝜕𝑿

10 
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Considering the standard finite element approximation using the shape function 𝑁𝐼 , the finite element discretization of the left-hand 
side of Eq. (37) and its linearization lead to the following node-level global residual vectors and tangent matrices: 

𝐼
𝑢𝑖 ,𝑛

= −
𝑛ele

𝖠
𝑒=1

{

∫0,𝑒

(

(

𝜔ℎ𝑝
𝑚 𝑃 ℎ

𝑖𝑎,𝑛 +
(

1 − 𝜔ℎ𝑝
𝑚
)

𝜎fℎ𝑖𝑎,𝑛
) 𝜕𝑁𝐼

𝜕𝑋𝑎
− 𝜔ℎ𝑝

𝑚 𝐵ℎ
𝑖 𝑁

𝐼
)

dV − ∫𝜕𝑁
0,𝑒

𝑇̄ ℎ
𝑖,𝑛𝑁

𝐼dA
}

,

𝐼
𝛼̄,𝑛 = −

𝑛ele

𝖠
𝑒=1

{

∫0,𝑒

(

𝜔ℎ𝑝
𝑚 𝑝ℎp

(

𝛼̄ℎ𝑛 − 𝛼ℎ𝑛
)

𝑁𝐼 + 𝜔ℎ𝑝
𝑚 𝑞ℎp

𝜕𝛼̄ℎ𝑛
𝜕𝑋𝑎

𝜕𝑁𝐼

𝜕𝑋𝑎

)

dV
}

,

𝐼𝐽
𝑢𝑖𝑢𝑗 ,𝑛

=
𝑛ele

𝖠
𝑒=1∫0,𝑒

𝜕𝑁𝐼

𝜕𝑋𝑎

(

𝜔ℎ𝑝
𝑚

(

𝜕𝑃 ℎ
𝑖𝑎,𝑛

𝜕𝐹𝑗𝑏
+

𝜕𝑃 ℎ
𝑖𝑎,𝑛

𝜕𝛾p
𝜕𝛾pℎ𝑛
𝜕𝐹𝑗𝑏

+
𝜕𝑃 ℎ

𝑖𝑎,𝑛

𝜕n𝑐𝑑

𝜕nℎ𝑐𝑑,𝑛
𝜕𝐹𝑗𝑏

)

+
(

1 − 𝜔ℎ𝑝
𝑚
)
𝜕𝜎fℎ𝑖𝑎,𝑛
𝜕𝐹𝑗𝑏

)

𝜕𝑁𝐽

𝜕𝑋𝑏
dV,

𝐼𝐽
𝑢𝑖 𝛼̄,𝑛

=
𝑛ele

𝖠
𝑒=1∫0,𝑒

𝜕𝑁𝐼

𝜕𝑋𝑎
𝜔ℎ𝑝
𝑚

(

𝜕𝑃 ℎ
𝑖𝑎,𝑛

𝜕𝛾p
𝜕𝛾pℎ𝑛
𝜕𝛼̄

+
𝜕𝑃 ℎ

𝑖𝑎,𝑛

𝜕n𝑐𝑑

𝜕nℎ𝑐𝑑,𝑛
𝜕𝛼̄

)

𝑁𝐽dV,

𝐼𝐽
𝛼̄𝑢𝑗 ,𝑛

=
𝑛ele

𝖠
𝑒=1∫0,𝑒

𝑁𝐼

(

−𝜔ℎ𝑝
𝑚 𝑝ℎp

𝜕𝛼ℎ𝑛
𝜕𝛾p

𝜕𝛾pℎ𝑛
𝜕𝐹𝑗𝑏

)

𝜕𝑁𝐽

𝜕𝑋𝑏
dV,

𝐼𝐽
𝛼̄𝛼̄,𝑛 =

𝑛ele

𝖠
𝑒=1∫0,𝑒

(

𝜔ℎ𝑝
𝑚 𝑝ℎp𝑁

𝐼

(

1 −
𝜕𝛼ℎ𝑛
𝜕𝛾p

𝜕𝛾pℎ𝑛
𝜕𝛼̄

)

𝑁𝐽 + 𝜔ℎ𝑝
𝑚 𝑞ℎp

𝜕𝑁𝐼

𝜕𝑋𝑎

𝜕𝑁𝐽

𝜕𝑋𝑎

)

dV,

(38)

where 𝖠 is the finite element assembling operator, 𝑛ele is the total number of finite elements, and ∙ℎ denotes the approximation 
of ∙. Here, the subscripts for scalars, vectors, and tensors are written in the following order: those describing variables, those 
corresponding to spatial dimensions, and those related to time steps. Also, the time interval is denoted by 𝛥𝑡𝑛 = 𝑡𝑛 − 𝑡𝑛−1, and 
the quantity at the time step 𝑡𝑛 and its increment are denoted by ∙𝑛 and 𝛥∙𝑛, respectively.

On the other hand, to solve Eq. (12)2,3 for the plastic multiplier 𝛾p and flow tensor n, the integration point-level local residual 
vectors and tangent matrices are written as 

𝑔
𝛾p ,𝑛 = −

(

‖𝝉ℎdev,𝑛‖ −
√

2
3
𝑅ℎ
𝑛

(

𝑦ℎ0 + 𝑟pℎ𝑛
)

)

,

𝑔
n𝑖𝑗 ,𝑛 = −

(

nℎ𝑖𝑗,𝑛 −
𝜏ℎdev,𝑖𝑗,𝑛
‖𝝉ℎdev,𝑛‖

)

,

𝑔
𝛾p𝛾p ,𝑛 =

𝜕‖𝝉ℎdev,𝑛‖

𝜕𝛾p
−
√

2
3

(

𝜕𝑅ℎ
𝑛

𝜕𝛾p
(

𝑦ℎ0 + 𝑟pℎ𝑛
)

+ 𝑅ℎ
𝑛
𝜕𝑟pℎ𝑛
𝜕𝛾p

)

, 𝑔
𝛾pn𝑘𝑙 ,𝑛

=
𝜕‖𝝉ℎdev,𝑛‖

𝜕n𝑘𝑙,𝑛
,

𝑔
n𝑖𝑗 𝛾p ,𝑛

= − 𝜕
𝜕𝛾p

𝜏ℎdev,𝑖𝑗,𝑛
‖𝝉ℎdev,𝑛‖

, 𝑔
n𝑖𝑗n𝑘𝑙 ,𝑛 = 𝛿𝑖𝑘𝛿𝑗𝑙 −

𝜕
𝜕n𝑘𝑙

𝜏ℎdev,𝑖𝑗,𝑛
‖𝝉ℎdev,𝑛‖

.

(39)

Some components derived in the above discretization are detailed in Appendix  B.1.
It is noted that the subloading surface model behaves differently from the conventional plastic model, as summarized in Fig.  3. 

As shown in Fig.  3(a), the deformation state of the subloading surface model consists of four parts. Specifically, recalling the yield 
criteria in Eq. (5), the four parts are distinguished by the following rules: 

Part A
elastic loading

⎧

⎪

⎨

⎪

⎩

𝛷p,tr
sub.,𝑛 < 0 and 𝛷p,tr

ela.,𝑛 < 0, 0 ≤ 𝑅𝑛 ≤ 𝑅e,

𝑅𝑛 =
√

3
2
‖𝝉dev,𝑛‖

𝑦0
,

Part B
plastic loading

⎧

⎪

⎨

⎪

⎩

𝛷p,tr
sub.,𝑛 > 0 and 𝛷p,tr

ela.,𝑛 > 0, 𝑅e ≤ 𝑅𝑛 ≤ 1,

𝑅𝑛 = 𝑅e + 2
𝜋
(

1 − 𝑅e) arccos
(

cos
(

𝜋
2
⟨𝑅𝑛−1 − 𝑅e

⟩

1 − 𝑅e

)

exp
(

−𝜋
2

𝑅p

1 − 𝑅e 𝛾
p
𝑛𝛥𝑡𝑛

))

,

Part C
elastic unloading

⎧

⎪

⎨

⎪

⎩

𝛷p,tr
sub.,𝑛 < 0 or 𝛷p,tr

ela.,𝑛 < 0, 0 ≤ 𝑅𝑛 ≤ 1,

𝑅𝑛 =
√

3
2
‖𝝉dev,𝑛‖

𝑦0 + 𝑟p𝑛
,

Part D
plastic reloading

⎧

⎪

⎨

⎪

⎩

𝛷p,tr
sub.,𝑛 > 0 and 𝛷p,tr

ela.,𝑛 > 0, 𝑅e ≤ 𝑅𝑛 ≤ 1,

𝑅𝑛 = 𝑅e + 2
𝜋
(

1 − 𝑅e) arccos
(

cos
(

𝜋
2
⟨𝑅𝑛−1 − 𝑅e

⟩

1 − 𝑅e

)

exp
(

−𝜋
2

𝑅p

1 − 𝑅e 𝛾
p
𝑛𝛥𝑡𝑛

))

,

(40)

where the superscript ‘‘tr’’ denotes the trial stress state at each Newton–Raphson iteration. Particularly, enjoying the evolution of the 
normal-yield ratio 𝑅, the deformation process gradually shifts from the purely elastic deformation to the plastic deformation that 
exhibits hardening behavior; see the blue-colored line in Fig.  3(a). Here, the slope of the stress–strain curve is a continuous function 
after the initial plastic yield. Also, unlike the conventional plastic model, the plastic deformation evolves in the cyclic loadings even 
11 
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Fig. 3. Detailed elastoplastic responses of conventional plastic model (Con.) and subloading surface model (Sub.).

if the kinematic hardening is not introduced; see Figs. 3(b) and (c). This is because the normal-yield ratio increases and decreases 
along with plastic loading and elastic unloading, respectively; see Fig.  3(d).

In addition, Figs.  3(e) and (f) show the stress–strain relationships of changing the values of the normal-yield threshold 𝑅e and 
normal-yield saturation parameter 𝑅p. As can be seen from Fig.  3(e), 𝑅e determines the range of the transition of deformation 
states, and a larger value of 𝑅e shortens the range, making it recover to the conventional plastic model. Also, from Fig.  3(f), one 
finds that 𝑅p changes the saturation behavior of the transition of deformation states, and giving a larger value of 𝑅p recovers to 
the conventional plastic model. Notably, by introducing the normal-yield ratio 𝑅, the stress–strain relationship around the original 
plastic yield point becomes smooth, which is beneficial for a stable elastoplastic topology optimization process. Also, the case with 
𝑅e = 1.00 or 𝑅p → ∞ corresponds to the response of the conventional plastic model. The detailed investigations are provided in 
Section 4.1.

3.2. Discretization of the adjoint problem

Similar to the primal problem, the adjoint displacement vector 𝒘 and adjoint nonlocal plastic hardening variable 𝛽 are defined 
as nodal variables, whereas the adjoint plastic multiplier 𝜂p and adjoint flow tensor 𝝅 are treated as internal state variables. Then, 
the weak forms for the adjoint displacement and adjoint micromorphic plastic fields in Eq. (28)1−3,6−8 become 

∫0

( 𝜕𝑓0

𝜕𝑭
+𝑯 ∶

(

𝜔𝑝
𝑚
𝜕𝑷
𝜕𝑭

+
(

1 − 𝜔𝑝
𝑚
) 𝜕𝝈f

𝜕𝑭

)

− 𝜂p𝜔𝑝
𝑚
𝜕‖𝝉dev‖
𝜕𝑭

+ 𝝅 ∶ 𝜔𝑝
𝑚

𝜕
𝜕𝑭

𝝉dev
‖𝝉dev‖

)

∶ 𝜕𝛿𝒘
𝜕𝑿

dV

+ ∫0

𝜕𝑓0

𝜕𝒖
⋅ 𝛿𝒘dV + ∫𝜕𝑁

0

𝜕𝑓𝜕𝑁
0

𝜕𝒖
⋅ 𝛿𝒘dA = 0 ∀𝛿𝒘,

∫0

(

𝜕𝑓0

𝜕𝛼̄
𝛿𝛽 +

𝜕𝑓0

𝜕∇𝛼̄
⋅
𝜕𝛿𝛽
𝜕𝑿

+ 𝜂p𝜔𝑝
𝑚𝑅

√

2
3
𝜕𝑟p

𝜕𝛼̄
𝛿𝛽 + 𝜔𝑝

𝑚

(

𝑝p𝛽𝛿𝛽 + 𝑞p
𝜕𝛽
𝜕𝑿

⋅
𝜕𝛿𝛽
𝜕𝑿

)

)

dV

+ ∫ 𝑁

𝜕𝑓𝜕𝑁
0 𝛿𝛽dA + ∫ 𝐷

( 𝜕𝑓𝜕𝐷
0 −𝒘 ⋅

𝜕𝑻
)

𝛿𝛽dA = 0 ∀𝛿𝛽.

(41)
𝜕0
𝜕𝛼̄ 𝜕0

𝜕𝛼̄ 𝜕𝛼̄

12 
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Using the same shape function 𝑁𝐼 , the node-level global residual vectors and tangent matrices of the adjoint problem are 
expressed as 

𝐼
𝑤𝑖 ,𝑛

= −
𝑛ele

𝖠
𝑒=1

[

∫0,𝑒

( 𝜕𝑓ℎ
0 ,𝑛

𝜕𝐹𝑖𝑎
+𝐻ℎ

𝑐𝑑,𝑛

(

𝜔ℎ𝑝
𝑚

𝜕𝑃 ℎ
𝑐𝑑,𝑛

𝜕𝐹𝑖𝑎
+
(

1 − 𝜔ℎ𝑝
𝑚
)

𝜕𝜎fℎ𝑐𝑑,𝑛
𝜕𝐹𝑖𝑎

)

−𝜂pℎ𝑛 𝜔ℎ𝑝
𝑚

𝜕‖𝝉ℎdev,𝑛‖

𝜕𝐹𝑖𝑎
+ 𝜋ℎ

𝑐𝑑,𝑛𝜔
ℎ𝑝
𝑚

𝜕
𝜕𝐹𝑖𝑎

𝜏ℎdev,𝑐𝑑,𝑛
‖𝝉ℎdev,𝑛‖

)

𝜕𝑁𝐼

𝜕𝑋𝑎
dV

+∫0,𝑒

𝜕𝑓ℎ
0 ,𝑛

𝜕𝑢𝑖
𝑁𝐼dV + ∫𝜕𝑁

0,𝑒

𝜕𝑓ℎ
𝜕𝑁

0 ,𝑛

𝜕𝑢𝑖
𝑁𝐼dA

⎤

⎥

⎥

⎦

,

𝐼
𝛽,𝑛

= −
𝑛ele

𝖠
𝑒=1

[

∫0,𝑒

( 𝜕𝑓ℎ
0 ,𝑛

𝜕𝛼̄
𝑁𝐼 +

𝜕𝑓ℎ
0 ,𝑛

𝜕∇𝛼̄𝑎
𝜕𝑁𝐼

𝜕𝑋𝑎

+𝜂pℎ𝑛 𝜔ℎ𝑝
𝑚 𝑅ℎ

𝑛

√

2
3
𝜕𝑟pℎ𝑛
𝜕𝛼̄

𝑁𝐼 + 𝜔ℎ𝑝
𝑚

(

𝑝ℎp𝛽
ℎ
𝑛𝑁

𝐼 + 𝑞ℎp
𝜕𝛽ℎ𝑛
𝜕𝑋𝑎

𝜕𝑁𝐼

𝜕𝑋𝑎

))

dV

+∫𝜕𝑁
0,𝑒

𝜕𝑓ℎ
𝜕𝑁

0 ,𝑛

𝜕𝛼̄
𝑁𝐼dA + ∫𝜕𝐷

0,𝑒

⎛

⎜

⎜

⎝

𝜕𝑓ℎ
𝜕𝐷

0 ,𝑛

𝜕𝛼̄
−𝑤ℎ

𝑎,𝑛

𝜕𝑇 ℎ
𝑎,𝑛

𝜕𝛼̄

⎞

⎟

⎟

⎠

𝑁𝐼dA
⎤

⎥

⎥

⎦

,

𝐼𝐽
𝑤𝑖𝑤𝑗 ,𝑛

=
𝑛ele

𝖠
𝑒=1∫0,𝑒

𝜕𝑁𝐼

𝜕𝑋𝑎

(

𝜔ℎ𝑝
𝑚

𝜕𝑃 ℎ
𝑗𝑏,𝑛

𝜕𝐹𝑖𝑎
+
(

1 − 𝜔ℎ𝑝
𝑚
)

