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Abstract 
The outcome of an action often occurs after a delay. One solution for learning appropriate actions 
from delayed outcomes is to rely on a chain of state transitions. Another solution, which does not rest 
on state transitions, is to use an eligibility trace (ET) that directly bridges a current outcome and 
multiple past actions via transient memories. Previous studies revealed that humans (Homo sapiens) 
learned appropriate actions in a behavioral task in which solutions based on the ET were effective 
but transition-based solutions were ineffective. This suggests that ET may be used in human learning 
systems. However, no studies have examined nonhuman animals with an equivalent behavioral task. 
We designed a task for nonhuman animals following a previous human study. In each trial, 
participants chose one of two stimuli that were randomly selected from three stimulus types: a 
stimulus associated with a food reward delivered immediately, a stimulus associated with a reward 
delivered after a few trials, and a stimulus associated with no reward. The presented stimuli did not 
vary according to the participants’ choices. To maximize the total reward, participants had to learn 
the value of the stimulus associated with a delayed reward. Five chimpanzees (Pan troglodytes) 
performed the task using a touchscreen. Two chimpanzees were able to learn successfully, indicating 
that learning mechanisms that do not depend on state transitions were involved in the learning 
processes. The current study extends previous ET research by proposing a behavioral task and 
providing empirical data from chimpanzees. 
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Introduction 
When an agent learns to perform an action to obtain an outcome, the outcome usually appears 
immediately after the action, which reinforces the preceding action. However, learning becomes 
challenging when the outcome of an action is delayed and preceded by other actions because 
deciding how to distribute credit for the outcome to multiple actions is complex (i.e., the credit 
assignment problem) (Minsky, 1961). The theory of reinforcement learning (RL) (Sutton & Barto, 
2018) provides several solutions for the credit assignment problem. It should be noted that the 
term reinforcement learning is used in three overlapping and inter-related disciplines: psychology, 
neuroscience, and computational science (Eckstein et al., 2021; Sutton & Barto, 2018; Yoo & 
Collins, 2022). In the current study, RL refers to the body of related knowledge and concepts 



developed in computational science (Sutton & Barto, 2018). RL is formalized as follows (Sutton & 
Barto, 2018): in each time step, an agent selects an action in a certain environmental state. The agent’
s action elicits responses from the environment, such as a change of situation (i.e., a transition to the 
next state) and an outcome that has a specific immediate effect in relation to the agent (i.e., a 
reward). In the next time step, the agent takes an action in the state, which again leads to the state 
transition and reward feedback. The agent undertakes this process iteratively. In simple cases, it is 
assumed that the state transition and reward depend solely on the most recent state and action, and 
not on previous transitions and rewards. This feature is called the Markov property. The Markov 
process consisting of state, action, and reward is called the Markov decision process. The Markov 
property enables estimation of long-term rewards through a chain of step-by-step inference about 
state transition and reward (i.e., model of the environment). Learning strategies based on the step-by-
step model of the environment are categorized into model-based RL, and strategies that are not based 
on such a model are categorized into model-free RL. 

Standard solutions for the credit assignment problem involve computations resting on step-by-step 
state transitions. Solutions of this type are implemented in both model-based and model-free RLs. 
The model-based RL directly predicts delayed outcomes in the future through a chain of step-by-step 
inferences. In model-free RL, a canonical algorithm called temporal-difference (TD) learning 
(Sutton, 1988) (the algorithm we used is provided in the Online Supplementary Materials (OSM)) is 
widely used. TD learning estimates the value of delayed outcomes in the future through step-by-step 
experiences of state transitions. Although these transition-based solutions work well in Markov 
decision processes, they fail to bridge each action and the delayed outcome in non-Markov situations 
in which the probability of a delayed outcome is not determined by the current state. 

Solutions that are independent of state transitions have also been proposed in model-free RL. One of 
these solutions is based on eligibility traces (ETs), which directly bridge a current outcome with 
multiple actions taken in recent experience (Singh & Sutton, 1996; Sutton & Barto, 2018). The ET of 
each action is a transient memory reflecting the recent frequency of the action, which determines the 
eligibility of an update by the current outcome. In other words, credits for a given reward are 
assigned to past actions depending on the recency of each action, in a manner such that a temporally 
closer action is assigned greater credit, which is accordingly reflected in the update of each action’s 
value. Transient memories that are independent of state transitions enable bridging of the delayed 
outcome to the responsible actions, even in non-Markov situations. The ET method is usually 
combined with TD learning to assign prediction-based updates with recent actions (referred to as 
TD[λ] in Sutton & Barto, 2018), providing forward (TD) and backward (ET) views of learning 
processes. 

Neurophysiological evidence to support TD learning is well established. Dopamine signals resemble 
the prediction error that can be used for TD learning (Schultz, 1997), and dopamine-dependent 
synaptic plasticity has been observed in cortico-striatal projections (Shen et al., 2008). In addition, 
recent studies have provided accumulating evidence that supports ET. For example, Yagishita et al. 
(2014) revealed the time window (typically around 0.6 s) in which the delayed dopamine signal 
affects dopamine-dependent synaptic plasticity. This suggests that ET might be implemented in the 
plasticity mechanisms at each synapse. Nonomura et al. (2018) reported that responses of striatal 
neurons to outcomes reflect the preceding action, which suggests the possibility that ET might be 
sustained by neuronal activity. This line of research has advanced our understanding regarding the 
proximate mechanisms underlying ET (see Gerstner et al., 2018, for a review of some key findings). 



