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A B S T R A C T

We consider random walks amongst random conductances in the cases where the conductances
can be arbitrarily small, with a heavy-tailed distribution at 0, and where the conductances may
or may not have a heavy-tailed distribution at infinity. We study the long time behaviour of
these processes and prove aging statements. When the heavy tail is only at 0, we prove that
aging can be observed for the maximum of the process, i.e. the same maximal value is attained
repeatedly over long time-scales. When there are also heavy tails at infinity, we prove a classical
aging result for the position of the walker, as well as a sub-aging result that occurs on a shorter
time-scale.

1. Introduction

In this paper, we study the aging phenomenon for random walks amongst random conductances in dimension one. It is now well
understood that these random walks can exhibit atypical behaviour, in the sense that they can be sub-diffusive due to the presence
of atypical areas in the environment. There are two ways to create a slow-down for the walk. First, the environment can have
very small conductances, acting as walls into which the walker will collide for a long time before overcoming them. Second, the
environment can contain large conductances that the walker, at each visit, will cross back and forth many times before exiting them,
hence these conductances act like traps that the walker has to escape. These atypical areas appear when the law of the conductances
are chosen such that they have a heavy tail at 0, for the walls, or at infinity, for the traps.

Let us first discuss the trapping mechanism corresponding to large conductances. This effect is reminiscent of Bouchaud’s trap
model, which was introduced by the physicist Jean-Philippe Bouchaud [13]. This model consists of a continuous-time random walk
on Z𝑑 such that, at each vertex, a trap is placed with exponential waiting times whose average is random, independent and heavy-
tailed. The behaviour of this model is strikingly different in dimension one and in dimension two and above. In dimension two and
above, it has been proved by Ben Arous and Černý [6], that the properly rescaled random walk converges to a fractional-kinetics
process, which is a Brownian motion time-changed by the inverse of an independent stable subordinator. In [3,15], it has been
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proved that random walks in random conductances with heavy tails (at infinity) also converge in two or more dimensions to a
fractional-kinetics. In dimension one, the behaviour of the Bouchaud trap model is radically different, with the limiting process
eing a singular diffusion called the FIN diffusion, first defined by Fontes, Isopi and Newman [23]. This diffusion falls into the

large class of spatially-subordinated Brownian motions later defined in [4], and can be described as follows. Consider a degenerate
Poisson point process on R × R+, corresponding to the limit of the positions of the traps Z together with their rescaled depth (or
average waiting time). The FIN diffusion is a Brownian motion time-changed by the inverse of its own local time on this degenerate
Poisson point process. A major difference between FIN diffusion and fractional-kinetics is that the time-change is not independent
of the Brownian motion itself: indeed, in dimension one, the delay that is being accumulated at time 𝑡 depends on the trajectory up
to this time. Naturally, one can expect that a random walk among heavy-tailed random conductances in one dimension has a FIN
diffusion scaling limit, and indeed this was proved in [15].

The slow-down created by walls is of different nature. Indeed, the walk will not stay put at the same place a long time but its
aximum (and minimum) will not change for long periods, as the walker will collide against the high walls in the environment
any times. This phenomenon is only observed in dimension one because, in higher dimension, the walker will easily go around

hese walls without any major slow-down. In dimension one, the scaling limit of this walk was derived by Kawazu and Kesten [30]
and is in yet another class of processes: it roughly resembles FIN diffusion, except that the Brownian motion is not time-changed
y the inverse of its local time on a Poisson process, but is spatially-deformed by the inverse of a subordinator, where the atoms in
he Poisson process corresponding to the jumps in the subordinator represent the scaling limit of the walls of high resistance.

In this paper, we study environments either containing walls, or containing both walls and traps. (See the end of Section 1.2
for a discussion of possible further results to ours.) In the second case, the rescaled environment can be seen in the limit as the
superimposition of two independent Poisson processes: one for the walls and one for the traps. We use a unifying approach to prove
caling limits of such random walks, that is, the theory of stochastic processes associated with resistance forms, see [16,18] (see

also [2] for a related work on trees). We would further like to mention the works [20–22] that are conceptually important. Let us
also acknowledge the works [9,10,24–26,38], which deal with a biased version of the random walks on random conductances in
imension one and in higher dimensions, respectively.

Now, as noted above, the main goal of our paper is to study the aging phenomenon for these random walks, when in the presence
f walls, or of walls and traps, in dimension one. Bouchaud’s trap model was introduced by Bouchaud as a toy model to understand

aging for the dynamics of spin glasses, which tend to stay around states with atypically low energy for long periods. More generally,
aging of a system is the phenomenon that the time it takes to observe a change in the state of the system is of the order of the age
of the system. As explained by Ben Arous and Černý [6], proving an aging result involves finding a two-point function 𝐹 (𝑡, 𝑡 ⋅ ℎ),
with ℎ > 1, measuring the state of the system after it has aged for a further time (ℎ− 1)𝑡 after time 𝑡, that exhibits a non-trivial limit
(ℎ) as 𝑡 → ∞.

The choice of the two-point function is important and depends on the details of the model. For instance, in the case of Bouchaud’s
trap model, Rinn, Maass and Bouchaud [36] considered 𝐹 to be the probability that the random walk is at the same location at
times 𝑡 and 𝑡 ⋅ ℎ. In that case, the random walk is likely to visit the same few places for long periods. A more precise statement was
onjectured in [36] and proved in [5], corresponding to the phenomenon called sub-aging. In that case the two-point function is the

probability that the random walk stays in the same position the whole time, from time 𝑡 to time 𝑡+ 𝑡𝛾 , where 𝛾 < 1 is related to the
tails of the averages of the exponential waiting times in Bouchaud’s trap model.

For random walks amongst random conductances, the aging results in the case where the environment has walls, but no traps,
is different. Indeed, the random walker will not stay around the same locations for a very long time but its maximum will. Indeed,
the probability that the maximum of the random walk at time 𝑡 is equal to the maximum obtained between times 𝑡 and 𝑡 ⋅ ℎ will
have a non-trivial limit for ℎ > 1. We state this result in Theorem 1.3. (See also the comment following Theorem 1.3 concerning
the more detailed statement that will be given later in the article.)

When the environment has both walls and traps, because of the similarities explained above, one can expect that the
corresponding random walk amongst random conductances will show aging and sub-aging similar to that of Bouchaud’s trap model.
We prove this result is indeed true, with the exception that we have an additional slow-down effect due to the presence of walls,
see Theorem 1.5.

Finally, let us emphasise that all the aging and sub-aging results outlined above are in dimension one and are proved under the
annealed measures, that is the measures that average over all possible environments. For Bouchaud’s trap model, quenched results
were proved in dimension two in [7] and in dimension three and above [14], with different slow-downs due to the difference in
he Green function of simple random walk. Such quenched results do not hold in dimension one, see [19], because the environment

seen from the walker is not mixing enough. It is reasonable to believe that the same is true for one-dimensional random walks
amongst random conductances.

1.1. Model(s)

As already set out above, the model that we consider is the random walk amongst random conductances. In particular, we will
onsider two different versions of this model, one with heavy-tailed resistances, and one with both heavy-tailed resistances and
eavy-tailed conductances. Let 𝐸 = {{𝑖, 𝑖+ 1} ∶ 𝑖 ∈ Z} indicate the nearest-neighbour links on Z, and let (𝑐({𝑖, 𝑖+ 1}))𝑖∈Z be a family
f positive weights associated with those edges. Moreover, for each 𝑥 ∈ Z, define 𝑐(𝑥) = 𝑐({𝑥, 𝑥 − 1}) + 𝑐({𝑥, 𝑥 + 1}). Then, one can
aturally define a random walk on this lattice starting from the origin by considering the continuous-time Markov chain 𝑋 with
𝑡
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state space Z and generator

(𝐿𝑓 )(𝑥) ∶=
∑

𝑦∶|𝑥−𝑦|⩽1

𝑐({𝑥, 𝑦})
𝑐(𝑥)

(𝑓 (𝑦) − 𝑓 (𝑥)) . (1)

Note that, as this Markov chain has exponential holding times of mean 1 at each site, the long-term behaviour of this model closely
resembles the one of the discrete-time Markov chain with jump probabilities

𝑃
(

𝑋𝑘+1 = 𝑦|𝑋𝑘 = 𝑥
)

= 𝑃𝑥
(

𝑋1 = 𝑦
)

∶=
𝑐({𝑥, 𝑦})
𝑐(𝑥)

. (2)

We define the random walk amongst random conductances by selecting the weights (𝑐({𝑖, 𝑖+ 1}))𝑖∈Z to be independent and identically-
distributed (i.i.d.) under some probability measure 𝐏 on a probability space 𝛺. For a fixed realisation 𝜔 ∈ 𝛺 of the environment, it
is possible to define a walk as in (1) and such that 𝑋0 = 𝑥, 𝑥 ∈ Z almost surely; we call the distribution of such a walk its quenched
law, and denote it by 𝑃𝜔

𝑥 (⋅). Moreover, the annealed law of this random walk is obtained by integrating out the environment:

P𝑥(⋅) ∶= 𝐄
[

𝑃𝜔
𝑥 (⋅)

]

= ∫𝛺
𝑃𝜔
𝑥 (⋅)𝐏 (𝑑 𝜔) .

We also use the notation 𝑃𝜔(⋅) = 𝑃𝜔
0 (⋅) and P(⋅) = P0(⋅).

Let (𝑟({𝑖, 𝑖 + 1}))𝑖∈Z be the family of associated resistances, where, for all 𝑖 ∈ Z, 𝑟({𝑖, 𝑖 + 1}) = 1∕𝑐({𝑖, 𝑖 + 1}). Let us state the two
fundamental assumptions on the distribution of the environment under which we will work. To distinguish between the two cases
more clearly, in the second of the cases, we will denote the probability measure on the probability space on which the environment
is built by 𝐏̃.

Assumption 1.1. Fix 𝛼0 and 𝛼∞ to be two constants in (0, 1).

Random walk amongst random walls. The family (𝑐({𝑖, 𝑖 + 1}))𝑖∈Z satisfies:

𝐄 [𝑐({0, 1})] < ∞ and 𝐏 (𝑟({0, 1}) > 𝑡) = 𝐿0(𝑡)𝑡−𝛼0 , ∀𝑡 > 1, (RW)

where 𝐿0(𝑡) is slowly varying at infinity. We recall that a function 𝐿 is slowly varying at infinity if lim𝑥→∞ 𝐿(𝑎𝑥)∕𝐿(𝑥) = 1 for
all 𝑎 > 0.

Random walk amongst random walls and traps. The family (𝑐({𝑖, 𝑖 + 1}))𝑖∈Z satisfies:

𝐏̃ [𝑐({0, 1}) > 𝑡] = 𝐿∞(𝑡)𝑡−𝛼∞ and 𝐏̃ (𝑟({0, 1}) > 𝑡) = 𝐿0(𝑡)𝑡−𝛼0 , ∀𝑡 > 1, (RWT)

where both 𝐿0(𝑡) and 𝐿∞(𝑡) are slowly varying at infinity.

In order to make the model more general, we also include a vanishing bias as in [17,27]. We can recover the unbiased model
by setting the bias parameter to 0.

Assumption 1.2. For both (RW) and (RWT) as in Assumption 1.1, and for 𝜆 ∈ R, the 𝑛-scale weakly-biased random walk is the
continuous-time Markov process with generator as in (1) with conductances and resistances deterministically-tilted in the following
way:

𝑐𝜆∕𝑛({𝑖, 𝑖 + 1}) = 𝑐({𝑖, 𝑖 + 1})𝑒2𝜆𝑖∕𝑛, 𝑟𝜆∕𝑛({𝑖, 𝑖 + 1}) = 1
𝑐𝜆∕𝑛({𝑖, 𝑖 + 1}) .

We will denote by (𝑋𝑡)𝑡⩾0 the random walk under (RW) and Assumption 1.2, whilst (𝑋𝑡)𝑡⩾0 will denote the one under (RWT) and
Assumption 1.2. For 𝑥 ∈ Z, will denote by 𝑃𝜔,𝜆∕𝑛

𝑥 and P𝜆∕𝑛
𝑥 respectively the quenched and annealed laws of (𝑋𝑡)𝑡⩾0, 𝑋0 = 𝑥; note that

e do not need to change the notation for 𝐏. The notation corresponding to (𝑋𝑡)𝑡⩾0 is set to 𝑃𝜔,𝜆∕𝑛
𝑥 and P̃𝜆∕𝑛

𝑥 . We drop the subscript
nd write 𝑃𝜔,𝜆∕𝑛 and P𝜆∕𝑛 when 𝑥 = 0, the same conventions is used for 𝑃𝜔,𝜆∕𝑛 and P̃𝜆∕𝑛.

Let us also introduce the scaling terms

𝑑𝑛,∞ ∶= inf
{

𝑡 > 0 ∶ 𝐏̃ (𝑐({0, 1}) > 𝑡) ⩽ 1
𝑛

}

, 𝑑𝑛,0 ∶= inf
{

𝑡 > 0 ∶ 𝐏̃ (𝑟({0, 1}) > 𝑡) ⩽ 1
𝑛

}

. (3)

It will perhaps be useful to the reader to indicate that 𝑑𝑛,∞ should be thought of as 𝑛1∕𝛼∞ and 𝑑𝑛,0 should be thought of as 𝑛1∕𝛼0 .
hese quantities are different in general (by a factor of a slowly-varying function), but of the same order when the tails of the
istributions above are polynomial.

