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Sensing emotional valence 
and arousal dynamics 
through automated facial action 
unit analysis
Junyao Zhang 1, Wataru Sato 2*, Naoya Kawamura 1, Koh Shimokawa 2, Budu Tang 1 & 
Yuichi Nakamura 3

Information about the concordance between dynamic emotional experiences and objective signals is 
practically useful. Previous studies have shown that valence dynamics can be estimated by recording 
electrical activity from the muscles in the brows and cheeks. However, whether facial actions based 
on video data and analyzed without electrodes can be used for sensing emotion dynamics remains 
unknown. We investigated this issue by recording video of participants’ faces and obtaining dynamic 
valence and arousal ratings while they observed emotional films. Action units (AUs) 04 (i.e., brow 
lowering) and 12 (i.e., lip-corner pulling), detected through an automated analysis of the video data, 
were negatively and positively correlated with dynamic ratings of subjective valence, respectively. 
Several other AUs were also correlated with dynamic valence or arousal ratings. Random forest 
regression modeling, interpreted using the SHapley Additive exPlanation tool, revealed non-linear 
associations between the AUs and dynamic ratings of valence or arousal. These results suggest that an 
automated analysis of facial expression video data can be used to estimate dynamic emotional states, 
which could be applied in various fields including mental health diagnosis, security monitoring, and 
education.

Keywords  Facial action units, Emotional valence/arousal dynamics, Automated video analysis, Machine 
learning, SHapley Additive exPlanation

Understanding the concordance between dynamic emotional experiences and objective signals is pivotal in 
deciphering human emotions. Previous psychological studies have shown that emotional experiences fluctuate 
from moment to moment1–4, and are linked to mental health and psychological disorders5. Because emotional 
experiences are private, and the continuous assessment of emotional experiences is difficult while conducting 
other tasks6, dynamic sensing of emotions using objective signals can be useful, laying the foundation for prac-
tical applications in fields ranging from mental health diagnostics to enhanced interpersonal communication.

Several psychophysiological studies have shown that the dynamics of emotional valence can be reliably esti-
mated by recording facial electromyography (EMG) from the corrugator supercilii muscle (related to frowning) 
and zygomatic major muscle (related to smiling)7–10. For example, one study9 measured changes in emotional 
valence ratings and EMG activity of the corrugator supercilii and zygomatic major muscles while participants 
watched emotional films. The results showed that the EMG activity of the corrugator supercilii and zygomatic 
major muscles was negatively and positively correlated with the dynamic valence ratings, respectively. Such results 
suggest associations between facial EMG signals and the dynamic experiences of emotional valence.

However, whether facial actions based on video data and analyzed without electrodes can be used to sense 
emotion dynamics remains unknown. As recording facial EMG requires placing electrodes on the face, which 
may change the appearance of the participant11, non-contact recording is more desirable in practical situations. 
Some studies have shown correspondence between facial EMG signals recorded from the brow and cheek muscles 
and brow and cheek actions analyzed from video data12. However, the facial muscle activities detected using facial 
EMG signals are subtle and invisible13. To the best of our knowledge, no study has investigated the associations 
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between visually detectable facial actions and dynamic emotional ratings. However, a recent study acquired facial 
expression video data while participants remembered personal events varying in emotional valence and arousal 
levels14. Automated analysis of the Facial Action Coding System (FACS)15,16 revealed that the action units (AUs) 
of brow lowering (i.e., AU 04) and lip-corner pulling (i.e., AU 12) associated with memory-based emotional 
experiences are also negatively and positively associated with valence. Thus, we hypothesized that AUs 04 and 
12, detected through an automated analysis of video data, would be negatively and positively associated with 
dynamic ratings of subjective valence, respectively.

Additionally, whether automated AU analysis results have non-linear associations with subjective valence or 
arousal dynamics remains untested. A recent study applied non-linear machine learning (ML) models, includ-
ing random forest (RF) regression, to dynamic valence ratings and facial EMG data17. The researchers reported 
that the ML analysis had better predictive performance in terms of the valence ratings (i.e., higher positive 
correlations between actual and predicted valence ratings) than linear analysis. Furthermore, SHapley Additive 
exPlanation (SHAP) analysis, which aids interpretation of ML models given their black box nature18, revealed 
non-linear associations between subjective valence ratings and facial EMG activity. Thus, we hypothesized that 
ML modeling and SHAP analysis would reveal the non-linear associations between dynamic ratings of valence 
or arousal and automated AU data.