From a behavioral perspective, ET is suggested to play an important role, particularly in behavioral 
tasks involving delayed rewards that are delivered to participants after multiple actions (e.g., Bogacz 
et al., 2007; Gureckis & Love, 2009; Lehmann et al., 2019; Sakai et al., 2022; Tanaka et al., 2009; 
Tartaglia et al., 2017; Walsh & Anderson, 2011). For example, Tanaka et al. (2009) examined the 
role of serotonin in the learning of delayed reward and punishment in humans (Homo sapiens) using 
a behavioral task in conjunction with experimental manipulation of tryptophan intake. In each trial in 
this task, participants were presented with a pair of choice stimuli, selected one stimulus, and 
received visual feedback showing how much they earned or lost. Tanaka et al. (2009) used eight 
stimuli in total, each of which was associated with a monetary gain or loss. Importantly, the 
outcomes associated with half of the stimuli were not delivered within a trial but were delivered three 
trials later. Thus, upon receiving feedback at the end of a trial, participants needed to update the 
values of past actions (i.e., which stimulus they selected in previous trials) as well as the value of the 
action taken in that trial (i.e., which stimulus they selected in that trial). In addition, participants’ 
choices did not affect which stimulus pair was presented in subsequent trials. That is, their actions 
were not related to state transitions. These features of the task negate the effects of transition-based 
solutions to the credit assignment problem (e.g., model-based or TD learning). Therefore, success in 
the task would support transition-free solutions, such as ET. Participants who underwent different 
tryptophan manipulations were found to achieve learning at different speeds. Computational 
modeling indicated that a learning algorithm with ET fitted to participants’ behavior better than an 
algorithm without ET and another algorithm that held memory of the choices made in the past three 
trials. This result suggests that participants were unlikely to learn by processing multiple state-action 
pairs in parallel using working memory, which may be computationally too expensive. Furthermore, 
regarding learning of delayed punishment, a parameter in learning algorithms that determined how 
fast ET decayed (i.e., trace-decay parameter) was found to differ between conditions. Specifically, 
participants who consumed a large amount of tryptophan exhibited a larger trace-decay parameter 
compared with those who consumed no tryptophan. A higher trace-decay parameter indicated that 
the decay of ET was slower, and that past actions were eligible for value update for longer. Thus, this 
result suggested that tryptophan manipulation impacted the speed of ET decay. Taken together, these 
findings support the notion that participants can use their action history via ET, and highlighted the 
role of serotonin in learning processes involving delayed punishments. As argued in another study 
(Lehmann et al., 2019), behavioral tasks that are specifically designed for studying ET may be useful 
for closely focusing on ET while negating alternative learning methods, thereby revealing a 
behavioral signature of ET without relying on inferences from computational modeling. 

Several studies of nonhuman animals (Nosarzewska et al., 2021; Smith et al., 2020; Zentall et al., 
2022) have used apparently similar techniques to that of Tanaka et al. (2009). For example, in a 
study of rhesus macaques (Macaca mulatta), some individuals were found to learn discrimination 
even when the feedback for responses was delayed by one trial (Smith et al., 2020). Some pigeons 
were also found to perform well in similar tasks (Nosarzewska et al., 2021; Zentall et al., 2022). 
However, those studies focused on a different issue (i.e., explicit-declarative vs. implicit-procedural 
learnings) and did not discuss their findings in relation to ET. Thus, it remains unclear how 
nonhuman animals learn in a credit assignment problem situation, such as the task designed by 
Tanaka et al. (2009). 

Furthermore, these studies did not analyze behavioral data using computational models of RL, which 
are useful for shedding light on a particular aspect of learning (Katahira, 2018; Scholl & Klein-



Flügge, 2018; Tartaglia et al., 2017). Tanaka et al. (2009) observed differences among conditions not 
only in tallied behavioral data (i.e., proportion of trials in which participants made optimal choices), 
but also in estimated parameters in models (i.e., trace-decay parameter). Additionally, a recent study 
highlighted the characteristics of learning in obsessive-compulsive disorder (OCD) patients using 
Tanaka’s et al. (2009) task (Sakai et al., 2022). The OCD patients exhibited a poorer learning 
performance from delayed feedbacks compared to control participants. Moreover, computational 
modeling revealed that the OCD patients exhibited an imbalance in trace-decay parameters for 
positive and negative prediction errors. A similar approach would be useful in comparative 
psychology research to reveal similarities and differences in ETs across animal species (Redish et al., 
2022), thereby providing insights into the timescale of learning abilities from an evolutionary 
perspective. 

In the current study, we devised a behavioral task for nonhuman animals following the task designed 
by Tanaka et al. (2009). An essential step for promoting this line of research for nonhuman animals 
is to design a simple task according to the animals’ level of abilities and motivation (Pike et al., 
2021). For example, an experiment on mice (Akam et al., 2021) adapted an original task designed for 
humans (i.e., two-stage task: Daw et al., 2011) by modifying task features such as the number of 
action alternatives and reward probabilities, to encourage mice to engage in the task. We modified 
the original task designed by Tanaka et al. (2009) in several respects. 

First, we focused on the learning of delayed rewards and did not examine the learning of 
punishments because punishment is difficult to implement in the task. For humans, punishment can 
be implemented as a loss of money or fictitious points. In contrast, such symbolic rewards would 
complicate learning for nonhuman animals. Instead, we used pieces of food (i.e., pellets) as rewards, 
which were consumed immediately. Hence, it was difficult to represent punishment. Second, we 
reduced the number of visual stimuli and associated each stimulus with the presence or absence of a 
food reward (i.e., one pellet or zero pellets), rather than a different amount of reward, because using 
different amounts of reward would require us to verify that animals were able to distinguish the 
different amounts of food. Third, the number of trials over which a reward was carried forward was 
not fixed, but was designed to vary trial-to-trial, which prevented participants from easily noticing 
the task rule. Nonetheless, the length of the delay in the outcome, i.e., the number of trials that had 
passed before the reward, was not determined randomly (unlike Jocham et al., 2016, Experiment 2). 
Rather, we designed the delay rule so that the number of possible rewards within a trial was limited 
to one or zero to avoid any burden for animals associated with distinguishing different amounts of 
food reward (see the Method section, Task design). 

In our task, the delayed outcome created a non-Markov situation in which the probability of a 
delayed outcome was not determined by the current state. Computations resting on a chain of state 
transitions alone, either via model-based learning or TD learning without ETs, were insufficient to 
learn successfully in the task. Thus, this task is useful for examining learning mechanisms such as 
ETs that are not largely dependent on a chain of state transitions. Using this task, we examined the 
extent to which chimpanzees (Pan troglodytes) could solve a credit assignment problem by utilizing 
their action history via transition-free solutions such as ET. We also created a preliminary report on 
the performance of human participants in a similar task, which can be found in the OSM. 