1.2. Main results

In this section, we provide a first statement of our main results. These results will be restated in a more precise manner in
ection 2.2. Towards these ends, let us start by introducing the time scales at which we will look at the processes 𝑋 and 𝑋,
espectively:
𝑎𝑛 ∶= 𝑛𝑑𝑛,0 and 𝑏𝑛 ∶= 𝑑𝑛,∞𝑑𝑛,0. (4)
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Let us explain why these are the relevant time scales for the scaling of our processes. Under the assumption (RW), the natural
time scale (corresponding to a distance scale of 𝑛) is given by 𝑎𝑛 = 𝑛𝑑𝑛,0, which is larger than the 𝑛2 time scaling seen for a usual
symmetric random walk on Z. The factor 𝑑𝑛,0 represents the size of the largest resistances (walls) met by the random walk on the
relevant scale, and, taking into account the excursions away from these walls, one can check that the time accumulated by the
random walk bouncing against these before being able to overcome them is precisely of the order 𝑛𝑑𝑛,0. Under the assumption
RWT), the natural scale becomes 𝑏𝑛, because now the motion of the random walk is also perturbed by the large conductances,
hich act in the limit as large exponential waiting times, similar to what happens in the case of Bouchaud’s trap model.

For our first main result, we consider the supremum of 𝑋 over a time interval, i.e.

𝑋[𝑎,𝑏] ∶= sup
𝑎⩽𝑠⩽𝑏

𝑋𝑠,

furthermore, we write 𝑋𝑡 ∶= 𝑋[0,𝑡] for the running supremum of 𝑋.

Theorem 1.3. Under (RW) and Assumption 1.2, for all 0 < 𝛼0 < 1, the following aging statement holds. There exists an explicit function
∶ (1,∞) → (0, 1) such that, for all ℎ > 1,

lim
𝑛→∞

P𝜆∕𝑛
(

𝑋𝑎𝑛 = 𝑋[𝑎𝑛 ,ℎ𝑎𝑛]

)

= 𝜃(ℎ).

The function 𝜃 above depends on the law of the environment, i.e. on the law of the conductances, and on the bias parameter
𝜆. We remark that, for this model, it can further be checked from the arguments of this article that P𝜆∕𝑛

(

𝑋𝑎𝑛 = 𝑋ℎ𝑎𝑛

)

converges
to a non-trivial limit for all ℎ > 0. We highlight, however, that such a result is hardly unique to the current model. Indeed, it will
hold for the usual simple symmetric random walk on Z, with the limiting expression being given by the corresponding probability
or the standard Brownian motion. What is distinct to this setting, and will be made precise in Theorem 2.1 below, is that, with

high probability, the location of the running supremum of 𝑋 has a particular feature, namely being to the left of an edge of large
resistance, i.e. one of scale 𝑑𝑛,0. In particular, this clarifies that, under the assumption (RW), the main trapping mechanism is that of
the large resistances that act like walls, preventing the random walk from progressing towards the right (or left), hence its maximum
will stay still for a long time before jumping quickly to a new value. This phenomenon is what enables us to prove the above theorem,

hich is certainly not true for the usual simple symmetric random walk on Z. We further note that the function 𝜃 above will be
given using the law of the scaling limit of (𝑋𝑡), defined in Section 2.1 below.

Remark 1.4. We expect that the analogous result should be true for one-dimensional Mott variable-range hopping in the regime
tudied in [17]. Indeed, as was demonstrated in that article, the behaviour of the Mott model of [17] is very closely related to

the nearest-neighbour random conductance model studied here, and similar arguments work in the analysis of each. The extra
complication in the Mott model is that one has to show the effect of long-range jumps is asymptotically negligible.

Our second main result concerns the situation when the conductances have heavy tails at infinity.

Theorem 1.5. Under (RWT) and Assumption 1.2, for all 𝛼0, 𝛼∞ ∈ (0, 1), the following aging statement holds. There exists an explicit
function 𝜃 ∶ (1,∞) → (0, 1) such that, for all ℎ > 1,

lim
𝑛→∞

P̃𝜆∕𝑛
(

|

|

|

𝑋𝑏𝑛 −𝑋ℎ𝑏𝑛
|

|

|

⩽ 1
)

= 𝜃(ℎ).

Furthermore, the following sub-aging statement holds. There exists an explicit function 𝜃 ∶ (0,∞) → (0, 1) such that, for all ℎ > 0,

lim
𝑛→∞

P̃𝜆∕𝑛
(

|

|

|

𝑋𝑏𝑛+𝑠1𝑑𝑛,∞ −𝑋𝑏𝑛+𝑠2𝑑𝑛,∞
|

|

|

⩽ 1, ∀𝑠1, 𝑠2 ∈ [0, ℎ]
)

= 𝜃(ℎ).

Again, the limiting functions, 𝜃 and 𝜃 in this case, will be made explicit in Section 2.2, once we have defined the scaling limit of
𝑋. Note that this second theorem incorporates a different way for a random walk to undergo aging. Under (RWT), the random walk
s now also trapped by large conductances (i.e. those of scale 𝑑𝑛,∞), over which it will cross many times before escaping. Moreover,

the walker will come back to the same large conductance with good probability (depending on the tail decay of the resistance
distribution) many times. The aging statement in this case corresponds to the fact that, after a time of the order of the age of the
system, the walker will be likely to be on a large conductance and come back to it after a multiple of that time. The sub-aging
statement provides finer information: at time 𝑏𝑛, i.e. the age of the system, the walker is likely to be on a large conductance and to
stay adjacent to it for a time of order 𝑑𝑛,∞. Note that observing the walk at two arbitrary times 𝑠1, 𝑠2 ∈ [0, ℎ] guarantees localisation
on a single edge. We highlight that the tail decay of the distribution of the resistances does not affect the length of the sub-aging
timescale.

Let us make two comments on our main statements above. First, we expect that, following a similar strategy to the one presented
in this paper, one could recover an aging statement for the maximum of the walk under the assumption (RWT), similar to that of
Theorem 1.3, but at a different time-scale. We choose to present the result for the (RW) model only, as it is the edges of large
resistance that capture the aging phenomenon under consideration in that result. Second, the reader may wonder why we consider
he case with walls only and the case with walls and traps, but not the case with traps only: the reason is that it seems clear to us

that the statements and proofs would be very similar to those for Bouchaud’s trap model in [19,23].
4 
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1.3. Outline of the proof

In this section, we discuss the organisation of the paper and outline the proof of the main results stated above. As explained
n the introduction, under the assumptions (RWT) or (RW), the random walk will cross back and forth edges with atypically large
onductances many times, and collide with edges of atypically large resistance (i.e. small conductance). Accordingly, the rescaled
andom walk will converge towards a diffusion in random environment that will localise on some points, and whose maximum will
lso localise on some points. In order to study the limit of random walks amongst random conductances, it is useful to consider
nvironments as empirical point processes of normalised conductances, or resistances (i.e. inverse conductances), that encode
he positions and the values of large conductances, or resistances. Then, under appropriate assumptions on the conductances or
esistances, one can prove that the environments converge to degenerate, dense Poisson point processes on R × R+. The Poisson

process corresponding to large conductances locates points where the limiting diffusion will localise, while the Poisson process
orresponding to large resistances corresponds to points where the maximum will stagnate.

As for the organisation of the article, in Section 2.1, we will define the point processes and associated subordinators that will
encode the limiting environments. In the same section, we define the limiting processes, which are diffusions on these limiting
environments. In Section 2.2, we state more results and in particular restate Theorems 1.3 and 1.5 with refined details. In Section 3,
we prove the convergence of the empirical point processes towards the limiting Poisson point processes and give an explicit
construction of a crucial coupling between the discrete empirical point processes and their limits. This coupling is used throughout
the rest of the paper. Section 4 provides technical tools and estimates for random walks that will useful in proving the main results.
We prove for instance that, under (RWT), the probability that the random walk is located on a given large conductance converges
towards the probability that the limiting diffusion is located on the corresponding atom of the limiting Poisson point process. Finally,

e prove the aging statements in Section 5 and the sub-aging statement in Section 6. In Section 7, we provide some useful estimates
n the limit processes. The article also contains an appendix, which contains some notes on 𝐽1 convergence.

2. Limit processes and refined statements of main results

2.1. Limit processes and limit environments

In this section, we recall the definitions of two processes 𝑍𝜆 and 𝑍𝜆 that were considered in [17]. In particular, these processes
are the scaling limits of the random walks we consider. The process 𝑍𝜆 is a (generalised) diffusion in a random environment (given
y a two-sided subordinator). We enlarge our probability space so that the environment is defined under the measure 𝐏, and write
𝜔,𝜆 for the quenched law of the process and P𝜆 for its annealed law. We do the same (adding a tilde on top of the measures) for

̃𝜆. For the processes with vanishing bias 𝜆 = 0, P0 and P̃0, we will drop the superscript 𝜆 in the notation. We remark that 𝜆 is a
ositive parameter that is present in the limit due to Assumption 1.2. We may write P𝜆(𝑍 ∈ ⋅) in place of P𝜆(𝑍𝜆 ∈ ⋅) to ease the
otation.

Let us start by defining 𝑍𝜆. Consider a standard Brownian motion 𝐵 = (𝐵𝑡)𝑡⩾0 (started from 0) and an independent two-sided
évy process 𝑆𝛼0 with Lévy measure

𝛼0𝑥
−1−𝛼01{𝑥>0}𝑑 𝑥.

Furthermore, for 𝜆 > 0, define an exponentially-tilted version of the Lévy process by setting

𝑆𝛼0 ,𝜆(𝑢) ∶= ∫

𝑢

0
𝑒−2𝜆𝑣𝑑 𝑆𝛼0 (𝑣). (5)

Note that 𝑆𝛼0 ,0 = 𝑆𝛼0 . Furthermore, let us define the measure 𝜇𝜆, whose support is 𝑆𝛼0 ,𝜆(R), i.e. the closure of the image of the Lévy
process defined in (5), by

𝜇𝜆 ((𝑎, 𝑏]) ∶= 2𝐄 [𝑐(0, 1)]∫

(𝑆𝛼0 ,𝜆)−1(𝑏)

(𝑆𝛼0 ,𝜆)−1(𝑎)
𝑒2𝜆𝑣𝑑 𝑣, (6)

where (𝑆𝛼0 ,𝜆)−1 denotes the right-continuous inverse of 𝑆𝛼0 ,𝜆. Writing (𝐿𝐵
𝑡 (𝑥))𝑡⩾0,𝑥∈R for the local times of 𝐵, we further define

𝐻𝜆
𝑡 ∶= inf

{

𝑠 ⩾ 0 ∶ ∫R
𝐿𝐵
𝑠 (𝑥)𝜇

𝜆(𝑑 𝑥) > 𝑡
}

. (7)

Finally, we construct (𝑍𝑡)𝑡⩾0 by setting

𝑍𝜆
𝑡 ∶= (𝑆𝛼0 ,𝜆)−1

(

𝐵𝐻𝜆
𝑡

)

. (8)

Note that, for the process 𝑍𝜆, 𝑃𝜔,𝜆(⋅) = P𝜆(⋅ |𝑆𝛼0 ,𝜆), we may use both notations.
The definition of (𝑍𝜆

𝑡 )𝑡⩾0 is similar. Consider, independent of 𝐵 and 𝑆𝛼0 , a two-sided Lévy process 𝑆𝛼∞ with intensity
∞𝑥−1−𝛼∞1{𝑥>0}𝑑 𝑥 and, similarly to (5), we define its tilted version

𝑆𝛼∞ ,𝜆(𝑢) ∶=
𝑢
𝑒2𝜆𝑣𝑑 𝑆𝛼∞ (𝑣);
∫0

5 
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we highlight that the difference in the sign of 2𝜆𝑣 between the above expression and (5) is intentional. We define an associated
measure and time-change by supposing

𝜇𝜆 ((𝑎, 𝑏]) ∶= ∫

(𝑆𝛼0 ,𝜆)−1(𝑏)

(𝑆𝛼0 ,𝜆)−1(𝑎)
𝑒2𝜆𝑣𝑑 𝑆𝛼∞ (𝑣) and 𝐻̃𝜆

𝑡 ∶= inf
{

𝑠 ⩾ 0 ∶ ∫R
𝐿𝐵
𝑠 (𝑥)𝜇

𝜆(𝑑 𝑥) > 𝑡
}

, (9)

and then set

𝑍𝜆
𝑡 ∶= (𝑆𝛼0 ,𝜆)−1

(

𝐵𝐻̃𝜆
𝑡

)

. (10)

Note that, for the process 𝑍𝜆, 𝑃𝜔,𝜆(⋅) = P̃𝜆(⋅ |𝑆𝛼0 ,𝜆, 𝑆𝛼∞ ,𝜆), we may use both notations.
For later purposes, it will be useful to recall a well-known representation of the subordinators considered above. In particular,

et us introduce the measures

𝜈𝛼∞ (𝑑 𝑧) ∶=
∑

(𝑥,𝑤)∈𝛼∞

𝑤𝛿𝑥(𝑑 𝑧), and 𝜈𝛼0 (𝑑 𝑧) ∶=
∑

(𝑦,𝑣)∈𝛼0

𝑣𝛿𝑦(𝑑 𝑧), (11)

where 𝛼∞ is a Poisson point process on R × R+ with intensity 𝑑 𝑥𝛼∞𝑤−1−𝛼∞𝑑 𝑤 and 𝛼0 is a Poisson point process on R × R+
ith intensity 𝑑 𝑦𝛼0𝑣−1−𝛼0𝑑 𝑣, and we suppose these two Poisson processes are independent. We can then write the two-sided Lévy
rocesses above as

𝑆𝛼0 ,𝜆(𝑡) = ∫

𝑡

0
𝑒−2𝜆𝑠𝜈𝛼0 (𝑑 𝑠) for 𝑡 ⩾ 0, 𝑆𝛼0 ,𝜆(𝑡) = −∫

0

𝑡
𝑒−2𝜆𝑠𝜈𝛼0 (𝑑 𝑠) for 𝑡 < 0, (12)

and

𝑆𝛼∞ ,𝜆(𝑡) = ∫

𝑡

0
𝑒2𝜆𝑠𝜈𝛼∞ (𝑑 𝑠) for 𝑡 ⩾ 0, 𝑆𝛼∞ ,𝜆(𝑡) = −∫

0

𝑡
𝑒2𝜆𝑠𝜈𝛼∞ (𝑑 𝑠) for 𝑡 < 0. (13)

It is also convenient to introduce at this point the discrete counterparts of these subordinators. For this purpose, let us define 𝑅𝜆∕𝑛(𝑖, 𝑗)
o be the effective resistance between indices 𝑖 and 𝑗 on Z in the electrical network associated with (𝑐𝜆∕𝑛({𝑖, 𝑖 + 1}))𝑖∈Z, i.e. for
 < 𝑗, we set 𝑅𝜆∕𝑛(𝑖, 𝑖) ∶= 0 and

𝑅𝜆∕𝑛(𝑖, 𝑗) ≡ 𝑅𝜆∕𝑛(𝑗 , 𝑖) ∶=
𝑗−1
∑

𝑘=𝑖
𝑟𝜆∕𝑛({𝑘, 𝑘 + 1}).

