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P H Y S I C S

Observation of slow relaxation due to Hilbert space 
fragmentation in strongly interacting 
Bose-Hubbard chains
Kantaro Honda1*, Yosuke Takasu1, Shimpei Goto2, Hironori Kazuta3, Masaya Kunimi4,  
Ippei Danshita3, Yoshiro Takahashi1

While isolated quantum systems generally thermalize after long-time evolution, there are several exceptions de-
fying thermalization. A notable mechanism of this nonergodicity is the Hilbert space fragmentation (HSF), where 
the Hamiltonian matrix splits into an exponentially large number of sectors due to the presence of nontrivial 
conserved quantities. Using ultracold gases, here, we experimentally investigate the one-dimensional Bose-
Hubbard system with neither disorder nor tilt potential, which has been predicted to exhibit HSF caused by a 
strong interatomic interaction. Specifically, we analyze far-from-equilibrium dynamics starting from a charge den-
sity wave of doublons (atoms in doubly occupied sites) in a singlon- and doublon-resolved manner to reveal a 
slowing down of the relaxation in a strongly interacting regime. We find that the numbers of singlons and dou-
blons are conserved during the dynamics, indicating HSF as a mechanism of the observed slow relaxation. Our 
results provide an experimental confirmation of the conserved quantities responsible for HSF.

INTRODUCTION
The problem of quantum thermalization, i.e., how isolated quantum 
many-body systems that undergo the reversible unitary time evolu-
tion can reach thermal equilibrium states, lies at the heart of mod-
ern quantum statistical physics and is of considerable recent interest. 
As a mechanism of the thermalization, the eigenstate thermalization 
hypothesis (ETH) is known, which states that expectation values of 
physical quantities for eigenstates of a quantum many-body system 
coincide with that of the microcanonical ensemble in the corre-
sponding energy (1–4). In particular, when a quantum many-body 
system satisfies the strong version of the ETH, where all of the ei-
genstates satisfy the ETH, the long-time average of the physical 
quantity coincides with the microcanonical average, that is, the sys-
tem thermalizes (5, 6).

The remarkable progress of artificial quantum systems, such as 
ultracold gases, Rydberg atom arrays, trapped ions, and supercon-
ducting qubits, has enabled indispensable studies on the problem of 
the thermalization from both experimental and theoretical sides. In 
better understanding of the mechanisms of the thermalization, in-
vestigating nonergodic systems, which do not show thermalization, 
is important. Illustrative examples of nonergodic systems include 
integrable (7–12) and many-body localized (MBL) systems (13–27), 
where thermalization is prevented because of the presence of an ex-
tensive number of conserved quantities and the strong disorder po-
tential, respectively. Furthermore, the recent findings of another 
type of nonergodic systems show the diversity of origins of nonergo-
dic behavior, as exemplified by quantum many-body scar (28–37), 
stark MBL (38–42), and Hilbert space fragmentation (HSF) (43–50).

In particular, HSF typically results from the presence of nontrivial 
conserved quantities, leading to strong kinetic constraints on the 

system. Under these constraints, the Hilbert space is fragmented into 
an exponentially large number of disconnected subsectors (Krylov 
subsectors), where the dynamics are restricted to only a few subsec-
tors, causing the system not to thermalize. Experimentally, the noner-
godic dynamics due to the HSF have been observed, especially in the 
one-dimensional (1D) Fermi-Hubbard system (45, 46) and the 2D 
Bose-Hubbard system (50), where linear potential gradients (tilt po-
tentials) are applied, and the total atom number and dipole moment 
are conserved. Theoretically, a disorder-free 1D Bose-Hubbard model 
with no trapping potential (51,  52) and with a trapping potential 
(40, 53, 54) has been studied. In particular, in (54), it has been re-
ported that the nonergodic behavior emerges in the strongly interact-
ing regime when the dynamics start from a period-two charge density 
wave (CDW) of doublons (atoms in doubly occupied sites) (see Fig. 1, 
A and B), while rapid relaxation occurs starting from that of singlons. In 
this system, in addition to the total atom number, the numbers of dou-
blons and singlons are emergent conserved quantities in the strongly 
interacting regime, which gives rise to strong HSF.