 



Method 

Participants 
Five chimpanzees participated in the present study (one male and four females; 11−25 years old; 
Table 1). Participation in the test was voluntary. Another chimpanzee who participated in the pilot 
experiments was not included in the current study because she chose not to undergo the test, possibly 
because of a lack of motivation. The chimpanzees lived in a social group, which consisted of those 
six individuals. They usually spent the daytime in outdoor enclosures furnished with platforms, 
ropes, or trees, creating a three-dimensional complex environment wherein they could comfortably 
exercise (total area: 294 m2). The chimpanzees also used indoor enclosures at times, such as when 
they received meals. They received meals three times a day, consisting of fresh vegetables, fruits, 
nuts, and monkey chow. Water was available ad libitum from taps in the enclosures. Additional 
enrichment items were also provided to facilitate active foraging activities (e.g., small packages of 
food items) or improve comfort (e.g., pieces of burlap bags). The chimpanzees had previously 
experienced various cognitive experiments including touchscreen experiments (Sato et al., 2020). 

Apparatus 
Six 17-in. LCD touchscreen monitors (Touch Panel Systems K.K., Kanagawa, Japan, the model 
number was not recorded) were installed in a row in one of the outdoor enclosures (Fig. 1A). The 
resolution was set at 1,024 × 768 pixels. In this setting, chimpanzees could engage in experiments 
in their home enclosure without separation from other groupmates. An experimental booth was 
attached to the outside of the enclosure, in which a human experimenter operated experiments while 
observing chimpanzees through transparent panels (Fig. 1B). Touchscreens were mounted in a 
custom-made polycarbonate box, which was fixed in a metallic frame. Chimpanzees could reach the 
touchscreen through a rectangle opening of the box. Chimpanzees received food rewards through 
small holes in the lateral sides of the box. This setting allowed chimpanzees to touch the screen and 
receive rewards while preventing them from banging the screen aggressively. Laptop computers 
(TravelMate P250, Acer, Taiwan) and pellet dispensers (ENV-203-190, Med Associates Inc., VT, 
USA) were installed inside the experimental booth (Fig. 1B). The pellet dispenser was connected to 
the computer via an I/O unit (DIO-8/8 [USB] GY, Contec, Osaka, Japan) and a switching power 
supply (S82J-0124D, Omron, Kyoto, Japan), and the touchscreen was connected directly to the 
computer. The pellet dispensers released food rewards (190-mg banana flavor pellets: Dustless 
Precision Pellets, Primate, Purified F0035, Bio-Serv, NJ, USA) to the chimpanzee through pipes. 
Control of the experiment, recordings of responses, and regulation of pellet dispensers were carried 
out by the computer via an experimental program written in Microsoft Visual Studio Community 
2017 v.15.6.1 (Microsoft Corporation, WA, USA). 

Stimuli 
We used a set of capital letters as visual stimuli, which were placed on a white square with a black 
edge (240 × 240 pixels; Fig. 2A). Prior to this experiment, we conducted several days of pilot 
experiments using a different set of letters to ensure that the chimpanzees could readily learn to 
discriminate alphabetic characters (OSM). Chimpanzees appeared to learn discrimination between 
pairs of letters, particularly when they were perceptually dissimilar. On the basis of this result, we 
selected three letters that were perceptually dissimilar (i.e., “F,” “J,” and “Q”). We used the same 
allocation of letters to represent three types of choice options (see Task design below) for all 



participants. Note that these stimuli were presented on a black background, and thus the black edge 
of the white squares could not be distinguished from the background. From the participants’ 
perspective, the stimuli appeared as a white square on which a letter was placed. This design was 
used to accommodate errors in touch detection when chimpanzees touched a peripheral part of the 
stimulus. 

Task design 
There were three types of choice options, two of which were randomly presented in each trial 
(hereafter, stimuli (a)–(c); Fig. 2). Participants selected one of two presented options by touching it 
on the screen and received a food reward depending on the choice. The stimuli (a) and (c) followed 
simple contingencies, whereas stimulus (b) followed a unique contingency, which was a key element 
of the task design. First, when participants selected stimulus (a) (represented by an image of a “J”) in 
a trial, they received a food pellet at the end of the trial. Second, when participants selected stimulus 
(b) (represented by an image of an “F”) in a trial, this choice led to a pellet at the end of another trial, 
several trials later. The delayed reward followed a specific formula, as detailed in the next paragraph. 
Finally, when participants selected stimulus (c) (represented by an image of a “Q”) in a trial, this 
choice itself did not lead to a pellet. Note that the allocation of images to each stimulus was identical 
across individuals. 

When participants selected stimulus (b) in a trial (say, trial t), the reward associated with this choice 
was not delivered at the end of that trial (i.e., trial t), but was delivered in a later trial (say, trial 
[t + n]) where stimuli (b) and (c) were presented again for the first time after trial t. Importantly, the 
delayed reward was delivered regardless of whether stimuli (b) or (c) were selected in the trial 
(t + n). The selection of stimulus (b) or (c) in trial (t + n) was immediately followed by a reward 
because of the stimulus (b) selected in trial t, but not because of the choice made in trial (t + n). 
Because the presented stimulus combination was selected randomly, so was the distribution of the 
reward delay (as shown by histograms in Fig. 3). Even if stimulus (b) had been selected in multiple 
trials before a trial in which stimuli (b) and (c) were presented, only one pellet was delivered, and the 
redundant choices of stimulus (b) were ignored, which restricted the possible number of pellets to 
one or zero in each trial. 

Therefore, a successful learner would be expected (1) to select stimulus (a) over stimulus (b), (2) to 
select stimulus (a) over stimulus (c), and (3) to select stimulus (b) over stimulus (c). Learning of (1) 
and (2) did not require ET because participants needed to simply select actions that were rewarded 
immediately (i.e., selecting stimulus (a)). In contrast, learning (3) did require ET because both the 
optimal and suboptimal actions (i.e., select stimulus (b) and stimulus (c), respectively) were not 
rewarded immediately, but only the optimal actions yielded rewards eventually, between which other 
actions intervened (i.e., choices in other trials). 