When 𝐴 and 𝐵 are sets of indices, we denote 𝑅𝜆∕𝑛(𝐴, 𝐵) the effective resistance between two sets. As noted in the introduction, the
eneral intuition is that the scaling limits of the random walks are impacted by both the large resistances and, in the case of (RWT),

the large conductances. Due to the heavy-tailed distributions, when observing the environment on an interval of length of order
𝑛, the sum of the resistances will be of the same order as the largest resistance encountered, that is 𝑑𝑛,0. Similarly, under (RWT),
the sum of the conductances will be of the same order as the largest conductance encountered, that is 𝑑𝑛,∞. We incorporate these
caling factors into the following definitions. For the resistances, we define

𝑆𝛼0 ,𝜆∕𝑛,(𝑛)(𝑡) ∶=
⎧

⎪

⎨

⎪

⎩

1
𝑑𝑛,0

𝑅𝜆∕𝑛 (0, ⌊𝑛𝑡⌋) , for 𝑡 ⩾ 0,

− 1
𝑑𝑛,0

𝑅𝜆∕𝑛 (⌈𝑛𝑡⌉, 0) , for 𝑡 < 0.
(14)

Similarly, for the conductances,

𝑆𝛼∞ ,𝜆∕𝑛,(𝑛)(𝑡) ∶=
⎧

⎪

⎨

⎪

⎩

1
𝑑𝑛,∞

∑

⌊𝑛𝑡⌋−1
𝑖=0 𝑐𝜆∕𝑛({𝑖, 𝑖 + 1}), for 𝑡 ⩾ 0,

− 1
𝑑𝑛,∞

∑−1
𝑖=⌈𝑛𝑡⌉ 𝑐

𝜆∕𝑛({𝑖, 𝑖 + 1}), for 𝑡 < 0.

2.2. Restatement of the main results

In this section, we restate the results of Section 1.2 with some more detail, and also present some further statements. In particular,
he results of this section include those of Section 1.2.

Towards stating the first result of the section, we recall the definitions (3) and (4) of the scaling terms and define

Gap𝜆𝑛(𝑡) ∶=
1

𝑑𝑛,0
𝑟𝜆∕𝑛

(

𝑋𝑡𝑎𝑛 , 𝑋𝑡𝑎𝑛 + 1
)

= 𝑆𝛼0 ,𝜆∕𝑛,(𝑛)
(

𝑛−1
(

𝑋𝑡𝑎𝑛 + 1
))

− 𝑆𝛼0 ,𝜆∕𝑛,(𝑛)
(

𝑛−1𝑋𝑡𝑎𝑛

)

,

Gap𝜆(𝑡) ∶= 𝑆𝛼0 ,𝜆
(

𝑍𝜆
𝑡

)

− 𝑆𝛼0 ,𝜆
(

𝑍𝜆
𝑡−

)

.
(15)

The following theorem describes the scaling limit of the size of the wall seen by the maximum of the walker after time 𝑎𝑛, under
he assumption (RW).

Theorem 2.1. Under (RW) and Assumption 1.2, for all 0 < 𝛼0 < 1 it holds that, under the annealed law P𝜆∕𝑛,

Gap𝜆
𝑛(1)

(d)
→ Gap𝜆(1), as 𝑛 → ∞,

where Gap𝜆(1) is a non-trivial random variable taking values in (0,∞).
6 
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The following result will later be shown to be a consequence of the construction needed to prove Theorem 2.1, and it implies
Theorem 1.3.

Proposition 2.2. Under (RW) and Assumption 1.2, for all 0 < 𝛼0 < 1, the following aging statement holds. For all ℎ > 1, we have

lim
𝑛→∞

P𝜆∕𝑛
(

𝑋𝑎𝑛 = 𝑋[𝑎𝑛 ,ℎ𝑎𝑛]

)

= 𝜃(ℎ) ∶= P𝜆
(

𝑍1 = 𝑍[1,ℎ]

)

,

where the right-hand side takes values in (0, 1).
Finally, the subsequent result implies Theorem 1.5, providing an explicit form for the aging and sub-aging functions.

Proposition 2.3. Under the hypothesis (RWT) and Assumption 1.2, for all 𝛼0, 𝛼∞ ∈ (0, 1), the following aging statement holds. For all
ℎ > 1, we have

lim
𝑛→∞

P̃𝜆∕𝑛
(

|

|

|

𝑋𝑏𝑛 −𝑋ℎ𝑏𝑛
|

|

|

⩽ 1
)

= 𝜃(ℎ) ∶= P̃𝜆
(

𝑍1 = 𝑍ℎ

)

,

where the right-hand side takes values in (0, 1). Furthermore, the following sub-aging statement holds. For all ℎ > 0, we have

lim
𝑛→∞

P̃𝜆∕𝑛
(

|

|

|

𝑋𝑏𝑛+𝑠1𝑑𝑛,∞ −𝑋𝑏𝑛+𝑠2𝑑𝑛,∞
|

|

|

⩽ 1, ∀𝑠1, 𝑠2 ∈ [0, ℎ]
)

= 𝜃(ℎ) ∶= Ẽ𝜆

[

𝑒−ℎ
𝐴0+𝐴2

2𝐴1

]

,

where 𝐴0, 𝐴1, 𝐴2 are such that 𝐴1 (d)
= 𝜈𝛼∞

(

𝑍𝜆
1

)

and 𝐴0, 𝐴2 are distributed as independent conductances under 𝐏̃, not tilted, and independent
f 𝑍𝜆.

As will become clear in the proof, the key to these conclusions is showing that, with high probability, at time 𝑏𝑛, the process
𝑋 is in a trap whose depth is of order 𝑑𝑛,∞ (i.e. 𝑋 is adjacent to a conductance of this scale), and also the limiting process 𝑍
is in a non-trivial trap at time 1. For the second claim in particular, the limiting expression arises from the observation that the
conductance environment around the large conductance is asymptotically close (up to a multiplicative constant) in distribution to
that of (𝐴0, 𝑑𝑛,∞𝐴1, 𝐴2), from which it follows that the time to escape from the edge in question is approximately exponential with
mean 2𝑑𝑛,∞𝐴1∕(𝐴0 + 𝐴2).

3. Coupling and convergence of the environment

The goal of this section is to prove in Proposition 3.4 (see also Propositions 3.10 and 3.11) that the environment, under an
explicit coupling, converges to its limiting counterpart in a precise sense. Before stating the main result of this section let us recall
some useful notions of convergence for measures.

3.1. Convergence of point processes

In this section, we recall notions of convergence of measures. (For further background, see [5, Section 2], for example.) Let 
denote the family of locally finite Borel measures on R.

Definition 3.1. Consider 𝜈 ∈  and a family (𝜈(𝑛); 𝑛 ∈ N) in . We say that 𝜈(𝑛) converges vaguely to 𝜈, and write 𝜈(𝑛)
𝑣
→ 𝜈 as

𝑛 → ∞, if for all continuous real-valued functions 𝑓 on R with bounded support

∫R
𝑓 (𝑦)𝜈(𝑛)(𝑑 𝑦) → ∫R

𝑓 (𝑦)𝜈(𝑑 𝑦), as 𝑛 → ∞.

Definition 3.2. Consider 𝜈 ∈  and a family (𝜈(𝑛); 𝑛 ∈ N) in . We say that 𝜈(𝑛) converges in point-process sense to 𝜈, and write
𝜈(𝑛)

𝑝𝑝
→ 𝜈 as 𝑛 → ∞, if the following holds. If the atoms of 𝜈 and 𝜈(𝑛) are, respectively, at locations 𝑦𝑖 and 𝑦(𝑛)𝑖 in R with weights 𝑤𝑖

and 𝑤(𝑛)
𝑖 in (0,∞), then the set 𝑉 (𝑛) ∶=

⋃

𝑖{(𝑦
(𝑛)
𝑖 , 𝑤(𝑛)

𝑖 )} converges to the set 𝑉 ∶=
⋃

𝑖{(𝑦𝑖, 𝑤𝑖)} in the following sense: for any open set
𝑈 ⊂ R × (0,∞) whose closure is a compact subset of R × (0,∞) and is such that the boundary does not contain any point of 𝑉 , the
number of points |𝑈 ∩ 𝑉 (𝑛)

| is finite and equals the number of points |𝑈 ∩ 𝑉 | for all 𝑛 large enough.
Furthermore, we introduce a condition that relates to the above two notions of convergence of measures.

Condition 1. Consider 𝜈 ∈  with atoms (𝑥𝓁 , 𝑤𝓁) and a family (𝜈(𝑛); 𝑛 ∈ N) in  with atoms (𝑥(𝑛)𝓁 , 𝑤(𝑛)
𝓁 ). For each 𝓁 ⩾ 0 there exists a

equence 𝑗𝓁(𝑛) such that
(

𝑥(𝑛)𝑗𝓁 (𝑛)
, 𝑤(𝑛)

𝑗𝓁 (𝑛)

)

→
(

𝑥𝓁 , 𝑤𝓁
)

, as 𝑛 → ∞.

Lemma 3.3 ([23, Proposition 2.1]). Consider 𝜈 ∈  and a family (𝜈(𝑛); 𝑛 ∈ N) in . If 𝜈(𝑛) 𝑝𝑝
→ 𝜈 as 𝑛 → ∞, then Condition 1 holds. If

Condition 1 holds and 𝜈(𝑛)
𝑣
→ 𝜈, then 𝜈(𝑛)

𝑝𝑝
→ 𝜈.
7 
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3.2. Coupling and convergence of the discrete environment

The goal of this section is to prove the convergence of the environment we consider in this paper. Recall the hypotheses (RW)
and (RWT) given in Assumption 1.1. Recall also the definitions (11) of the independent measures 𝜈𝛼∞ and 𝜈𝛼0 .

We will see the discrete environment as the superposition of two empirical measures. For this purpose, for fixed 𝐾 ∈ N, let us
define the measures

𝜈𝛼∞ ,(𝑛) ∶= 1
𝑑𝑛,∞

∑

𝑥∈Z, |𝑥|⩽𝐾 𝑛
𝛿𝑥∕𝑛𝑐 ({𝑥, 𝑥 + 1}) ,

𝜈𝛼0 ,(𝑛) ∶= 1
𝑑𝑛,0

∑

𝑥∈Z, |𝑥|⩽𝐾 𝑛
𝛿𝑥∕𝑛𝑟 ({𝑥, 𝑥 + 1}) .

(16)

Note that we chose to not emphasise the dependence on 𝐾 in the notation. The result below holds for all 𝐾 ∈ N.

Proposition 3.4 (Vague and Point-Process Convergence of the Environment). First, under the assumption (RW), there exists an explicit
coupling under which 𝜈𝛼0 ,(𝑛) converges almost surely, in both the vague and the point process sense, to 𝜈𝛼0 restricted to [−𝐾 , 𝐾] and, moreover,
Condition 1 is satisfied.

Second, under the assumption (RWT), there exists an explicit coupling under which 𝜈𝛼∞ ,(𝑛) and 𝜈𝛼0 ,(𝑛) converge almost surely, in both the
vague and the point process sense, to the independent measures 𝜈𝛼∞ and 𝜈𝛼0 restricted to [−𝐾 , 𝐾] and, moreover Condition 1 is satisfied by
oth sequences.

In order to prove this result we will use a coupling technique developed in [23] and further used in [5]. Additionally to their
strategy, when we work under the assumption (RWT), we need to take care of the dependence between the large conductances and
he large resistances, so as to show that the measures described in (16) are asymptotically independent. We will detail the coupling

only for 𝜈𝛼∞ ,(𝑛) under the assumption (RWT), and justify the asymptotic independence of 𝜈𝛼∞ ,(𝑛) and 𝜈𝛼0 ,(𝑛). The coupling for 𝜈𝛼0 ,(𝑛)

under the assumption (RWT) or (RW) follows from similar arguments.
Let us next present a result that is key to justifying the asymptotic independence of 𝜈𝛼∞ ,(𝑛) and 𝜈𝛼0 ,(𝑛). To do this, we need the

following notation: for any 0 < 𝛿 < 1 (to be chosen later),

• the set of 𝑛-walls  𝛼0
𝑛 ∶=

{

𝑗 ∈ Z ∶ 𝑟({𝑗 , 𝑗 + 1}) > 𝑑1−𝛿𝑛,0

}

;

• the set of 𝑛-traps  𝛼∞
𝑛 ∶=

{

𝑗 ∈ Z ∶ 𝑐({𝑗 , 𝑗 + 1}) > 𝑑1−𝛿𝑛,∞

}

.