In this work, using ultracold Bose gases in optical lattices, we ex-
plore the role of interatomic interaction in the nonequilibrium dynam-
ics following the sudden quench of the optical lattice depth, starting 
from a particular initial state of a period-two CDW of doublons with a 
small portion of singlons in a 1D disorder-free Bose-Hubbard system 
with no tilt potential (see Fig. 1A). We experimentally observe a nota-
ble difference between the quench dynamics starting from this type of 
initial state and that from the period-two CDW of singlons. The sys-
tematic measurement of the imbalance in a singlon- and doublon-
resolved manner with varying the ratio of the interatomic interaction 
to the hopping energy reveals a slowing down of the relaxation of the 
imbalance of the doublons in a strongly interacting regime, in stark 
contrast with the behavior of the singlons, which exhibit the consider-
able relaxation in all interaction strengths. We find that both numbers 
of singlons and doublons are conserved during the quench dynamics, 
indicating the HSF as a mechanism of the observed slow relaxation. 
The interplay between the effects of parabolic potentials and inter-
atomic interaction plays a role in the observed relaxation dynamics, 
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which is reproduced by our theoretical calculation. In particular, we 
reveal the enhanced slowing down of the relaxation for doublons by 
partial removal of singlons that accelerate the equilibration of the im-
balance through tunneling with no energy cost, which offers impor-
tant insights into the quantum thermalization dynamics. We note that, 
in contrast to the pioneering work (55), where the atom number stabil-
ity of the doublon itself, i.e., repulsively bound pair, prepared in an ap-
proximately isolated form (filling of doublons is typically 0.3) is 
observed, the present work reveals the nonequilibrium dynamics for 
interacting many-body systems of the doublons by observing the atom 
number imbalance between the odd and even sites.

RESULTS
Experimental setup
We start with the preparation of a 174Yb Bose-Einstein condensate 
by evaporative cooling with the total atom number of about 
1.3 × 104 . A Mott insulating state of unit filling is formed after the 
atom loading into a 3D optical lattice, with a deep potential depth of 
30ER , where ER = ℏ2k2

L
∕(2m) is the recoil energy of the optical lat-

tice, kL = 2π∕λshort with λshort = 532 nm is the wave number of the 

laser for the optical lattice, and ℏ is the Planck constant divided by 
2π . Here, the preparation of the initial state of period-two CDW of 
doublons, i.e., ∣ψ (0)⟩CDW(d) =∣ ⋯ 2020 ⋯⟩ state in 1D chains, pro-
ceeds with the optical superlattice in the direction of 1D chains con-
sisting of short ( λshort = 532 nm) and long ( λlong = 1064 nm) lattices 
(see section S1 for details of the loading procedure). For represent-
ing the many-body state of a 1D chain with M sites, here, we use the 
Fock basis

where ∣n
i
⟩
i
 denotes the local Fock state at a site i with an atom num-

ber ni . The central 1D chains of the atoms have a length of about 25. 
We note that in a prepared initial state, 25 to 30% of total atoms are 
singly occupied, which is confirmed by the remaining fraction of the 
atoms after the irradiation of a photoassociation (PA) laser. This is 
induced by the presence of low-density regions at the trap edges and 
the nonadiabaticity in the loading process (see section  S1 for the 
estimation of the singlon fraction in the initial state).

After the initial state preparation, we perform a sudden quench 
by rapidly decreasing the potential depth to initiate the dynamics 

∣n
1
n
2

⋯ n
M
⟩ ≡

M

⊗
i=1

∣n
i
⟩
i (1)
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Fig. 1. Schematic of the experimental setup and illustration of observed quench dynamics. (A) Schematic of the 1D Bose-Hubbard model. (B) Schematic illustration 
of HSF. The orange square shows a subspace characterized by the particle number. This subspace is further fragmented into an exponentially large number of subsectors 
(Krylov subsectors) under some kinetic constraints, where the breakup of doublons into singlons is suppressed for U ≫ J . (C) Schematic illustration of the sequence for a 
site mapping technique to measure the atom number imbalance. (D) Comparison of quench dynamics at U∕J = 52 starting from ρ̂CDW(d,s) (0) (purple circle) and ρ̂CDW(s) (0) 
(blue triangle) as a function of the normalized holding time, with a tunneling time of ℏ∕J = 2.6 ms along the direction of the 1D chains. Error bars in ℐD+S and ℐS show the 
SD of three and five independent scans, respectively. (E) Typical imbalance dynamics. (F) Typical dynamics of atom number fractions of doublons ( nD ; green) and singlons 
( nS ; blue) as a function of the normalized holding time, with a tunneling time of ℏ∕J = 2.1 ms along the direction of the 1D chains. In (E) and (F), all data are obtained at 
U∕J = 67 . Error bars for ℐS and ℐS in (E) show the SD of three independent scans, and those for ℐD in (E) and nS∕D in (F) show the SD calculated by the error propagation 
formula. OD, optical density; arb. u., arbitrary units.
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along the 1D chains (Fig. 1A; see also the Materials and Methods for 
details of the quench procedure). The dynamics during the hold 
time in the 1D chains is described by the 1D Bose-Hubbard model, 
and the Hamiltonian is given by