Procedure 
Experiments took place between 9 a.m. and 12 p.m. after chimpanzees received a morning meal at 
approximately 8 a.m. When a chimpanzee sat in front of a touchscreen, an experimenter started the 
experiment. In each trial, participants first touched a start button (i.e., green rectangle, 100 × 100 
pixels) that appeared at the bottom of the screen. Subsequently, two of the three stimuli were 
presented on the screen at two of three possible locations (i.e., upper center, lower left or lower right; 
Fig. 2B). The two presented stimuli were determined randomly, and the locations of two stimuli were 



determined pseudo-randomly: we created six patterns of location assignment by assigning three 
stimuli to three possible locations. Each of the six patterns appeared once in every six trials, while 
one of the three stimuli was hidden to present two stimuli. Participants were allowed to select either 
stimulus for 30 s. After they selected a stimulus by touching it or 30 s elapsed without response, a 3-s 
inter-trial interval followed. During the inter-trial interval, a blank black screen was presented, and 
chimpanzees could receive a pellet depending on the choice made in the current or past trials. 
Subsequently, participants proceeded to the next trial, and the start button appeared again. Upon 
touching the start button and stimuli, a click sound was played. Delivery of a food reward was 
coupled with a chime sound, and a bomb sound was played in the trials in which no reward was 
delivered. Chimpanzees were familiar with these sounds because they experienced similar sounds in 
previous touchscreen experiments (e.g., Sato et al., 2020). These sounds could potentially serve to 
inform chimpanzees of the presence or absence of reward, even when they failed to catch a pellet 
ejected from the hole. Note that in some trials at the beginning of the first day for one participant 
(Iroha), pellets were not delivered properly because they became stuck in a joint in the pipe. We did 
not exclude those trials from the analysis. 

Chimpanzees underwent trials as long as they continued, up to 450 trials each day. When 
chimpanzees left the touchscreen, they were able to resume the experiment if they came back. The 
experiment lasted until the day each chimpanzee completed a minimum of cumulative 1,350 trials 
(range 1,350−1,499 trials). This took 3−8 days, in which some days of participation were in 
succession, whereas others were several days apart. On each day, a new session was administered. 
Carry-over rewards owing to a choice of stimulus (b) were not retained across different days. While 
chimpanzees were not performing the experimental task, they were allowed to perform an irrelevant, 
familiar task (i.e., touching a flickering dot among non-flickering dots), which prevented them from 
interfering with others who were undergoing the experiment. 

Data analysis 
Overall discriminative performance 
Five trials were omitted from analysis: three trials were omitted because of time-over (one for Iroha, 
Misaki, and Zamba) and two were omitted because of unexpected errors (Natsuki; data sheet 
contained errors for unknown reasons: the sheet was blank for one trial and the delivery of two 
pellets was recorded for the other trial). First, we examined whether participants learned to make 
optimal choices. We divided trials depending on which two stimuli were presented and subsequently 
separated trials into bins comprising 20 trials. For each 20-trial bin, we calculated the proportion of 
trials in which participants made optimal choices (i.e., selecting stimulus (a) when stimulus (a) vs. 
stimulus (b) was presented or when stimulus (a) vs. stimulus (c) was presented; and selecting 
stimulus (b) when stimulus (b) vs. stimulus (c) was presented). When participants made optimal 
choices in ≥ 15 trials, performance was significantly higher than the chance level (binomial 
test, p < .05). Note that the last trial bin may have comprised fewer than 20 trials because we did not 
fix the total number of trials. Additionally, some of the other bins contained one missing data point 
because of time-over (three cases) or for the error for unknown reasons (one case). 

Reinforcement learning models 
Second, we fitted an ET model combined with multiple standard TD learning algorithms (TD[λ] in 
Sutton & Barto, 2018) to the data from each participant separately and compared performance across 
algorithms. Note that we merged data from different days for the sake of simplicity, as if participants 



had completed all trials in succession in a day. Five invalid trials, which were omitted from the 
analysis described in the previous section, were also omitted from model fitting, which may have 
altered the number of trials over which a carry-over reward was carried forward, although this 
constituted only a few cases among > 1,300 trials for each chimpanzee. A detailed description of 
algorithm and model fitting is provided in the OSM. Briefly, we considered three variants of TD 
learning (overviewed in Sutton & Barto, 2018): SARSA (Rummery & Niranjan, 1994), Q-learning 
(Watkins & Dayan, 1992), and Actor-Critic (e.g., Barto et al., 1983). The action to take at each trial 
is determined using those action values in conjunction with soft-max. In addition to the three 
algorithms, we fitted the respective algorithm without ET. These algorithms did not include ET, and, 
at each time step, the action value for a taken action (but not the values for actions not taken) was 
updated. We compared the performances of those algorithms for each participant separately based on 
the widely applicable information criterion (WAIC). Specifically, a model of the lowest WAIC value 
was favored. We used R software v.4.1.0 (R Core Team, 2021) and Stan software v.2.21.0 (Stan 
Development Team, 2019) via CmdStan v.2.27.0 in conjunction with cmdstanr v.0.4.0 R package 
(Gabry & Češnovar, 2021). For R and Stan codes, we referred to Katahira (2018) and the 
StatModeling Memorandum website (https://statmodeling.hatenablog.com/entry/calc-waic-wbic, 
accessed on 17 January 2021). 

Post hoc analysis 
Furthermore, we performed post hoc analyses to examine the effect of simpler learning mechanisms, 
namely the effect of immediate rewards and the effect of experienced delay length on participant 
performance. As described above (see Task design), the selection of either stimulus (b) or (c) in 
trial t could be immediately followed by a reward. This reward was linked to a past choice of 
stimulus (b), and was not influenced by the stimulus choice (stimulus (b) or (c)) in trial t. However, 
from the participants’ perspective, the reward at trial t appeared to be caused by the choice of either 
stimulus (b) or (c) in trial t. Thus, it is possible that the participants chose a certain stimulus simply 
because that choice appeared to be more likely to be followed by an immediate reward. 

To address this, we examined whether incidental immediate rewards occurred more frequently after 
selecting stimulus (b) versus stimulus (c). We compared the proportion of rewarded trials in which 
participants selected stimulus (b) to that for trials in which they selected stimulus (c) using Fisher’s 
exact probability tests via the exact2x2 package in R (Fay, 2010). Moreover, for individuals who 
learned successfully, we ran a similar analysis focusing on trials completed before they achieved 
high performance. We anticipated that after they had learned successfully, they would have 
preferentially selected stimulus (b) over stimulus (c) in trials in which those two stimuli were 
presented. Thus, the choice of stimulus (b) would have been more likely to have been followed by an 
immediate reward. 