𝜕𝜎fℎ𝑗𝑏,𝑛
𝜕𝐹𝑖𝑎

−
𝜕𝜂pℎ𝑛
𝜕𝐻𝑗𝑏

𝜔ℎ𝑝
𝑚

𝜕‖𝝉ℎdev,𝑛‖

𝜕𝐹𝑖𝑎
+

𝜕𝜋ℎ
𝑐𝑑,𝑛

𝜕𝐻𝑗𝑏
𝜔ℎ𝑝
𝑚

𝜕
𝜕𝐹𝑖𝑎

𝜏ℎdev,𝑐𝑑,𝑛
‖𝝉ℎdev,𝑛‖

)

𝜕𝑁𝐽

𝜕𝑋𝑏
dV,

𝐼𝐽
𝑤𝑖𝛽,𝑛

=
𝑛ele

𝖠
𝑒=1∫0,𝑒

𝜕𝑁𝐼

𝜕𝑋𝑎

(

−
𝜕𝜂pℎ𝑛
𝜕𝛽

𝜔ℎ𝑝
𝑚

𝜕‖𝝉ℎdev,𝑛‖

𝜕𝐹𝑖𝑎
+

𝜕𝜋ℎ
𝑐𝑑,𝑛

𝜕𝛽
𝜔ℎ𝑝
𝑚

𝜕
𝜕𝐹𝑖𝑎

𝜏ℎdev,𝑐𝑑,𝑛
‖𝝉ℎdev,𝑛‖

)

𝑁𝐽dV,

𝐼𝐽
𝛽𝑤𝑗 ,𝑛

=
𝑛ele

𝖠
𝑒=1∫0,𝑒

𝑁𝐼

(

𝜕𝜂pℎ𝑛
𝜕𝐻𝑗𝑏

𝜔ℎ𝑝
𝑚 𝑅ℎ

𝑛

√

2
3
𝜕𝑟pℎ𝑛
𝜕𝛼̄

)

𝜕𝑁𝐽

𝜕𝑋𝑏
dV,

𝐼𝐽
𝛽𝛽,𝑛

=
𝑛ele

𝖠
𝑒=1∫0,𝑒

(

𝑁𝐼 𝜕𝜂
pℎ
𝑛

𝜕𝛽
𝜔ℎ𝑝
𝑚 𝑅ℎ

𝑛

√

2
3
𝜕𝑟pℎ𝑛
𝜕𝛼̄

𝑁𝐽 + 𝜔ℎ𝑝
𝑚

(

𝑝ℎp𝑁
𝐼𝑁𝐽 + 𝑞ℎp

𝜕𝑁𝐼

𝜕𝑋𝑎

𝜕𝑁𝐽

𝜕𝑋𝑎

)

)

dV.

(42)

Meanwhile, to solve Eq. (28)4,5 for the adjoint plastic multiplier 𝜂p and adjoint flow tensor 𝝅, the following integration point-level 
local residual vectors and tangent matrices are written as 

𝑔
𝜂p ,𝑛 = −

( 𝜕𝑓ℎ
0 ,𝑛

𝜕𝛾p
+𝐻ℎ

𝑎𝑏,𝑛𝜔
ℎ𝑝
𝑚

𝜕𝑃 ℎ
𝑎𝑏,𝑛

𝜕𝛾p
− 𝜂pℎ𝑛 𝜔ℎ𝑝

𝑚

(

𝜕‖𝝉ℎdev,𝑛‖

𝜕𝛾p
−
√

2
3

(

𝜕𝑅ℎ
𝑛

𝜕𝛾p
(

𝑦ℎ0 + 𝑟pℎ𝑛
)

+ 𝑅ℎ
𝑛
𝜕𝑟pℎ𝑛
𝜕𝛾p

))

+𝜋ℎ
𝑎𝑏,𝑛𝜔

ℎ𝑝
𝑚

𝜕
𝜕𝛾p

𝜏ℎdev,𝑎𝑏,𝑛
‖𝝉dev,𝑛‖

− 𝜔ℎ𝑝
𝑚 𝑝ℎp𝛽

ℎ
𝑛
𝜕𝛼ℎ𝑛
𝜕𝛾p

)

,

𝑔
𝜋𝑖𝑗 ,𝑛

= −

( 𝜕𝑓ℎ
0 ,𝑛

𝜕n𝑖𝑗
+𝐻ℎ

𝑎𝑏,𝑛𝜔
ℎ𝑝
𝑚

𝜕𝑃 ℎ
𝑎𝑏,𝑛

𝜕n𝑖𝑗
− 𝜂pℎ𝑛 𝜔ℎ𝑝

𝑚

𝜕‖𝝉ℎdev,𝑛‖

𝜕n𝑖𝑗
− 𝜋ℎ

𝑎𝑏,𝑛𝜔
ℎ𝑝
𝑚

(

𝛿𝑎𝑖𝛿𝑏𝑗 −
𝜕

𝜕n𝑖𝑗

𝜏ℎdev,𝑎𝑏,𝑛
‖𝝉dev,𝑛‖

))

,

𝑔
𝜂p𝜂p ,𝑛 = −𝜔ℎ𝑝

𝑚

(

𝜕‖𝝉ℎdev,𝑛‖

𝜕𝛾p
−
√

2
3

(

𝜕𝑅ℎ
𝑛

𝜕𝛾p
(

𝑦ℎ0 + 𝑟pℎ𝑛
)

+ 𝑅ℎ
𝑛
𝜕𝑟pℎ𝑛
𝜕𝛾p

))

, 𝑔
𝜂p𝜋𝑘𝑙 ,𝑛

= 𝜔ℎ𝑝
𝑚

𝜕
𝜕𝛾p

𝜏ℎdev,𝑘𝑙,𝑛
‖𝝉ℎdev,𝑛‖

,

𝑔
𝜋𝑖𝑗𝜂p ,𝑛

= −𝜔ℎ𝑝
𝑚

𝜕‖𝝉ℎdev,𝑛‖

𝜕n𝑖𝑗
, 𝑔

𝜋𝑖𝑗𝜋𝑘𝑙 ,𝑛
= −𝜔ℎ𝑝

𝑚

(

𝛿𝑘𝑖𝛿𝑙𝑗 −
𝜕

𝜕n𝑖𝑗

𝜏ℎdev,𝑘𝑙,𝑛
‖𝝉ℎdev,𝑛‖

)

.

(43)

Some of the detailed components of the above discretization are presented in Appendix  B.2.

It is worth mentioning that while the above Eqs. (42) and (43), in the adjoint problem can be straightforwardly solved, these 
can be rewritten to improve computational efficiency: some derivatives appearing in the above equations need not be computed. 
13 
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To be specific, since the local adjoint problem is linear, 𝜂p𝑛 and 𝝅𝑛 can be directly calculated from Eq. (43)1,2 as 

𝝃̃𝑛 = 𝑾̃ 𝑛 ⋅
adjoint
local,𝑛

⏟⏟⏟
Eq. (77)

−1
with 𝝃̃𝑛 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜂pℎ𝑛
𝜋ℎ
11,𝑛

𝜋ℎ
22,𝑛

𝜋ℎ
33,𝑛

𝜋ℎ
23,𝑛

𝜋ℎ
13,𝑛

𝜋ℎ
12,𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

and 𝑾̃ 𝑛 = −

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕𝑓ℎ
0 ,𝑛

𝜕𝛾p
+𝐻ℎ

𝑎𝑏,𝑛𝜔
ℎ𝑝
𝑚

𝜕𝑃 ℎ
𝑎𝑏,𝑛

𝜕𝛾p
− 𝜔ℎ𝑝

𝑚 𝑝ℎp𝛽
ℎ
𝑛
𝜕𝛼ℎ𝑛
𝜕𝛾p

𝜕𝑓ℎ
0 ,𝑛

𝜕n11
+𝐻ℎ

𝑎𝑏,𝑛𝜔
ℎ𝑝
𝑚

𝜕𝑃 ℎ
𝑎𝑏,𝑛

𝜕n11
𝜕𝑓ℎ

0 ,𝑛

𝜕n22
+𝐻ℎ

𝑎𝑏,𝑛𝜔
ℎ𝑝
𝑚

𝜕𝑃 ℎ
𝑎𝑏,𝑛

𝜕n22
𝜕𝑓ℎ

0 ,𝑛

𝜕n33
+𝐻ℎ

𝑎𝑏,𝑛𝜔
ℎ𝑝
𝑚

𝜕𝑃 ℎ
𝑎𝑏,𝑛

𝜕n33

2
𝜕𝑓ℎ

0 ,𝑛

𝜕n23
+ 2𝐻ℎ

𝑎𝑏,𝑛𝜔
ℎ𝑝
𝑚

𝜕𝑃 ℎ
𝑎𝑏,𝑛

𝜕n23

2
𝜕𝑓ℎ

0 ,𝑛

𝜕n13
+ 2𝐻ℎ

𝑎𝑏,𝑛𝜔
ℎ𝑝
𝑚

𝜕𝑃 ℎ
𝑎𝑏,𝑛

𝜕n13

2
𝜕𝑓ℎ

0 ,𝑛

𝜕n12
+ 2𝐻ℎ

𝑎𝑏,𝑛𝜔
ℎ𝑝
𝑚

𝜕𝑃 ℎ
𝑎𝑏,𝑛

𝜕n12

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (44)

Accordingly, the substitutions of Eqs. (44), (65), and (70) into (42) yield 

𝐼
𝑤𝑖 ,𝑛

= −
𝑛ele

𝖠
𝑒=1

[

∫0,𝑒

(( 𝜕𝑓ℎ
0 ,𝑛

𝜕𝐹𝑖𝑎
+

𝜕𝑓ℎ
0 ,𝑛

𝜕𝛾p
𝜕𝛾pℎ𝑛
𝜕𝐹𝑖𝑎

+
𝜕𝑓ℎ

0 ,𝑛

𝜕n𝑒𝑓

𝜕nℎ𝑒𝑓 ,𝑛
𝜕𝐹𝑖𝑎

+𝐻ℎ
𝑐𝑑,𝑛

(

𝜔ℎ𝑝
𝑚

(

𝜕𝑃 ℎ
𝑐𝑑,𝑛

𝜕𝐹𝑖𝑎
+

𝜕𝑃 ℎ
𝑐𝑑,𝑛

𝜕𝛾p
𝜕𝛾pℎ𝑛
𝜕𝐹𝑖𝑎

+
𝜕𝑃 ℎ

𝑐𝑑,𝑛

𝜕n𝑒𝑓

𝜕nℎ𝑒𝑓 ,𝑛
𝜕𝐹𝑖𝑎

)

+
(

1 − 𝜔ℎ𝑝
𝑚
)

𝜕𝜎fℎ𝑐𝑑,𝑛
𝜕𝐹𝑖𝑎

)

−𝜔ℎ𝑝
𝑚 𝑝ℎp𝛽

ℎ
𝑛
𝜕𝛼ℎ𝑛
𝜕𝛾p

𝜕𝛾pℎ𝑛
𝜕𝐹𝑖𝑎

)

𝜕𝑁𝐼

𝜕𝑋𝑎

)

dV + ∫0,𝑒

𝜕𝑓ℎ
0 ,𝑛

𝜕𝑢𝑖
𝑁𝐼dV + ∫𝜕𝑁

0,𝑒

𝜕𝑓ℎ
𝜕𝑁

0 ,𝑛

𝜕𝑢𝑖
𝑁𝐼dA

⎤

⎥

⎥

⎦

,

𝐼
𝛽,𝑛

= −
𝑛ele

𝖠
𝑒=1

[

∫0,𝑒

(( 𝜕𝑓ℎ
0 ,𝑛

𝜕𝛼̄
+

𝜕𝑓ℎ
0 ,𝑛

𝜕𝛾p
𝜕𝛾pℎ𝑛
𝜕𝛼̄

+
𝜕𝑓ℎ

0 ,𝑛

𝜕n𝑒𝑓

𝜕nℎ𝑒𝑓 ,𝑛
𝜕𝛼̄

)

𝑁𝐼 +
𝜕𝑓ℎ

0 ,𝑛

𝜕∇𝛼̄𝑎
𝜕𝑁𝐼

𝜕𝑋𝑎

+𝐻ℎ
𝑐𝑑,𝑛𝜔

ℎ𝑝
𝑚

(

𝜕𝑃 ℎ
𝑐𝑑,𝑛

𝜕𝛾p
𝜕𝛾pℎ𝑛
𝜕𝛼̄

+
𝜕𝑃 ℎ

𝑐𝑑,𝑛

𝜕n𝑒𝑓

𝜕nℎ𝑒𝑓 ,𝑛
𝜕𝛼̄

)

𝑁𝐼 + 𝜔ℎ𝑝
𝑚 𝑝ℎp𝛽

ℎ
𝑛

(

1 −
𝜕𝛼ℎ𝑛
𝜕𝛾p

𝜕𝛾pℎ𝑛
𝜕𝛼̄

)

𝑁𝐼

+𝜔ℎ𝑝
𝑚 𝑞ℎp

𝜕𝛽ℎ𝑛
𝜕𝑋𝑎

𝜕𝑁𝐼

𝜕𝑋𝑎

)

dV + ∫𝜕𝑁
0,𝑒

𝜕𝑓ℎ
𝜕𝑁

0 ,𝑛

𝜕𝛼̄
𝑁𝐼dA + ∫𝜕𝐷

0,𝑒

⎛

⎜

⎜

⎝

𝜕𝑓ℎ
𝜕𝐷

0 ,𝑛

𝜕𝛼̄
−𝑤ℎ

𝑎,𝑛

𝜕𝑇 ℎ
𝑎,𝑛

𝜕𝛼̄

⎞

⎟

⎟

⎠

𝑁𝐼dA
⎤

⎥

⎥

⎦

,

𝐼𝐽
𝑤𝑖𝑤𝑗 ,𝑛

=
𝑛ele

𝖠
𝑒=1∫0,𝑒

𝜕𝑁𝐼

𝜕𝑋𝑎

(

𝜔ℎ𝑝
𝑚

(

𝜕𝑃 ℎ
𝑗𝑏,𝑛

𝜕𝐹𝑖𝑎
+

𝜕𝑃 ℎ
𝑗𝑏,𝑛

𝜕𝛾p
𝜕𝛾pℎ𝑛
𝜕𝐹𝑖𝑎

+
𝜕𝑃 ℎ

𝑗𝑏,𝑛

𝜕n𝑒𝑓

𝜕nℎ𝑒𝑓 ,𝑛
𝜕𝐹𝑖𝑎

)

+
(

1 − 𝜔ℎ𝑝
𝑚
)

𝜕𝜎fℎ𝑗𝑏,𝑛
𝜕𝐹𝑖𝑎

)

𝜕𝑁𝐽

𝜕𝑋𝑏
dV,

𝐼𝐽
𝑤𝑖𝛽,𝑛

=
𝑛ele

𝖠
𝑒=1∫0,𝑒

𝜕𝑁𝐼

𝜕𝑋𝑎

(

−𝜔ℎ𝑝
𝑚 𝑝ℎp

𝜕𝛼ℎ𝑛
𝜕𝛾p

𝜕𝛾pℎ𝑛
𝜕𝐹𝑖𝑎

)

𝑁𝐽dV,

𝐼𝐽
𝛽𝑤𝑗 ,𝑛

=
𝑛ele

𝖠
𝑒=1∫0,𝑒

𝑁𝐼𝜔ℎ𝑝
𝑚

(

𝜕𝑃 ℎ
𝑗𝑏,𝑛

𝜕𝛾p
𝜕𝛾pℎ𝑛
𝜕𝛼̄

+
𝜕𝑃 ℎ

𝑗𝑏,𝑛

𝜕n𝑒𝑓

𝜕nℎ𝑒𝑓 ,𝑛
𝜕𝛼̄

)

𝜕𝑁𝐽

𝜕𝑋𝑏
dV,

𝐼𝐽
𝛽𝛽,𝑛

=
𝑛ele

𝖠
𝑒=1∫0,𝑒

(

𝜔ℎ𝑝
𝑚 𝑝ℎp𝑁

𝐼

(

1 −
𝜕𝛼ℎ𝑛
𝜕𝛾p

𝜕𝛾pℎ𝑛
𝜕𝛼̄

)

𝑁𝐽 + 𝜔ℎ𝑝
𝑚 𝑞ℎp

𝜕𝑁𝐼

𝜕𝑋𝑎

𝜕𝑁𝐽

𝜕𝑋𝑎

)

dV.