To investigate these hypotheses, we recorded videos of participants’ faces and obtained dynamic valence and 
arousal ratings while they observed emotional films. We presented five film clips, categorically labeled as anger, 
sadness, neutral, contentment, and amusement, which reportedly show linear and quadratic relationships with 
subjective valence and arousal ratings, respectively9. First, the participants viewed the clips and provided one-shot 
subjective valence and arousal ratings. Throughout this process, videos capturing full-face views of the partici-
pants were continuously recorded; these were subsequently analyzed using validated software to automatically 
extract the AU intensities20. Following the initial presentation, the film clips were shown to the participants twice 
more. During these latter viewings, participants recalled and dynamically rated their emotional experience during 
the first viewing in terms of valence or arousal using a slider-type affect rating dial21. This cued-recall approach 
was employed to acquire two different types of dynamic ratings (i.e., valence and arousal) that were difficult 
to simultaneously assess during the first viewing. Furthermore, online ratings were not used because online 
monitoring of subjective experiences can affect the naturalness of facial or subjective emotional responses22,23. 
Additionally, because previous studies have demonstrated strong positive correlations between cued-recall and 
online ratings for emotional films7,24, we expected that the cued-recall ratings would be characterized by subjec-
tive emotional dynamics comparable with those of online ratings. We analyzed the correlations of second-by-
second dynamic valence or arousal ratings with AU intensities across time; the data of all film conditions were 
concatenated, as in a previous EMG study9. In addition to AUs 04 and 12, we explored 18 other AUs that could 
be automatically coded by the software. We also performed RF regression modeling and SHAP analysis of the 
relationships between the dynamic ratings and the AUs.

Results
Subjective ratings
The one-shot and dynamic ratings were evaluated as indicators of subjective emotion elicitation (Table 1 and 
Fig. 1). One-shot ratings reflect the overall emotional experience, and dynamic ratings reflect emotional states 
on a moment-to-moment basis. The group mean dynamic valence and arousal ratings in Fig. 1 indicate that the 
emotional film clips elicited dynamic changes in subjective emotional experience. Planned contrasts confirmed 
that the one-shot ratings and mean dynamic ratings acquired during film presentation reflected the linear and 
quadratic patterns of the valence and arousal ratings across films, respectively, as expected (one-shot valence: 
F[1,22] = 227.82, p < 0.001, η2

p = 0.91; one-shot arousal: F[1,22] = 109.04, p < 0.001, η2
p = 0.83; dynamic valence: 

F[1,22] = 167.47, p < 0.001, η2
p = 0.88; dynamic arousal: F[1,22] = 155.29, p < 0.001, η2

p = 0.88).

AUs
To illustrate the differences in facial expressions elicited by different emotional stimuli, two different visualization 
methods are used in Fig. 2 to show how the mean values and standard errors (SEs) of specific facial AUs varied 
over time during the viewing of the five films.

Table 1.   Mean [with standard error (SE)] one-shot and dynamic ratings of valence and arousal across five 
emotional films.

Film emotion

One-shot Dynamic

Valence Arousal Valence Arousal

M SE M SE M SE M SE

Anger 2.00 0.23 7.26 0.34 4.26 0.23 6.40 0.26

Sadness 3.52 0.29 7.13 0.34 3.57 0.29 6.27 0.25

Neutral 4.26 0.27 3.87 0.42 4.37 0.22 3.82 0.32

Contentment 6.09 0.28 4.17 0.25 5.84 0.21 4.43 0.22

Amusement 7.61 0.23 7.50 0.19 6.72 0.19 6.52 0.22
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Correlations between subjective ratings and AUs
Pearson’s correlation coefficients were calculated between the valence/arousal ratings and AUs summed across 
films for each participant as measures of intra-individual subjective–facial associations (Fig. 3). First, based on 
our research interests, we conducted a priori analyses of the associations of valence ratings with AUs 04 and 12. 
The r-values, summed across films, were subjected to one-sample t-tests against zero after Fisher’s z transforma-
tion (Table 2). The results indicated a significant negative correlation between valence and AU 04 (t[22] = 2.16, 
p = 0.042, d = 0.45) and a significant positive correlation between valence and AU 12 (t[22] = 8.55, p < 0.001, 
d = 1.78).

Next, we conducted exploratory analyses of the associations between the valence or arousal ratings and all 
20 analyzed AUs using Hotelling’s one-sample T2 test and follow-up univariate one-sample t-tests. Hotelling’s 
one-sample T2 test revealed a significant association between the valence ratings and AUs (T2[3, 20] = 4610.67, 
p = 0.008, ηp

2 = 0.99). Follow-up univariate tests indicated significant negative correlations for AUs 01, 04, 15, 
and 18, and significant positive correlations for AUs 06, 07, 09, 12, 20, and 25 (t[22] > 2.14, p < 0.05, d > 0.44).

Similarly, Hotelling’s one-sample T2 test revealed a significant association between arousal ratings and AUs 
(T2[3, 20] = 13,109.04, p = 0.002, ηp

2 = 1.00). Follow-up univariate tests indicated a significant negative correlation 
for AU 43 and significant positive correlations for AUs 02, 06, 07, 09, 12, and 17 (t[22] > 2.34, p < 0.03, d > 0.48).

Figure 4 illustrates the AUs showing significant correlations with valence or arousal ratings.