Next, to examine whether the two successful individuals (see the Results section) accidentally 
experienced shorter delays compared with the three unsuccessful individuals, we examined the effect 
of experienced delay length on participant performance. Delay length was computed as the number 
of trials between the selection of stimulus (b) and the delivery of a delayed reward for this choice. 
When participants had selected stimulus (b) multiple times before a delayed reward, the delay length 
was computed from the most recent choice of stimulus (b) and the other choices of stimulus (b) were 
ignored. We compared the delay length among five chimpanzees using the asymptotic Kruskal-
Wallis test, followed by comparisons between individuals using exact Wilcoxon-Mann-Whitney tests 



via the coin package in R (Hothorn et al., 2006). Cliff’s d was calculated using the effsize package in 
R (Torchiano, 2020). All statistical tests were two-tailed (α = .05). 

 

Results 

Overall discriminative performance 
Figure 4 shows the proportion of trials in which each participant performed optimal choices. All five 
chimpanzees came to select stimulus (a) over the other stimuli in later 20-trial bins (binomial 
tests, p < .05). Furthermore, two chimpanzees (Mizuki and Natsuki) selected stimulus (b) over 
stimulus (c) in later trial bins (binomial tests, p < .05), whereas the other three did not. 

Reinforcement learning models 
Table 2 shows the WAIC values for each model. Overall, an algorithm with ET (i.e., SARSA[λ]) 
was favored for all of the participants, regardless of their performance. Table 3 shows the summary 
of sampling from posterior distributions for the parameters of the favored model for each participant. 

Post hoc analysis 
Figure 5 shows the proportion of trials in which the participants received a reward, shown separately 
according to stimulus. Regarding the two individuals who learned to select stimulus (b) instead of 
stimulus (c) (i.e., Mizuki and Natsuki), the proportion of rewarded trials significantly differed 
between stimuli (b) and (c). Mizuki selected stimulus (a), (b), and (c) in 816, 472, and 62 trials, 
respectively. The proportion of rewarded trials was significantly different between stimulus (b) and 
(c) (rewarded trials/non-rewarded trials: 407/65 and 21/41, respectively, OR [95% confidence 
interval (CI)] = 12.13 [6.72, 22.01], p < .001). Natsuki selected stimulus (a), (b), and (c) in 919, 565, 
and 13 trials, respectively. The proportion of rewarded trials was significantly different between 
stimulus (b) and (c) (477/88 and 2/11, respectively, OR = 29.54 [7.07, 189.04], p < .001). 

Then, we looked at the trials completed before these participants appeared to acquire the ability to 
distinguish stimulus (b) from stimulus (c) (Fig. 6). We analyzed the first 90 trials completed by 
Mizuki because after trial 93, the task performance exceeded the chance level for trials containing 
stimuli (b) and (c) (i.e., first trial in the 20-trial bin of stimuli (b) vs. (c) for which the performance 
first exceeded the chance level was trial 93). In the first 90 trials, Mizuki selected stimuli (a), (b), and 
(c) in 29, 26, and 35 trials, respectively. The proportion of rewarded trials was not significantly 
different between stimuli (b) and (c) (8/18 and 10/25, OR = 1.11 [0.33, 3.44], p = 1). Regarding the 
other individual (Natsuki), it was difficult to define the pre-acquisition phase in a similar manner 
because she achieved above-chance performance quite early. Thus, we tentatively used the first 60 
trials completed by Natsuki. In the first 60 trials, Natsuki selected stimuli (a), (b), and (c) in 26, 25, 
and nine trials, respectively. The proportion of rewarded trials was significantly different between 
stimulus (b) and (c) (16/9 and 0/9, OR = NA [3.1, NA], p = .001). 

Among the three individuals who did not learn to select stimulus (b) over stimulus (c) (i.e., Iroha, 
Misaki, and Zamba), the proportion of rewarded trials was significantly different between stimulus 
(b) and (c) in one individual (Iroha). In total, Iroha selected stimuli (a), (b), and (c) in 649, 506, and 
225 trials, respectively. In trials in which she selected stimulus (b) or (c), the proportion of rewarded 



trials was significantly different between the two stimuli (263/243 and 73/152, respectively, OR = 
2.25 [1.62, 3.15], p < .001). In contrast, the proportion of rewarded trials was not significantly 
different between stimuli (b) and (c) in the other two individuals (Misaki and Zamba). Misaki 
selected stimuli (a), (b), and (c) in 456, 346, and 601 trials, respectively. The proportion of rewarded 
trials was not significantly different between stimulus (b) and (c) (79/267 and 164/437, 
respectively, OR = 0.79 [0.57, 1.08], p = .142). Zamba selected stimuli (a), (b), and (c) in 856, 295, 
and 249 trials, respectively. The proportion of rewarded trials was not significantly different between 
stimulus (b) and (c) (133/162 and 131/118, respectively, OR = 0.74 [0.52, 1.04], p = .086). 

We compared the experienced delay length and found a significant difference among the five 
chimpanzees (n = 336, 243, 428, 479, 264, respectively, χ2[4] = 42.3, p < .001). We then compared 
the experienced delay between each individual who learned successfully and the three individuals 
who did not learn successfully, for a total of six tests (i.e., Mizuki vs. Iroha, Misaki, and Zamba, 
separately; Natsuki vs. Iroha, Misaki, and Zamba, separately). The two successful individuals did not 
necessarily experience shorter delays compared with the three unsuccessful individuals. One 
successful individual (Mizuki) experienced significantly longer delays compared with two of the 
unsuccessful individuals (vs. Iroha: Z = –4.30, p < .001, Cliff’s d = 0.17; vs. Misaki: Z = –
3.75, p < .001, Cliff’s d = 0.17), although these delays were not significantly different from those of 
the third unsuccessful individual (vs. Zamba: Z = –1.40, p = .163, Cliff’s d = –0.06). The other 
successful individual (Natsuki) experienced significantly longer delays compared with two of the 
unsuccessful individuals (vs. Iroha: Z = –3.58, p < .001, Cliff’s d = 0.14; vs. Misaki: Z = –
3.07, p = .002, Cliff’s d = 0.13), although she experienced significantly shorter delays when 
compared with the other unsuccessful individual (vs. Zamba: Z = –2.08, p = .037, Cliff’s d = –0.09). 