where âi
(
â
†

i

)
 is the annihilation (creation) operator of a boson at a 

site i , J is the tunneling amplitude between nearest-neighbor sites 
⟨i, j⟩ , n̂i ≡ â

†

i
âi is the number operator at a site i , U is the on-site in-

teraction strength, Vi ≡ Ω
[
i−(M+1)∕2

]2 is the parabolic potential, 
and Ω is the strength of the parabolic potential (54). Here, we note 
that there is no tilt potential in Eq. 2, different from previous ex-
perimental studies of nonergodic dynamics due to the HSF 
(45, 46, 50) and the many-body scarring (35). Note that the relative 
strength of the parabolic potential Ω to the tunneling amplitude J 
depends on the lattice depth (see tables S1 and S2 for specific values 
of Ω∕ J ), and Ω is small compared with hopping J of the singlon but 
not with that of the doublon.

To detect the atom distribution after the quench, we freeze the 
dynamics by rapidly ramping up the potential depth along the 1D 
chains. In this work, we focus on two physical quantities that char-
acterize the atom distribution: atom number imbalance ℐ(t) be-
tween the odd and even sites, and doublon- and singlon-resolved 
atom number fraction ( nD, nS ). The imbalance ℐ(t) is defined as

which becomes zero for thermalized states, where Nodd(t) and 
Neven(t) are the atom numbers in the odd and even sites, respec-
tively. The measurement of the imbalance is performed by a site 
mapping technique, i.e., mapping of the even and odd sites to the 
first and third bands, respectively, followed by band mapping 
(see Fig. 1C and Materials and Methods for details of the imbalance 
measurement) (45, 46, 56, 57). Note that, as we mention in the state 
preparation, the prepared state is not a pure state ∣ψ (0)⟩CDW(d) but a 
mixed state ρ̂CDW(d,s) (0) , which involves singlons with 25 to 30% of 
total atoms. By exploiting the PA resonance that selectively excites 
and thus removes the doublons, we achieve measurements of the 
imbalance in a singlon- and doublon-resolved manner (46, 57). Spe-
cifically, we measure the imbalance with and without the PA laser 
irradiation just after freezing of the dynamics and before site map-
ping, where the imbalance of singlons ( ℐw∕PA =ℐS ) and that of 
both doublons and singlons ( ℐw∕oPA ) are obtained, respectively. 
Then, we obtain the imbalance of doublons ( ℐD ) from the former 
two measured values as follows

where Nw∕PA ( Nw∕oPA ) is the atom number measured with (without) 
PA laser irradiation. The doublon- and singlon-resolved atom number 
fraction, nD and nS , is obtained with the atom numbers measured with 
and without the PA laser irradiation, Nw∕PA and Nw∕oPA , as follows

Note that these atom number fractions are important to charac-
terize the nonequilibrium dynamics in the sense that they are emer-
gent conserved quantities in the strongly interacting regime of the 
Bose-Hubbard chain, leading to the HSF (54).

Typical quench dynamics: Slow imbalance relaxation and 
doublon and singlon fraction conservation
We first show the comparison of the relaxation behavior obtained at 
U∕J = 67 starting from the ρ̂CDW(d,s)(0) and ρ̂CDW(s)(0) states 
in Fig. 1D [see section S2 for details of the quench dynamics starting 
from the ρ̂CDW(s)(0) state]. Here, ρ̂CDW(s)(0) denotes an initial mixed 
state that is, in reality, created when we try to ideally prepare

In  Fig.  1D, the imbalance ℐ shows slow relaxation and re-
mains far from zero, at least up to 10 times of the tunneling time 
along the 1D chains when the initial state is ρ̂CDW(d,s) (0) , while 
the imbalance shows rapid relaxation and an oscillating behavior 
across zero when the initial state is ρ̂CDW(s) (0) . These different 
relaxation behaviors are theoretically discussed in (54), where 
the nonergodic dynamics is expected when the initial state is 
∣ψ (0)⟩CDW(d) =∣⋯ 2020 ⋯⟩ . Note that although the relaxation 
behavior in the 1D Bose-Hubbard system when the initial state is 
approximately ∣⋯ 1010 ⋯⟩ has already been reported (58), we 
revisit this situation to show a clear difference in the quench dy-
namics depending on the initial states.