ML analysis for the associations between subjective ratings and AUs
To evaluate the predictive performance of the RF and linear models, we calculated correlation coefficients 
between the actual and predicted values. Leave-one-out cross-validation was employed, where the data from 
one participant served as the evaluation dataset and the data of the other participants comprised the training 
dataset, which was used to train the models, a correlation coefficient was computed for each individual partici-
pant serving as the evaluation dataset. The mean ± SE correlation coefficients between the actual and predicted 
valence and arousal ratings in the RF model were 0.42 ± 0.05, and 0.29 ± 0.06, respectively, compared with 0.43 
± 0.06 and 0.28 ± 0.07, respectively, in the linear model. One-sample t-tests revealed that all models had correla-
tion coefficients significantly greater than zero (t[22] = 6.56, 4.01, 7.65, and 5.38, all ps < 0.001, d = 1.37, 0.84, 
1.60, and 1.12 for the RF-valence, RF-arousal, linear-valence, and linear-arousal models, respectively). Paired 
t-tests indicated no significant differences between the RF and linear models in valence (t[22] = 0.21, p = 0.827, 
d = 0.05) or arousal (t[22] = 0.22, p = 0.839, d = 0.04).

SHAP tools were applied to quantify and visually depict nonlinear associations in the RF model. The absolute 
mean SHAP values, indicating feature importance in the RF model, are shown in Fig. 5. The results suggested 
that AUs 06, 12, 09, and 04, and AUs 43, 09, 06, and 07, were the four most important features for predicting 
valence and arousal, respectively.

The SHAP dependency plots in Fig.  6 show representative relationships between the AUs and SHAP values 
for changes in valence/arousal ratings. Both simple linear and more complex non-linear associations are shown 
(e.g., step-like and gradual changes in the valence—AU 12 and valence—AU 04 relationships, respectively).

Fig. 1.   The mean second-by-second subjective dynamic ratings of valence (left) and arousal (right). In the 
upper panels, solid-colored lines represent the mean values, and shaded areas of the same color indicate the 
standard error. In the lower panels, redder hues in the spectrograms correspond to higher levels of valence/
arousal, and more purple hues correspond to lower levels of valence/arousal.
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Discussion
We confirmed our hypothesis that emotional valence ratings were negatively and positively associated with facial 
AUs 04 (brow lowering) and 12 (lip-corner pulling), respectively, as detected through automated video data 
analysis. These results are consistent with several previous studies that reported associations between dynamic 
valence ratings and EMG activity recorded from the corrugator supercilii and zygomatic major muscles7–10. 
However, it is unknown whether such electrical facial muscle activity was visible, as facial EMG can detect invis-
ible muscle activity13. These results are also consistent with previous findings that AUs 04 and 12 are associated 
with emotional valence states elicited by remembering personal emotional events14, although dynamic ratings 
of subjective valence were not obtained. Extending these findings, the present study is the first to report that 
automated video analysis of AUs 04 and 12 is associated with subjective valence ratings.

In addition to these two AUs, our exploratory analyses revealed associations of other AUs with dynamic 
valence ratings, including AUs 01 (inner brow raising), 15 (lip corner depressing), and 18 (lip puckering) (nega-
tive associations) and AUs 06 (cheek raising), 07 (lid tightening), 09 (nose wrinkling), 20 (lip stretching), and 
25 (lips parting) (positive associations). These results align with those of previous studies examining the asso-
ciations between categories of subjective emotions and AUs27,28, despite those studies not obtaining subjective 
valence ratings. For example, one study acquired videos of facial expressions among Japanese participants and 
performed an automated AU analysis, similar to our approach, and found that AUs 06 and 07 were activated 
by happy facial expressions elicited by emotional scenarios29. Another study involved manual FACS analysis 
while participants produced emotional facial expressions in response to scenarios, showing that AUs 01 and 15 
were activated during sad experiences30. Our study replicated these results using a film presentation paradigm 

Fig. 2.   Group mean action unit (AU) intensities associated with the viewing of five films. The upper panels 
show line charts highlighting the differences in activation levels of the same AUs across different films, 
emphasizing how emotional responses varied with the content viewed. The solid lines represent the mean 
values, and the shaded area of the same color indicates the standard error. The lower panels show spectrograms 
highlighting the differences in activation levels of the different AUs while watching the same film, revealing the 
complexity of the emotional reactions elicited by a single film. A redder hue indicates higher AU intensity, and a 
more purple hue indicates lower intensity.
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to induce spontaneous emotional responses. Taken together, our findings suggest that changes in AU activation 
patterns may reflect dynamic subjective experiences.