(45)

It should be noted that the above equations do not involve the derivatives 𝜕𝑯𝜂p𝑛 , 𝜕𝑯𝝅𝑛, 𝜕𝛽𝜂p𝑛 , and 𝜕𝛽𝝅𝑛 as required in Eq. (42). 

That is, calculating additional vectors and tensors for the adjoint problem are unnecessary, except for 𝒘 and 𝛽. Also, the tangent 

matrix of the adjoint problem is the transpose of the tangent matrix of the primal problem, and this relationship is a well-known 

mathematical fact. Therefore, the derivations presented so far are presumed to be correct.
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3.3. Discretization of the design variable update method

The weak forms for the reaction–diffusion equations in Eq. (36) can be written as 
for 𝑖 = 1, 2,… , 𝑚 − 1, 𝑚

∫0

(

𝜔̇𝑖𝛿𝜔𝑖 + 𝑙2d
𝜕𝜔𝑖
𝜕𝑿

⋅
𝜕𝛿𝜔𝑖
𝜕𝑿

− 𝐶0 ,𝑖𝑠0 ,𝑖𝛿𝜔𝑖

)

dV

− ∫𝜕𝑁
0

𝐶𝜕𝑁
0 ,𝑖𝑠𝜕𝑁

0 ,𝑖𝛿𝜔𝑖dA − ∫𝜕𝑁
0

𝐶𝜕𝐷
0 ,𝑖𝑠𝜕𝐷

0 ,𝑖𝛿𝜔𝑖dA = 0.

(46)

For the temporal discretization of the optimization problem, the pseudo time ̃𝑡 is introduced, and a quantity at the pseudo time step 
𝑡𝑛̃ and its increment are denoted by ∙𝑛̃ and 𝛥∙𝑛̃, respectively, with 𝛥𝑡𝑛̃ = 𝑡𝑛̃ − 𝑡𝑛̃−1 being the pseudo time interval. Notably, the pseudo 
time interval 𝛥𝑡𝑛̃ is an input parameter in actual optimization calculations, and its value cannot be set too large. From our experience, 
0.01 ≤ 𝛥𝑡𝑛̃ ≤ 0.1 can realize a relatively stable optimization process for elastoplastic problems. This is because 𝐶𝜕𝑁

0 ,𝑖𝑠𝜕𝑁
0 ,𝑖 in Eq. (46) 

usually has the value in the range of −1 ∼ +1, and thus, the maximum value of |𝐶𝜕𝑁
0 ,𝑖𝑠𝜕𝑁

0 ,𝑖𝛥𝑡𝑛̃| can be limited within 0.01 ∼ 0.1. 
Thereby, the material configuration is not dramatically changed in one design iteration, avoiding the divergence of the optimization 
process. 

Also, in this study, the design variables {𝜔1, 𝜔2,… , 𝜔𝑚−1, 𝜔𝑚
} are defined as nodal variables, i.e., {𝜔𝐼

1 , 𝜔
𝐼
2 ,… , 𝜔𝐼

𝑚−1, 𝜔
𝐼
𝑚
}

. Then, 
by applying standard FE approximation in space and backward Euler scheme in time to the left-hand side of Eq. (46), the following 
node-level global residual vectors and tangent matrices for the optimization problem are obtained: 

for 𝑖 =1, 2,… , 𝑚 − 1, 𝑚

𝐼
𝑤𝑖 ,𝑛

= −
𝑛ele

𝖠
𝑒=1

[

∫ℎ
0,𝑒

(

𝜔ℎ
𝑖,𝑛̃+1 − 𝜔ℎ

𝑖,𝑛̃

𝛥𝑡𝑛̃
𝑁𝐼 + 𝑙2d

𝜕𝜔ℎ
𝑖,𝑛̃+1

𝜕𝑋𝑎

𝜕𝑁𝐼

𝜕𝑋𝑎
− 𝐶0 ,𝑖,𝑛̃𝑠

ℎ
0 ,𝑖,𝑛̃

𝑁𝐼

)

dV

−∫𝜕𝑁ℎ
0,𝑒

𝐶𝜕𝑁
0 ,𝑖,𝑛̃𝑠

ℎ
𝜕𝑁

0 ,𝑖,𝑛̃
𝑁𝐼dA − ∫𝜕𝑁ℎ

0,𝑒

𝐶𝜕𝐷
0 ,𝑖,𝑛̃𝑠

ℎ
𝜕𝐷

0 ,𝑖,𝑛̃
𝑁𝐼dA

]

,

𝐼𝐽
𝑤𝑖𝑤𝑖 ,𝑛

=
𝑛ele

𝖠
𝑒=1∫ℎ

0,𝑒

(

𝑁𝐼𝑁𝐽

𝛥𝑡𝑛̃
+ 𝑙2d

𝜕𝑁𝐼

𝜕𝑋𝑎

𝜕𝑁𝐽

𝜕𝑋𝑎

)

dV,

(47)

where 

𝑠ℎ0 ,𝑖,𝑛̃
=
⎛

⎜

⎜

⎝

𝑁step
∑

𝑛=1
𝛥𝑠̄ℎ0 ,𝑖,𝑛̃,𝑛

⎞

⎟

⎟

⎠

−
𝑖

∑

𝑙=1

(

𝜃𝑙,𝑛̃ − 𝜃𝑙+1,𝑛̃
) 1
𝜔𝑖,𝑛̃

𝑚
∏

𝑘=𝑙
𝜔𝑘,𝑛̃ in 0,

with 𝛥𝑠̄ℎ0 ,𝑖,𝑛̃,𝑛
=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

[ 𝜕𝑓ℎ
0 ,𝑛̃,𝑛

𝜕𝜔𝑖
+ 𝜔ℎ𝑝

𝑚,𝑛̃

(

𝐻ℎ
𝑎𝑏,𝑛̃,𝑛

𝜕𝑃 ℎ
𝑎𝑏,𝑛̃,𝑛

𝜕𝜔𝑖
−𝑤ℎ

𝑎,𝑛̃,𝑛

𝜕𝐵ℎ
𝑎,𝑛̃

𝜕𝜔𝑖

−𝜂pℎ𝑛̃,𝑛
⎛

⎜

⎜

⎝

𝜕‖𝝉ℎdev,𝑛̃,𝑛‖

𝜕𝜔𝑖
−
√

2
3

⎛

⎜

⎜

⎝

𝜕𝑅ℎ
𝑛̃,𝑛

𝜕𝜔𝑖

(

𝑦ℎ0,𝑛̃ + 𝑟pℎ𝑛̃,𝑛
)

+ 𝑅ℎ
𝑛̃,𝑛

⎛

⎜

⎜

⎝

𝜕𝑦ℎ0,𝑛̃
𝜕𝜔𝑖

+
𝜕𝑟pℎ𝑛̃,𝑛
𝜕𝜔𝑖

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

+
𝜕𝑝ℎp,𝑛̃
𝜕𝜔𝑖

𝛽ℎ𝑛̃,𝑛
(

𝛼̄ℎ𝑛̃,𝑛 − 𝛼ℎ𝑛̃,𝑛
)

+
𝜕𝑞ℎp,𝑛̃
𝜕𝜔𝑖

𝜕𝛽ℎ𝑛̃,𝑛
𝜕𝑋𝑎

𝜕𝛼̄ℎ𝑛̃,𝑛
𝜕𝑋𝑎

)]

𝛥𝑡𝑛 for 𝑖 = 1, 2,… , 𝑚 − 1

[ 𝜕𝑓ℎ
0 ,𝑛̃,𝑛

𝜕𝜔𝑚
+

𝜕𝜔ℎ𝑝
𝑚,𝑛̃

𝜕𝜔𝑚

(

𝐻ℎ
𝑎𝑏,𝑛̃,𝑛

(

𝑃 ℎ
𝑎𝑏,𝑛̃,𝑛 − 𝜎fℎ𝑎𝑏,𝑛̃,𝑛

)

−𝑤ℎ
𝑎,𝑛̃,𝑛𝐵

ℎ
𝑎,𝑛̃

+𝑝ℎp,𝑛̃𝛽
ℎ
𝑛̃,𝑛

(

𝛼̄ℎ𝑛̃,𝑛 − 𝛼ℎ𝑛̃,𝑛
)

+ 𝑞ℎp,𝑛̃
𝜕𝛽ℎ𝑛̃,𝑛
𝜕𝑋𝑎

𝜕𝛼̄ℎ𝑛̃,𝑛
𝜕𝑋𝑎

)]

𝛥𝑡𝑛 for 𝑖 = 𝑚,

𝑠ℎ
𝜕𝑁

0 ,𝑖,𝑛̃
=

𝑁step
∑

𝑛=1
𝛥𝑠ℎ

𝜕𝑁
0 ,𝑖,𝑛̃,𝑛

on 𝜕𝑁
0 with 𝛥𝑠ℎ

𝜕𝑁
0 ,𝑖,𝑛̃,𝑛

=
⎡

⎢

⎢

⎣

𝜕𝑓ℎ
𝜕𝑁

0 ,𝑛̃,𝑛

𝜕𝜔𝑖
−𝑤ℎ

𝑎,𝑛̃,𝑛

𝜕𝑇̄ ℎ
𝑎,𝑛̃,𝑛

𝜕𝜔𝑖

⎤

⎥

⎥

⎦

𝛥𝑡𝑛,

𝑠ℎ
𝜕𝐷

0 ,𝑖,𝑛̃
=

𝑁step
∑

𝑛=1
𝛥𝑠ℎ

𝜕𝐷
0 ,𝑖,𝑛̃,𝑛

on 𝜕𝐷
0

with 𝛥𝑠ℎ
𝜕𝐷

0 ,𝑖,𝑛̃,𝑛
=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎡

⎢

⎢

⎣

𝜕𝑓ℎ
𝜕𝐷

0 ,𝑛̃,𝑛

𝜕𝜔𝑖
− 𝜔ℎ𝑝

𝑚,𝑛̃𝑤
ℎ
𝑎,𝑛̃,𝑛

𝜕𝑃 ℎ
𝑎𝑏,𝑛̃,𝑛

𝜕𝜔𝑖
𝑁ℎ

𝑏

⎤

⎥

⎥

⎦

𝛥𝑡𝑛 for 𝑖 = 1, 2,… , 𝑚 − 1

⎡

⎢

⎢

𝜕𝑓ℎ
𝜕𝐷

0 ,𝑛̃,𝑛

𝜕𝜔𝑚
−

𝜕𝜔ℎ𝑝
𝑚,𝑛̃

𝜕𝜔𝑚
𝑤ℎ

𝑎,𝑛̃,𝑛

(

𝑃 ℎ
𝑎𝑏,𝑛̃,𝑛 − 𝜎fℎ𝑎𝑏,𝑛̃,𝑛

)

𝑁ℎ
𝑏

⎤

⎥

⎥

𝛥𝑡𝑛 for 𝑖 = 𝑚.

(48)
⎩⎣ ⎦
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Fig. 4. Relationship between algorithmic allowable volumes and design iteration for five materials. (Also, refer to Eq. (50)).

Here, 𝑁step denotes the total time steps of the primal and adjoint problems. It should be emphasized that the subscript 𝑖 in the above 
equations is not an index of tensor components but an ID of the design variable under consideration. Also, it is worth mentioning 
that the semi-implicit method is employed to update the design variables. That is, the sensitivity is fixed at 𝑡 = 𝑡𝑛̃, and only the 
design variable 𝜔𝑖,𝑛̃+1 is the unknown. Accordingly, the derivatives, 𝜕𝜔𝑖

𝑠ℎ0 ,𝑖,𝑛̃
 and 𝜕𝜔𝑗

𝑠ℎ0 ,𝑖,𝑛̃
 (𝑗 ≠ 𝑖), do not appear, and the coupled 

problem of 𝑚 design variables has a global tangent matrix with only diagonal terms.
On the other hand, the following algorithmic process is adopted for multi-material volume constraints: 

for 𝑖 = 1, 2,… , 𝑚 − 1, 𝑚

𝑉𝑖,𝑛̃ = ∫0

( 𝑚
∏

𝑘=𝑖
𝜔𝑘,𝑛̃ −

𝑚
∏

𝑘=𝑖−1
𝜔𝑘,𝑛̃

)

dV

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑉𝑖,𝑛̃

−
(

𝑉𝑖,max +
(

𝑉𝑖,ini − 𝑉𝑖,max
)

max
[

0, 1 − 𝑛̃
𝑛̃vol

])

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑉𝑖,max,𝑛̃

, (49)

where 𝑉𝑖,ini and 𝑉𝑖,max denote the initial and actual allowable volumes for the 𝑖th material, respectively, and 𝑛̃vol is the number of 
design iterations to reduce the allowable volume from 𝑉𝑖,ini to 𝑉𝑖,max. Suppose the design domain 0 has the total volume of 1 mm3

and five materials construct the domain (𝑚 + 1 = 5), and the following allowable volumes are given: 
𝑉1,ini + 𝑉2,ini + 𝑉3,ini + 𝑉4,ini + 𝑉5,ini = 0.10 + 0.20 + 0.30 + 0.40 + 0.00,

𝑉1,max + 𝑉2,max + 𝑉3,max + 𝑉4,max + 𝑉5,max = 0.20 + 0.25 + 0.10 + 0.05 + 0.40.
(50)

The relationships between the algorithmic allowable volumes 𝑉𝑖,max,𝑛̃ and the design iteration 𝑛̃ are presented in Fig.  4, where 
𝑛̃vol = 50 is given.

Meanwhile, following Otomori et al. [42], the penalty parameters 𝜃𝑖,𝑛̃ are calculated as follows: 
for 𝑖 = 1, 2,… , 𝑚 − 1, 𝑚

𝜃𝑖,𝑛̃ = 𝜃̄𝑖,𝑛̃
⏟⏟⏟

=𝜃𝑖,𝑛̃ in Eq. (88)
exp

(

𝑠v
𝑉𝑖,𝑛̃

𝑉𝑖,max,𝑛̃

)

, (51)

where 𝑠v denotes the saturation parameter to determine the exponential penalty function. Here, 𝜃̄𝑖,𝑛̃ in Eq. (51) are the solutions of 
the system of 𝑚 linear equations, which is derived in Appendix  B.3. Also, it is worth mentioning that the multipliers 𝜃𝑖,𝑛̃ work as the 
average sensitivity of the design domain at the design iteration 𝑛̃, which is compared with the local sensitivity 𝑠̄0 ,𝑖,𝑛̃ to determine if 
the design variable 𝜔𝑖,𝑛̃+1 increases or decreases. Additionally, the normalization factor 𝐶0 ,𝑖,𝑛̃ in Eq. (47) is calculated by Eq. (89).

3.4. Optimization algorithm

Algorithm 1 presents the overall optimization algorithm to address MMTO, which has been enhanced from the optimization 
algorithm employed in our previous studies [33,35]. The pseudo-time steps (design iterations) construct the outermost loop in the 
optimization process. At every pseudo-time step (design iteration) 𝑛̃, the SIMP-based interpolation function in Eq. (9) is used to 
update the material properties.