 

Discussion 
We designed a behavioral task to examine solutions to the credit assignment problem (transition-
based/transition-free) in nonhuman animals in a non-Markov paradigm, which has been less studied 
compared with Markov decision processes (Walsh & Anderson, 2014), following a previous study 
on humans (Tanaka et al., 2009). Using this task, two of five chimpanzees were able to learn to select 
the stimulus associated with rewards that were carried forward to a later trial and were intervened by 
other actions. As in Tanaka et al.’s (2009) study, keeping past actions and outcomes in working 
memory and processing them online seemed implausible because the number of intermediate trials 
between the choice and the reward varied randomly each time, and was often more than one (Fig. 3). 
Transition-based assignment was ineffective because state transition was independent of the 
participant’s actions. Therefore, the current results suggest that the two chimpanzees appropriately 
learned the values of actions leading to rewards that were carried forward to a later trial via a process 
of transition-free assignment, such as ET. 

In this task, the selection of stimulus (b) or (c) could be immediately followed by a reward. However, 
it is unlikely that the successful individuals chose stimulus (b) over (c) solely because of incidental 
immediate rewards. For instance, for one successful learner (Mizuki), the proportion of trials 
followed by a reward was not different between trials in which she selected stimulus (b) versus those 
in which she selected stimulus (c) in the early part of the session (i.e., her first 90 trials). When we 
considered all of the trials (i.e., when the dataset included the trials completed after the two 



successful individuals learned to constantly select stimulus (b) over stimulus (c)), the proportion of 
trials followed by a reward was different between trials in which they selected stimulus (b) versus 
those in which they selected stimulus (c). This difference is likely the result of successful learning by 
the participants to select stimulus (b). This finding suggests that this individual (Mizuki) was 
unlikely to learn the task solely via the uncertainty of the reward associated with each stimulus. 
Rather, especially when focusing on the early part of the session, we can interpret this to mean that 
stimuli (b) and (c) were not differentially uncertain with regard to the possibility of immediate 
rewards. 

Three chimpanzees were not able to learn to select the stimulus associated with the carry-over 
reward. It is unlikely that the failure of those chimpanzees was simply caused by the basic features of 
the task, such as difficulty distinguishing the visual stimuli (i.e., letters) or a lack of motivation for 
the food reward (i.e., pellets) because those chimpanzees learned to select the stimulus associated 
with an immediate reward. It is also unlikely that the unsuccessful individuals experienced longer 
delays compared with the two successful individuals. In fact, we only found this difference when 
comparing a pair of individuals (Natsuki vs. Zamba), and we found a difference in the opposite 
direction in four comparisons, although those differences appeared to be subtle. Daily observations 
of these chimpanzees (see also Sato et al., 2020) revealed that the two successful individuals 
(Natsuki & Mizuki) usually performed better in touch-panel cognitive tasks compared with the 
remaining individuals (Iroha, Misaki, & Zamba). Thus, the individual difference we observed was 
likely to have been caused by a difference in a general learning capacity expressed in such an 
experimental setting, rather than being specific to this task. In future studies, it would be interesting 
to examine the individual differences in relation to biological characteristics (e.g., serotonin: Tanaka 
et al., 2009) and temperament (e.g., compulsive tendency: Sakai et al., 2022), which were found to 
affect credit assignment in previous studies. Despite these individual differences in chimpanzees, the 
current study suggests that the human ability to learn using state-transition-free mechanisms (such as 
the ET) (e.g., Tanaka et al., 2009) is shared with chimpanzees to some extent. 

A deeper inquiry is warranted as to why the three chimpanzees failed to acquire a preference for 
stimulus (b) over stimulus (c), with reference to more general, well-studied learning phenomena. 
First, the cues present at the time of delayed reward delivery might have overshadowed the 
contributions of ETs. In particular, stimuli (b) and (c) were presented immediately before the delayed 
reward delivery, and these stimuli were not directly related to that reward. Relatedly, working 
memory might have been involved, for example, in feeding information into RL processes (reviewed 
in Yoo & Collins, 2022). A recent study (Ben-Artzi et al., 2022) suggested that human participants 
with a higher working memory capacity are less likely to assign credits for rewards to an irrelevant 
aspect of their actions. The researchers speculated that lower working memory capacity enables 
credit to simply be assigned to the representation that is activated when selection is made, regardless 
of its relevance to the outcome. The issue appears to be somewhat inevitable when researchers 
attempt to design a task in which a reward is delivered in a later, irrelevant trial, as we did in the 
current study. Nonetheless, the issue might be mitigated by introducing a new pair of stimuli (say 
stimuli (d) and (e)). Subsequently, the delayed rewards resulting from the selection of stimulus (b) 
would be delivered in a later trial in which stimuli (d) and (e) were presented, instead of stimuli (b) 
and (c). This design might reduce the difficulty in discriminating between stimuli (b) and (c) by 
preventing the credit for the delayed reward from being assigned to the selection of stimulus (c), 
which is in practice in competition with stimulus (b). This possibility would be worth investigating; 



however, this design may introduce an additional cognitive load of remembering and processing a 
larger number of visual stimuli (i.e., six). In conjunction with this, it might be ideal for a future study 
to involve a larger number of participants and counterbalance the allocation of the role of the visual 
stimulus (in our case, capital letters) across participants, which would allow for an analysis of the 
effect of stimulus counterbalancing. 

Second, we omitted rewards resulting from the redundant choices of stimulus (b) to limit the number 
of available rewards in each trial to one or zero. By implementing this reward-exclusion criterion 
when stimulus (b) had been selected on multiple trials before stimuli (b) and (c) were presented, the 
relative value of stimulus (b) might be degraded due to the reduced contingency with a reward. That 
is, in a session, the number of rewards deriving from selections of stimulus (b) was smaller than the 
number of the selection of stimulus (b) –naively similar to “partial reinforcement” – unlike the 
selection of stimulus (a), which led to rewards of equal number to the selection of stimulus (a) (i.e., 
continuous reinforcement). This reduced reinforcement in stimulus (b) would have lowered the 
relative value of this stimulus. In addition, the selection of stimulus (c) in a trial of stimulus (b) 
versus stimulus (c) could immediately be followed by a reward, owing to the past selection of 
stimulus (b), which could spuriously increase the value of stimulus (c). These combined factors 
might obscure the difference in values between stimuli (b) and (c), thereby making it difficult to 
successfully learn to select stimulus (b) over stimulus (c). A possible task design to solve this issue 
would be to allow multiple delayed rewards to be delivered in a single trial after multiple selections 
of stimulus (b). Nonetheless, it should be noted that the rule for stimulus (b) and task difficulty may 
produce a tradeoff. That is, to enable multiple delayed rewards to be delivered in one trial, 
researchers need to devote additional effort to ensure that participants discriminate different numbers 
of rewards. In the current study, we placed greater importance on designing an easier task for 
nonhuman animals. The task should be modified in future studies depending on participants’ 
characteristics and research purposes. If researchers prioritize increasing the relative value of 
stimulus (b) over reducing task difficulty, it would be worth trying to change the task rule such that 
multiple delayed rewards could be delivered in a single trial. 