Furthermore, our exploratory analyses revealed associations between dynamic arousal ratings and several 
AUs, including AUs 02 (outer brow raising), 06 (cheek raising), 07 (lid tightening), 09 (nose wrinkling), 12 (lip-
corner pulling), 17 (chin raising), and 43 (eyes closing). The positive associations between subjective arousal 
ratings and AU 12 were consistent with the results of a previous study that analyzed AUs videotaped while 
participants remembered personal emotional events14. Another study reported that the intensity of AUs 02 and 

Fig. 2.   (continued)
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43 was associated with higher and lower arousal, respectively, as recognized in the facial expressions of vir-
tual agents31. Interestingly, previous psychophysiological studies proposed that while subjective valence can be 
assessed using facial EMG, estimating subjective arousal requires recording autonomic nervous system activity, 
including electrodermal activity32,33. Together with previous findings, our data suggest that facial actions may 
reflect the dynamics of arousal experiences.

Fig. 3.   Mean (standard error) Pearson’s correlation coefficients between second-by-second dynamic valence 
(left) or arousal ratings (right) and action units across time (concatenated for all film conditions). Coefficients 
indicating positive and negative associations are shown as red and blue bars, respectively. The significance of the 
correlations is denoted by asterisks: *p < 0.05, **p < 0.01, and ***p < 0.001.

Table 2.   Results of one-sample t-tests (two-tailed) of the correlation coefficients between second-by-second 
subjective valence or arousal ratings and action units (concatenated for all film conditions). Significant results 
(p < 0.05) are in bold.

Action unit Description

Valence Arousal

t p d t p D

01 Inner brow raising 3.09 0.005 0.65 1.02 0.319 0.21

02 Outer brow raising 1.29 0.212 0.27 2.35 0.028 0.49

04 Brow lowering 2.16 0.042 0.45 1.27 0.216 0.27

05 Upper lid raising 1.7 0.102 0.36 1.52 0.144 0.32

06 Cheek raising 8.35  < 0.001 1.74 5.54  < 0.001 1.16

07 Lid tightening 3.85  < 0.001 0.80 5.85  < 0.001 1.22

09 Nose wrinkling 8.54  < 0.001 1.78 9.07  < 0.001 1.89

10 Upper lip raising 1.67 0.109 0.35 3.63 0.002 0.76

12 Lip corner pulling 8.55  < 0.001 1.78 3.73 0.001 0.78

14 Dimpling 1.96 0.063 0.41 0.35 0.728 0.07

15 Lip corner depressing 2.79 0.011 0.58 1.19 0.247 0.25

17 Chin raising 1.75 0.094 0.37 3.32 0.003 0.69

18 Lip puckering 5.27  < 0.001 1.10 1.08 0.294 0.22

20 Lip stretching 2.14 0.044 0.45 1.77 0.091 0.37

23 Lip tightening 1.78 0.089 0.37 2.00 0.058 0.42

24 Lip pressing 0.46 0.65 0.10 1.91 0.069 0.40

25 Lips parting 2.94 0.008 0.61 0.53 0.598 0.11

26 Jaw dropping 0.35 0.727 0.07 0.37 0.713 0.08

27 Mouth stretching 1.7 0.103 0.36 0.74 0.468 0.15

43 Eyes closing 0.9 0.38 0.19 6.95  < 0.001 1.45
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Our ML modeling results also revealed some non-linear associations between subjective valence/arousal 
ratings and AUs. The SHAP dependency plots (Fig. 6) revealed both simple linear and more complex non-linear 
associations between the emotional dynamics and AUs. These results are in line with those of previous studies 
in which video analysis of the encoding of emotional facial expressions revealed non-linear AU trajectories34,35, 
although the relationships with subjective emotional dynamics were not assessed. Our results revealed step-like 
and gradual relationships of subjective valence dynamics with AU 12 (lip-corner pulling) and AU 04 (brow 
lowering), respectively. These results are consistent with the relationships between dynamic valence ratings and 
EMG signals recorded from the zygomatic major and corrugator supercilii muscles. These data suggest that 
cheek and brow actions are robustly associated with valence dynamics in unique, non-linear ways that can be 
detected via video analysis. However, predictive performance was comparable between linear and non-linear ML 

Fig. 4.   Illustrations of the action units (AUs) that were significantly correlated with valence or arousal ratings. 
The images were created using FACSGen 2.025,26.

Fig. 5.   Mean absolute SHapley Additive exPlanation (SHAP) values for each action unit (AU) in the random 
forest regression model, showing the effect of each feature on the subjective valence (left) and arousal (right) 
rating predictions.
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models. The feature importance plots (Fig.  5) obtained via SHAP analysis also showed that the AUs important 
for predicting subjective dynamic valence/arousal ratings were similar between linear and non-linear models. 

Fig. 6.   SHapley Additive exPlanation (SHAP) dependency plots showing relationships between predicted 
valence (left) or arousal (right) ratings and facial action units (AUs). The AUs shown are the four most 
important features for predicting valence and arousal. The SHAP values demonstrate how the valence and 
arousal ratings change as the AUs are inputted.
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The results suggest that the relationships between emotional valence/arousal ratings and AUs may primarily be 
linear. However, our sample size was relatively small and may not have been sufficient for ML modeling; thus, 
further ML modeling is warranted.