Subsequently, the nonlinear primal and linear adjoint problems are solved in the loop of the actual-time steps. To be specific, 
the internal state variables and nodal variables are solved by the local and global Newton–Raphson schemes, respectively. In the 
meantime, at each incremental step (time step), the increment of sensitivity is calculated at every integration point. At the end of 
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Algorithm 1 Optimization algorithm
1: while  The convergence criterion in Eq. (52) is not satisfied  do
2:  𝑛̃ = 𝑛̃ + 1 (𝑛̃ denotes the current design iteration (pseudo-time step))
3:  Create the material distribution of 𝑛̃-th design iteration by Eq. (9) with {𝜔𝐼

1,𝑛̃, 𝜔
𝐼
2,𝑛̃,… , 𝜔𝐼

𝑚−1,𝑛̃, 𝜔
𝐼
𝑚,𝑛̃}

4:  for  incremental step (time step) 𝑛 (

≤ 𝑁step
)  do

5:  𝑛 = 𝑛 + 1  (𝑛 denotes the current actual-time step)
6:  for Newton–Raphson loop  do
7:  𝑘 = 𝑘 + 1  (𝑘 denotes the current global Newton–Raphson iteration)
8:  for Finite element assembling do
9:  Solve Eq. (39) and Eq. (43) to determine {𝛾pℎ𝑛 ,nℎ

𝑛 , 𝜂
pℎ
𝑛 ,𝝅ℎ

𝑛} at every integration point
10:  Calculate the increments of the sensitivity in Eq. (48)
11:  end for
12:  Solve Eq. (38) and Eq. (45) to determine {𝒖𝐼𝑛 , 𝛼̄𝐼𝑛 ,𝒘𝐼

𝑛 , 𝛽
𝐼
𝑛 } at every node

13:  If the Newton–Raphson scheme is converged: exit
14:  end for
15:  end for
16:  Solve Eq. (36) for determining {𝜔𝐼

1,𝑛̃+1, 𝜔
𝐼
2,𝑛̃+1,… , 𝜔𝐼

𝑚−1,𝑛̃+1, 𝜔
𝐼
𝑚,𝑛̃+1}

17:  If the convergence criterion in Eq. (52) is satisfied: exit
18: end while

every design iteration, 𝑚 reaction–diffusion equations are solved to update 𝑚 design variables. Then, the following relative error is 
also calculated to check if the optimization is converged or not: 

{

IF 𝖾𝗋𝗋𝗈𝗋𝑛̃ > TOL ∶ Not converged
IF 𝖾𝗋𝗋𝗈𝗋𝑛̃ ≤ TOL ∶ Converged

with 𝖾𝗋𝗋𝗈𝗋𝑛̃ =
‖𝛥𝝎𝑛̃‖
√

𝑛node
and 𝛥𝜔𝐼

𝑖,𝑛̃ = 𝜔𝐼
𝑖,𝑛̃+1 − 𝜔𝐼

𝑖,𝑛̃ (𝑖 = 1, 2,… , 𝑚 − 1, 𝑚) .
(52)

For convenience, we call 𝖾𝗋𝗋𝗈𝗋𝑛̃ ‘‘optimization error’’ hereafter.

4. Numerical examples

In this section, two numerical examples are prepared to demonstrate the capability of the proposed method. To this end, the 
following objective function is adopted: 

 = ∫𝑡

[

−∫0

𝜔𝑝
𝑚𝑩 ⋅ 𝒖dV − ∫𝜕𝑁

0

𝑻̄ ⋅ 𝒖dA + ∫𝜕𝐷
0

𝑻 ⋅ 𝒖̄dA
]

dt, (53)

which corresponds to the conventional stiffness maximization problem. Particularly, Example 1 and Example 2 have different 
objectives to show the ability of the proposed method.

Example 1 discusses the computational stability of the optimization process using the conventional plastic model and the 
subloading surface model. Single-material topology optimization for a cantilever beam is studied, in which the difficulty in 
convergence due to the conventional plastic model is demonstrated, and the benefit of the subloading surface model on the stable 
optimization process is revealed afterward.

Example 2 aims to study unconventional multi-material topology optimization for a wedge specimen, say displacement 
magnitude-dependent MMTO. The uniqueness of this example is the underlying optimization concept for stiffness maximization 
problems. Specifically, Young’s modulus and Poisson’s ratios are identical for all base materials, and the material distribution and 
arrangement are determined by referring to the different degrees of plastic hardening behavior. 

For all numerical examples, 𝑝 = 3 is chosen for the SIMP-based interpolation function in Eq. (9). Also, the condition 𝑦0,𝑖∕𝑦0,𝑖+1 =
𝑝p,𝑖∕𝑝p,𝑖+1 = 𝑞p,𝑖∕𝑞p,𝑖+1 (𝑖 = 1, 2,… , 𝑚− 1) is postulated to maintain the even contributions of the penalty and diffusive terms in Eqs. 
(12)4, (28)6−8 for micromorphic regularization; refer to Han et al. [35] for details. Additionally, the material parameters for the 
ersatz material are set to 𝐸𝑚+1 = 10−3𝐸1 and 𝜈𝑚+1 = 𝜈1. The body force and prescribed traction force vectors, 𝑩 and 𝑻̄ , respectively, 
are neglected in the following numerical examples.

Remark 1.  In the following numerical examples, the benefit of employing nonlocal plasticity to address the mesh-dependency 
problem is not discussed since this issue is not the main concern of this study. Readers can refer to Han et al. [35] for the detailed 
investigation of nonlocal plasticity in elastoplastic topology optimization. 
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Table 2
Material and optimization parameters for Example 1.
 Material parameter∗ Value Unit  
 Young’s modulus 𝐸1 200000 [MPa]  
 Poisson’s ratio 𝜈1 0.3 [–]  
 Initial yield stress 𝑦0,1 500 [MPa]  
 Linear hardening parameter ℎ1 100, 1000, 10000, 100000 [MPa]  
 Normal-yield threshold 𝑅e

1 0.3, 0.5, 0.7 [–]  
 Normal-yield saturation parameter 𝑅p

1 300, 500, 700 [–]  
 Penalty parameter 𝑝p,1 10000 [MPa]  
 Diffusion parameter 𝑞p,1 72000 [MPa mm2] 
   
 Optimization parameter Value Unit  
 Allowance volume 𝑉1,max 0.50 [–]  
 Saturation parameter 𝑠v 10 [–]  
 Iteration number 𝑛̃vol 50 [iter.]  
 Pseudo-time increment 𝛥𝑡𝑛̃ 0.05 [s]  
 Diffusion coefficient 𝑙2d 42 [mm2]  
 Convergence tolerance TOL. 10−4 [–]  

Table 3
Optimization cases for Example 1.
 Case* 𝑅e

1 [–] 𝑅p
1 [–] ℎ1 [MPa] 

 Section 4.1.1  
 Case h102-con – – 100  
 Case h103-con – – 1000  
 Case h104-con – – 10000  
 Case h105-con – – 100000  
 Section 4.1.2  
 Case h102-sub** 0.5 500 100  
 Case h103-sub 0.5 500 1000  
 Case h104-sub 0.5 500 10000  
 Case h105-sub 0.5 500 100000  
 Section 4.1.3  
 Case Re03 0.3 500 100  
 Case Re05** 0.5 500 100  
 Case Re07 0.7 500 100  
 Section 4.1.4  
 Case Rp300 0.5 300 100  
 Case Rp500** 0.5 500 100  
 Case Rp700 0.5 700 100  
* The letters beginning with ‘‘h’’ mean the value of the plastic hardening variable (accumulated plastic strain). 
The part ‘‘Re’’ or ‘‘Rp’’ presents what parametric studies are under consideration. The letters ‘‘con’’ and ‘‘sub’’ 
correspond to the conventional plastic model and subloading surface model.
** Case Re05 and Case Rp500 are identical to Case h102-sub.

4.1. Example 1: Single-material topology optimization for a cantilever beam

As illustrated in Fig.  5, the first example considers a cantilever beam-like 2D structure subjected to a vertical deformation of 
10 mm, and the single-material topology optimization (topology optimization of ersatz and actual materials) is demonstrated. That is, 
only the interpolation of the nonlocal elastoplastic material and linearly elastic material is considered by referring to Eq. (10). Thus, 
unrealistic plastic deformation does not occur in the void regions. Also, the linear plastic hardening is assumed for the elastoplastic 
response. The material and optimization parameters are listed in Table 2. Here, the diffusion coefficient 𝑙d = 4 mm is given since 
we have confirmed that if the value is almost the same as the mesh size (4 mm), the obtained optimal design can properly reflect 
the mesh size. If a larger value is given, the optimal design becomes what can be obtained by coarser mesh, whereas a smaller 
value leads to a noisy material distribution; also see Otomori et al. [42] and Han et al. [35] for the parametric studies of the 
diffusion coefficient 𝑙d. Also, given a sufficiently small convergence criterion TOL. = 10−4, it does not regard the optimization as 
converged for an averaged absolute error of 0.01 % of design variables; see Han et al. [33] for details. This is beneficial for finding 
the underlying problem of the conventional plastic model in what follows.  Additionally, different values of the linear hardening 
parameter, normal-yield threshold, and normal-yield saturation parameter are provided so that a parametric study can be made, for 
which the optimization cases are presented in Table 3.
18 



J. Han et al. Computer Methods in Applied Mechanics and Engineering 442 (2025) 118038 
Fig. 5. Target design domain of Example 1: Geometry and boundary conditions (Meshsize: 4 mm).

4.1.1. Difficulty in convergence for conventional plastic model
First, we demonstrate the difficulty in convergence of the optimization process when using the conventional plastic model. Here, 

the conventional plastic model can be created by giving 𝑅e
1 = 1.0 or 𝑅p

1 → ∞ in the subloading surface model and used for the first 
four cases in Table 3; also see the fifth and sixth panels in Fig.  3. Fig.  6(a) shows the optimization error versus design iteration 
for these cases with different values of the linear plastic hardening parameter ℎ1. As can be seen from this figure, all four cases 
do not converge until two thousand design iterations. Specifically, the optimization error gradually decreases initially but oscillates 
afterward. To quantify the oscillation behavior, the following oscillation factor is defined: 

𝑂factor,𝑛̃+1 =

{

𝑂factor,𝑛̃ + 1 if
(

𝖾𝗋𝗋𝗈𝗋𝑛̃+1 − 𝖾𝗋𝗋𝗈𝗋𝑛̃
) (

𝖾𝗋𝗋𝗈𝗋𝑛̃ − 𝖾𝗋𝗋𝗈𝗋𝑛̃−1
)

≥ 0
𝑂factor,𝑛̃ − 1 otherwise,

(54)

which is set to increase by one if the optimization error increases or decreases two consecutive times. In other words, the larger the 
oscillation of the optimization error is, the smaller the value of the oscillation factor is; the optimization case with larger oscillations 
yields a downward curve to the right. Fig.  6(b) shows the oscillation factor versus design iteration of these four cases. It can be 
seen from this figure that the value of the oscillation factor decreases as the design iteration increases. Indeed, by giving a larger 
convergence tolerance, e.g., TOL. = 10−2, the optimization process can converge even if the oscillatory tendency of the optimization 
error is confirmed. However, recalling the definition of the optimization error in Eq. (52), TOL. = 10−2 allows 1% averaged absolute 
error for design variables 𝛥𝜔𝐼 . As can be seen from Figs. 6(c) and (d), this large convergence tolerance also allows that the maximum 
absolute error of the design variable |𝛥𝜔𝐼

|max changes more than |𝛥𝜔𝐼
|max > 0.1 and allow that the relative error of the objective 

function |𝛥 | changes more than 0.1% between two consecutive design iterations. In short, it ignores changes of the design variable 
(or material distribution) that are not so small. In this study, we do not regard this situation to be a converged state and only allow 
0.01% averaged absolute error (TOL. = 10−4). 

This oscillatory tendency of the optimization error is due to the repeated changes in the deformation state; see Fig.  7 that shows 
the distributions of deformation state during the design iterations 𝑛̃ = 2001 ∼ 2006 for Case h102-con. Here, the blue- and red-colored 
regions in the bottom snapshot exhibit elastic and plastic deformations, respectively. As shown in this figure, the circled regions show 
alternating deformation states, and such a trend is found in several locations within the design region. Additionally, the oscillations 
in the deformation state and the resulting oscillation in the optimization error can be explained by reference to the material Jacobian 
of the primal problem because it is used to determine the adjoint variables in the adjoint problem. In the following, we attempt to 
explain this.

To simplify the discussion, we consider the following one-directional setup considering linear plastic hardening: 

Material Jacobian in elastic deformation state: 𝜕𝜎
𝜕𝜀

|

|

|

|e
=

𝜕𝐸1𝜀
𝜕𝜀

= 𝐸1,

Material Jacobian in plastic deformation state: 𝜕𝜎
𝜕𝜀

|

|

|

|p
=

𝜕𝐸1 (𝜀 − 𝜀p)
𝜕𝜀

=
𝐸1ℎ1

𝐸1 + ℎ1
.

(55)

Here, assuming the Young’s modulus and initial yield stress as above, the values of the material Jacobian in the plastic deformation 
state are 𝐸1ℎ1∕

(

𝐸1 + ℎ1
)

= 99.95, 995.02, 9523.81, 66666.67 MPa with ℎ1 = 100, 1000, 10000, 100000 MPa, respectively. In 
the conventional plastic model, the material Jacobian changes dramatically around the plastic yield point, which is believed to 
significantly reduce the convergence tendency of the optimization process. For instance, a typical story leading to oscillation in the 
optimization error can be summarized in the following five events:

1. Supposing that the location 𝑿 exhibits elastic deformation at design iteration 𝑛̃, the material Jacobian is relatively large 
(Eq. (55)1), and thus relatively smaller adjoint variables are computed.

2. Roughly speaking, if the adjoint variables are relatively small, the resulting sensitivity becomes small. Accordingly, the design 
variable 𝜔1,𝑛̃+1 at 𝑿 tends to decrease, i.e., 𝛥𝜔1,𝑛̃ < 0.

3. Once the design variable 𝜔1,𝑛̃+1 becomes small, the region around 𝑿 becomes softer than the previous design iteration 𝑛̃. This 
tendency can lead to a large local deformation (or strain) at 𝑿 at design iteration 𝑛̃ + 1.

4. The large local deformation leads to plastic yielding at 𝑿, which results in relatively small material Jacobian, and accordingly, 
relatively large adjoint variables to be computed.

5. Contrary to the 2nd event, relatively larger adjoint variables lead to a larger value of sensitivity, and then the design variable 
𝜔  at 𝑿 increases, i.e., 𝛥𝜔 > 0. Eventually, the situation goes back to the 1st event.
1,𝑛̃+2 1,𝑛̃+1
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Fig. 6. Optimization error, oscillation factor, maximum absolute error of the design variable |𝛥𝜔𝐼
|max, relative error of the objective function |𝛥 | versus design 

iteration for Example 1: Conventional plastic model. The black-colored line in (a) denotes the convergence tolerance ‘‘TOL’’. (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Oscillation of deformation states: Case c-h102-con. The blue-/red-colored region exhibits elastic/plastic deformation.

It is worth mentioning that a larger value of linear hardening parameter ℎ is likely to mitigate the oscillation of the optimization 
error to some extent. In fact, for the current four cases, as the value of the linear hardening parameter ℎ increases, the oscillation 
trend of the optimization error is alleviated; compare the magenta- and green-colored curves with the red- and blue-colored curves 
in Fig.  6(b).

4.1.2. Stabilization of optimization process with subloading surface model
Hereafter, the subloading surface model is used in the primal problem for elastoplastic topology optimization. To this end, the 

normal-yield threshold 𝑅e
1 and normal-yield saturation parameter 𝑅

p
1 are set to 0.5 and 500, respectively. Fig.  8 shows the histories of 

the optimization error, oscillation factor, maximum absolute error of the design variable |𝛥𝜔𝐼
|max, and relative error of the objective 

function |𝛥 | with respect to the design iterations and the reaction force–displacement curves for the second four cases in Table 3 
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Fig. 8. Optimization error versus design iteration, oscillation factor versus design iteration, maximum absolute error of the design variable |𝛥𝜔𝐼
|max versus design 

iteration, relative error of the objective function |𝛥 | versus design iteration, and reaction force–displacement curve for Example 1: Subloading surface model. 
The black-colored line in (a) denotes the convergence tolerance ‘‘TOL’’. (For interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.)

with different values of the linear plastic hardening parameter ℎ1. Readers interested in the history of the objective function can 
refer to Fig.  34(a) in Appendix  C. As can be seen from panels (a) and (b) of Fig.  8, the optimization error does not oscillate, and all 
of these four cases successfully converge over a wide range of plastic hardening responses, i.e., ℎ1 = 102 ∼ 105 MPa. Also, from the 
figure (c), only a small value (i.e., 0.001) of the maximum absolute error of the design variable |𝛥𝜔𝐼

|max is found. In addition, the 
relative error of the objective function |𝛥 | is almost less than 0.001% (|𝛥 | ≈ 10−6) for all the four cases; see figure (d).  As shown 
in Fig.  3, the success is due to the fact that the subloading surface model does not have a definite yielding point that significantly 
changes the material Jacobian of the primal problem and that its material Jacobian continuously changes during the transition 
from the elastic to plastic deformation state. Therefore, incorporating the subloading surface model into the elastoplastic topology 
optimization framework is essential to ensure stability.