The following lemma states that, under (RWT), these two sets are well-separated with high probability. By a simpler argument, a
similar result holds for the set of 𝑛-walls under (RW).

Lemma 3.5. Assume (RWT). Let us consider the sets 𝑇 𝛼0
𝑛 = ( 𝛼0

𝑛 ) ∩ [−𝐾 𝑛, 𝐾 𝑛] and 𝑇 𝛼∞
𝑛 = ( 𝛼∞

𝑛 ) ∩ [−𝐾 𝑛, 𝐾 𝑛]. Define the event

𝑛 ∶=
{

|𝑖 − 𝑗| > 𝑛1∕4 for all distinct 𝑖, 𝑗 ∈ 𝑇 𝛼0
𝑛 ∪ 𝑇 𝛼∞

𝑛
}

. (17)

Then, for all 𝛿 = 𝛿(𝛼0, 𝛼∞) small enough, almost surely there exists 𝑛0 = 𝑛0(𝜔, 𝐾 , 𝛿) > 0 such that 𝑛 occurs for all 𝑛 ⩾ 𝑛0.

Proof. Let us start by noticing that
{

|𝑖 − 𝑗| > 𝑛1∕4 for all distinct 𝑖, 𝑗 ∈ 𝑇 𝛼0
𝑛 ∪ 𝑇 𝛼∞

𝑛
}𝑐 ⊆

𝐾 𝑛
⋃

𝑚=−𝐾 𝑛
𝐴(𝑚) ∩ {𝑚 ∈ 𝑇 𝛼0

𝑛 ∪ 𝑇 𝛼∞
𝑛 },

where

𝐴(𝑚) ∶= {

∃𝑗 ∈ {𝑚 − 𝑛1∕4,… , 𝑚 + 𝑛1∕4}∖{𝑚} such that 𝑗 ∈ 𝑇 𝛼0
𝑛 ∪ 𝑇 𝛼∞

𝑛
}

.

Using the fact that slowly varying functions grow slower than any polynomial asymptotically (Potter’s bound, see [12, Theorem
1.5.6]), we have that, for all 𝜀 > 0 and for 𝑛 large enough,

𝑛
1
𝛼0

−𝜀
⩽ 𝑑𝑛,0 ⩽ 𝑛

1
𝛼0

+𝜀
and 𝑛

1
𝛼∞

−𝜀
⩽ 𝑑𝑛,∞ ⩽ 𝑛

1
𝛼∞

+𝜀
. (18)

Using the previous estimates, one can prove that, for 𝑛 large enough,

𝐏̃
(

𝑟({𝑗 , 𝑗 + 1}) > 𝑑1−𝛿𝑛,0

)

⩽ 𝑛−1+3𝛿 and 𝐏̃
(

𝑐({𝑗 , 𝑗 + 1}) > 𝑑1−𝛿𝑛,∞

)

⩽ 𝑛−1+3𝛿 .

Using the above, the independence of 𝐴(𝑚) and {𝑚 ∈ 𝑇 𝛼0
𝑛 ∪ 𝑇 𝛼∞

𝑛 }, and a union bound, we obtain that, if 𝛿 is chosen suitably small,
hen, for all 𝑛 large enough,

𝐏̃
(

{

|𝑖 − 𝑗| > 𝑏𝑛 for all distinct 𝑖, 𝑗 ∈ 𝑇 𝛼0
𝑛 ∪ 𝑇 𝛼∞

𝑛
}𝑐
)

⩽ 3𝐾 𝑛 ⋅ 3𝑛1∕4 ⋅ 2𝑛−2+6𝛿 ⩽ 𝑛−1∕2.

To complete the proof, we need to improve this result to an almost sure one. We take inspiration from [10, Appendix C]. Let us
define the following event

𝓁𝑐 ∶=
2𝐾𝓁
⋃

𝐴(𝑚) ∩ {𝑚 ∈ 𝑇 𝛼0
𝓁 ∪ 𝑇 𝛼∞

𝓁 },

𝑚=−2𝐾𝓁

8 
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where 𝑇 𝛼𝑖
𝓁 = ( 𝛼𝑖

𝓁 ) ∩ [−2𝐾𝓁, 2𝐾𝓁], 𝑖 = 0,∞, and

𝐴(𝑚) ∶=
{

∃𝑗 ∈ {𝑚 − 2𝓁1∕4,… , 𝑚 + 2𝓁1∕4}∖{𝑚} such that 𝑗 ∈ 𝑇 𝛼0
𝓁 ∪ 𝑇 𝛼∞

𝓁

}

.

It is crucial to note that ∀𝑛 ∈ {𝓁,… , 2𝓁}, it holds that  𝑐
𝑛 ⊆ 𝓁𝑐 . Moreover, let us consider the subsequence 𝑛𝓁 = exp{(log(𝓁))2}.

Arguing as in the first paragraph of the proof, we then have that
∑

𝓁

𝐏̃( 𝑐
𝑛𝓁
) ⩽

∑

𝓁

𝐶 𝑛𝓁 ⋅ 𝑛1∕4𝓁 ⋅ 𝑛−2+6𝛿𝓁 ⩽
∑

𝓁

𝐶 𝑛−1∕2𝓁 < ∞.

Thus, by Borel–Cantelli, there almost-surely exists 𝓁0 such that  𝑐
𝑛𝓁

does not happen for all 𝓁 ⩾ 𝓁0. Furthermore, we observe
that lim𝓁 𝑛𝓁+1∕𝑛𝓁 = 1, so there exists 𝓁1 such that, for all 𝓁 ⩾ 𝓁1, we have that 𝑛𝓁+1 ⩽ 2𝑛𝓁 . We are able to conclude by setting
𝓁 = max{𝓁0,𝓁1} and noting that, for all 𝓁 ⩾ 𝓁, the events  𝑛𝓁 occur and that  𝑛𝓁 ⊆ 𝑛 for all 𝑛𝓁 ⩽ 𝑛 ⩽ 𝑛𝓁+1. □

From now on, we assume that the sets  𝛼0
𝑛 and  𝛼∞

𝑛 are chosen with 𝛿 small enough such that 𝑛 holds almost surely as in
Lemma 3.5. Our next step is to build an explicit coupling measure 𝐏̃ between the limit measures 𝜈𝛼∞ and 𝜈𝛼0 and the discrete
measures 𝜈𝛼∞ ,(𝑛), 𝜈𝛼0 ,(𝑛). Following [23], we will couple conditioned sequences of conductances and resistances. In order to do so
we need several ingredients. First, let us define the quantity 𝑝 ∶= 𝐏̃(𝑐({0, 1}) ⩾ 1) (and, as a by-product, (1 − 𝑝) ∶= 𝐏̃(𝑟({0, 1}) > 1)).
Consider:

1. A sequence of i.i.d. Ber (𝑝) random variables, {𝑏𝑖}𝑖∈Z.
2. Two independent two-sided stable subordinators 𝑆𝛼∞ , 𝑆𝛼0 , that are formally defined in Eqs. (12)–(13).
3. Two independent sequences of i.i.d. random variables {𝑐({𝑥, 𝑥 + 1})}𝑥∈Z and {𝑟̂({𝑥, 𝑥 + 1})}𝑥∈Z, where 𝑐({0, 1}) is distributed

like 𝑐({0, 1}) conditional on {𝑐({0, 1}) ⩾ 1} and 𝑟̂({0, 1}) is distributed like 𝑟({0, 1}) conditional on {𝑟({0, 1}) > 1}.

Let us build the coupling in the 𝛼∞-case, and note the other can be constructed in the same way. From the subordinator 𝑆𝛼∞ ,
one can define a measure 𝜈𝛼∞ such that, for all 𝑎 < 𝑏,

𝜈𝛼∞ ((𝑎, 𝑏]) = 𝑝−1∕𝛼∞ (𝑆𝛼∞ (𝑝𝑏) − 𝑆𝛼∞ (𝑝𝑎)) .

Using [35, (5.40)], we have that the term above has is distributed like 𝑆𝛼∞ (𝑏) −𝑆𝛼∞ (𝑎), i.e. 𝜈𝛼∞ has the distribution of 𝜈𝛼∞ . Let 𝛼∞

be the associated point process. Define the function 𝐺𝛼∞ ∶ [0,∞) → [0,∞) through the formula

𝐏̃
(

𝑆𝛼∞ (1) > 𝐺𝛼∞ (𝑦)
)

= 𝐏̃
(

𝑐({𝑥, 𝑥 + 1}) > 𝑦) , (19)

note that 𝐺𝛼∞ (𝑦) is well defined, non decreasing and right-continuous by the continuity of the distribution of 𝑆𝛼∞ (1). Thus, one can
also define its generalised right-continuous inverse 𝐺−1

𝛼∞
. Moreover, it is also possible to define the function 𝑔𝛼∞𝑛 as

𝑔𝛼∞𝑛 (𝑦) ∶= 1
𝑑∗𝑛,∞

𝐺−1
𝛼∞

(

𝑛1∕𝛼∞𝑦
)

,

where

𝑑∗𝑛,∞ ∶= inf {𝑡 > 0 ∶ 𝐏̃
(

𝑐({0, 1}) > 𝑡) ⩽ 1∕𝑛}. (20)

It is not hard to check that 𝑑∗𝑛,∞∕𝑑𝑛,∞ → 𝑝−1∕𝛼∞ as 𝑛 → ∞, see [35, Proposition 2.6]. The next lemma explains how to use these
objects to build a copies of {𝑐({𝑥, 𝑥 + 1})}𝑥∈Z and {𝑟̂({𝑥, 𝑥 + 1})}𝑥∈Z from the subordinators.

Lemma 3.6. Consider the two independent families {𝑐({𝑥, 𝑥 + 1})}𝑥∈Z and {𝑟̂({𝑥, 𝑥 + 1})}𝑥∈Z defined for all 𝑥 ∈ Z by setting

𝑐({𝑥, 𝑥 + 1}) ∶= 𝑑∗𝑛,∞𝑔𝛼∞𝑛
(

𝑆𝛼∞
( 1
𝑛
(𝑥 + 1)

)

− 𝑆𝛼∞
( 1
𝑛
(𝑥)

))

,

and

𝑟̂({𝑥, 𝑥 + 1}) ∶= 𝑑∗𝑛,0𝑔
𝛼0
𝑛

(

𝑆𝛼0
( 1
𝑛
(𝑥 + 1)

)

− 𝑆𝛼0
( 1
𝑛
(𝑥)

))

.

These define i.i.d. copies of the random conditioned conductances {𝑐({𝑥, 𝑥 + 1})}𝑥∈Z and associated resistances {𝑟̂({𝑥, 𝑥 + 1})}𝑥∈Z.

Proof. We give the proof in the 𝛼∞-case; the 𝛼0-case follows in the same way. Using the stationarity and independence of the
increments of 𝑆𝛼∞ , we only need to prove that 𝐏̃[𝑐({0, 1}) > 𝑡] = 𝐏̃[𝑐({0, 1}) > 𝑡]. By substituting one gets

𝐏̃
(

𝑐({0, 1}) > 𝑡
)

= 𝐏̃
(

𝑆𝛼∞
( 1
𝑛

)

> 𝐺𝛼∞ (𝑡)𝑛−1∕𝛼∞
)

= 𝐏̃
(

𝑆𝛼∞ (1) > 𝐺𝛼∞ (𝑡)
)

= 𝐏̃(𝑐({0, 1}) > 𝑡),
where the second equality is due to the self-similarity relation of 𝑆𝛼∞ , and the third equality comes from (19). This concludes the
proof. □
9 
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We are now ready to present our explicit coupling. We start by defining the set of conductances

𝑐({𝑥, 𝑥 + 1}) ∶=
{

𝑐({𝑥∗, 𝑥∗ + 1})1{𝑏𝑥=1} + 𝑟̂({𝑥 − 𝑥∗, 𝑥 − 𝑥∗ + 1})−11{𝑏𝑥=0}, for 𝑥 ⩾ 0,
𝑐({𝑥∗ − 1, 𝑥∗})1{𝑏𝑥=1} + 𝑟̂({𝑥 − 𝑥∗, 𝑥 − 𝑥∗ + 1})−11{𝑏𝑥=0}, for 𝑥 < 0,

where

𝑥∗ ∶=
𝑥−1
∑

𝑗=0
1{𝑏𝑗=1}, for 𝑥 ⩾ 0, and 𝑥∗ ∶= −

−1
∑

𝑗=𝑥+1
1{𝑏𝑗=1}, for 𝑥 < 0. (21)

We also define the resistance 𝑟({𝑥, 𝑥 + 1}) = 1∕𝑐({𝑥, 𝑥 + 1}). The fact that {𝑐({𝑥, 𝑥 + 1})}𝑥∈Z
(d)
= {𝑐({𝑥, 𝑥 + 1})}𝑥∈Z is a straightforward

application of conditioning. We are now able to define the coupled version of the two measures of Proposition 3.4,

𝜈𝛼∞ ,(𝑛) ∶= 1
𝑑𝑛,∞

∑

𝑥∈Z, |𝑥|⩽𝐾 𝑛
𝛿𝑥∕𝑛𝑐 ({𝑥, 𝑥 + 1}) , 𝜈𝛼0 ,(𝑛) ∶= 1

𝑑𝑛,0

∑

𝑥∈Z, |𝑥|⩽𝐾 𝑛
𝛿𝑥∕𝑛𝑟 ({𝑥, 𝑥 + 1}) .