In the following, for the quantitative study, we focus on the 
quench dynamics starting from the ρ̂CDW(d,s)(0) state. In Fig. 1E, we 
show the typical quench dynamics of the imbalances of both dou-
blons and singlons (“doublons + singlons,” ℐD+S ), singlons (“sin-
glons,” ℐS ), and doublons (“doublons,” ℐD ) obtained from the 
former two by Eq. 4, where U ∕ J = 67 . Here, the imbalances of dou-
blons and singlons show slow and rapid relaxation, respectively. 
Note that tunneling time along the direction perpendicular to the 
1D chains is ℏ∕

(
4J⊥

)
= 92 ms, about 3.5 times longer than the max-

imum measurement time. In addition to the successful observation 
of the slow relaxation behavior for doublons, we observe that both 
atom number fractions of doublons ( nD ) and singlons ( nS ) are al-
most conserved, as shown in  Fig.  1F. This reveals that the atom 
numbers of both doublons and singlons serve as approximate con-
served quantities, which is a key finding in the sense that this 
strongly supports the occurrence of HSF in our system, where the 
dissociation of doublons due to single particle tunnelings is sup-
pressed for U ≫ J due to energy mismatch (see Fig. 1B). We note 
that the difference between the mechanism of HSF in the tilted sys-
tems of the previous studies and that in our system with no tilt is in 
nontrivial emergent conserved quantities that cause HSF. This con-
served quantity is the dipole moment in addition to the total num-
ber of particles in the previous study with tilt, while in our system, it 
is the number of doublons and singlons in a strongly interacting 
regime in addition to the total number of particles. We find that the 
magnitude of Δ∕U in this study is much smaller than one, where Δ 
is the maximum energy offset between neighboring sites in the par-
abolic trap in our system (see tables S1 and S2 for specific values of 
Δ∕U ). Therefore, our study is not in the region of Δ∕U ≳ 1 , where 
HSF is caused by tilt potential, as in previous studies. From these 

Ĥ = −J
�

⟨i,j⟩

â
†

i
âj +

U

2

M�

i=1

n̂i
�
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ℐ(t) ≡
Nodd(t) − Neven(t)

Nodd(t) + Neven(t)
(3)

ℐD=
ℐw∕oPA ⋅Nw∕oPA−ℐw∕PA ⋅Nw∕PA

Nw∕oPA−Nw∕PA
(4)

nS = Nw∕PA∕Nw∕oPA (5)

nD =
(
Nw∕oPA−Nw∕PA

)
∕Nw∕oPA (6)

∣ψ (0)⟩CDW(s) =∣⋯ 1010 ⋯⟩ (7)
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discussions, we also note that the HSF of our system is not sensitive 
to the system size, since the kinetic constraint comes mainly from 
the strong interaction rather than the trapping potential (54).

Dependency of quench dynamics on U/J
To elucidate the role of interatomic interaction and the interplay 
with the parabolic potential in the nonequilibrium dynamics, we in-
vestigate the dependency of the quench dynamics on the interaction 
strength U ∕ J and the parabolic trap strength Ω∕ J by changing the 
potential depth along the 1D chains after the quench, shown in Fig. 2 
(A to C). Here, in Fig. 2 (A and B), we observe an overall tendency 

of slower relaxation of the imbalance of doublons for larger U ∕ J , 
while the imbalance of singlons shows fast relaxation, roughly inde-
pendent of U ∕ J . At the same time, in Fig. 2C, we observe that the 
atom number fractions of both doublons and singlons are almost 
conserved regardless of the value of U ∕ J (see also Fig. 2E). These 
results can be understood intuitively as follows: Recall that the dis-
sociation of a doublon into two singlons is approximately forbidden, 
as assured by the conservation of the fractions. In the cases of rela-
tively small U ∕ J , not only singlons can tunnel to adjacent vacant 
sites with the tunneling rate of J but also doublons via the process of 
the second-order perturbation, with an effective tunneling rate of 