On the other hand, Fig.  9 presents the optimal designs with distributions of deformation states, nonlocal plastic hardening 
variable, and normal-yield rate. Here, the optimal design obtained from the linear elastic topology optimization is presented as 
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Fig. 9. Optimization results for Example 1: Subloading surface model. The region having 𝜔1 ≥ 0.5 is displayed, and voids are not shown. Deformed configurations 
are also shown for all optimal designs.

a reference solution in panel (e). As can be seen from these figures, the optimal design in all cases exhibits plastic deformation 
throughout its entire region; see the second figure in each panel. Also, setting ℎ1 larger allows for a milder accumulation of 
the nonlocal plastic hardening variable (plastic strain); compare the third figure in each panel of Fig.  9 and the reaction force–
displacement curves in Fig.  8(e). Additionally, it can be confirmed from the fourth figure in each panel that the region of high 
stress concentration exhibits the material-specific plastic deformation associated with hardening (𝑅 ≈ 1). Furthermore, due to the 
geometrical nonlinearity considering finite strain and material nonlinearity in plasticity, the optimal designs in the current four 
cases do not resemble the reference solution; the current four cases tend to have thicker members than the reference solution. This 
is likely because the optimization process tries to avoid buckling, which causes undesirable plastic deformation and significantly 
reduces the stiffness of the cantilever.

Remark 2.  This study derives the governing equations of the adjoint problem by considering the local plastic evolution is exclusively 
determined by the magnitude 𝛾p and direction n. Thereby, as explained in Section 3.4, the primal and adjoint problems are solved 
in the same time direction from 𝑡 = 0 to 𝑡 = 𝑇 . It should be noted that this approach leads to small relative errors between the 
analytical and approximated sensitivities; one comparison is presented in Fig.  33 in Appendix  C. Regarding this issue, Han et al. [60] 
recently made analytical and numerical investigations, and thus detailed explanation is not provided here. 

4.1.3. Parametric study on normal-yield threshold
As shown in Fig.  3(e), the normal-yield threshold 𝑅e determines the range of the transition of deformation states. Thus, a 

parameter study of 𝑅e
1 with topology optimization is conducted in this subsubsection. The normal-yield saturation parameter 𝑅

p
1

is set to 500, and the plastic hardening parameter ℎ1 is set to 100 MPa. Fig.  10 shows the optimization error versus design iteration 
and the reaction force–displacement curves for the third three cases in Table 3 with different values of 𝑅e

1, i.e., Cases Re03, Re05, 
and Re07.
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Fig. 10. Optimization error versus design iteration and reaction force–displacement curve for Example 1: Parametric study of the normal-yield threshold 𝑅e
1. 

The black-colored line in (a) denotes the convergence tolerance ‘‘TOL’’. (For interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.)

Fig. 11. Optimization results for Example 1: Parametric study of the normal-yield threshold 𝑅e
1. The region having 𝜔1 ≥ 0.5 is displayed, and voids are not 

shown. Deformed configurations are also shown for all optimal designs.

As shown in Fig.  10(a), oscillation is only observed at the beginning of the evolution of optimization error versus design iteration 
in Case Re07 but not in the remaining two cases. These responses are reasonable since the normal-yield threshold 𝑅e

1 determines the 
transition range from the complete elastic to plastic states; a small value of 𝑅e

1 leads to a wide transition range. That is, Case Re07 has 
the narrowest transition range, which may lead to oscillation to some extent. Also, it is found from the reaction force–displacement 
curves in Fig.  10(b) that the smaller the value of the normal yield threshold 𝑅e

1 is, the smaller the stiffness is. Additionally, for 
reference, the histories of the objective function for the current three cases are shown in Fig.  34(b) in Appendix  C.

Meanwhile, Fig.  11 presents the optimal designs with distributions of deformation states, nonlocal plastic hardening variable, 
and normal-yield ratio for these three cases. As can be seen from the second figure in each panel, plastic deformation occurs in most 
regions, but in Case Re07, slight elastic deformation is also visible. Also, from the third figure, it is found that when the normal-yield 
threshold 𝑅e

1 is large, the accumulation of plastic strain that corresponds to the nonlocal hardening variable becomes significant for 
the same amount of deformation. This trend, on the other hand, affects the evolution of the normal-yield ratio 𝑅. In other words, 
the larger 𝑅e

1 is, the faster the evolution of plastic deformation becomes; see the fourth figure in each panel.

4.1.4. Parametric study on normal-yield saturation parameter
A parametric study of the normal-yield saturation parameter 𝑅p

1 is conducted. As demonstrated in Fig.  3(f), 𝑅p changes the 
saturation behavior of the transition of deformation states, and giving a larger value of 𝑅p recovers to the conventional plastic 
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Fig. 12. Optimization error versus design iteration and reaction force–displacement curve for Example 1: Parametric study of the normal-yield saturation 
parameter 𝑅p. The black-colored line in (a) denotes the convergence tolerance ‘‘TOL’’.

Fig. 13. Optimization results for Example 1: Parametric study of the normal-yield saturation parameter 𝑅p. The region having 𝜔1 ≥ 0.5 is displayed, and voids 
are not shown. Deformed configurations are also shown for all optimal designs.

model.  The normal-yield threshold 𝑅e
1 is set to 0.5, and the plastic hardening parameter ℎ1 is set to 100 MPa. Fig.  12 presents 

the optimization error versus design iteration and the reaction force–displacement curves for the last three cases in Table 3 with 
different values of 𝑅p

1, i.e., Cases Rp300, Rp500, and Rp700.
Broadly speaking, a similar discussion to the previous parametric study can be made. That is, thanks to the characteristic of the 

subloading surface model, i.e., the smooth transition range between the complete elastic to plastic states, the optimization errors of 
the current three cases reach the tolerance ‘‘TOL’’. without severe oscillations; see Fig.  12(a). On the other hand, the value of the 
normal-yield saturation parameter 𝑅p

1 affects the plastic hardening behavior, in which the stress increases during the elastic–plastic 
transition. However, since the normal-yield threshold is fixed, the transition range does not change, and the transition only speeds 
up when the normal-yield saturation parameter 𝑅p

1 is set to a large value; see Fig.  12(b) and also refer to Fig.  3(f). This trend can also 
be seen from Fig.  13, which shows the optimal designs with distributions of deformation states, nonlocal plastic hardening variable, 
and normal-yield ratio for the current five cases. In fact, it is found that when the normal-yield saturation parameter 𝑅p

1 is large, 
the accumulation of plastic strain that corresponds to the nonlocal hardening variable and the evolution of the normal-yield ratio is 
accelerated. For reference, the histories of the objective function for the current three cases are shown in Fig.  34(c) in Appendix  C.

4.2. Example 2: Multi-material topology optimization for a wedge specimen

The second example is for multi-material topology optimization (MMTO: topology optimization of one ersatz and 𝑚 actual 
materials), for which a wedge-shaped specimen is subject to vertical deformation, as shown in Fig.  14. Different magnitudes of the 
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Fig. 14. Target design domain for Example 2: Geometry and boundary conditions (Meshsize: 6 mm).

Table 4
Common material and optimization parameters for Example 2.
 Material parameter Value Unit  
 Young’s modulus 𝐸 200000 [MPa]  
 Poisson’s ratio 𝜈 0.3 [–]  
 Normal-yield threshold 𝑅e 0.5 [–]  
 Normal-yield saturation parameter 𝑅p 500 [–]  
   
 Optimization parameter Value Unit  
 Saturation parameter 𝑠v 10 [–]  
 Iteration number 𝑛̃vol 50 [iter.]  
 Pseudo-time increment 𝛥𝑡𝑛̃ 0.05 [s]  
 Diffusion coefficient 𝑙2d 62 [mm2] 
 Convergence tolerance TOL. 10−4 [–]  

Table 5
Plastic material parameters and allowance volume for Example 2: One-material topology optimization.
 Parameter Value Unit  
 Initial yield stress 𝑦0,1 500 [MPa]  
 Linear hardening parameter ℎ1 500 [MPa]  
 Nonlinear hardening parameter 𝑦∞,1 1000 [MPa]  
 Saturation parameter 𝑠y,1 10 [–]  
 Penalty parameter 𝑝p,1 10000 [MPa]  
 Diffusion parameter 𝑞p,1 72000 [MPa mm2] 
 Allowance volume 𝑉1,max 0.40 [–]  

vertical deformation are given to the specimen, i.e., 5 mm, 20 mm, 35 mm, and 50 mm, in order to see the effects of geometrical 
and material nonlinearities on the optimal design. The common material and optimization parameters are listed in Table 4. Note 
that the Young’s modulus and Poisson’s ratios are the same for all actual materials, and the optimal designs are only determined by 
changing plastic material parameters. Thus, even if the stiffness maximization problem is discussed in this example, the optimization 
problem is different from conventional ones obtained only using elastic materials.

For convenience, the optimization cases discussed in this example are named by the following rule: ‘‘X’’ and ‘‘YY’’ of Case X-YY 
represent the number of actual materials and the magnitude of the prescribed displacement, respectively. For instance, Case 2-35 
considers two actual materials and a prescribed displacement of 35 mm, respectively.

Remark 3.  Indeed, larger displacement loadings, e.g., 65 mm, 80 mm, are possible, but the defects of materials should be newly 
taken into account by referring to damage evaluation criteria such as continuum damage models [61,62]. This is because several 
actual metallic materials exhibit material deterioration from 𝛼 ≈ 0.1. Also, buckling behavior may appear due to low-density elements 
in the optimization process, and additional stabilization techniques [63,64] should be employed. Since the current magnitudes of 
deformation (5 mm∼50 mm) can demonstrate the plastic deformation-dependent (or plastic strain-dependent) optimal designs, the 
afore-suggested issues are placed in our future studies.

4.2.1. One-material topology optimization
Before tackling MMTO, one-material topology optimization is presented to show that the subloading surface model does not 

cause oscillations of the optimization error even for the structure targeted here. The plastic material parameters and allowance 
volume are listed in Table 5, and the stress–strain curve of the material is shown in Fig.  15. As can be seen, the stress–strain curve 
does not have a distinct yielding point to switch the deformation states from complete elastic to plastic ones, which is beneficial for 
the adjoint problem, as demonstrated in the previous example.
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Fig. 15. True stress–true strain curve of base material for Example 2: One-material topology optimization.

Fig. 16. Optimization error versus design iteration, oscillation factor versus design iteration, and reaction force–displacement curve for Example 2: One-material 
topology optimization. The black-colored line in (a) denotes the convergence tolerance ‘‘TOL’’.

Figs.  16(a) and 16(b) show the optimization error and oscillation factor versus design iteration, respectively, of Case 1-5, Case 
1-20, Case 1-35, and Case 1-50, where oscillation in optimization error is not observed. Also, the reaction force–displacement curves 
of the optimized design iteration are improved compared with those of the 50-th design iteration, at which the actual allowance 
volume is imposed; see Fig.  16(c).

Additionally, Fig.  17 shows the optimization results of the current four cases, where panel (e) is the reference solution obtained 
from the purely elastic setup. For reference, the non-binarized distribution of the design variable is shown in Fig.  37 in Appendix 
C. As can be seen from the middle figure in each panel of Fig.  17, plastic deformation occurs in all regions of the specimen in the 
remaining three cases except Case 1-5. In other words, the optimal designs are strongly affected by both geometric and material 
nonlinearities. In fact, as the prescribed deformation increases, the optimal design becomes less similar to the reference solution.

4.2.2. Two-material topology optimization
Here, we address two-material topology optimization. The plastic material parameters and allowance volumes are presented in 

Table 6, and the stress–plastic hardening curves of base materials are shown in Fig.  18. As can be seen from the curves, the initial 
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Fig. 17. Optimization results for Example 2: One-material topology optimization. The region having 𝜔1 ≥ 0.5 is displayed, and voids are not shown. Deformed 
configurations are also shown for all optimal designs.

Table 6
Plastic material parameters and allowance volume for Example 2: Two-material topology optimization.
 Parameter Value Unit  
 Initial yield stress 𝑦0,1 , 𝑦0,2 500, 200 [MPa]  
 Linear hardening parameter ℎ1 , ℎ2 500, 200 [MPa]  
 Nonlinear hardening parameter 𝑦∞,1 , 𝑦∞,2 1000, 3000 [MPa]  
 Saturation parameter 𝑠y,1 , 𝑠y,2 10, 10 [–]  
 Penalty parameter 𝑝p,1 , 𝑝p,2 10000, 4000 [MPa]  
 Diffusion parameter 𝑞p,1 , 𝑞p,2 72000, 28800 [MPa mm2] 
 Allowance volume 𝑉1,max , 𝑉2,max 0.20, 0.20 [–]  

yield stress of Material 2 is less than that of Material 1, but Material 2 exhibits a stronger plastic hardening behavior. Accordingly, 
before and after the intersection (p1) of the two curves in Fig.  18, the preferred material should vary in terms of the stiffness 
maximization problem. That is if the plastic deformation at a certain location is small or large, Material 1 or Material 2 would be 
selectively placed, meaning that the switching criterion is (p1).

Figs.  19 and 20 present the reaction force–displacement curves and the optimization results of Case 2-5, Case 2-20, Case 2-35, 
and Case 2-50, respectively. For reference, the optimization error and oscillation factor versus design iteration are shown in Fig. 
27 



J. Han et al. Computer Methods in Applied Mechanics and Engineering 442 (2025) 118038 
Fig. 18. True stress–accumulated plastic strain curve of base materials for Example 2: Two-material topology optimization.

Fig. 19. Reaction force–displacement curve for Example 2: Two-material topology optimization. The black-colored dashed line in each panel is from the 50-th 
design iteration. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 20. Optimization results for Example 2: Two-material topology optimization. The left and right figures denote the distributions of the base materials and 
nonlocal plastic hardening variable. The region having 𝜔2 ≥ 0.5 is displayed, and voids are not shown. Deformed configurations are also shown for all optimal 
designs.
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Fig. 21. Material distributions depending on the magnitude of the accumulated plastic strain 𝛼 for Example 2: Two-material topology optimization. Only half 
of each specimen is displayed. Also, see Fig.  18.

Table 7
Plastic material parameters and allowance volume for Example 2: Three-material topology optimization.
 Parameter Value Unit  
 Initial yield stress 𝑦0,1 , 𝑦0,2 , 𝑦0,3 500, 350, 200 [MPa]  
 Linear hardening parameter ℎ1 , ℎ2 , ℎ3 500, 350, 200 [MPa]  
 Nonlinear hardening parameter 𝑦∞,1 , 𝑦∞,2 , 𝑦∞,3 1000, 850, 3000 [MPa]  
 Saturation parameter 𝑠y,1 , 𝑠y,2 , 𝑠y,3 10, 10, 10 [–]  
 Penalty parameter 𝑝p,1 , 𝑝p,2 , 𝑝p,3 10000, 7000, 4000 [MPa]  
 Diffusion parameter 𝑞p,1 , 𝑞p,2 , 𝑞p,3 72000, 50400, 28800 [MPa mm2] 
 Allowance volume 𝑉1,max , 𝑉2,max , 𝑉3,max 0.133, 0.133, 0.133 [–]  

35(a) and Fig.  36(a) in Appendix  C, respectively. As can be seen from Fig.  19, for all cases, the reaction force–displacement curves of 
the optimized design iteration are improved compared to those at the 50-th design iteration, at which the actual volume constraint 
is imposed by Eq. (49). Also, different optimal designs are obtained depending on the magnitude of the prescribed displacement; see 
the left figure in each panel of Fig.  20. For reference, the non-binarized distributions of the design variables, 𝜔1 and 𝜔2, are shown 
in Fig.  38 in Appendix  C. It should be noted that the material arrangement follows the material behavior in Fig.  18, and Material 2 
is placed where large plastic deformation occurs as the prescribed displacement increases; e.g., see (d) in Fig.  20. This trend cannot 
be realized by the conventional elastic MMTO, for which Figs. 20(e) and (f) show the optimal designs. Here, only the linear elastic 
deformation is considered, and the Young’s modulus of Material 2 is half the value of the Young’s modulus of Material 1. As shown 
in these figures, Material 1 is placed where the stress concentration occurs regardless of the deformation magnitude. Notably, even 
if the finite strain elastic MMTO is conducted, Material 1 is still placed where the stress concentration occurs. 