Before going to the proof of Proposition 3.4, we state two lemmas from [23] that are useful for the analysis of the coupled measures.

Lemma 3.7 ([23, Lemma 3.1]). For any fixed 𝑦 > 0, 𝑔𝛼0𝑛 (𝑦) → 𝑦 and 𝑔𝛼∞𝑛 (𝑦) → 𝑦 as 𝑛 → ∞.

We note that, using the monotonicity of 𝑔𝛼0𝑛 , this lemma readily implies 𝑔𝛼0𝑛 (𝑦𝑛) → 𝑦 whenever 𝑦𝑛 → 𝑦 > 0. A similar comment
pplies to 𝑔𝛼∞𝑛 .

Lemma 3.8 ([23, Lemma 3.2]). For any 𝛿′ > 0, there exist positive constants 𝐶1, 𝐶2, 𝐶3 and 𝐶4 such that

𝑔𝛼0𝑛 (𝑥) ⩽ 𝐶1𝑥
1−𝛿′ , for 𝑛−1∕𝛼0 ⩽ 𝑥 ⩽ 1 whenever 𝑛−1 ⩽ 𝐶2,

𝑔𝛼∞𝑛 (𝑥) ⩽ 𝐶3𝑥
1−𝛿′ , for 𝑛−1∕𝛼∞ ⩽ 𝑥 ⩽ 1 whenever 𝑛−1 ⩽ 𝐶4.

Proof of Proposition 3.4. We restrict ourselves for simplicity to the box [0, 1]; extending to [−𝐾 , 𝐾] does not change the proof.
Moreover, we will only detail the proof of the convergence of 𝜈𝛼∞ ,(𝑛) under the assumption (RWT), as the proof of the convergence
of 𝜈𝛼0 ,(𝑛) under the assumption (RWT) or (RW) follows in the same manner. Concerning notation, let us set, for 𝑥 ∈ [0, 1],
𝑁 (𝑛)(𝑥) ∶= ∑

⌊𝑥𝑛⌋−1
𝑖=0 𝑏𝑖 and use the shorthand 𝑁 (𝑛) = 𝑁 (𝑛)(1). Furthermore let us introduce the function ℎ𝑛(𝑥) ∶= 𝑁 (𝑛)(𝑥)∕𝑛 and

its right continuous inverse ℎ−1𝑛 . One can check that, for 𝑖 such that 𝑏𝑖 = 1, ℎ𝑛(𝑖∕𝑛) = 𝑖∗∕𝑛 and ℎ−1𝑛 (𝑖∗∕𝑛) − 1
𝑛 = 𝑖∕𝑛, where 𝑖∗ is defined

in (21).
First we prove almost-sure vague convergence for 𝜈𝛼∞ ,(𝑛). We highlight the fact that, in the following, equalities and limits will

old almost-surely by the coupling. Let us consider a bounded continuous function 𝑓 of compact support 𝐼 = [0, 1]. We use the
notation

𝐼 (𝑛),𝛼∞𝑦 ∶=
{

𝑧 ∈ Z ∶ 𝑏𝑧 = 1, 𝑧
𝑛
∈ 𝐼 , 𝑆𝛼∞

(

𝑧∗ + 1
𝑛

)

− 𝑆𝛼∞
(

𝑧∗

𝑛

)

⩾ 𝑦
}

. (22)

Then, we have

∫𝐼
𝑓 (𝑦)𝜈𝛼∞ ,(𝑛)(𝑑 𝑦) = 1

𝑑𝑛,∞

∑

𝑖∕𝑛∈𝐼
𝑓
( 𝑖
𝑛

)

𝑐({𝑖, 𝑖 + 1})

= 1
𝑑𝑛,∞

∑

𝑖∈𝐼 (𝑛),𝛼∞0

𝑓
( 𝑖
𝑛

)

𝑐({𝑖, 𝑖 + 1}) + 1
𝑑𝑛,∞

∑

𝑖∕𝑛∈𝐼 , 𝑏𝑖=0
𝑓
( 𝑖
𝑛

)

𝑐({𝑖, 𝑖 + 1}).

Using that 𝑓 is uniformly bounded, there exists a constant 𝐶 > 0 such that
1

𝑑𝑛,∞

∑

𝑖∕𝑛∈𝐼 , 𝑏𝑖=0
𝑓
( 𝑖
𝑛

)

𝑐({𝑖, 𝑖 + 1}) ⩽ 𝐶 1
𝑑𝑛,∞

∑

𝑖∕𝑛∈𝐼 , 𝑏𝑖=0
1 ⩽ 𝐶 𝑑−1𝑛,∞𝑛 → 0,

as 𝑛 → ∞, where we used (18) and the fact that 𝛼∞ < 1 to deduce the convergence to zero of the upper bound. It remains to deal
with the other term. We split the sum into three parts. In particular, we fix 𝛿 > 0, and then consider summing over the three sets
𝐼 (𝑛),𝛼∞𝛿 , 𝐼 (𝑛),𝛼∞

𝑛−1∕𝛼∞
⧵ 𝐼 (𝑛),𝛼∞𝛿 and 𝐼 (𝑛),𝛼∞0 ⧵ 𝐼 (𝑛),𝛼∞

𝑛−1∕𝛼∞
separately. For the first term,

1
𝑑𝑛,∞

∑

𝑖∈𝐼 (𝑛),𝛼∞𝛿

𝑓
( 𝑖
𝑛

)

𝑐({𝑖, 𝑖 + 1}) =
𝑑∗𝑛,∞
𝑑𝑛,∞

∑

𝑖∈𝐼 (𝑛),𝛼∞𝛿

𝑓
( 𝑖
𝑛

)

𝑔𝛼∞𝑛

(

𝑆𝛼∞
(

𝑖∗ + 1
𝑛

)

− 𝑆𝛼∞
(

𝑖∗

𝑛

))

,

where 𝑑∗𝑛,∞ is defined in (20). Notice that we can re-write the right-hand side as

lim
𝑛→∞

𝑑∗𝑛,∞
𝑑𝑛,∞

∑

𝑖∈𝐼 (𝑛),𝛼∞𝛿

𝑓
( 𝑖
𝑛

)

𝑔𝛼∞𝑛

(

𝑆𝛼∞
(

𝑖∗ + 1
𝑛

)

− 𝑆𝛼∞
(

𝑖∗

𝑛

))

= lim
𝑛→∞

𝑑∗𝑛,∞
𝑑𝑛,∞

∑

(𝑛),𝛼∞

𝑓
(

ℎ−1𝑛

(

𝑖∗

𝑛

)

− 1
𝑛

)

𝑔𝛼∞𝑛

(

𝑆𝛼∞
(

𝑖∗ + 1
𝑛

)

− 𝑆𝛼∞
(

𝑖∗

𝑛

))

.

𝑖∈𝐼𝛿

10 
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By the functional law of large numbers we have that ℎ𝑛(𝑥) → 𝑝𝑥 uniformly in [0, 1] and consequently ℎ−1𝑛 (𝑠) → 𝑠∕𝑝. By Lemma 3.7
and using that 𝑓 is bounded, that 𝑔𝑛 is monotone, that 𝐼 (𝑛),𝛼∞𝛿 has almost-surely finitely many terms, and that the number of atoms
f 𝛼∞ such that 𝑤𝑗 ⩾ 𝛿 and 𝑥𝑗 ∈ [0, 𝑝] is 𝐏̃-a.s. finite (each with distinct 𝑥𝑗 , and for no atoms does 𝑤𝑗 = 𝛿), this implies that

lim
𝑛→∞

𝑑∗𝑛,∞
𝑑𝑛,∞

∑

𝑗∈𝐼 (𝑛),𝛼∞ ,𝑝
𝛿

𝑓
(

ℎ−1𝑛

(

𝑗
𝑛

)

− 1
𝑛

)

𝑔𝛼∞𝑛

(

𝑆𝛼∞
(

𝑗 + 1
𝑛

)

− 𝑆𝛼∞
(

𝑗
𝑛

))

=𝑝−1∕𝛼∞
∑

(𝑥𝑗 ,𝑤𝑗 )∈𝛼∞∶
𝑤𝑗⩾𝛿 ,𝑥𝑗∈[0,𝑝]

𝑓
(

1
𝑝
𝑥𝑗

)

𝑤𝑗 ,

where 𝐼 (𝑛),𝛼∞ ,𝑝
𝑦 ∶=

{

𝑧 ∈ N ∶ 𝑧 ⩽ 𝑁 (𝑛), 𝑆𝛼∞
(

𝑧+1
𝑛

)

− 𝑆𝛼∞
(

𝑧
𝑛

)

⩾ 𝑦
}

. Let us define, for 𝛿′ > 0,

𝐻𝛿 ∶=
∑

(𝑥𝑗 ,𝑤𝑗 )∈𝛼∞∶
𝑤𝑗⩽𝛿 ,𝑥𝑗∈𝐼

𝑤1−𝛿′
𝑗 .

Using Lemma 3.8, one can prove that, for 𝛿′ small enough and a positive constant 𝐶,

lim sup
𝑛→∞

𝑑∗𝑛,∞
𝑑𝑛,∞

∑

𝑖∈𝐼 (𝑛),𝛼∞
𝑛−1∕𝛼∞

⧵𝐼 (𝑛),𝛼∞𝛿

|

|

|

|

𝑓
( 𝑖
𝑛

)

|

|

|

|

𝑔𝛼∞𝑛

(

𝑆𝛼∞
(

𝑖∗ + 1
𝑛

)

− 𝑆𝛼∞
(

𝑖∗

𝑛

))

⩽ 𝐶 lim sup
𝑛→∞

∑

𝑖∈𝐼 (𝑛),𝛼∞
𝑛−1∕𝛼∞

⧵𝐼 (𝑛),𝛼∞𝛿

(

𝑆𝛼∞
(

𝑖∗ + 1
𝑛

)

− 𝑆𝛼∞
(

𝑖∗

𝑛

))1−𝛿′

⩽ 𝐶 𝐻𝛿 .

(23)

We also claim that, 𝐏̃-a.s., 𝐻𝛿 → 0. Indeed, as 𝐻𝛿 is positive and monotone its almost-sure limit is well-defined and

𝐄̃
[

𝐻𝛿
]

⩽ 𝛼∞|𝐼|∫

𝛿

0
𝑤1−𝛿′𝑤−1−𝛼∞𝑑 𝑤 → 0 as 𝛿 → 0, (24)

as we can choose 𝛿′ such that 𝛿′ + 𝛼∞ < 1. Finally, one can notice that, for all 𝑥 ⩽ 𝑛−1∕𝛼∞ , by monotonicity of 𝑔𝛼∞𝑛 , one gets
𝛼∞
𝑛 (𝑥) ⩽ 𝑔𝛼∞𝑛 (𝑛−1∕𝛼∞ ) ⩽ 𝐶∕𝑑𝑛,𝛼∞ for some finite positive 𝐶. Then, using (18), we obtain that

lim
𝑛→∞

𝑑∗𝑛,∞
𝑑𝑛,∞

∑

𝑖∈𝐼 (𝑛),𝛼∞0 ⧵𝐼 (𝑛),𝛼∞
𝑛−1∕𝛼∞

𝑓
( 𝑖
𝑛

)

𝑔𝛼∞𝑛

(

𝑆𝛼∞
(

𝑖∗ + 1
𝑛

)

− 𝑆𝛼∞
(

𝑖∗

𝑛

))

⩽ 𝐶 ′

𝑑𝑛,∞

∑

𝑖∈𝐼 (𝑛),𝛼∞0

1 ⩽ 𝐶 ′′

𝑑𝑛,∞
𝑛 → 0 as 𝑛 → ∞.

(25)

Putting everything together, we have that

lim
𝑛→∞

1
𝑑𝑛,∞

∑

𝑖∕𝑛∈𝐼
𝑓
( 𝑖
𝑛

)

𝑐({𝑖, 𝑖 + 1}) = lim
𝛿→0

𝑝−1∕𝛼∞
∑

𝑗∶𝑤𝑗⩾𝛿
𝑥𝑗∈[0,𝑝]

𝑓
(

1
𝑝
𝑥𝑗

)

𝑤𝑗 = ∫𝐼
𝑓 (𝑦)𝜈𝛼∞ (𝑑 𝑦).

This implies almost-sure vague convergence of the coupled measures. As stated at the beginning of the proof, the argument for the
𝛼0-process is identical. Additionally, the independence of the limits is guaranteed by construction.