A B C

D E

Fig. 2. Dependence of quench dynamics on U/J. (A to C) Imbalance dynamics of (A) doublons ( ℐD ), (B) singlons ( ℐS ), and (C) atom number fractions of doublons ( nD ; 
green) and singlons ( nS ; blue) on U∕J . Error bars in (A) to (C) representing the SD are mostly smaller than symbols. In (A) to (C), dotted curves show the calculated values. 
In (A), dash-dotted curves show the calculated values for hardcore bosons as a reference (see Fig. 3 for details). Error bars of calculated values representing the statistical 
error are smaller than the dots of the curves. (D) Schematic illustration of tunneling dynamics of doublons and singlons in a lattice for relatively small (right) and large (left) 
U∕J cases. (E) Change of the doublon fraction during the hold time. Here, the ratio of the averaged doublon fraction in tJ∕ℏ = 9 − 10 ( nD,final ) to that in tJ∕ℏ = 0 − 1 ( nD,initial ) 
is plotted. Error bars show the SD, which is calculated by the error propagation formula with the SD of the averaged doublon fractions nD,initial and nD,final . The solid curve 
shows the ratio of the calculated averaged doublon fraction in tJ∕ℏ = 4 − 5 ( tJ∕ℏ = 3 − 4 only in the case of U∕J = 12 ) ( nD,final ) to that in tJ∕ℏ = 0 − 1 ( nD,initial).
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Jeff = 2J2∕U , as depicted in  Fig.  2D (right), on the one hand. The 
time constant of the correlated tunneling, ℏ∕

(
2Jeff

)
 is 3ℏ∕ J for the 

smallest U ∕ J case ( U ∕ J = 12 ), where the factor of 2 in front of Jeff 
means the number of nearest-neighboring sites along the chain di-
rection. In the cases of relatively large U∕J , on the other hand, the 
rate of the effective hopping of the doublon becomes quite small, 
corresponding to about one-/five-time hopping event during the 
maximum holding time for the largest U∕J case ( U∕ J = 173 ), and 
thus only singlon tunneling is allowed, as in Fig. 2D (left). Note that 
the effect of the parabolic trap also contributes to the suppression of 
the doublon tunneling, while this effect is considerably weaker 
for singlons.

Comparison between experiments and 
numerical calculations
To provide a reference to be compared with the experimental re-
sults, we compute the real-time dynamics of the 1D Bose-Hubbard 
model of Eq. 2 using the time-evolving block decimation (TEBD) 
method (59), which is based on the matrix-product state (MPS) rep-
resentation of a quantum many-body state (60). For TEBD, we use a 
second-order Suzuki-Trotter decomposition of the time evolution 
operator and optimally choose the time step Δt within the range 
0.005 ≤ Δt J ∕ℏ ≤ 0.025 , depending on the interaction strength 
U∕ J . We set the maximal bond dimensions of MPS to be 2000 such 
that the time duration accessible with the numerical calculations is 
as short as or even shorter than the half of that in the experiments. 
In section S5, we elaborate on our theoretical protocol of initial state 
preparation, imitating the experimental situation. In Fig. 2 (A to C), 
we show the direct comparison of measured and calculated values of 
doublon- and singlon-resolved imbalance ( ℐD and ℐS ) and doublon 
and singlon fractions ( nD and nS ) for several values of U∕ J . The 
quantitative disagreement between the experiment and simulations 
for ℐD in Fig. 2 may come from the limitation of the simulation to 
completely reflect the entire adiabatic and nonadiabatic process of 
the initial state preparation in the experiment, which may well be in 
the nonthermal distribution of the singlons. One can see, however, 
that the experimental data are within the range of the two simula-
tion results of the case where the thermal initial state is given in the 
manner described in section S5 and that where the initial state does 
not include the singlons at all as another extreme case.

Competition among doublon-doublon interactions, 
doublon-singlon interactions, and a parabolic trap in the 
imbalance dynamics
While we see the agreement between the experimental data and 
theoretical calculations, here, we discuss how much extent the ex-
perimental results can be understood in an intuitive manner and 
clarify the nontrivial feature beyond simple interpretations. Specifi-
cally, we first see whether we can understand, in a unified manner, 
the dynamics of the singlons and doublons by regarding both of 
them as simple, noninteracting hardcore bosons, with the corre-
sponding effective tunneling amplitude Jeff = J  for the singlons 
and Jeff = 2J2∕U  for the doublons placed in a parabolic trap with 
the trap strength Ω , thus characterized only by 