For further investigations, Fig.  21 is presented to show the material arrangement depending on the magnitude of plastic 
deformation. As can be seen from Fig.  18, the true stress of Material 2 becomes larger than that of Material 1 for the range 
approximately 𝛼 > 0.0205. Thus, in terms of the stiffness maximization problem, Material 2 should be selected for regions exhibiting 
stronger stress concentrations. This trend is indeed confirmed. That is, Material 2 is placed where the plastic hardening variable 
(accumulated plastic strain) 𝛼 is greater than 0.0205; see the right figure in each panel of Fig.  21. Also, this trend becomes more 
distinct along with the increase of the prescribed displacement. In fact, the middle part of the specimen is totally filled with Material 
2 in Case 2-50.

4.2.3. Three-material topology optimization
Subsequently, one material is added. That is, three-material topology optimization is discussed. The plastic material parameters 

and allowance volumes are summarized in Table 7, and the stress–strain curves of the base materials are shown in Fig.  22. This is 
a setting where the original and preferred materials are swapped at two points, (p2) and (p3), regarding the stiffness maximization 
problem. Specifically, when 𝛼 is smaller than 0.0098, the preferred material order is ‘‘Material 1, Material 2, and Material 3’’. In the 
range 0.0098 ≤ 𝛼 ≤ 0.0205, the order is ‘‘Material 1, Material 3, and Material 2’’, and in the range 0.0205 ≤ 𝛼, the order is ‘‘Material 
3, Material 1, and Material 2’’.

Fig.  23 shows the reaction force–displacement curves of Cases 3-5, 3-20, 3-35, and 3-50. As can be seen, the stiffness of the 
specimen is improved for all cases. For reference, the optimization error and oscillation factor for the design iterations are shown 
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Fig. 22. True stress–accumulated plastic strain curve of base materials for Example 2: Three-material topology optimization.

Fig. 23. Reaction force–displacement curve for Example 2: Three-material topology optimization. The black-colored dashed line in each panel is from the 50-th 
design iteration. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 24. Optimization results for Example 2: Three-material topology optimization. The left and right figures denote the distributions of the base materials and 
nonlocal plastic hardening variable. The region having 𝜔3 ≥ 0.5 is displayed, and voids are not shown. Deformed configurations are also shown for all optimal 
designs.
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Fig. 25. Material distributions depending on the magnitude of plastic hardening variable 𝛼 for Example 2: Three-material topology optimization. Only half of 
each specimen is displayed. Also, see Fig.  22.

Table 8
Plastic material parameters and allowance volume for Example 2: Four-material topology optimization.
 Parameter Value Unit  
 Initial yield stress 𝑦0,1 , 𝑦0,2 , 𝑦0,3 , 𝑦0,4 500, 400, 300, 200 [MPa]  
 Linear hardening parameter ℎ1 , ℎ2 , ℎ3 , ℎ4 500, 400, 300, 200 [MPa]  
 Nonlinear hardening parameter 𝑦∞,1 , 𝑦∞,2 , 𝑦∞,3 , 𝑦∞,4 1000, 900, 800, 3000 [MPa]  
 Saturation parameter 𝑠y,1 , 𝑠y,2 , 𝑠y,3 , 𝑠y,4 10, 10, 10, 10 [–]  
 Penalty parameter 𝑝p,1 , 𝑝p,2 , 𝑝p,3 , 𝑝p,4 10000, 8000, 6000, 4000 [MPa]  
 Diffusion parameter 𝑞p,1 , 𝑞p,2 , 𝑞p,3 , 𝑞p,4 72000, 57600, 43200, 28800 [MPa mm2] 
 Allowance volume 𝑉1,max , 𝑉2,max , 𝑉3,max , 𝑉4,max 0.1, 0.1, 0.1, 0.1 [–]  

in Figs.  35(b) and 36(b) in Appendix  C, respectively. On the other hand, Fig.  24 shows the optimization results of these four cases, 
in which figures (e) and (f) show the reference solutions obtained from the linear elastic MMTO with 𝐸2 = 2∕3𝐸1 and 𝐸3 = 1∕3𝐸1. 
As can be seen, different optimal topologies are obtained for the proposed elastoplastic MMTO, whereas the optimal designs do not 
change with different displacement magnitudes for the linear elastic MMTO. In addition to the geometry of the optimal structure, 
the material distribution is also strongly affected by the accumulation of plastic strain. To be specific, Material 3 is placed in regions 
that exhibit large plastic deformation. To support this investigation, Fig.  25 is useful for understanding of the material arrangements 
determined by the magnitude of plastic deformation. For reference, the non-binarized distributions of the design variables 𝜔1 ∼ 𝜔3
are presented in Fig.  39. As explained in Section 4.2.3, in the conventional elastic MMTO, a material having a large Young’s modulus 
is placed where the stress concentration occurs to address the stiffness maximization problem. Hence, the material distribution does 
not change by the deformation magnitude. In contrast, in the proposed elastoplastic MMTO, the plastic hardening properties are 
referred to in the stiffness maximization problem. Thus, the optimal structure is unique on the imposed deformation magnitude. 

4.2.4. Four-material topology optimization
Finally, one additional material is added, and four-material topology optimization is discussed. The plastic material parameters 

and allowance volumes are presented in Table 8, and the stress–strain curves of the base materials, optimization error–design 
iteration curves, and reaction force–displacement curves are shown in Fig.  26. As can be seen, this is a setting where the original and 
preferred materials are swapped at three points, (p4), (p5), and (p6), in the figure in terms of the stiffness maximization problem. 
For instance, the preferred material order is ‘‘Material 1, Material 4, Material 2, and Material 3’’ between the points (p5) and (p6).

Fig.  27 shows the reaction force–displacement curves of Cases 4-5, 4-20, 4-35, and 4-50. As can be seen, the peak reaction forces 
are improved for all cases. For reference, the convergence trends of these cases are shown in Figs.  35(c) and 36(c) in Appendix 
C. The obtained optimal topologies are shown in Fig.  28 along with the distributions of the base materials and nonlocal plastic 
hardening variable, in which figures (e) and (f) show the reference solutions obtained from the linear elastic MMTO with 𝐸2 = 3∕4𝐸1, 
𝐸3 = 2∕4𝐸1, and 𝐸4 = 1∕4𝐸1. As in the previous examples, the material distribution varies with the magnitude of plastic deformation 
in terms of the stiffness maximization problem. This trend can be clearly observed from Fig.  29 that shows the material arrangements 
determined by the magnitude of plastic deformation. In particular, Material 4 tends to be placed where stress concentration occurs. 
However, it should be noted that this trend does not apply to the conventional elastic MMTO in figures (e) and (f) since the material 
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Fig. 26. True stress–accumulated plastic strain curve of base materials for Example 2: Four-material topology optimization.

Fig. 27. Reaction force–displacement curve for Example 2: Four-material topology optimization. The black-colored dashed line in each panel is from the 50-th 
design iteration.

Fig. 28. Optimization results for Example 2: Four-material topology optimization. The left and right figures denote the distributions of the base materials and 
nonlocal plastic hardening variable. The region having 𝜔4 ≥ 0.5 is displayed, and voids are not shown. Deformed configurations are also shown for all optimal 
designs.
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Fig. 29. Material distributions depending on the magnitude of plastic hardening variable 𝛼 for Example 2: Four-material topology optimization. Only half of 
each specimen is displayed. Also, see Fig.  26.

distributions are exclusively determined by the values of Young’s moduli of base materials, which are not related to the deformation 
magnitude. 

Before closing this subsubsection, a few shortcomings of MMTO as formulated in this study should be mentioned. Comparing 
the optimal designs of Case 4-5 and Case 4-50 in Fig.  28, we notice that Case 4-50 has thinner members than Case 4-5. This is 
because the optimal design of Case 4-50 is more ‘‘grayscale’’ pronounced than in Case 4-5; see also Fig.  40 in Appendix  C for 
reference. The main reason for the pronounced grayscale can be due to the SIMP-based interpolation method in Eq. (9). Precisely, 
the employed function is continuous and cannot represent discrete material distributions, even though the order ‘‘𝑝’’ in Eq. (9) works 
as penalization to avoid intermediate material densities. It should also be noted that the SIMP-based interpolation function has a 
‘‘nested structure’’. That is, the 𝑘th material is less likely to be selected than 𝑘 + 1-th material since the material distribution is 
determined by the design variable 𝜔𝑘. On the other hand, it is also strongly affected by the design variables 

{

𝜔𝑘+1, 𝜔𝑘+2,… , 𝜔𝑚
}

. 
Accordingly, obtaining proper material distribution may not be guaranteed. For instance, when the accumulated plastic strain 𝛼 is 
larger than 0.0205, the appropriate material order should be Material 4, Material 1, Material 2, and Material 3. However, as can be 
seen in the last figure in Fig.  29(d), Material 2 and Material 3 have larger areas than Material 1. Nevertheless, such a discrepancy is 
common for SIMP-based interpolation, and a similar discussion can be found in the literature. Therefore, it is safe to conclude that 
33 



J. Han et al. Computer Methods in Applied Mechanics and Engineering 442 (2025) 118038 
Table 9
Objective functions and numerical comparisons for Example 2. ObjX denotes the value of objective function obtained from X-th base material. ObjX/Obj indicates 
the ratio of ObjX to Obj as a percentage.
 Disp. [mm] Obj [J] Obj1 [J] Obj2 [J] Obj1/Obj Obj2/Obj  
 Case 2-5 (𝑢̄ = 5) 130.3 143.7 97.7 110% 75%  
 Case 2-50 (𝑢̄ = 50) 24 747.8 26066.1 25009.3 105% 101%  
 Disp. [mm] Obj [J] Obj1 [J] Obj2 [J] Obj3 [J] Obj1/Obj Obj2/Obj Obj3/Obj  
 Case 3-5 (𝑢̄ = 5) 120.4 133.6 114.4 90.4 111% 95% 75%  
 Case 3-50 (𝑢̄ = 50) 20 421.3 22041.3 16686.1 21109.5 108% 82% 103%  
 Disp. [mm] Obj [J] Obj1 [J] Obj2 [J] Obj3 [J] Obj4 [J] Obj1/Obj Obj2/Obj Obj3/Obj Obj4/Obj 
 Case 4-5 (𝑢̄ = 5) 110.0 122.6 112.3 96.0 83.0 111% 102% 87% 75%  
 Case 4-50 (𝑢̄ = 50) 17 685.6 18913.7 15876.9 12787.4 18215.4 107% 90% 72% 103%  

Fig. 30. Deformed configurations and distributions of the nonlocal plastic hardening variable of the optimal structures and structures made from base materials 
for Example 2: Two-material topology optimization in Section 4.2.2.

apart from the issues related to interpolation functions, the proposed framework is promising in terms of the MMTO considering 
finite strain nonlocal elastoplasticity.

4.2.5. Discussion
As discussed above, the proposed MMTO method can realize the optimal material configuration and distribution according to 

the magnitude of imposed displacement; see Figs.  21, 25, and 29. Before closing this numerical example, we furthermore provide 
overall discussions on the optimization results by referring to the smallest and largest deformation cases (5 mm and 50 mm).

Now, the optimal structures obtained from the two, three, and four-material topology optimizations are re-constructed by the 
base materials (Mat. 1∼ Mat. 4). Then, the values of the objective functions are calculated given the prescribed deformations of 
5 mm and 50 mm, and those values are summarized in Table 9. Here, ‘‘ObjX’’ denotes the objective function obtained from X-th 
base material, e.g., ‘‘Obj3 = 96.0 [J]’’ for Case 4-5 is calculated from the optimal shape of Case 4-5 in Fig.  28(d) that is, however, 
made from Mat. 3. Also, ‘‘ObjX/Obj’’ indicates the ratio of ObjX to Obj as a percentage. As shown in the table, for the cases with 
the small deformation (5 mm), since the yield stress is higher in the order of Mat. 1, Mat. 2, Mat. 3, and Mat. 4, the values of the 
objective function ‘‘ObjX’’ are also larger in that order; also refer to Figs.  18, 22, and 26. Therefore, it is desirable to use only Mat. 1 
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Fig. 31. Deformed configurations and distributions of the nonlocal plastic hardening variable of the optimal structures and structures made from base materials 
for Example 2: Three-material topology optimization in Section 4.2.3.

to manufacture the strongest wedge specimen, but in actual manufacturing, it is not always possible to use as much of one material 
as desired. Then, one advantage of MMTOs is that if we can combine several materials (e.g., strong and weak materials, expensive 
and cheap materials) to find the optimal shape, this situation may be avoided, and the resulting optimal structure may still fulfill 
the design objective. In fact, although only 1/2, 1/3, and 1/4 of Mat. 1 is used in the optimal designs, the values of ‘‘Obj1’’ in 
Table 9 for the cases with 𝑢̄ = 5 mm are just slightly larger than the values of ‘‘Obj’’, i.e., the optimal structure itself is not so weak, 
despite the use of weaker materials. However, it should be noted that the optimal structures obtained from MMTO are used here, 
and thus, the values of the objective function calculated for the structures represented by a single base material are not equal to 
those obtained when optimizing with a single material. 

Meanwhile, as shown in Table 9, when the large deformation (50 mm) is considered, Mat. 2 in Case 2-50, Mat. 3 in Case 3-50, 
and Mat. 4 in Case 4-50 are no more the weakest material. This is because they exhibit the largest plastic hardening behavior 
among base materials in each MMTO in Sections 4.2.2, 4.2.3, and 4.2.4; also refer to Figs.  18, 22, and 26. In short, if they can be 
placed where high-stress concentrations occur, weakness of low yield stress is offset by its high plastic hardening behavior, and the 
best performance can be achieved. For a better understanding, Figs.  30–32 present deformed configurations and distributions of the 
nonlocal plastic hardening variable 𝛼̄. As can be seen from these figures, Mat. 2 in Case 2-50, Mat. 3 in Case 3-50, and Mat. 4 in 
Case 4-50 exhibit the smallest plastic accumulations among base materials, which implies the plastic dissipation rate (𝑦0𝛼̇) is also 
the smallest. Also, it turns out that the magnitudes of the nonlocal plastic hardening variable 𝛼̄ in the figures (b0) are closest to 
those in figure (b2) in Fig.  30, figure (b3) in Fig.  31, and figure (b4) in 32. This can be said to be a reasonable realization of stiffness 
optimization, i.e., finding a structure that resists external forces as much as possible. Notably, the optimal material configuration 
and distribution should change once the plastic dissipation problem is alternatively involved in the objective function; readers can 
refer to Han et al. [33,35] for several investigations within the single-design variable topology optimization. Since the current study 
is enough to explain the ability of the proposed elastoplastic MMTO, additional investigations will be included in our future studies. 

5. Conclusion

This study has developed a new multi-material topology optimization (MMTO) formulation incorporated with finite strain 
nonlocal elastoplasticity. A distinctive novelty is the incorporation of the subloading surface model into the primal problem to 
achieve the gradual change from pure elastic deformation state to fully plastic deformation state. Also, the idea of interpolating 
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Fig. 32. Deformed configurations and distributions of the nonlocal plastic hardening variable of the optimal structures and structures made from base materials 
for Example 2: Four-material topology optimization in Section 4.2.4.

energy densities was employed to ensure computational stability and to avoid unrealistic plastic deformation occurring in voids 
(ersatz material). In addition, for the first time, the continuous adjoint method was formulated to derive the governing equations 
and sensitivity of the adjoint problem of MMTO considering elastoplasticity. Accordingly, the obtained equations do not depend on 
any discretization and are valid at any location in a continuum body, on its boundary, and at any moment. An arbitrary number 
of design variables was considered in the formulation, and by referring to the derived sensitivity, the multiple reaction–diffusion 
equations were introduced to update the material distribution and configuration. In the first numerical example, the capability of 
the subloading surface model is investigated. In particular, the stable optimization process is realized by employing the feature of 
the material Jacobians in the subloading surface model continuous functions. In the second numerical example, several topology 
optimization problems were solved for multiple materials with the same elasticity but different plastic material properties. In 
particular, we were able to illustrate that the distribution of base materials within the optimum structure changes with the magnitude 
of plastic deformation by setting the stresses in the base materials to switch between large and small during the hardening process. 
Note that although no example was given, the mesh-dependency problem has been solved by the application of nonlocal plasticity 
theory.