Now let us deal with point process convergence. We aim to prove Condition 1 and apply Lemma 3.3. For any atom (𝑥𝓁 , 𝑤𝓁) of
𝛼∞ we need to find a sequence 𝑗𝓁(𝑛) such that

𝑗𝓁(𝑛)
𝑛

→ 𝑥𝓁 , and 1
𝑑𝑛,∞

𝑐
(

𝑗𝓁(𝑛), 𝑗𝓁(𝑛) + 1) → 𝑤𝓁 . (26)

Note that, using the definition of 𝜈𝛼∞ , for all atoms 𝑥𝓁 ∈ [0, 1] of 𝜈𝛼∞ , there must exist an atom (𝑥∗𝓁 , 𝑤∗
𝓁) of 𝜈𝛼∞ with 𝑥∗𝓁 ∈ [0, 𝑝] such

that 𝑥∗𝓁∕𝑝 = 𝑥𝓁 and 𝑝−1∕𝛼∞𝑤∗
𝓁 = 𝑤𝓁 . Then, we pick 𝑗∗𝓁(𝑛) to be such that 𝑛𝑥∗𝓁 ∈ (𝑗∗𝓁(𝑛), 𝑗∗𝓁(𝑛) + 1], so that Lemma 3.7 and the comment

elow (20) guarantee that
𝑑∗𝑛,∞
𝑑𝑛,∞

𝑔𝛼∞𝑛

(

𝑆𝛼∞

(

𝑗∗𝓁(𝑛) + 1
𝑛

)

− 𝑆𝛼∞

(

𝑗∗𝓁(𝑛)
𝑛

))

→ 𝑝−1∕𝛼∞𝑤∗
𝓁 .

Clearly 𝑗∗𝓁(𝑛)∕𝑛 → 𝑥∗𝓁 , but we also can find an index 𝑗𝓁(𝑛) such that ℎ−1𝑛 (𝑗∗𝓁(𝑛)∕𝑛) = 𝑗𝓁(𝑛)∕𝑛, and this index is such that 𝑗𝓁(𝑛)∕𝑛 → 𝑥𝓁 =
∗
𝓁∕𝑝 and 𝑐

(

𝑗𝓁(𝑛), 𝑗𝓁(𝑛) + 1) ∕𝑑𝑛,∞ → 𝑤𝓁 .
We still have to take care of the fact that the interval [0, 𝑁 (𝑛)∕𝑛] may not contain all the atoms (or that it may contain too many

of them). However, notice that the event 𝐸𝑛 ∶= {𝑛𝑝 + 𝑛2∕3 ⩾ 𝑁 (𝑛) ⩾ 𝑛𝑝 − 𝑛2∕3} will happen eventually almost-surely by a standard
application of Chernoff’s bound (see e.g. [1, Theorem A.1.4]) and the Borel–Cantelli Lemma. On 𝐸 and using that subordinators
𝑛
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do not have jumps almost-surely at deterministic times (i.e. there is no atom such that 𝑥∗𝓁 = 𝑝), we get that, for all atoms and 𝑛
large enough 𝑥𝓁 < 𝑁 (𝑛)∕𝑛, completing the construction of the coupling and proving the convergence stated in (26). □

The following result is a corollary of Proposition 3.4 and its proof.

Lemma 3.9. Assume the notation and coupling of Section 3.2, and let 𝐽1 denote the classical Skorohod topology (see (74)), then the
following statement holds almost surely:

𝑆𝛼0 ,𝜆∕𝑛,(𝑛)(𝑡)
𝐽1
→ 𝑆𝛼0 ,𝜆(𝑡).

Moreover, under (RW), we have that
1
2𝑛

∑

𝑖∈[−𝐾 𝑛,𝐾 𝑛]
𝛿𝑖∕𝑛𝑐

𝜆∕𝑛(𝑖) → 𝐄 [𝑐(0, 1)] 𝑒2𝜆𝑣1[−𝐾 ,𝐾](𝑣)𝑑 𝑣,

weakly as a finite measure on R. And, under (RWT), we have that
1

2𝑑𝑛,∞

∑

𝑖∈[−𝐾 𝑛,𝐾 𝑛]
𝛿𝑖∕𝑛𝑐

𝜆∕𝑛(𝑖) → 𝑒2𝜆𝑣𝑑 𝑆𝛼∞ (𝑑 𝑣),

weakly as a finite measure on R.

Proof. The first statement is justified in Appendix. The second one is an immediate consequence of the assumption (RW) and
the functional law of large numbers. The third statement follows directly from the convergence of 𝜈𝛼∞ towards 𝑑 𝑆𝛼∞ (𝑑 𝑣) stated in
16). □

The following results, in the spirit of [17, Theorem 4.1], give the convergence of the environment as a compact metric measure
space under (RW) and (RWT), respectively.

Proposition 3.10. Consider, for 𝑛 ⩾ 1, 𝑛 = [−𝐾 𝑛, 𝐾 𝑛] ∩ Z, 𝑚𝜆∕𝑛
𝑛 (𝑎, 𝑏) = 𝑑−1𝑛,0𝑅

𝜆∕𝑛(𝑎, 𝑏) ∶= 𝑑−1𝑛,0
∑𝑏−1

𝑘=𝑎 𝑟
𝜆∕𝑛({𝑘, 𝑘 + 1}), 𝜇𝜆∕𝑛

𝑛 (𝑑 𝑥) =
1
2𝑛

∑

𝑖∈𝑛
𝛿𝑖𝑐𝜆∕𝑛(𝑖), and 𝛷𝑛(⋅) = 1

𝑛 (⋅) ∶𝑛 → R, as well as  = 𝑆𝛼0 ,𝜆([−𝐾 , 𝐾]), 𝑑 the Euclidean metric, the speed measure 𝜇𝜆 defined in (6),
and 𝛷(⋅) = (𝑆𝛼0 ,𝜆)−1(⋅) ∶ → R. Moreover consider a sequence (𝛽𝑛) in 𝑛 such that lim𝑛 𝑛−1𝛽𝑛 = 𝛽, where 𝛽 is a continuity point of 𝑆𝛼0 ,𝜆.
Under the hypothesis of (RW) and under the coupling of Proposition 3.4, explicitly constructed above, the quintuplet

(

𝑛, 𝑚𝜆∕𝑛
𝑛 , 𝜇𝜆∕𝑛

𝑛 , 𝛽𝑛, 𝛷𝑛

)

, (27)

converges 𝐏-a.s. to its continuous counterpart
(

 , 𝑑 , 𝜇𝜆, 𝑆𝛼0 ,𝜆(𝛽), 𝛷)

.

in the spatial Gromov–Hausdorff–Prohorov topology (see [16, Section 7]).

Proof. The proof of this result is a relatively straightforward adaptation of [17, Theorem 4.1]. In fact, it is slightly easier, since all
he relevant spaces can be isometrically embedded into R. Hence we will be brief with the details. First, define a map 𝜁𝑛 ∶ 𝑛 → R

by setting

𝜁𝑛(𝑥) ∶= 𝑑−1𝑛,0sign(𝑥)𝑅
𝜆∕𝑛(0, 𝑥), ∀𝑥 ∈ 𝑛, (28)

where we denote by sign the sign of 𝑥. (Note that it is not necessary to define sign(0).) Let 𝑛 ∶= 𝜁𝑛(𝑛), so that 𝜁𝑛 is a bijection
rom 𝑛 to 𝑛, and that the quintuplet at (27) is isometrically equivalent to

(

𝑛, 𝑑 , 𝜇𝜆∕𝑛
𝑛 ◦𝜁−1𝑛 , 𝜁𝑛(𝛽𝑛), 𝛷𝑛◦𝜁

−1
𝑛

)

, (29)

where again we use 𝑑 to denote the Euclidean metric (restricted to the relevant space). Consequently, to check the claim of the
lemma, it suffices to show that: 𝑛 converges to  with respect to the usual convergence of compact subsets of R (with respect to
the Hausdorff metric); 𝜇𝜆∕𝑛

𝑛 ◦𝜁−1𝑛 converges to 𝜇𝜆 weakly; 𝜁𝑛(𝛽𝑛) converges to 𝑆𝛼0 ,𝜆(𝛽); and there exist correspondences 𝑛 between
 and 𝑛 (i.e. subsets of  × 𝑛 such that each 𝑥 ∈  is paired with at least one element 𝑦 ∈ 𝑛, and vice versa) for which
up(𝑥,𝑦)∈𝑛 (|𝑥 − 𝑦| + |𝛷(𝑥) −𝛷𝑛◦𝜁−1𝑛 (𝑦)|) → 0.

Towards checking these requirements, we start by noting that

𝜁𝑛(𝑥) = 𝑆𝛼0 ,𝜆∕𝑛,(𝑛)◦𝛷𝑛(𝑥).

Hence

𝑛 = 𝑆𝛼0 ,𝜆∕𝑛,(𝑛)([−𝐾 , 𝐾] ∩ (Z∕𝑛))
{

⊆ 𝑆𝛼0 ,𝜆∕𝑛,(𝑛)([−𝐾 , 𝐾]),
⊇ 𝑆𝛼0 ,𝜆∕𝑛,(𝑛)([−𝐾 + 1∕𝑛, 𝐾]).

Since we may assume that both −𝐾 and 𝐾 are continuity points of 𝑆𝛼0 ,𝜆 with 𝐏-probability one, it readily follows from this and
he almost-sure 𝐽 convergence of 𝑆𝛼0 ,𝜆∕𝑛,(𝑛) to 𝑆𝛼0 ,𝜆, see Lemma 3.9, that  converges almost-surely to  as compact subsets of R.
1 𝑛
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Moreover, since we have assumed that 𝛽 is a continuity point of 𝑆𝛼0 ,𝜆, it is moreover clear that 𝜁𝑛(𝛽𝑛) = 𝑆𝛼0 ,𝜆∕𝑛,(𝑛)(𝛽𝑛∕𝑛) → 𝑆𝛼0 ,𝜆(𝛽).
Next, for the measure convergence, we start by observing that, by Lemma 3.9

𝜇𝜆∕𝑛
𝑛 ◦𝛷−1

𝑛 → 𝐄 [𝑐(0, 1)] 𝑒−2𝜆𝑣1[−𝐾 ,𝐾](𝑣)𝑑 𝑣
weakly as finite measures on R. Hence, again applying the 𝐽1 convergence of 𝑆𝛼0 ,𝜆∕𝑛,(𝑛) to 𝑆𝛼0 ,𝜆, and using that the limiting measure
here does not have any atoms, it follows that

𝜇𝜆∕𝑛
𝑛 ◦𝜁−1𝑛 = 𝜇𝜆∕𝑛

𝑛 ◦𝛷−1
𝑛 ◦(𝑆𝛼0 ,𝜆∕𝑛,(𝑛))−1 → 𝜇𝜆

weakly as finite measures on R. Finally, to construct an appropriate correspondence, we can again use the 𝐽1 convergence of
𝑆𝛼0 ,𝜆∕𝑛,(𝑛) to 𝑆𝛼0 ,𝜆 to proceed exactly as in the proof of [17, (65)]. In particular, the construction of a suitable correspondence
s given below [17, (70)]. Roughly, each point 𝑥 ∈  is matched to a nearby point 𝑦 ∈ 𝑛 (and vice versa), which can be done as a
esult of the Hausdorff convergence of the sets in question. Since the inverse of the limiting subordinator is continuous, it follows
hat we also have that 𝛷𝑛◦𝜁−1𝑛 (𝑦) = (𝑆𝛼0 ,𝜆∕𝑛,(𝑛))−1(𝑦) is close to (𝑆𝛼0 ,𝜆)−1(𝑥). Since they are identical to the argument of [17], we omit
he details. □

Proposition 3.11. Consider 𝑛 = [−𝐾 𝑛, 𝐾 𝑛] ∩ Z, 𝑚𝜆∕𝑛
𝑛 (𝑎, 𝑏) = 𝑑−1𝑛,0𝑅

𝜆∕𝑛(𝑎, 𝑏), 𝜇𝜆∕𝑛
𝑛 (𝑑 𝑥) = 1∕(2𝑑𝑛,∞)

∑

𝑖∈𝑛
𝛿𝑖𝑐𝜆∕𝑛(𝑖), and 𝛷𝑛(⋅) =

∕𝑛(⋅) ∶𝑛 → R, as well as  = 𝑆𝛼0 ,𝜆([−𝐾 , 𝐾]), 𝑑 the Euclidean metric, 𝜇𝜆 the speed measure defined in (9), and 𝛷(⋅) = (𝑆𝛼0 ,𝜆)−1(⋅) ∶ → R.
Moreover, consider a sequence (𝛽𝑛) in 𝑛 such that lim𝑛 𝑛−1𝛽𝑛 = 𝛽, where 𝛽 is a continuity point of 𝑆𝛼0 ,𝜆. Under the hypothesis of (RWT)
and under the coupling of Proposition 3.4, explicitly constructed above, the quintuplet

(

𝑛, 𝑚𝜆∕𝑛
𝑛 , ̃𝜇𝜆∕𝑛

𝑛 , 𝛽𝑛, 𝛷𝑛

)

,

converges 𝐏̃-a.s. to its continuous counterpart
(

 , 𝑑 , ̃𝜇𝜆, 𝑆𝛼0 ,𝜆(𝛽), 𝛷)

in the spatial Gromov–Hausdorff–Prohorov topology.

Proof. The proof is entirely similar to the one of Proposition 3.10, apart from some additional care is needed to handle the
measure component. In particular, to check that 𝜇𝜆∕𝑛

𝑛 ◦𝜁−1𝑛 converges weakly to 𝜇𝜆, one can combine the convergence of 𝜇𝜆∕𝑛
𝑛 ◦𝛷−1

𝑛 to
𝑒2𝜆𝑣𝑑 𝑆𝛼∞ (𝑑 𝑣), see Lemma 3.9, and the 𝐽1 convergence of 𝑆𝛼0 ,𝜆∕𝑛,(𝑛) to 𝑆𝛼0 ,𝜆. The one subtlety in doing this is resolved by observing
that, because the limiting subordinators are independent, their discontinuities are almost-surely disjoint. □

In all that follows we will drop the bar on top of the probability measures 𝐏 and 𝐏̃, the reader should assume the coupling to
be in place from now on unless stated otherwise.