(
Ω∕Jeff

)

S
= Ω∕ J 

(
Ω∕Jeff

)

D
=
(
Ω∕Jeff

)

S
⋅ (U∕J) , respectively. In  Fig.  3, we show a 

comparison of the experimental results of the imbalance dynamics 
for the singlons for the initial ρ̂CDW(s)(0) state and those for the dou-
blon for the initial ρ̂CDW(d,s)(0) state as a function of the time 

normalized by the effective tunneling amplitude Jeff [see also sec-
tion S2 for the quench dynamics starting from a ρ̂CDW(s)(0) state]. 
Note that, because of the large difference in the amplitude of Jeff be-
tween the singlons and doublons, the parameter regions of 

(
Ω∕Jeff

)

S
 

and 
(
Ω∕Jeff

)

D
 have no overlap. Here, instead of the direct compari-

son of the experimental data, as shown in Fig. 3C, we focus on the 
comparison of the experimental results for the doublons with the 
theoretical calculations for the singlons, with a parameter region of (
Ω∕Jeff

)

S
 beyond 0.44, in accord with that for the doublons. Because 

the calculation for the singlons is rather straightforward, and we see 
that the calculations well reproduce the experimental results for (
Ω∕Jeff

)

S
 below 0.23, as also shown in fig. S3, we well expect the va-

lidity of the calculations for the singlons also for 
(
Ω∕Jeff

)

S
 beyond 

0.44, which should be compared with the experimental results for 
the doublons in the corresponding region of 

(
Ω∕Jeff

)

D
 . While the 

slow, nonoscillatory relaxation behavior is commonly observed both 
for the experiments and the calculations in Fig. 3C, there is an over-
all discrepancy in that the experiments for the doublons show faster 
relaxation than the calculations. Note that the effective parabolic 
trap strengths of 

(
Ω∕Jeff

)

S
 in the calculation and 

(
Ω∕Jeff

)

D
 in the ex-

periments are the same in this comparison. The result of the com-
parison thus indicates that the doublons in this experiment cannot 
be simply interpreted as the noninteracting hardcore bosons, and 
we need to take interaction effects into consideration for full under-
standing of the observed behaviors.

First, we consider an effective nearest-neighbor doublon-
doublon interaction, which is described in the following effective 
Hamiltonian for U∕ J ≫ 1 (51)

where the doublon and holon (empty site) are associated to a fic-
titious spin up ∣↑i⟩ and down ∣↓i⟩ , respectively, and Ŝ

z

i
≡ (∣↑

i
⟩ 

⟨↑
i
∣−∣↓

i
⟩ ⟨↓

i
∣)∕2 and Ŝ

+

i
≡ ∣↑

i
⟩ ⟨↓

i
∣ =

�
Ŝ
−

i

�†

 are the spin-1/2 opera-
tors. Here, the first term on the right-hand side corresponds to the 
doublon-doublon interaction, which takes the same order of magni-
tude as that of the second term for the doublon hopping. This 
doublon-doublon interaction introduces the energy difference be-
tween the state of doublons in the CDW and the state that has dou-
blons occupying in the nearest-neghboring sites, causing the slower 
relaxation of the initially prepared CDW of the doublons compared 
with the case of noninteracting hardcore bosons, in contrast to the 
observation in Fig. 3C.

Next, we consider the interaction between the doublons and 
singlons involved in the prepared initial ρ̂CDW(d,s)(0) state (see the 
situations depicted in  Fig.  4A). While the tunneling process of 
∣2, 0⟩ ↔ ∣1, 1⟩ is suppressed for U ≫ J , as shown in Fig. 4A (left), 
that of ∣2, 1⟩ ↔ ∣1, 2⟩ , shown in Fig. 4A (right), has no energy cost, 
causing the faster relaxation of the initially prepared CDW of the 
doublons, consistent with the observation in Fig. 3C. This behavior 
is also numerically confirmed, as shown in Fig. 4B, where we de-
pict the time evolution of the atom density profile in a single Bose-
Hubbard chain starting from the ∣ψ (0)⟩CDW(d) =∣⋯ 2020 ⋯⟩ 
state (left) and â†

edge
∣ψ (0)⟩CDW(d) =∣⋯ 2020 ⋯⟩ (right). Here, â†

edge
 

creates an atom at a site iedge + 2 , where iedge denotes the right-
edge site of the initial doublon array. In the latter case, one singlon 
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Ŝ
+

i
Ŝ
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initially placed at the right edge of the trap moves to the trap center 
and disturbs ⋯ 2020 ⋯ configuration, which leads to a substantial 
decay of ℐD(t) , as seen in the bottom of Fig. 4B. From these dis-
cussions, we attribute the disagreement between the experiment 
and the simulations based on the simple hardcore boson picture 
for ℐD in Fig. 3 to the interaction between singlons partially pres-
ent in the initial state and doublons, as shown in Fig. 4A (right), 
highlighting the unique feature of the singlon-induced equilibra-
tion mechanism.