The present results have practical implications, showing that subjective valence and arousal ratings can be 
estimated via automated AU analyses of video data without the need for contact electrodes. Video analysis is 
useful for evaluating many facial actions, as well as overall facial expressions, providing a more comprehensive 
and detailed analysis than facial EMG recordings. These analyses could be used for emotion sensing in several 
crucial areas, including mental health diagnostics36–39, security monitoring40,41, and education42–44. Mental health 
professionals are occasionally asked to monitor patients’ emotional states remotely for early identification of a 
disturbance and timely intervention, which improves treatment efficacy. Precise and non-invasive facial expres-
sion analysis enhances the capability to identify suspicious behavior in public and sensitive environments, thereby 
supporting safety protocols without impinging on personal privacy. This innovative approach enables instruc-
tors to evaluate student engagement and emotional state in real time, facilitating the development of teaching 
approaches that are responsive to the emotional and educational requirements of learners.

Several limitations of the present study may have affected the findings. First, AU 04 (brow lowering) was 
continuously active while viewing all of the films (see Fig. 2). We speculate that this could be attributed to 
the recording environment, in which participants were illuminated by a single overhead light. This lighting 
from above may have cast shadows between the eyebrows, leading to consistent detection of AU 04 activation; 
observed activations of facial AUs may be affected by external lighting conditions as well as actual changes in 
facial expressions. Enhancing the lighting on either side of the participant may be a viable solution to minimize 
shadow-induced activations in future studies. Second, our facial action analysis included only 20 AUs due to the 
software settings20, even though human FACS coders can evaluate more AUs15,16. Therefore, it is possible that we 
overlooked some associations between subjective emotional dynamics and other AUs. For example, a previous 
study45 testing the relationship between emotional category recognition and AUs found a positive association 
between fear recognition and AU 16 (lower lip depressor), which was not included in our analysis. Further 
research will be needed to analyze more AUs using other software or methods. Third, we analyzed correlations 
between AU intensities and dynamic ratings across time using all film condition data as in a previous EMG 
study9, so it is still unclear whether the correlations obtained herein can be generalized or apply only to specific 
emotional types. We conducted preliminary analyses and found that almost all of the significant rating–AU 
correlations reported above were maintained after controlling for the main effect of stimulus valence and the 
interaction between AU and stimulus valence (see “Methods”). However, our experimental design was insufficient 
to draw definitive conclusions because we presented only one or two film stimuli with negative, neutral, or posi-
tive valence, thus precluding discrimination between the effects of emotional and non-emotional film factors. To 
overcome this issue, future research should present multiple film stimuli inducing each type of emotion. Fourth, 
the generalizability of the findings to different social situations remains untested; this is an important matter for 
future research. Research indicates that facial expressions play an important role in communication in social 
situations46,47, which is relevant to the association between subjective emotional experience and facial actions 
found in this study. Fifth, our sample included only Japanese participants. A previous study showed that, although 
Japanese and American participants exhibited nearly identical facial expressions in response to negative films 
when they were alone, Japanese participants masked their negative facial expressions in the presence of another 
person48. Although our participants watched emotional films alone, the experimental setup may have been 
implicitly experienced as a social situation49, thus reducing their facial actions. Future research should include 
participants from different cultural backgrounds. Finally, we did not assess the participants’ default emotional 
states, familiarity with the film contents, personality traits, or facial features, which may affect emotional experi-
ence and AU activation. Studies with a more detailed assessment process would deepen understanding of the 
relationships between subjective emotional dynamics and facial actions.

In conclusion, this study demonstrated associations between emotional valence/arousal ratings and facial 
AUs through automated video analysis and provided the first evidence that automated video analysis can reveal 
the dynamics of subjective emotional valence/arousal. Facial AU activity exhibited both simple linear and com-
plex non-linear relationships. Different AUs vary in their sensitivity to emotional stimuli, and thus also in their 
response to changes in emotions. For example, some AUs, such as AU 04 (brow lowering), 06 (cheek raising), 
and 12 (lip-corner pulling) are extremely sensitive to slight changes in emotion, showing significant activation 
in response to subtle changes in facial expressions when emotions are finely tuned. In contrast, other AUs may 
only show significant activation when there is a stronger emotional stimulus. Therefore, when analyzing and 
interpreting AU activity data, it is crucial to consider these dynamics, and non-linear relationships, to accurately 
characterize people’s emotional responses. Despite several methodological limitations, our study provides sup-
port for facial expression-based emotional monitoring and personalized interventions. Future research should 
improve the experimental methods and explore non-linear relationships between dynamic emotional states and 
AUs to more accurately understand and predict these states. This approach will further advance the application 
and development of facial expression analysis technology for use in various critical sectors.