4. Random walk estimates

4.1. Couplings

In the next sections we follow a classical general strategy to prove aging. That is, we exploit the coupling of Proposition 3.4 and
he consequent Propositions 3.10 and 3.11. This guarantees almost-sure convergence of the quenched distribution of the process.

In our proof, it is crucial that the convergence of Proposition 3.4 holds almost-surely on the coupling. Then, if one can prove the
ging statement for the quenched law (that has nicer properties than the annealed one, such as the strong Markov property), the
nnealed aging theorems follow by applying the dominated convergence theorem. We would like to stress that, as stated in [17,

Corollary 1.10], quenched convergence is true only after coupling, and not in the original probability space. Below, we work with
the quintuplets defined in Propositions 3.10 and 3.11.

We introduce the random walks and the diffusions in the resistance space. Under Assumption (RW), define

𝑌 (𝑛)
𝑡 ∶= 𝜁𝑛

(

𝑋𝑡𝑎𝑛

)

, (30)

where we recall the definition of 𝜁𝑛 from (28). Let 𝐵𝛽 be a standard Brownian motion started at 𝑆𝛼0 ,𝜆(𝛽), and let 𝐻𝜆,𝛽 be the
associated time-change defined as in (7). Define a process in the resistance space by setting

𝑌 𝜆
𝑡 ∶= 𝐵𝛽

𝐻𝜆,𝛽
𝑡

.

Similarly, under Assumption (RWT),

𝑌 (𝑛)
𝑡 ∶= 𝜁𝑛

(

𝑋𝑡𝑏𝑛

)

,

and

𝑌 𝜆
𝑡 ∶= 𝐵𝛽

𝐻̃𝜆,𝛽
𝑡

,

where 𝐻̃𝜆,𝛽
𝑡 is defined in terms of (9) with 𝐵𝛽 instead of 𝐵. In this section the reader should consider all the walks above to be built

on the coupled version of the spaces. We avoid introducing specific notation to avoid unnecessary complication.
13 
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Proposition 4.1. Assume (RW). Under the coupling constructed in Section 3.2, we have that 𝐏-a.s., if 𝑛−1𝛽𝑛 → 𝛽, where 𝛽 is a continuity
oint of 𝑆𝛼0 ,𝜆, then

𝑃𝜔,𝜆∕𝑛,𝐾
𝛽𝑛

(

(

𝑛−1𝑋𝑡𝑎𝑛

)

𝑡⩾0
∈ ⋅

)

and 𝑃𝜔,𝜆∕𝑛,𝐾
𝛽𝑛

(

(𝑌 (𝑛)
𝑡 )𝑡⩾0 ∈ ⋅

)

converge respectively, weakly as probability measures on 𝐷([0,∞),R), to the laws of (𝑍𝜆
𝑡 )𝑡⩾0 started at 𝛽 and (𝑌 𝜆

𝑡 )𝑡⩾0 started at 𝑆𝛼0 ,𝜆(𝛽).
nalogously, under (RWT) we have that 𝐏̃-a.s., if 𝑛−1𝛽𝑛 → 𝛽, where 𝛽 is a continuity point of 𝑆𝛼0 ,𝜆, then

𝑃𝜔,𝜆∕𝑛,𝐾
𝛽𝑛

(

(

𝑛−1𝑋𝑡𝑏𝑛

)

𝑡⩾0
∈ ⋅

)

and 𝑃𝜔,𝜆∕𝑛,𝐾
𝛽𝑛

(

(𝑌 (𝑛)
𝑡 )𝑡⩾0 ∈ ⋅

)

converge respectively, weakly as probability measures on 𝐷([0,∞),R), to the laws of (𝑍𝜆
𝑡 )𝑡⩾0 started at 𝛽 and (𝑌 𝜆

𝑡 )𝑡⩾0 started at 𝑆𝛼0 ,𝜆(𝛽).
In particular, both the convergence statements above hold with 𝛽𝑛 = 𝛽 = 0.

Proof. The results for 𝑍𝜆 and 𝑍𝜆 are straightforward consequences of Propositions 3.10 and 3.11 and [16, Theorem 7.1]. It is
fundamental that 𝛽 is a continuity point of 𝑆𝛼0 ,𝜆. As for the 𝑌 𝜆 statement, one can proceed along the same lines, replacing the map
𝛷𝑛◦𝜁−1𝑛 in (29) with the identity map. A similar argument also gives the result for 𝑌 𝜆. □

Remark 4.2. Note that Proposition 4.1 and the dominated convergence theorem imply the weak convergence of the processes
entioned there under the annealed law. In particular, this confirms the predictions of [17, Remark 1.9] on these scaling limits.

4.2. Aging estimates under assumption (RW)

Throughout this section, we work under the assumption (RW), and under the coupling constructed in Section 3.2. We will prove
the aging statement. We restrict the space to the box [−𝐾 , 𝐾], but we will drop this in the notation for brevity’s sake. The processes
are started at 𝛽𝑛 = 𝛽 = 0 unless stated otherwise.

Let us define 𝜌(𝑛)(𝑡), respectively 𝜌(𝑡), the quenched marginal distribution of the maximum of the process (𝑛−1𝑋𝑠𝑎𝑛 )𝑠⩽𝑡, respectively
(𝑍𝜆

𝑠 )𝑠⩽𝑡. By Lemma 7.2, we know that 𝜌(𝑡) is purely atomic, so that we can define supp(𝜌(𝑡)) ⊆ supp(𝜈𝛼0 ) to be its support, i.e. the set
f its atoms. Recall that, by Proposition 3.4, Condition 1 holds and for any atom (𝑥𝓁 , 𝑣𝓁) of the measure 𝜈𝛼0 , there exists 𝑗𝓁(𝑛) ∈ Z

such that 𝑥(𝑛)𝓁 ∶= 𝑗𝓁(𝑛)∕𝑛 → 𝑥𝓁 and 𝑣(𝑛)𝓁 → 𝑣𝓁 . Moreover, recall that, under the coupling of Section 3.2, the quenched convergence of
Proposition 4.1 holds. The aim of the subsection is to prove the following result.

Proposition 4.3. Under the coupling of Section 3.2, we have that, for all 𝑡 ⩾ 0,

𝜌(𝑛)(𝑡)
𝑛→∞
→ 𝜌(𝑡),

vaguely and in the point process sense. More precisely, for every atom (𝑥𝓁 , 𝑣𝓁) of 𝜌(𝑡), there exists 𝑗𝓁(𝑛) ∈ [0, 𝐾 𝑛] such that

𝑃𝜔,𝜆∕𝑛
(

𝑋𝑎𝑛𝑡 = 𝑗𝓁(𝑛)
) 𝑛→∞

→ 𝑃𝜔,𝜆
(

𝑍𝑡 = 𝑥𝓁
)

. (31)

For the atom such that 𝑥𝓁 = 𝐾, we have 𝑗𝓁(𝑛) = 𝐾 𝑛. For all atoms 𝑥𝓁 ≠ 𝐾 of 𝜌, there exists 𝑤𝓁 > 0 such that (𝑥𝓁 , 𝑤𝓁) is an atom
of 𝜈𝛼0 . Moreover, (𝑗𝓁(𝑛)∕𝑛, 𝑤(𝑛)

𝓁 ), where 𝑤(𝑛)
𝓁 ∶= 𝑑−1𝑛,0𝑟({𝑗𝓁(𝑛), 𝑗𝓁(𝑛) + 1}) is the atom of 𝜈𝛼0 ,(𝑛) that converges to (𝑥𝓁 , 𝑤𝓁), as provided by

Proposition 3.4.
For 𝛽𝑛∕𝑛 → 𝛽 as 𝑛 → ∞, the convergence above stays valid if 𝑋 is started from 𝛽𝑛 and 𝑍 from 𝛽, as long as 𝛽 is a continuity point of

𝛼0 , i.e. 𝛽 is not an atom of 𝜈𝛼0 .
Before proving the proposition above, we will state and prove two useful lemmas.

Lemma 4.4. For all 𝑥𝓁 such that (𝑥𝓁 , 𝑤𝓁) ∈ supp(𝜌(1))

lim
𝛿→0

lim sup
𝑛→∞

𝑃𝜔,𝜆∕𝑛
(

𝑋𝑎𝑛 ∈ [𝑗𝓁(𝑛) + 1, 𝑗𝓁(𝑛) + 𝛿 𝑛]
)

= 0.

Proof. By our construction of the measures 𝜈𝛼0 ,(𝑛) and 𝜈𝛼0 and the fact that 𝑆𝛼0 ,𝜆∕𝑛,(𝑛) converges in the 𝐽1 topology to 𝑆𝛼0 ,𝜆 (see
Appendix), it is true that

𝑆𝛼0 ,𝜆∕𝑛,(𝑛)
(

𝑥(𝑛)𝓁 + 1∕𝑛
)

→ 𝑆𝛼0
(

𝑥𝓁
)

, and lim sup
𝑛→∞

𝑆𝛼0 ,𝜆∕𝑛,(𝑛)
(

𝑥(𝑛)𝓁 + 𝛿
)

⩽ 𝑆𝛼0
(

𝑥𝓁 + 𝛿
)

.

If we consider 𝑌 (𝑛)
1 to be the maximum of the walk in the resistance space defined in (30), we then obtain

lim
𝛿→0

lim sup
𝑛→∞

𝑃𝜔,𝜆∕𝑛
(

𝑋𝑎𝑛 ∈ [𝑗𝓁(𝑛) + 1, 𝑗𝓁(𝑛) + 𝛿 𝑛]
)

= lim
𝛿→0

lim sup
𝑛→∞

𝑃𝜔,𝜆∕𝑛
(

𝑌 (𝑛)
1 ∈

[

𝑆𝛼0 ,𝜆∕𝑛,(𝑛)
(

𝑥(𝑛)𝓁 + 1∕𝑛
)

, 𝑆𝛼0 ,𝜆∕𝑛,(𝑛)
(

𝑥(𝑛)𝓁 + 𝛿
)])

⩽ lim 𝑃𝜔,𝜆
(

𝑌 ∈
[

𝑆𝛼0 ,𝜆
(

𝑥
)

, 𝑆𝛼0 ,𝜆
(

𝑥 + 𝛿
)]

)

𝛿→0 1 𝓁 𝓁
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= 𝑃𝜔,𝜆
(

𝑌 1 ≡ (𝐵𝐻𝜆 )1 = 𝑆𝛼0 ,𝜆
(

𝑥𝓁
)

)

= 0,
where the second equality holds by the almost-sure right-continuity of subordinators, and the third equality is due to Lemma 7.2.
(For checking this final claim, it is useful to note that, almost-surely, 𝑆𝛼0 ,𝜆(𝑥𝓁) cannot be equal to 𝑆𝛼0 ,𝜆(𝑣−) for any 𝑣 ∈ 𝐷, where 𝐷
is the set of discontinuities of 𝑆𝛼0 . Indeed, if 𝑆𝛼0 ,𝜆(𝑥𝓁) = 𝑆𝛼0 ,𝜆(𝑣−) for such a 𝑣, then it must hold that 𝑣 > 𝑥𝓁 and moreover 𝑆𝛼0 ,𝜆 is
constant on [𝑥𝓁 , 𝑣), which cannot be the case.) □

Let us introduce the quantities

𝑇𝑍𝜆
𝑡 ∶= inf

{

𝑠 ⩽ 𝑡 ∶ 𝑍𝜆
𝑠 = 𝑍𝜆

𝑡

}

and 𝑇𝑍𝜆
𝑡 ∶= sup

{

𝑠 ⩽ 𝑡 ∶ 𝑍𝜆
𝑠 = 𝑍𝜆

𝑡

}

. (32)

One can similarly define the same quantities for the ‘‘discrete’’ process 𝑋(𝑛) ∶= (𝑛−1𝑋𝑡𝑎𝑛 )𝑡⩾0. In the following, we will write 𝜏𝑋𝑎 for
he hitting time of a point 𝑎 by a process 𝑋.

Lemma 4.5. For all 𝑥𝓁 such that (𝑥𝓁 , 𝑤𝓁) ∈ supp(𝜌(1))

lim
𝛿→0

lim sup
𝑛→∞

𝑃𝜔,𝜆∕𝑛
(

𝑋𝑎𝑛 ∈ [𝑗𝓁(𝑛) − 𝛿 𝑛, 𝑗𝓁(𝑛) − 1]
)

= 0.

Proof. Let us rephrase the problem in the following way

𝑃𝜔,𝜆∕𝑛
(

𝑋𝑎𝑛 ∈ [𝑗𝓁(𝑛) − 𝛿 𝑛, 𝑗𝓁(𝑛) − 1]
)

= 𝑃𝜔,𝜆∕𝑛
(

𝜏𝑋
(𝑛)

𝑥(𝑛)
𝓁

−𝛿
⩽ 1, 𝜏𝑋(𝑛)

𝑥(𝑛)
𝓁

> 1
)

.