We conclude this paper with a discussion of future directions. First, for better MMTO, the material interpolation function should 
be reconsidered. To the best of the authors’ knowledge, if we have an interpolation method that does not have the ‘‘nested structure’’ 
like the employed SIMP-based function, even if the number of base materials increases, it is expected that the grayscale can be 
mitigated, and the proper material order can be achieved. Second, the idea of interpolating energy densities is extended to describe 
MMTO for different types of material combinations, such as rubbers, concretes, metals, and so on. This direction should be especially 
helpful when discussing the optimal geometry and location of fibers for composite materials or the optimal placement and amount 
of rebars for reinforced concrete. Third, if MMTO can take into account the damage of several base materials in a multi-material 
structure, it is expected that a new optimal design that controls or takes advantage of their fracture behavior will be realized. If this 
kind of optimization is established, the failure behavior of products can be ‘‘pre-designed’’ while keeping the desired capability, and 
thus, the industry can save a lot of resources for actual experiments to investigate the failure behavior. These topics are left for our 
future challenges.
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Appendix A. Supplemental information for the interpolation of multiple material parameters

A.1. Examples of the SIMP-based interpolation function

Suppose one material parameter ‘‘∙’’ is determined by 𝑚+1 = 2, 𝑚+1 = 3, or 𝑚+1 = 4 base material parameters, Eq. (9) recovers 
to 

∙ = ∙1,2 = 𝜔𝑝
1∙1 +

(

1 − 𝜔𝑝
1
)

∙2,

∙ = ∙1,2,3 = 𝜔𝑝
2∙1,2 +

(

1 − 𝜔𝑝
2
)

∙3 = 𝜔𝑝
2𝜔

𝑝
1∙1 + 𝜔𝑝

2
(

1 − 𝜔𝑝
1
)

∙2 +
(

1 − 𝜔𝑝
2
)

∙3,

∙ = ∙1,2,3,4 = 𝜔𝑝
3∙1,2,3 +

(

1 − 𝜔𝑝
3
)

∙4 = 𝜔𝑝
3𝜔

𝑝
2𝜔

𝑝
1∙1 + 𝜔𝑝

3𝜔
𝑝
2
(

1 − 𝜔𝑝
1
)

∙2 + 𝜔𝑝
3
(

1 − 𝜔𝑝
2
)

∙3 +
(

1 − 𝜔𝑝
3
)

∙4.

(56)

A.2. Supplemental explanation for Fig.  2

As shown in Fig.  2, the domain filled with Material 1 is calculated by 

𝑉1 = ∫0

(

𝜔1𝜔2𝜔3
)

dV. (57)

On the other hand, the domain calculated by ∫0

(

𝜔2𝜔3
)

dV covers both domains A and C, the former of which is 𝑉1. Thus, the 
domain filled with Material 2 is calculated by 

𝑉2 = ∫0

(

𝜔2𝜔3
)

dV − 𝑉1 = ∫0

(

𝜔2𝜔3
)

dV − ∫0

(

𝜔1𝜔2𝜔3
)

dV. (58)

Similarly, the domain filled with Material 3 is calculated by 

𝑉3 = ∫0

(

𝜔3
)

dV − 𝑉1 − 𝑉2 = ∫0

(

𝜔3
)

dV − ∫0

(

𝜔2𝜔3
)

dV. (59)

In this way, Eq. (19) can be obtained inductively.
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A.3. Derivatives of the volume constraints with respect to design variables

The derivatives of the volume constraints for multiple materials in Eq. (21) with respect to design variable 𝜔𝑖 with 𝑖 =
1, 2,… , 𝑚 − 1, 𝑚 are calculated as follows: 

𝛿𝜔𝑖
𝜽 ⋅ 𝑽̄ = 𝜕

𝜕𝜔𝑖

( 𝑚
∑

𝑙=1
𝜃𝑙 ∫0

( 𝑚
∏

𝑘=𝑙
𝜔𝑘 −

𝑚
∏

𝑘=𝑙−1
𝜔𝑘

)

dV
)

𝛿𝜔𝑖

= 𝜕
𝜕𝜔𝑖

(

𝜃1 ∫0

( 𝑚
∏

𝑘=1
𝜔𝑘 −

𝑚
∏

𝑘=0
𝜔𝑘

)

dV + 𝜃2 ∫0

( 𝑚
∏

𝑘=2
𝜔𝑘 −

𝑚
∏

𝑘=1
𝜔𝑘

)

dV +…

+𝜃𝑖−1 ∫0

( 𝑚
∏

𝑘=𝑖−1
𝜔𝑘 −

𝑚
∏

𝑘=𝑖−2
𝜔𝑘

)

dV

+𝜃𝑖 ∫0

( 𝑚
∏

𝑘=𝑖
𝜔𝑘 −

𝑚
∏

𝑘=𝑖−1
𝜔𝑘

)

dV + 𝜃𝑖+1 ∫0

( 𝑚
∏

𝑘=𝑖+1
𝜔𝑘 −

𝑚
∏

𝑘=𝑖
𝜔𝑘

)

dV +…

+𝜃𝑚−1 ∫0

( 𝑚
∏

𝑘=𝑚−1
𝜔𝑘 −

𝑚
∏

𝑘=𝑚−2
𝜔𝑘

)

dV + 𝜃𝑚 ∫0

( 𝑚
∏

𝑘=𝑚
𝜔𝑘 −

𝑚
∏

𝑘=𝑚−1
𝜔𝑘

)

dV
)

𝛿𝜔𝑖

= 𝜕
𝜕𝜔𝑖

(

(

𝜃1 − 𝜃2
)

∫0

𝑚
∏

𝑘=1
𝜔𝑘dV +

(

𝜃2 − 𝜃3
)

∫0

𝑚
∏

𝑘=2
𝜔𝑘dV +…

+
(

𝜃𝑖−1 − 𝜃𝑖
)

∫0

𝑚
∏

𝑘=𝑖−1
𝜔𝑘dV +

(

𝜃𝑖 − 𝜃𝑖+1
)

∫0

𝑚
∏

𝑘=𝑖
𝜔𝑘dV

)

𝛿𝜔𝑖

=
𝑖

∑

𝑙=1

(

𝜃𝑙 − 𝜃𝑙+1
)

∫0

𝜕
𝜕𝜔𝑖

𝑚
∏

𝑘=𝑙
𝜔𝑘dV𝛿𝜔𝑖 =

𝑖
∑

𝑙=1

(

𝜃𝑙 − 𝜃𝑙+1
)

∫0

1
𝜔𝑖

𝑚
∏

𝑘=𝑙
𝜔𝑘𝛿𝜔𝑖dV.

(60)

Appendix B. Components for numerical implementation

B.1. Components for the primal problem

The integrand in Eq. (38)3 is expanded as 
𝜕𝑃𝑖𝑎,𝑛

𝜕𝐹𝑗𝑏
+

𝜕𝑃𝑖𝑎,𝑛

𝜕𝛾p
𝜕𝛾p𝑛
𝜕𝐹𝑗𝑏

+
𝜕𝑃𝑖𝑎,𝑛

𝜕n𝑐𝑑

𝜕n𝑐𝑑,𝑛
𝜕𝐹𝑗𝑏

=
𝜕𝜏𝑖𝑐,𝑛
𝜕𝑏e𝑒𝑓

(

𝜕𝑏e𝑒𝑓 ,𝑛
𝜕𝐹𝑗𝑏

+
𝜕𝑏e𝑒𝑓 ,𝑛
𝜕𝛾p

𝜕𝛾p𝑛
𝜕𝐹𝑗𝑏

+
𝜕𝑏e𝑒𝑓 ,𝑛
𝜕n𝑔ℎ

𝜕n𝑔ℎ,𝑛
𝜕𝐹𝑗𝑏

)

𝐹−1
𝑎𝑐,𝑛 − 𝜏𝑖𝑐,𝑛𝐹

−1
𝑎𝑗,𝑛𝐹

−1
𝑏𝑐,𝑛,

𝜕𝜏𝑖𝑐,𝑛
𝜕𝑏e𝑒𝑓

=
𝜕𝜏vol,𝑖𝑐,𝑛
𝜕𝑏e𝑒𝑓

+
𝜕𝜏dev,𝑖𝑐,𝑛
𝜕𝑏e𝑒𝑓

= 𝜅
2
𝐽 e2𝛿𝑖𝑐𝑏

e−1
𝑒𝑓 ,𝑛 + 𝜇𝐽 e−2∕3

(

1dev,𝑖𝑐𝑒𝑓 − 1
3
𝑏edev,𝑖𝑐,𝑛𝑏

e−1
𝑒𝑓 ,𝑛

)

.

(61)

Here, the superscript ‘‘ℎ’’ representing the FE approximation is omitted for convenience. Also, the derivatives of 𝒃e with respect to 
𝑭 , 𝛾p, and n in Eq. (61) are calculated by 

𝜕𝒃e𝑛
𝜕𝑭

= exp
(

−2𝛥𝑡𝑛𝛾
p
𝑛n𝑛

)

⊗
(

𝑪p−1
𝑛−1 ⋅ 𝑭

T
𝑛

)T
+
{

exp
(

−2𝛥𝑡𝑛𝛾
p
𝑛n𝑛

)

⋅ 𝑭 𝑛 ⋅ 𝑪
p−1
𝑛−1

}

⊗ 𝟏,

𝜕𝒃e𝑛
𝜕𝛾p

=
{

D exp
(

−2𝛥𝑡𝑛𝛾
p
𝑛n𝑛

)

∶
(

−2𝛥𝑡𝑛n𝑛
)}

⋅ 𝒃e,tr𝑛 ,

𝜕𝒃e𝑛
𝜕n

=
{

D exp
(

−2𝛥𝑡𝑛𝛾
p
𝑛n𝑛

)

∶
(

−2𝛥𝑡𝑛𝛾
p
𝑛𝟏sym

)}

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑖𝑎𝑘𝑙

∗ 𝒃e,tr𝑛
⏟⏟⏟

𝑎𝑗

,

(62)

in which ⊗  is the dyadic-down product operator, i.e., 
(

𝟏 ⊗ 𝟏
)

𝑖𝑗𝑘𝑙
= 𝛿𝑖𝑙𝛿𝑗𝑘, and ∗ denotes the tensor product operator to realize 

the above suggested manipulation, respectively.
The derivatives 𝜕𝑭 𝛾p𝑛  and 𝜕𝑭n𝑛 can be calculated from Eq. (39). To be specific, the following relationships hold: 

𝜕𝑔
𝛾p ,𝑛

𝜕𝑭
= 𝛾p𝛾p ,𝑛

𝜕𝛾p𝑛
𝜕𝑭

+𝛾pn,𝑛 ∶
𝜕n𝑛
𝜕𝑭

,

𝜕𝑔
n,𝑛 =  p ⊗

𝜕𝛾p𝑛 + ∶
𝜕n𝑛 ,

(63)
𝜕𝑭 n𝛾 ,𝑛 𝜕𝑭 nn,𝑛 𝜕𝑭
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where 
𝜕𝑔

𝛾p ,𝑛

𝜕𝑭
= −

𝜕‖𝝉dev,𝑛‖
𝜕𝑭

= −
𝜕‖𝝉dev,𝑛‖

𝜕𝒃e
∶

𝜕𝒃e𝑛
𝜕𝑭

⏟⏟⏟
Eq. (62)1

,

𝜕𝑔
n,𝑛

𝜕𝑭
= 𝜕

𝜕𝑭
𝝉dev,𝑛

‖𝝉dev,𝑛‖
=

(

1
‖𝝉dev,𝑛‖

𝜕𝝉dev,𝑛
𝜕𝒃e

−
𝝉dev,𝑛

‖𝝉dev,𝑛‖2
⊗

𝜕‖𝝉dev,𝑛‖
𝜕𝒃e

)

∶
𝜕𝒃e𝑛
𝜕𝑭

⏟⏟⏟
Eq. (62)1

.

(64)

Thus, recalling the relationship n = nT, 𝜕𝑭 𝛾p𝑛  and 𝜕𝑭n𝑛 are obtained from 

𝜕𝝃𝑛
𝜕𝑭

= primal−1
local,𝑛 ⋅

𝜕𝑔
𝝃,𝑛

𝜕𝑭
, (65)

where 
𝜕𝝃𝑛
𝜕𝑭

=
[

𝜕𝛾p𝑛
𝜕𝑭

𝜕n11,𝑛
𝜕𝑭

𝜕n22,𝑛
𝜕𝑭

𝜕n33,𝑛
𝜕𝑭

𝜕n23,𝑛
𝜕𝑭

𝜕n13,𝑛
𝜕𝑭

𝜕n12,𝑛
𝜕𝑭

]T
,

𝜕𝑔
𝝃,𝑛

𝜕𝑭
=
[

𝜕𝑔
𝛾p ,𝑛

𝜕𝑭
𝜕𝑔

n11 ,𝑛

𝜕𝑭
𝜕𝑔

n22 ,𝑛

𝜕𝑭
𝜕𝑔

n33 ,𝑛

𝜕𝑭
2
𝜕𝑔

n23 ,𝑛

𝜕𝑭
2
𝜕𝑔

n13 ,𝑛

𝜕𝑭
2
𝜕𝑔

n12 ,𝑛

𝜕𝑭

]T

,

(66)

and 

primal
local,𝑛 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛾p𝛾p ,𝑛 𝛾pn11 ,𝑛 𝛾pn22 ,𝑛 𝛾pn33 ,𝑛 2𝛾pn23 ,𝑛 2𝛾pn13 ,𝑛 2𝛾pn12 ,𝑛
n11𝛾p ,𝑛 n11n11 ,𝑛 n11n22 ,𝑛 n11n33 ,𝑛 2n11n23 ,𝑛 2n11n13 ,𝑛 2n11n12 ,𝑛
n22𝛾p ,𝑛 n22n11 ,𝑛 n22n22 ,𝑛 n22n33 ,𝑛 2n22n23 ,𝑛 2n22n13 ,𝑛 2n22n12 ,𝑛
n33𝛾p ,𝑛 n33n11 ,𝑛 n33n22 ,𝑛 n33n33 ,𝑛 2n33n23 ,𝑛 2n33n13 ,𝑛 2n33n12 ,𝑛
2n23𝛾p ,𝑛 2n23n11 ,𝑛 2n23n22 ,𝑛 2n23n33 ,𝑛 4n23n23 ,𝑛 4n23n13 ,𝑛 4n23n12 ,𝑛
2n13𝛾p ,𝑛 2n13n11 ,𝑛 2n13n22 ,𝑛 2n13n33 ,𝑛 4n13n23 ,𝑛 4n13n13 ,𝑛 4n13n12 ,𝑛
2n12𝛾p ,𝑛 2n12n11 ,𝑛 2n12n22 ,𝑛 2n12n33 ,𝑛 4n12n23 ,𝑛 4n12n13 ,𝑛 4n12n12 ,𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (67)

Similarly, the derivatives 𝜕𝛼̄𝛾p𝑛  and 𝜕𝛼̄n𝑛 can be calculated from Eq. (39), and the following relationships hold: 
𝜕𝑔

𝛾p ,𝑛

𝜕𝛼̄
= 𝛾p𝛾p ,𝑛

𝜕𝛾p𝑛
𝜕𝛼̄

+𝛾pn,𝑛 ∶
𝜕n𝑛
𝜕𝛼̄

,

𝜕𝑔
n,𝑛

𝜕𝛼̄
= n𝛾p ,𝑛

𝜕𝛾p𝑛
𝜕𝛼̄

+
nn,𝑛 ∶

𝜕n𝑛
𝜕𝛼̄

,

(68)

where 
𝜕𝑔

𝛾p ,𝑛

𝜕𝛼̄
= 𝑅𝑛

√

2
3
𝜕𝑟p𝑛
𝜕𝛼̄

= −𝑅𝑛

√

2
3
𝑝p,

𝜕𝑔
n,𝑛

𝜕𝛼̄
= 𝟎. (69)

Thus, 𝜕𝛼̄𝛾p𝑛  and 𝜕𝛼̄n𝑛 are obtained as 

𝜕𝝃𝑛
𝜕𝛼̄

= primal−1
local,𝑛 ⋅

𝜕𝑔
𝝃,𝑛

𝜕𝛼̄
, (70)

where 
𝜕𝝃𝑛
𝜕𝛼̄

=
[

𝜕𝛾p𝑛
𝜕𝛼̄

𝜕n11,𝑛
𝜕𝛼̄

𝜕n22,𝑛
𝜕𝛼̄

𝜕n33,𝑛
𝜕𝛼̄

𝜕n23,𝑛
𝜕𝛼̄

𝜕n13,𝑛
𝜕𝛼̄

𝜕n12,𝑛
𝜕𝛼̄

]T
,

𝜕𝑔
𝝃,𝑛

𝜕𝛼̄
=
[

𝜕𝑔
𝛾p ,𝑛

𝜕𝛼̄

𝜕𝑔
n11 ,𝑛

𝜕𝛼̄

𝜕𝑔
n22 ,𝑛

𝜕𝛼̄

𝜕𝑔
n33 ,𝑛

𝜕𝛼̄
2
𝜕𝑔

n23 ,𝑛

𝜕𝛼̄
2
𝜕𝑔

n13 ,𝑛

𝜕𝛼̄
2
𝜕𝑔

n12 ,𝑛

𝜕𝛼̄

]T

.