Methods
Participants
We enrolled 23 healthy Japanese adults [11 women and 12 men; mean ± standard deviation (SD) age = 22.0 ± 
2.6 years]. The sample size was determined through a priori power analysis conducted using G*Power software 
(ver. 3.1.9.2)50, based on a previous study that recorded facial EMG of the corrugator supercilii and zygomatic 
major muscles and obtained dynamic valence ratings using similar experimental procedures9. Analysis of sub-
jective facial associations using a two-step procedure with one-sample t-tests (two-tailed) was planned. An 
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effect size d of 0.55 was estimated based on the weak subjective-facial association; with an α level of 0.05 and a 
power (1 – β) of 0.8, the power analysis showed that > 22 participants were needed. Data from two additional 
participants, though tested, were excluded due to technical problems with the video acquisition system. The 
participants were recruited via advertisements at Kyoto University and were compensated in book coupons 
corresponding to a value of 4000 Japanese yen. The inclusion criteria were as follows: willingness to participate 
in subjective and physiological measurements; normal or corrected-to-normal vision without the use of glasses; 
Japanese as the first language; and no neurological or psychiatric issues. The exclusion criterion was previous 
experience of participating in experiments using the emotional film clips employed in our study. All participants 
provided written informed consent after a thorough explanation of the procedures. This study was approved by 
the RIKEN Ethics Committee. The experiment was conducted following the institutional ethical guidelines and 
the Declaration of Helsinki.

Apparatus
In the one-shot rating session, experimental events were managed using Presentation software (Neurobehavioral 
Systems, Berkeley, CA, USA) running on an HP Z200 SFF Windows computer (Hewlett-Packard Japan, Tokyo, 
Japan). The software presented films and response displays, recorded the participants’ ratings, and provided 
digital trigger pulses synchronized with film onset. Visual stimuli were displayed on a 19-inch cathode ray tube 
monitor (HM903D-A; Iiyama, Tokyo, Japan) with a 100-Hz refresh rate and 1024 × 768-pixel resolution. A digital 
web camera (HD1080 P; Logicool, Tokyo, Japan) was placed above the monitor for video recording. In addition, 
A655sc infrared thermal imaging cameras (FLIR Systems, Wilsonville, OR, USA) were used to acquire the facial 
thermal images; these data are not reported here. For the cued-recall dynamic valence and arousal ratings, we 
used PsychoPy software (v2023.2.3; Open Science Tools Ltd., Nottingham, UK) running on a MacBook Air 
laptop (M2; Apple, Cupertino, CA, USA).

Stimuli
Five films were utilized to evoke a spectrum of emotions: “Cry Freedom” (highly negative, anger), “The Champ” 
(moderately negative, sadness), “Abstract Shapes” (neutral), “Wild Birds Of Japan” (moderately positive, content-
ment), and “M-1 Grand Prix The Best 2007–2009” (highly positive, amusement). Gross & Levenson49 and Sato 
et al.7 developed the first three and the latter two film stimuli, respectively, and their effectiveness in eliciting 
the target emotions was validated in several previous studies of Japanese samples7–10,19. The mean ± SD duration 
of these film stimuli was 175.8 ± 22. 2 s (anger, 157 s; sadness, 172 s; neutral, 206 s; contentment, 148 s; amuse-
ment, 196 s). Two additional films were used for the practice trials, i.e., scenes from “Silence of the Lambs”10 and 
“Colour Bars” from Gross & Levenson51. The stimulus resolution was 640 × 480 pixels, corresponding to visual 
angles of approximately 25.5◦ and 11◦.

Procedure
The experiments were completed on an individual basis. Upon arrival at the laboratory, participants were briefed 
on the overall procedure. The study commenced with a one-shot rating session for the acquisition of video data, 
followed by a dynamic rating session.

The one-shot rating session was conducted in a soundproof, electrically shielded room (Science Cabin; 
Takahashi Kensetsu, Tokyo, Japan). The room had a ceiling-mounted light (EFG25ED/19H; Panasonic, Tokyo, 
Japan) that remained on throughout the experiment. The room temperature was maintained at 23.5–24.5 °C, 
monitored, and recorded using a TR-76Ui data logger (T&D, Matsumoto, Japan). A previous study showed 
that participants in warmer conditions had higher arousal scores for specific picture categories compared with 
those in neutral or cool conditions, and the valence score for warmer conditions was lower than that for neutral 
conditions52. Without consideration of energy consumption, the Japanese government recommends an indoor 
temperature of 20°C in winter. However, Japanese people are accustomed to slightly higher temperatures in the 
range of 22–28 °C53. Therefore, before starting each experiment, we set the indoor temperature to 24 °C using 
central air conditioning. We also asked the participants to remove their outerwear, and to indicate their level 
of comfort with the room temperature while they completed the study forms. Adjustments were made based 
on the participants’ feedback to ensure that the temperature did not become too high or too low during the 
experiment, as this could have affected the results. All participants reported feeling comfortable at around 24 °C, 
leading us to designate 23.5–24.5 °C as the neutral temperature range in our experiments. Each participant was 
seated comfortably on a chair that was fixed such that the participant’s face was approximately 0.77 m from the 
monitor. The digital web camera was located above the monitor, in alignment with the front edge of the monitor.