To experimentally confirm the effect of initially involved sin-
glons on the quench dynamics, we prepare an initial ρ̂CDW(d,s) (0) 
state with a smaller singlon fraction by partially removing singlons 
with a selective ionization method, as depicted in Fig. 4C (see also 
section S4 for details of the removal scheme of singlons). In Fig. 4D, 
we show the imbalance dynamics of doublons starting from a 
ρ̂CDW(d,s) (0) state with and without the partial singlon removal as 
the open circle and the solid triangle, respectively. We observe 

the slower relaxation of imbalance of doublons in the case of a 
smaller singlon fraction in the initial state. In this way, we con-
firm the intriguing role of initially involved singlons in the quench 
dynamics, which qualitatively agrees with the numerical result.

DISCUSSION
In summary, we experimentally studied nonequilibrium dynamics 
of 1D Bose gases in optical lattices, which are well described as 2D 
arrays of independent Bose-Hubbard chains, after a sudden quench 
of the optical lattice depth. Starting from an initial period-two CDW 
state of doublons slightly mixed with singlons, we successfully ob-
served slow relaxation in an imbalance measurement. We found 
that the numbers of both doublons and singlons are almost con-
served during the dynamics, which strongly supports the occur-
rence of HSF. We also performed systematic measurements of 
quench dynamics for various U∕ J and the quantitative comparison 
of measured and calculated dynamics. In addition, we revealed the 

A

B C

Fig. 3. Comparison of the measured imbalance dynamics of singlons starting from ̂�CDW(s)(0) and those of doublons starting from ̂�CDW(d,s)(0) with the numerical 
calculations. (A) Systematically measured imbalance dynamics of singlons (solid circles) and doublons (open triangles) for various 

(
Ω∕Jeff

)

D
 and 

(
Ω∕Jeff

)

S
 . The horizontal 

axis represents the normalized time by the effective tunneling amplitude Jeff , where Jeff = J for singlons and Jeff = 2J2∕U for doublons. (B and C) Comparison of mea-
sured imbalance dynamics of (B) singlons and (C) doublons with the calculation for singlons (dotted curves) representing the case of noninteracting hardcore bosons. In 
the calculations of (B), the initial state is a mixed state ρ̂CDW(s)(0) , while in (A), it is a pure state ∣ψ⟩CDW(s)(0) . Error bars in (A) to (C) representing the SD are mostly smaller 
than symbols.
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effect of singlons involved in the initial ∣⋯ 2020 ⋯⟩ state on the 
quench dynamics.

It is the time constant of hopping between 1D tubes that limits 
the observed timescale in our experiment. By limiting ourselves to a 
shorter observation time than this time constant, we safely provide 
a clear discussion by separating unnecessary factors that could cause 
deviations from the 1D system that we focus on in this study. The 
presence of singlons in the initial state of a period-two CDW of dou-
blons causes the interaction between the doublon and singlon in the 
dynamics, which occurs on the timescale of the bare tunneling time. 
The doublon-singlon interaction results in richer dynamics already 
in the time window of less than 10 tunneling times, observed as a 
deviation from the noninteracting hardcore boson picture in dou-
blon dynamics. Our system has enough room for improvement for 
a longer observation time. If we can further deepen the optical lat-
tice in the direction perpendicular to the tube in our system, then 
we will be able to see dynamics for longer times. Here, because our 
lattice beams are not blue detuned, we do not have to worry about 
doublon lifetime, as in (46).