(71)

B.2. Components for the adjoint problem

Eq. (28)4,5 can be modified as follows: 
𝜕𝑓0 ,𝑛

𝜕𝛾p
+ 𝒉𝑛 ∶ 𝜔𝑝

𝑚
𝜕𝝉𝑛
𝜕𝛾p

− 𝜂p𝑛𝜔𝑝
𝑚

(

𝜕‖𝝉dev,𝑛‖
𝜕𝛾p

−
√

2
3

(

𝜕𝑅𝑛
𝜕𝛾p

(

𝑦0 + 𝑟p𝑛
)

+ 𝑅𝑛
𝜕𝑟p𝑛
𝜕𝛾p

)

)

+ 𝝅𝑛 ∶ 𝜔𝑝
𝑚

𝜕
𝜕𝛾p

𝝉dev,𝑛
‖𝝉dev,𝑛‖

− 𝜔𝑝
𝑚𝑝p𝛽𝑛

𝜕𝛼𝑛
𝜕𝛾p

= 0,

𝜕𝑓0 ,𝑛 + 𝒉𝑛 ∶ 𝜔𝑝
𝑚
𝜕𝝉𝑛 − 𝜂p𝑛𝜔𝑝

𝑚
𝜕‖𝝉dev,𝑛‖ − 𝝅𝑛 ∶ 𝜔𝑝

𝑚

(

𝟏 ⊗ 𝟏 − 𝜕 𝝉dev,𝑛
)

= 𝟎 with 𝒉𝑛 =
𝜕𝒘𝑛 .

(72)
𝜕n 𝜕n 𝜕n 𝜕n ‖𝝉dev,𝑛‖ 𝜕𝒙
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Then, from Eqs. (43) and (72), the following relationships hold: 

𝜕𝑔
𝜂p ,𝑛

𝜕𝒉
= 𝜂p𝜂p ,𝑛

𝜕𝜂p𝑛
𝜕𝒉

+𝜂p𝝅,𝑛 ∶
𝜕𝝅𝑛
𝜕𝒉

,

𝜕𝑔
𝝅,𝑛

𝜕𝒉
= 𝝅𝜂p ,𝑛 ⊗

𝜕𝜂p𝑛
𝜕𝒉

+𝝅𝝅,𝑛 ∶
𝜕𝝅𝑛
𝜕𝒉

,

(73)

where 
𝜕𝑔

𝜂p ,𝑛

𝜕𝒉
= −𝜔𝑝

𝑚
𝜕𝝉𝑛
𝜕𝛾p

,
𝜕𝑔

𝝅,𝑛

𝜕𝒉
= −𝜔𝑝

𝑚
𝜕𝝉𝑛
𝜕n

. (74)

Accordingly, 𝜕𝒉𝜂p𝑛 and 𝜕𝒉𝝅𝑛 are calculated from 

𝜕𝝃̃𝑛
𝜕𝒉

= adjoint−1
local,𝑛 ⋅

𝜕𝑔
𝝃̃,𝑛

𝜕𝒉
, (75)

where 
𝜕𝝃̃𝑛
𝜕𝒉

=
[

𝜕𝜂p𝑛
𝜕𝒉

𝜕𝜋11,𝑛
𝜕𝒉

𝜕𝜋22,𝑛
𝜕𝒉

𝜕𝜋33,𝑛
𝜕𝒉

𝜕𝜋23,𝑛
𝜕𝒉

𝜕𝜋13,𝑛
𝜕𝒉

𝜕𝜋12,𝑛
𝜕𝒉

]T
,

𝜕𝑔
𝝃̃,𝑛

𝜕𝒉
=
[

𝜕𝑔
𝜂p ,𝑛

𝜕𝒉
𝜕𝑔

𝜋11 ,𝑛

𝜕𝒉
𝜕𝑔

𝜋22 ,𝑛

𝜕𝒉
𝜕𝑔

𝜋33 ,𝑛

𝜕𝒉
2
𝜕𝑔

𝜋23 ,𝑛

𝜕𝒉
2
𝜕𝑔

𝜋13 ,𝑛

𝜕𝒉
2
𝜕𝑔

𝜋12 ,𝑛

𝜕𝒉

]T

,

(76)

and 

adjoint
local,𝑛 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜂p ,𝑛 𝜂p𝜋11 ,𝑛 𝜂p𝜋22 ,𝑛 𝜂p𝜋33 ,𝑛 2𝜂p𝜋23 ,𝑛 2𝜂p𝜋13 ,𝑛 2𝜂p𝜋12 ,𝑛
𝜋11𝜂p ,𝑛 𝜋11𝜋11 ,𝑛 𝜋11𝜋22 ,𝑛 𝜋11𝜋33 ,𝑛 2𝜋11𝜋23 ,𝑛 2𝜋11𝜋13 ,𝑛 2𝜋11𝜋12 ,𝑛
𝜋22𝜂p ,𝑛 𝜋22𝜋11 ,𝑛 𝜋22𝜋22 ,𝑛 𝜋22𝜋33 ,𝑛 2𝜋22𝜋23 ,𝑛 2𝜋22𝜋13 ,𝑛 2𝜋22𝜋12 ,𝑛
𝜋33𝜂p ,𝑛 𝜋33𝜋11 ,𝑛 𝜋33𝜋22 ,𝑛 𝜋33𝜋33 ,𝑛 2𝜋33𝜋23 ,𝑛 2𝜋33𝜋13 ,𝑛 2𝜋33𝜋12 ,𝑛
2𝜋23𝜂p ,𝑛 2𝜋23𝜋11 ,𝑛 2𝜋23𝜋22 ,𝑛 2𝜋23𝜋33 ,𝑛 4𝜋23𝜋23 ,𝑛 4𝜋23𝜋13 ,𝑛 4𝜋23𝜋12 ,𝑛
2𝜋13𝜂p ,𝑛 2𝜋13𝜋11 ,𝑛 2𝜋13𝜋22 ,𝑛 2𝜋13𝜋33 ,𝑛 4𝜋13𝜋23 ,𝑛 4𝜋13𝜋13 ,𝑛 4𝜋13𝜋12 ,𝑛
2𝜋12𝜂p ,𝑛 2𝜋12𝜋11 ,𝑛 2𝜋12𝜋22 ,𝑛 2𝜋12𝜋33 ,𝑛 4𝜋12𝜋23 ,𝑛 4𝜋12𝜋13 ,𝑛 4𝜋12𝜋12 ,𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (77)

Thus, 𝜕𝑯𝜂p𝑛 and 𝜕𝑯𝝅𝑛 in Eq. (42) are calculated from the following relationship: 

𝜕𝜂p𝑛
𝜕𝑯

=
𝜕𝜂p𝑛
𝜕𝒉

⋅ 𝑭 −T
𝑛 ,

𝜕𝝅𝑛
𝜕𝑯

=
𝜕𝝅𝑛
𝜕𝒉

⋅ 𝑭 −T
𝑛 . (78)

Meanwhile, from Eq. (43), the following relationship is written: 

𝜕𝑔
𝜂p ,𝑛

𝜕𝛽
= 𝜂p𝜂p ,𝑛

𝜕𝜂p𝑛
𝜕𝛽

+𝜂p𝝅,𝑛 ∶
𝜕𝝅𝑛

𝜕𝛽
,

𝜕𝑔
𝝅,𝑛

𝜕𝛽
= 𝝅𝜂p ,𝑛

𝜕𝜂p𝑛
𝜕𝛽

+𝝅𝝅,𝑛 ∶
𝜕𝝅𝑛

𝜕𝛽
,

(79)

where 
𝜕𝑔

𝜂p ,𝑛

𝜕𝛽
= 𝜔𝑝

𝑚𝑝p
𝜕𝛼𝑛
𝜕𝛾p

,
𝜕𝑔

𝝅,𝑛

𝜕𝛽
= 𝟎. (80)

Thus, 𝜕𝛽𝜂p𝑛 and 𝜕𝛽𝝅𝑛 are obtained as follows: 

𝜕𝝃̃𝑛
𝜕𝛽

= adjoint−1
local,𝑛 ⋅

𝜕𝑔
𝝃̃,𝑛

𝜕𝛽
, (81)

where 

𝜕𝝃̃𝑛
𝜕𝛽

=
[

𝜕𝜂p𝑛
𝜕𝛽

𝜕𝜋11,𝑛
𝜕𝛽

𝜕𝜋22,𝑛
𝜕𝛽

𝜕𝜋33,𝑛
𝜕𝛽

𝜕𝜋23,𝑛
𝜕𝛽

𝜕𝜋13,𝑛
𝜕𝛽

𝜕𝜋12,𝑛
𝜕𝛽

]T

,

𝜕𝑔
𝝃̃,𝑛

𝜕𝛽
=

[

𝜕𝑔
𝜂p ,𝑛

𝜕𝛽

𝜕𝑔
𝜋11 ,𝑛

𝜕𝛽

𝜕𝑔
𝜋22 ,𝑛

𝜕𝛽

𝜕𝑔
𝜋33 ,𝑛

𝜕𝛽
2
𝜕𝑔

𝜋23 ,𝑛

𝜕𝛽
2
𝜕𝑔

𝜋13 ,𝑛

𝜕𝛽
2
𝜕𝑔

𝜋12 ,𝑛

𝜕𝛽

]T

.

(82)
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Fig. 33. Comparison of analytical and approximated sensitivity for Example 1: Case h102-sub.

B.3. Supplemental explanation for how to determine the penalty multipliers

Suppose 𝑚 = 1 is given. Then, the penalty multiplier 𝜃1 is calculated as follows: 

∫0

𝑠̄0 ,1dV = ∫0

𝜃1
1
𝜔1

1
∏

𝑘=1
𝜔𝑘dV⇒ 𝜃1 =

∫0
𝑠̄0 ,1dV

∫0
dV

. (83)

When 𝑚 = 2 is considered, the penalty multipliers 𝜃1 and 𝜃2 are calculated as follows: 

∫0

𝑠̄0 ,1dV =
[

∫0
𝜔2dV ∫0

(

−𝜔2
)

dV
]

[

𝜃1
𝜃2

]

,

∫0

𝑠̄0 ,2dV =
[

∫0
𝜔1dV ∫0

(

1 − 𝜔1
)

dV
]

[

𝜃1
𝜃2

]

,

⇒

[

𝜃1
𝜃2

]

=

[

∫0
𝜔2dV ∫0

(

−𝜔2
)

dV
∫0

𝜔1dV ∫0

(

1 − 𝜔1
)

dV

]−1 [
∫0

𝑠̄0 ,1dV
∫0

𝑠̄0 ,2dV

]

.

(84)
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Fig. 34. Histories of objective function for Example 1.

Fig. 35. Optimization error versus design iteration for Example 2: Sections 4.2.2∼4.2.4; see Eq. (52).

Fig. 36. Oscillation factor versus design iteration for Example 2: Sections 4.2.2∼4.2.4; see Eq. (54).

Fig. 37. Distributions of design variables for Example 2: One-material TO. Only half of each specimen is displayed.
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Fig. 38. Distributions of design variables for Example 2: Two-material TO. Only half of each specimen is displayed.

Fig. 39. Distributions of design variables for Example 2: Three-material TO. Only half of each specimen is displayed.
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Fig. 40. Distributions of design variables for Example 2: Four-material TO. Only half of each specimen is displayed.

Also, if 𝑚 = 3 is given, the penalty multipliers 𝜃1, 𝜃2, and 𝜃3 are calculated as follows: 

∫0

𝑠̄0 ,1dV =
[

∫0
𝜔2𝜔3dV ∫0

(

−𝜔2𝜔3
)

dV 0
]
⎡

⎢

⎢

⎣

𝜃1
𝜃2
𝜃3

⎤

⎥

⎥

⎦

,

∫0

𝑠̄0 ,2dV =
[

∫0
𝜔1𝜔3dV ∫0

(

−𝜔1𝜔3 + 𝜔3
)

dV ∫0

(

−𝜔3
)

dV
]
⎡

⎢

⎢

⎣

𝜃1
𝜃2
𝜃3

⎤

⎥

⎥

⎦

,

∫0

𝑠̄0 ,3dV =
[

∫0
𝜔1𝜔2dV ∫0

(

−𝜔1𝜔2 + 𝜔2
)

dV ∫0

(

−𝜔2 + 1
)

dV
]
⎡

⎢

⎢

⎣

𝜃1
𝜃2
𝜃3

⎤

⎥

⎥

⎦

,

⇒
⎡

⎢

⎢

⎣

𝜃1
𝜃2
𝜃3

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

∫0

𝜔1𝜔2𝜔3
𝜔1

dV ∫0

(

−𝜔1𝜔2𝜔3
)

𝜔1
dV 0

∫0

𝜔1𝜔2𝜔3
𝜔2

dV ∫0

(

𝜔2𝜔3 − 𝜔1𝜔2𝜔3
)

𝜔2
dV ∫0

(

−𝜔2𝜔3
)

𝜔2
dV

∫
𝜔1𝜔2𝜔3 dV ∫

(

𝜔2𝜔3 − 𝜔1𝜔2𝜔3
)

dV ∫

(

𝜔3 − 𝜔2𝜔3
)

dV

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

−1

⎡

⎢

⎢

⎢

⎣

∫0
𝑠̄0 ,1dV

∫0
𝑠̄0 ,2dV

∫0
𝑠̄0 ,3dV

⎤

⎥

⎥

⎥

⎦

.

(85)
⎣

0 𝜔3 0 𝜔3 0 𝜔3 ⎦
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Based on these relationships, the following relationship is inductively obtained: 

∫0

𝑠̄0 ,𝑖dV

= ∫0

(

𝜃1 − 𝜃2
) 1
𝜔𝑖

𝑚
∏

𝑘=1
𝜔𝑘dV + ∫0

(

𝜃2 − 𝜃3
) 1
𝜔𝑖

𝑚
∏

𝑘=2
𝜔𝑘dV +⋯ + ∫0

(

𝜃𝑖 − 𝜃𝑖+1
) 1
𝜔𝑖

𝑚
∏

𝑘=𝑖
𝜔𝑘dV

= 𝜃1

(

∫0

1
𝜔𝑖

𝑚
∏

𝑘=1
𝜔𝑘dV − ∫0�

�
��1

𝜔𝑖

𝑚
∏

𝑘=0
𝜔𝑘dV

)

+ 𝜃2

(

∫0

1
𝜔𝑖

𝑚
∏

𝑘=2
𝜔𝑘dV − ∫0
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where 
𝝌 𝑖 =
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(87)

Accordingly, the penalty multipliers of multiple materials are obtained as 
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It is noted that the original penalty multipliers in Eq. (88) are multiplied by exponential functions for imposing the volume 
constraints effectively. Thus, in the main part of this paper, 𝜽 in Eq. (88) is written by 𝜽̄.

Similarly, the normalization factor 𝐶0 ,𝑖 is calculated by 
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It is noted other normalization factors 𝐶𝜕𝑁
0 ,1,𝑛̃ and 𝐶𝜕𝐷

0 ,1,𝑛̃ can be calculated by a similar manner as in Eq. (89). Since the sensitivity 
on the Neumann and Dirichlet boundaries eventually vanishes in numerical examples, corresponding manipulations are omitted in 
this study.

Appendix C. Supplemental information for the numerical examples

See Figs.  33–40.

Data availability

Data will be made available on request.
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