Computational modeling also suggested that ET was important for successful learning in this task. 
An algorithm with ET (i.e., SARSA[λ]) was favored for all of the participants. However, somewhat 
unexpectedly, this result held true for unsuccessful learners, irrespective of their performance. It is 
possible that the computational modeling results partially depended on the details of algorithms 
(Nassar & Frank, 2016). For example, although we eventually specified the initial policy parameters 
at zero in the models, we also attempted to include those initial values as parameters to be estimated 
because some participants exhibited a pre-existing bias for particular stimuli from the beginning 
(e.g., a female chimpanzee (Natsuki) selected stimulus (c) in the first six trials, although this choice 
did not yield rewards). A previous study (Lehmann et al., 2019) also reported initial biases in 
participant actions, and thus specified the initial action values at certain fixed values. When there is 
such a pre-existing bias, initialization of policy parameters at zero has been suggested to yield 
spurious changes (i.e., “pseudo-learning”) (Katahira et al., 2017). Although, in the course of model 
specification, we decided not to include the initial values as parameters (which did not improve 
model convergence drastically) for the sake of simplicity, those initial attempts (not reported) 
implied that the modeling results could be affected by algorithmic details. This was also true for 
specification of prior distributions for some parameters (i.e., α and β). 



Generally speaking, model fitting can produce only relative results (Palminteri et al., 2017; Wilson & 
Collins, 2019). Countless other possible algorithms could comprise the ET. Thus, we did not 
conclude that SARSA(λ) is the appropriate model for behavior in our task. We concluded only that 
a model that considers the ET would be relatively better than models without the ET. Moreover, an 
advantage of our approach was that performance in the task per se indicated the involvement of ET 
(as in Lehmann et al., 2019). 

We designed a simple task to examine learning in nonhuman animals using state-transition-free 
mechanisms. However, some other cognitive processes might have been involved in learning. 
Specifically, the current study did not address concurrent memory processes in detail because we 
aimed to examine ET as a putative RL mechanism. Specifically, it remains unclear whether the two 
successful individuals associated the selection of stimulus (b) with a specific reward delivered in a 
later trial, or if they associated it with an overall increase in reward density. Although ETs can be 
recruited in either type of learning, further examination of this issue may be helpful for clarifying the 
cognitive processes involved in this task. To this end, it might be useful to change the rule of the 
delayed reward after the participant’s preference for stimulus (b) over stimulus (c) had been 
established, and to observe the participant’s behavioral responses to this sudden rule change. For 
instance, a future study could slightly delay the timing of the delayed reward delivery from the 
original timing. A recent touchscreen-task study (Tomonaga et al., 2023) delayed the task feedback 
to examine the reaction of chimpanzees. They found that chimpanzees looked up at a food dispenser 
after making a response more often when they made a correct choice compared with when they made 
a wrong choice. This behavior indicated their confidence that they would receive a food reward when 
they had made a correct choice. Beran et al. (2015) examined chimpanzees’ behaviors in 
computerized tasks when the reward delivery was delayed and occurred in another enclosure. After 
making a correct response, chimpanzees moved to that enclosure to obtain a food reward, which the 
authors interpreted as reflecting chimpanzees’ confidence about their correctness. It is possible that 
other subtler behavioral differences might also emerge, such as changes in reaction times and 
anticipatory-consummatory oral movements (i.e., licking for liquid reward) as observed in monkeys 
(Watanabe et al., 2001). Also, it would be useful try to extinguish the stimulus (b) contingency to 
observe whether chimpanzees would change their behaviors (cf. frustrative nonreward, Amsel, 1958; 
see Papini et al., 2022, for a recent review) such as reducing their selection of stimulus (b). This 
observation could indicate whether the delayed reward induced the chimpanzees’ selection of 
stimulus (b) over stimulus (c). Chimpanzees might exhibit other behavioral responses that hint at 
their anticipation of a food reward. For example, in a previous study (Beran, 2001), chimpanzees 
requested a food reward from the human experimenter by exhibiting gestures, touching on the mesh, 
and pursing their lips more often in trials in which they made a correct response but the reward was 
omitted compared with trials in which they made an incorrect response. The author speculated that 
these types of behaviors reflet chimpanzees’ expectation about upcoming food rewards, owing to 
their correct responses. Chimpanzees might exhibit behavioral signs of negative affect in response to 
the disappearance of a contingent reward. For example, there is a preliminary report that a 
chimpanzee appeared to scratch herself more often when no feedback was given for her response 
(although the author did not distinguish correct vs. wrong responses) compared with when auditory 
feedback was given for a correct response (Itakura, 1993). In a risky choice situation (Rosati & Hare, 
2013), chimpanzees scratched themselves, banged the bar or mesh, and emitted vocalizations more 
often when confronted with the bad outcome compared with the good outcome. Observations of 



these type of behaviors could provide insight regarding the extent to which chimpanzees expect a 
delayed reward to be delivered in a specific trial. 