In the one-shot rating session, after two practice films, participants were presented with the five experimen-
tal films (presented pseudo-randomly). In each trial, a fixation point was displayed for 1 s, followed by a white 
screen for 10 s and then the film. The screen reverted to white for another 10 s post-film. Subsequently, the affect 
grid54 was presented, allowing participants to provide emotional valence and arousal ratings using a 9-point scale 
(Fig.  7). The participants were instructed to focus on the fixation point, watch the film, and then provide their 
subjective valence and arousal ratings by pressing number keys 1–9 on the keyboard. Following their responses, 
the screen turned black during the inter-trial interval, which varied randomly between 24 and 30 s. Video data 
were continuously acquired throughout all of the trials using LabChart Pro v8.0 software (ADInstruments, 
Dunedin, New Zealand). The software simultaneously recorded digital signals (triggers) associated with film 
onset. Upon completion of the one-shot rating trials, participants exited the soundproof room and rested at a 
desk in the laboratory.

No videos were recorded during the dynamic rating session. The same films, in the same order, as viewed in 
the soundproof room, were presented twice more on separate occasions. In each trial, participants viewed each 
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film stimulus on a laptop, accompanied by horizontal and vertical 9-point scales for the valence and arousal rat-
ings, respectively. The participants were instructed to recall their initial emotional response and indicate their 
subsequent emotional state by adjusting the slider on a touchpad (Fig.  8). No specific frequency was required 
with respect to rating changes. The participants’ fingers were continuously in contact with the touchpad to ensure 
that the software could automatically update the data in real time. Participants first provided valence ratings for 
all five films, followed by arousal ratings after a short break. Previous studies have shown a strong positive cor-
relation between cued-recall dynamic ratings and online dynamic ratings of emotional films7,24.

Data analysis
Video data were analyzed using FaceReader 9 (Noldus Information Technology, Wageningen, The Netherlands). 
We used this software because of its validated AU coding peformance20,55. First, the software detected faces in 
frames based on the Viola–Jones algorithm56. Next, it constructed three-dimensional face models based on the 
active appearance method57 in combination with deep artificial neural network classification58. Finally, by using 
an artificial neural network trained on a large database of AUs, the software quantified the intensities of 20 AUs 
(01, 02, 04, 05, 06, 07, 09, 10, 12, 14, 15, 17, 18, 20, 23, 24, 25, 26, 27, and 43). The East Asian template was used. 
The start and end times for each film stimulus were determined based on digital triggers synchronized with 
the film onset and stimulus duration, respectively. The video data for each participant were segmented into five 
clips based on the start and end times. One-shot ratings were exported directly from the log files of Presentation 

Fig. 7.   Response display for the one-shot ratings of valence and arousal.

Fig. 8.   Response displays for the dynamic ratings of valence (left) and arousal (right).
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software. Dynamic ratings were exported from the log files of PsychoPy software, where they were originally 
recorded on a frame-by-frame basis. We used the codeOnlineRating function in PsychoPy software to record 
dynamic valence and arousal ratings while participants watched the films. With regard to technical details, 
component setup was as follows: codeOnlineRating has fixed parameters, including “Before Experiment,” “Begin 
Experiment,” “Begin Routine,” “Each Frame,” “End Routine,” and “End Experiment”. It also featured frame-by-
frame recording: we wrote code for the “Each Frame” parameter to ensure that, whenever participants updated 
their rating (i.e., changed the slider position), the system would update the rating, with the data saved every 
three frames. Each data entry event included the current rating and the timestamp (in milliseconds), as well as 
the monitor refresh rate; the recording of frames is tied to the monitor’s refresh rate, which PsychoPy cannot 
control. Our monitor’s refresh rate was 60 Hz, such that there were 60 frame updates per second. Consequently, 
we saved 20 frames of data per second. To ensure alignment with the AU intensity data, the ratings were converted 
to a second-by-second format by calculating the mean values of all frames within each second. Subsequently, 
each participant’s AU intensity data, along with their continuous valence and arousal ratings, were arranged in 
a fixed film stimulus order (anger, sadness, neutral, contentment, and amusement) and stored in CSV files for 
subsequent analysis.

Statistical analysis
Data analysis was conducted using Python (version 3.11.4), JASP 0.14.159, MATLAB 2020a (MathWorks, Natick, 
MA, USA), and the Hotelling T2 function60. Results were considered significant at p < 0.05.

The one-shot ratings and mean dynamic ratings during film presentation (five ratings for each participant) 
were subjected to repeated-measures trend analyses. A previous study showed that the five film clips (anger, 
sadness, neutral, contentment, and amusement) used in this study exhibited linear and quadratic relationships 
with subjective valence and arousal ratings, respectively9. To confirm this, the linear and quadratic natures of 
the valence and arousal ratings were assessed across films.