The successful preparation of arrays of dense doublons, i.e., 
∣⋯ 2020 ⋯⟩ state, and observations of dynamics of interacting dou-
blons with a long lifetime open the possibility to study systems con-
sisting of strongly interacting composite particles with ultracold 
gases. For instance, it is interesting to examine whether some exotic 
quantum many-body states formed by these composites can be ex-
perimentally realized, such as the pair superfluids of bosons (61), 
the η-pairing state of two-component (62) or multicomponent (37) 
fermions, and the quantum many-body scar states of bosons with a 

three-body constraint (36). More specifically, these states are ex-
pected to be prepared by adiabatically increasing the hopping from 
zero and controlling the energy offset of the double wells when one 
starts from the ∣⋯ 2020 ⋯⟩ state. In addition, for the tilted 1D 
Bose-Hubbard system, previously studied (35), we expect that our 
measurement method of the dynamics of singlons and doublons in 
a singlon- and doublon-resolved manner may provide further in-
sights into quench dynamics in that system.

MATERIALS AND METHODS
Sudden quench of the lattice depth
After the initial state preparation, we ramp up the potential 
depth in the directions perpendicular to the 1D chains from 
sL = [(30, 0), 30, 30] to [(30, 0), 40, 40] in 1 ms and then per-

form a sudden quench to sL =
[(

s
(x)

short
, 0

)
, 40, 40

]
 in 0.1 ms. 

Here, the tunneling time along the direction perpendicular to the 
1D chains is 368 ms, and the effective tunneling time between 
chains, derived by dividing that tunneling time by four (the num-
ber of adjacent chains), is ℏ∕

(
4J⊥

)
= 92 ms. In the measurement 

of dependency of quench dynamics on U∕ J  , the sweep time for 
quench is fixed to the above value independent of the potential 
depth along the 1D chains after the quench. Note that we nu-
merically confirm that even when the change in the potential 
depth is maximal ( U ∕ J = 12 cases), the occupation probability of 
the ground state of the optical lattice potential after the quench 
exceeds 0.99, at least for singly occupied sites.

D

A C

B

Fig. 4. Effect of singlons on the imbalance dynamics. (A) Schematic illustration of possible tunneling processes involving singlons between nearest-neighbor sites. 
(B) Calculated time evolution of the local density in the 1D Bose-Hubbard model (Eq.  2) for U∕ J = 52 , starting from ∣ψ (0)⟩CDW(d) =∣⋯ 2020 ⋯ ⟩ state (top left) and 
â
†

edge
∣ψ (0)⟩CDW(d) state (top right), where one singlon is placed at the right edge of the trap in this case. Bottom: Imbalance dynamics of doublons ( ℐD ) obtained from the 

data in the top. (C) Schematic illustration of the removal procedure of only singlons from the initial ρ̂CDW(d,s)(0) state and the relevant energy levels. (D) Imbalance dynam-
ics of doublons after partial removal of singlons in the initial ρ̂CDW(d,s)(0) state. Here, the plots of open circles and solid triangles show the results with ( nS = 0.24 ) and 
without ( nS = 0.29 ) the partial removal of singlons, respectively. Note that the loss of doublons in this measurement is negligibly small within the uncertainty. Both data 
are obtained at U∕ J = 52 . All error bars show the SD.
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Atom number imbalance measurement
After we freeze the atom distribution by rapidly ramping up the po-
tential depth along the 1D chains in 0.1 ms to s(x)

short
= 30 , we ramp up 

the long lattice to s(x)
long

= 40 in 1 ms and then completely ramp down 
the short lattice in 1 ms. Here, we map the particle position, i.e., the 
odd and even sites, to the first and third bands of the potential of the 
long lattice, respectively (see Fig. 1C) (57). Then, the band mapping 
is performed in 0.6 ms, and we derive the imbalance ℐ from the ob-
tained band mapping image. Note that in our analysis, we count the 
atom numbers in the “first Brillouin zone (BZ) + half of the second 
BZ on the closer side to the first BZ” and “third BZ + half of the sec-
ond BZ on the closer side to the third BZ” as Nodd and Neven , respec-
tively, taking into account the possible imperfection of our band 
mapping process, although the second BZ population is small. We 
also note that we observe a slight deviation of imbalance from zero 
[ ℐoffset = 0.082(3) ] when we start the quench dynamics from 
∣⋯ 1111 ⋯⟩ state as a reference state, which should show zero im-
balance. This might be due to the imperfection of the particle posi-
tion mapping or band mapping. In our analysis, we subtract this 
offset from the obtained imbalance ℐ. Imbalance of doublons, ℐD , is 
calculated by Eq. 4, with calibrated values of ℐw∕PA and ℐw∕oPA.

Supplementary Materials
This PDF file includes:
Sections S1 to S6
Figs. S1 to S6
Tables S1 and S2
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