In their daily lives, animals often need to take multiple actions before they receive benefits, and they 
do not always have access to the information that is necessary to guide optimal behaviors (Seo & 
Lee, 2010). Solutions equipped with ETs are adaptive in situations involving delayed rewards and 
violating the Markov property (Sutton & Barto, 2018). In conclusion, we designed a behavioral task 
to investigate how nonhuman animal learning systems solve the credit assignment problem using 
ETs. We believe that this task is applicable to a wide range of animal species. Future comparative 
psychology research taking this approach may provide valuable insight into the timescale of learning 
abilities from an evolutionary perspective. Moreover, this task could be a common currency task 
(Pike et al., 2021) to test various species of animals and better understand serotonergic system 
deficits (Tanaka et al., 2009) and OCD (Sakai et al., 2022). The current study provided data from 
chimpanzees, one of our evolutionarily closest relatives, taking the first step toward elucidating those 
issues. 
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Table 1 Participant demographics 
Name Sex Age (years) GAIN IDa 

Iroha Female 11 0708 

Misaki Female 21 0593 

Mizukib Female 23 0559 

Natsuki Female 15 0677 

Zamba Male 25 0543 
In the “Age” column, participants’ ages as of the start of the study are shown 
a Great Ape Information Network (GAIN: https://shigen.nig.ac.jp/gain/) provides detailed 
information for those chimpanzees 
b This chimpanzee was reared by human caretakers while also having regular opportunities for 
interactions with conspecific peers 

 

 

Table 2 Model comparison on the basis of widely applicable information criterion (WAIC) 



Name SARSA Q-learning Actor-Critic 
w/ ET w/o ET w/ ET w/o ET w/ ET w/o ET 

Iroha 0.394 0.437 0.415 0.415 0.511 0.510 
Misaki 0.513 0.651 0.587 0.644 0.588 0.652 
Mizuki 0.174 0.212 0.218 0.218 0.209 0.225 
Natsuki 0.136 0.171 0.173 0.174 0.177 0.280 
Zamba 0.302 0.332 0.330 0.331 0.336 0.339 
For each participant (shown in each row), the lowest WAIC is shown in bold. The names of 
participants who succeeded in learning are shown in bold 

 
 
Table 3 Parameter estimates via the SARSA(λ) model for each participant 

Name Maximum a posteriori estimate [95% credible intervals] 
α β γ λ 

Iroha 0.16 
[0.11, 0.20] 

0.23 
[0.20, 0.32] 

1.00 
[0.99, 1.00] 

0.94 
[0.92, 0.96] 

Misaki 0.11 
[0.09, 0.13] 

0.74 
[0.61, 0.91] 

0.99 
[0.98, 0.99] 

0.98 
[0.97, 0.99] 

Mizuki 0.23 
[0.19, 0.30] 

0.31 
[0.23, 1.13] 

0.99 
[0.94, 0.99] 

0.91 
[0.88, 0.93] 

Natsuki 0.50 
[0.41, 0.60] 

2.17 
[1.80, 2.62] 

0.87 
[0.82, 0.90] 

0.87 
[0.79, 0.94] 

Zamba 0.24 
[0.18, 0.40] 

0.46 
[0.32, 0.74] 

0.99 
[0.98, 1.00] 

0.90 
[0.82, 0.94] 

The names of participants who succeeded in learning are shown in bold 



 
Fig. 1 
Experimental setting A from the chimpanzee enclosure and B from inside the experimental booth. 
Note. The chimpanzee shown at the right in A was engaging in an irrelevant task for distraction (see 
the Method section, Procedure) 



 
Fig. 2 
A Visual stimuli used to represent stimuli (a), (b), and (c). B Schematic illustration of the rule of the 
delayed rewards. Note. The hand icon (taken from Microsoft PowerPoint) represents the choices of a 
hypothetical participant. In this example, stimulus (b) was selected in the leftmost trial (trial t). In 
trial (t + 1), stimulus (b) is again selected. In trial (t + 2), stimulus (c) (represented by capital “Q”) is 
selected, which does not lead to any reward. Finally, in trial (t + 3), stimulus (c) is selected, which 
does not lead to any reward by itself. However, stimuli (b) and (c) are presented in that trial. Thus, a 
delayed reward owing to a previous choice of stimulus (b) was delivered. Note that only one reward 
is delivered in trial (t + 3), although stimulus (b) has been selected twice before that trial. Also, note 
that stimuli (b) and (c) are presented in trial t too, but for simplicity, we suppose that stimulus (b) has 
not been chosen before that trial 



 
Fig. 3 
Histograms showing the actual delay (number of trials) that chimpanzee participants experienced 
between a choice of stimulus (b) and the delivery of its reward. Note. Magenta (light gray) vertical 
line shows the median for each participant. Note that when stimulus (b) is selected in multiple trials 
before a delayed-reward delivery, the delay is counted only from the latest choice of stimulus (b). 
Also, note that the invalid five trials (see the Method section, Data Analysis) were considered in the 
calculation of those delays, whereas those data were omitted from analysis 



 
Fig. 4 
Proportion of correct choices in 20-trial bins for chimpanzee participants. Purple (dark gray) circles, 
green (light gray) squares, and red (dark gray) triangles show data from trials in which stimuli (a) vs. 
(b), (a) vs. (c), or (b) vs. (c) were presented, respectively. Each panel shows one participant’s data. 
Dotted horizontal lines show the border of significance by binomial test (15/20 = 0.75). Note. The 
optimal choices are to select stimulus (a) in trials in which stimulus (a) is presented and to select 
stimulus (b) in trials in which stimuli (b) and (c) are presented. The dots on or above the dotted line 
(0.75) indicate significantly higher performance than that predicted by chance (0.5) for bins 
comprising 20 trials (shown in open dots) but this is not necessarily so for bins comprising fewer 
trials (shown as filled dots) 



 
Fig. 5 
Mosaic plot showing the proportion of trials in which the choice of each stimulus was immediately 
followed by a reward. Note. When participants selected stimulus (a) in a trial, this choice always led 
to a reward at the end of that trial. When participants selected stimulus (b) or (c) in a trial, this choice 
itself did not lead to a reward at the end of that trial, but this choice could be followed by a reward at 
the end of that trial owing to a past choice of stimulus (b). The width of bars in each panel varied in 
relation to the proportion of trials in which each stimulus was selected. NA refers to trials in which 
participants did not make a choice for 30 s 



 
Fig. 6 
Mosaic plot showing the proportion of trials in which the choice of each stimulus was immediately 
followed by a reward in Mizuki (A) and Natsuki (B) before they achieved high performance. 
Histograms showing the actual delay (number of trials) that Mizuki (C) and Natsuki (D) experienced 
when selecting stimulus (b) before they achieved high performance. Note. In mosaic plots (A and B), 
the width of bars in each panel varied in relation to the proportion of trials in which each stimulus 
was selected. In histograms (C and D), magenta (light gray) vertical lines show the median for each 
participant. 
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