We conducted preliminary analyses to explore differences between the one-shot ratings and mean dynamic 
ratings. The valence and arousal ratings were subjected to a 2 (rating type: one-shot and dynamic) × 5 (film: 
anger, sadness, neutral, contentment, and amusement) repeated-measures analysis of variance. The two-way 
interactions were evaluated for the linear and quadratic relationships for valence and arousal ratings, respectively. 
Regarding the valence ratings, the results showed significant main effects of rating type (dynamic > one-shot; 
F[1,22] = 12.10, p = 0.002, η2

p = 0.36) and film (F[4, 88] = 66.04, p < 0.001, η2
p = 0.75), and a significant rating 

type × film interaction (F[4, 88] = 45.34, p < 0.001, η2
p = 0.67). Trend analysis revealed that the linear relationship 

was significantly different between the rating types (one-shot > dynamic; F[1,22] = 140.09, p < 0.001, η2
p = 0.86). 

Similarly, for the arousal ratings, we found significant main effects of rating type (one-shot > dynamic; F[1,22] 
= 22.12, p < 0.001, η2

p = 0.50) and film (F[4, 88] = 45.10, p < 0.001, η2
p = 0.67), and a significant rating type × 

film interaction (F[4, 88] = 6.61, p < 0.001, η2
p = 0.23). Trend analysis revealed that the quadratic relationship 

was significantly different between the rating types (one-shot > dynamic; F[1,22] = 9.10, p = 0.006, η2
p = 0.29). 

These data indicate greater differences in valence and arousal ratings between films for one-shot versus mean 
dynamic ratings. We speculate that the results could be explained by memory biases in one-shot retrospective 
emotional ratings (i.e., the peak-end rule61).

To assess the individual-level linear associations between the subjective dynamic valence/arousal ratings 
and AUs, Pearson’s product-moment correlation coefficients (r-values) were calculated for each participant. 
Individual-level r-values, after normalization using Fisher transformation, were subjected to a two-stage ran-
dom-effects analysis performed at the group level62. First, we conducted a priori analyses of the associations 
of valence ratings with AUs 04 and 12, based on our research interests, as described in the Introduction. The 
z-transformed r-values were analyzed using one-sample t-tests (two-tailed), as in a previous study9. Next, we 
conducted exploratory analyses of the associations of the valence and arousal ratings with all 20 analyzed AUs. 
We performed multivariate analysis using Hotelling’s one-sample T2 test, which is a multivariate generalization 
of a one-sample t-test, to control the experiment-wise type I error rate63,64. We conducted univariate one-sample 
t-tests (two-tailed) for the follow-up analyses. To visually illustrate the AUs that showed significant correlations 
with valence or arousal ratings, artificial facial images were created using FACSGen 2.025,26.

We conducted preliminary analyses to determine whether the correlations between the dynamic ratings 
and AUs were specific to particular types of stimulus valence, although our experimental design (only one or 
two films for negative, neutral, and positive stimuli) was not appropriate to draw definitive conclusions. Linear 
mixed-effects models were constructed, including the second-by-second dynamic ratings of valence or arousal as 
the dependent variable (879 data points for each participant). The AU intensities were the effect-of-interest fixed-
effect independent variables; these were analyzed together with the effect-of-no-interest fixed-effect covariates of 
stimulus valence (negative, neutral, and positive) and the interaction between AU intensity and stimulus valence. 
Random by-participant intercepts were added as per standard repeated-measures analyses. Beta estimates of the 
AU intensities were evaluated with the degrees of freedom calculated using Satterthwaite’s approximation. The 
results (Supplementary Table 1) confirmed that all significant associations of valence and arousal ratings with AU 
intensities reported above were also significant in these analyses, except for the valence—AU 20, arousal—AU 
9, and arousal—AU 10 associations. These data suggest that almost none of the reported dynamic rating–AU 
correlations were restricted to specific types of stimulus valence.

ML modeling
The ML modeling was similar to that conducted in a previous study analyzing the relationship between facial 
EMG and dynamic ratings17. First, the data were segmented into 10-s sections, and the mean values were calcu-
lated as the features. The RandomForestRegressor in the Python library scikit-learn was used for RF regression 
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modeling. Finally, the RF model incorporated 20 decision trees, with a maximum depth of 6; the other parameters 
took their default values. For comparison, linear multiple regression analyses were conducted using scikit-learn. 
The Pearson’s correlation coefficients between the model predictions and the actual values for each participant 
were calculated as the model evaluation index. Leave-one-out cross-validation was employed, where data from 
one participant served as the evaluation dataset, and the data from the other participants comprised the training 
dataset used to train the models. The indices were subjected to statistical analysis, including one-sample t-tests 
(two-tailed) contrasting with zero and paired t-tests comparing the RF and linear models. For the SHAP analysis, 
we computed SHAP values for each instance18. We calculated the absolute mean SHAP values for the obtained 
hyperquantities; this allowed us to assess the significance of each input feature. Finally, we plotted scatterplots 
of the relationships between input features and their SHAP values for each instance.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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