For any 𝜂 > 0, we get by the law of total probability and the strong Markov property of the quenched law

𝑃𝜔,𝜆∕𝑛
(

𝜏𝑋
(𝑛)

𝑥(𝑛)
𝓁

−𝛿
⩽ 1, 𝜏𝑋(𝑛)

𝑥(𝑛)
𝓁

> 1
)

= 𝑃𝜔,𝜆∕𝑛
(

𝜏𝑋
(𝑛)

𝑥(𝑛)
𝓁

−𝛿
< 1 − 𝜂 , 𝜏𝑋(𝑛)

𝑥(𝑛)
𝓁

> 1
)

+ 𝑃𝜔,𝜆∕𝑛
(

𝜏𝑋
(𝑛)

𝑥(𝑛)
𝓁

−𝛿
∈ [1 − 𝜂 , 1], 𝜏𝑋(𝑛)

𝑥(𝑛)
𝓁

> 1
)

⩽ 𝑃𝜔,𝜆∕𝑛

𝑥(𝑛)
𝓁

−𝛿

(

𝜏𝑋
(𝑛)

𝑥(𝑛)
𝓁

⩾ 𝜂
)

+ 𝑃𝜔,𝜆∕𝑛
0

(

𝜏𝑋
(𝑛)

𝑥(𝑛)
𝓁

−𝛿
∈ [1 − 𝜂 , 1]

)

. (33)

The rest of the proof will focus on finding bounds from above for the last two quantities. Let us deal with the first one. For 𝛿′ > 100𝛿,
a union bound gives that

𝑃𝜔,𝜆∕𝑛

𝑥(𝑛)
𝓁

−𝛿

(

𝜏𝑋
(𝑛)

𝑥(𝑛)
𝓁

⩾ 𝜂
)

⩽ 𝑃𝜔,𝜆∕𝑛

𝑥(𝑛)
𝓁

−𝛿

(

𝜏𝑋
(𝑛)

𝑥(𝑛)
𝓁

−𝛿′ ,𝑥(𝑛)
𝓁

⩾ 𝜂
)

+ 𝑃𝜔,𝜆∕𝑛

𝑥(𝑛)
𝓁

−𝛿

(

𝜏𝑋
(𝑛)

𝑥(𝑛)
𝓁

> 𝜏𝑋(𝑛)

𝑥(𝑛)
𝓁

−𝛿′

)

,

where 𝜏𝑋𝑎,𝑏 ∶= min{𝜏𝑋𝑎 , 𝜏𝑋𝑏 }. Using a well-known electric networks formula (see, for example, [10, Equation (A.1)]) we get, for the
second term in the sum,

𝑃𝜔,𝜆∕𝑛

𝑥(𝑛)
𝓁

−𝛿

(

𝜏𝑋
𝑥(𝑛)
𝓁

−𝛿′
< 𝜏𝑋

𝑥(𝑛)
𝓁

)

=
𝑅𝜆∕𝑛 (𝑗𝓁(𝑛) − 𝛿 𝑛, 𝑗𝓁(𝑛)

)

𝑅𝜆∕𝑛
(

𝑗𝓁(𝑛) − 𝛿′𝑛, 𝑗𝓁(𝑛)
) .

From the almost sure convergence of the rescaled effective resistance we also get that

lim sup
𝑛→∞

𝑅𝜆∕𝑛 (𝑗𝓁(𝑛) − 𝛿 𝑛, 𝑗𝓁(𝑛)
)

𝑅𝜆∕𝑛
(

𝑗𝓁(𝑛) − 𝛿′𝑛, 𝑗𝓁(𝑛)
) ⩽

𝑆𝛼0 ,𝜆(𝑥−𝓁 ) − 𝑆𝛼0 ,𝜆(𝑥𝓁 − 2𝛿)
𝑆𝛼0 ,𝜆(𝑥−𝓁 ) − 𝑆𝛼0 ,𝜆(𝑥𝓁 − 𝛿′)

. (34)

Let us now deal with the other term. Applying Markov’s inequality and the commute time identity ([32, Proposition 10.7]), we get

𝑃𝜔,𝜆∕𝑛

𝑥(𝑛)
𝓁

−𝛿

(

𝜏𝑋
(𝑛)

𝑥(𝑛)
𝓁

−𝛿′ ,𝑥(𝑛)
𝓁

⩾ 𝜂
)

⩽
𝑅𝜆∕𝑛 (𝑗𝓁(𝑛) − 𝛿 𝑛, {𝑗𝓁(𝑛), 𝑗𝓁(𝑛) − 𝛿′𝑛}

)

𝜂 𝑛𝑑𝑛,0
2

𝑗𝓁 (𝑛)−1
∑

𝑖=𝑗𝓁 (𝑛)−𝛿′𝑛
𝑐𝜆∕𝑛({𝑖, 𝑖 + 1}),

⩽
𝑅𝜆∕𝑛 (𝑗𝓁(𝑛) − 𝛿 𝑛, 𝑗𝓁(𝑛)

)

𝜂 𝑛𝑑𝑛,0
2

𝑗𝓁 (𝑛)−1
∑

𝑖=𝑗𝓁 (𝑛)−𝛿′𝑛
𝑐𝜆∕𝑛({𝑖, 𝑖 + 1}).

Because we work under the coupling, by Proposition 3.10 and using the strong law of large numbers, we obtain

lim sup
𝑛→∞

𝑅𝜆∕𝑛 (𝑗𝓁(𝑛) − 𝛿 𝑛, 𝑗𝓁(𝑛)
)

𝜂 𝑛𝑑𝑛,0
2

𝑗𝓁 (𝑛)−1
∑

𝑖=𝑗𝓁 (𝑛)−𝛿′𝑛
𝑐𝜆∕𝑛({𝑖, 𝑖 + 1})

⩽ 4𝛿′𝑒2𝜆𝐾𝐄[𝑐({0, 1})]
𝑆𝛼0 ,𝜆(𝑥−𝓁 ) − 𝑆𝛼0 ,𝜆(𝑥𝓁 − 2𝛿)

𝜂
. (35)

Let us now focus on the second quantity appearing in (33). Recall the definitions of (32), we claim that

lim sup
𝑛→∞

𝑃𝜔,𝜆∕𝑛
(

𝜏𝑋
(𝑛)

𝑥(𝑛)
𝓁

−𝛿
∈ [1 − 𝜂 , 1]

)

⩽ lim sup
𝑛→∞

𝑃𝜔,𝜆∕𝑛
(

𝑇𝑋(𝑛)

1 ⩾ 1 − 𝜂
)

⩽ 𝑃𝜔,𝜆
(

𝑇𝑍
1 ⩾ 1 − 2𝜂

)

. (36)

We just need to justify the second inequality. Let us consider the coupled version on which (𝑋(𝑛)
𝑡 )𝑡∈[0,1] converges 𝑃𝜔,𝜆∕𝑛 almost-surely

ath by path in the uniform topology towards (𝑍𝜆) (which is true on bounded intervals by the continuity of the limit 𝑍𝜆, see [17,
𝑡 𝑡∈[0,1]
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Lemma 5.4]). Note that the two probabilities above still make sense, but we can now compare the two events {𝑇𝑋(𝑛)

1 ⩾ 1 − 𝜂} and
{𝑇𝑍𝜆

1 ⩾ 1 − 2𝜂} on the same probability space. In particular, we want to show that, for all 𝑛 large enough
{

𝑇𝑋(𝑛)

1 ⩾ 1 − 𝜂
}

⊆
{

𝑇𝑍𝜆

1 ⩾ 1 − 2𝜂
}

. (37)

One can prove this statement by showing that {𝑇𝑍𝜆

1 < 1 − 2𝜂} ⊆ {𝑇𝑋(𝑛)

1 < 1 − 𝜂} for all 𝑛 large enough. Let us assume 𝑇𝑍𝜆

1 < 1 − 2𝜂,
hen by the continuity of the process 𝑍𝜆, we get

inf
𝑡∈[1−2𝜂 ,1]

|

|

|

𝑍𝜆
𝑡 −𝑍𝜆

1
|

|

|

> 0.

Thanks to the uniform convergence of 𝑋(𝑛) towards 𝑍𝜆 we also get that

lim
𝑛→∞

inf
𝑡∈[1−𝜂 ,1]

|

|

|

𝑋(𝑛)
𝑡 −𝑍𝜆

1
|

|

|

> 0 and lim
𝑛→∞

inf
𝑡∈[0,1]

|

|

|

𝑋(𝑛)
𝑡 −𝑍𝜆

1
|

|

|

= 0.

But then we can always choose 𝑛 large enough such that 𝑇𝑋(𝑛)

1 < 1 − 𝜂, since we know that at time 𝑇𝑋(𝑛)

1 the process 𝑋(𝑛) is close to
𝜆
1 . Hence we have shown that (37) holds for large 𝑛.

We can now finish the proof of the lemma by noticing that the limit superior (as 𝑛 → ∞) of the two quantities of (33) is bounded,
for all 𝜂 > 0, by the sum of the quantities of (34), (35) and (36). By continuity of probability and Lemma 7.1, we get that

lim
𝜂→0

𝑃𝜔,𝜆
(

𝑇𝑍
1 ⩾ 1 − 2𝜂

)

= 𝑃𝜔,𝜆
(

𝑇𝑍
1 = 1

)

⩽ 𝑃𝜔,𝜆
(

𝑍1 = 𝑍1

)

= 0.

Consequently, for all 𝜀 > 0 we can choose 𝜂∗ > 0 such that 𝑃𝜔,𝜆
(

𝑇𝑍
1 ⩾ 1 − 2𝜂∗

)

⩽ 𝜀∕3. Fixing this quantity and using the existence
f the left limits of the process 𝑆𝛼0 , we can find 𝛿∗ small enough (we can fix 𝛿′ to any finite value) such that (34) and (35) are

respectively less than 𝜀∕3. Overall, we have proved that, for all 𝜀 > 0, there exists 𝛿∗ > 0 such that, for all 𝛿 ⩽ 𝛿∗,

lim sup
𝑛→∞

𝑃𝜔,𝜆∕𝑛
(

𝑋𝑎𝑛 ∈ [𝑗𝓁(𝑛) − 𝛿 𝑛, 𝑗𝓁(𝑛) − 1]
)

⩽ 𝜀,

which is enough to conclude the proof. □

We are now ready to prove Proposition 4.3.

Proof of Proposition 4.3. We will prove the result for 𝑡 = 1 for notational simplicity, but the same proof holds for general 𝑡 > 0.
sing the 𝐽1-convergence of processes, the continuity of the limiting process and [37, Theorem 13.4.1], we have that the quenched

distribution of the maximum converges in 𝐽1 to the quenched distribution of the maximum, i.e.
(

𝑛−1𝑋𝑡𝑎𝑛

)

𝑡∈[0,1]

(d)
→ (𝑍𝜆

𝑡 )𝑡∈[0,1].

This implies the vague convergence statement (it is actually stronger since it involves the whole process and not just the marginal).
o we only need to prove Condition 1 for 𝜌(𝑛)(1), 𝑛 ⩾ 1, and 𝜌(1). Let us fix any atom 𝑥𝓁 ∈ supp(𝜌(1)) (including the special atom
𝓁 = 𝐾 in the analysis), we need to show that there exists 𝑗(𝑛)𝓁 ∕𝑛 → 𝑥𝓁 such that

𝑃𝜔,𝜆∕𝑛
(

𝑛−1𝑋𝑎𝑛 = 𝑗(𝑛)𝓁 ∕𝑛
) 𝑛→∞

→ 𝑃𝜔,𝜆
(

𝑍1 = 𝑥𝓁
)

.

We claimed in the statement that the only good candidate for 𝑗(𝑛)𝓁 is the index such that 𝑗(𝑛)𝓁 ∕𝑛 → 𝑥𝓁 and 𝑑−1𝑛,0𝑟({𝑗
(𝑛)
𝓁 , 𝑗(𝑛)𝓁 + 1}) → 𝜈𝛼0 (𝑥𝓁).

That a point satisfying these conditions exists is guaranteed by the almost-sure point process convergence of 𝜈(𝑛),𝛼0 towards 𝜈𝛼0 ,
and by the fact that 𝜌(1) is absolutely continuous with respect to 𝜈𝛼0 , by Lemma 7.2. Note that it is immediate to get that
𝑑−1𝑛,0𝑟

𝜆∕𝑛({𝑗(𝑛)𝓁 , 𝑗(𝑛)𝓁 + 1}) also converges to 𝜈𝛼0 (𝑥𝓁)𝑒−𝜆𝑥𝓁 .
Let us recall the notation 𝑥(𝑛)𝓁 = 𝑗𝓁(𝑛)∕𝑛 and note that

lim sup
𝑛→∞

𝑃𝜔,𝜆∕𝑛
(

𝑛−1𝑋𝑎𝑛 = 𝑥(𝑛)𝓁

)

⩽ 𝑃𝜔,𝜆
(

𝑍1 = 𝑥𝓁
)

,

otherwise the vague convergence statement would be violated. We are left with the task of proving that

lim inf
𝑛→∞

𝑃𝜔,𝜆∕𝑛
(

𝑛−1𝑋𝑎𝑛 = 𝑥(𝑛)𝓁

)

⩾ 𝑃𝜔,𝜆
(

𝑍1 = 𝑥𝓁
)

. (38)

For convenience, let us fix the notation 𝑋(𝑛)
𝑡 ∶= 𝑛−1𝑋𝑡𝑎𝑛 . By convergence in distribution in the 𝐽1 topology we get that

𝑃𝜔,𝜆
(

𝑍1 = 𝑥𝓁
)

= lim
𝛿→0

𝑃𝜔,𝜆
(

𝑍1 ∈ [𝑥𝓁 − 𝛿 , 𝑥𝓁]
)

⩽ lim
𝛿→0

lim inf
𝑛→∞

𝑃𝜔,𝜆∕𝑛
(

𝑋(𝑛)
1 ∈ [𝑥(𝑛)𝓁 − 𝛿 , 𝑥(𝑛)𝓁 + 𝛿]

)

⩽ lim inf
𝑛→∞

𝑃𝜔,𝜆∕𝑛
(

𝑋(𝑛)
1 = 𝑥(𝑛)𝓁

)

+ lim
𝛿→0

lim sup
𝑛→∞

{

𝑃𝜔,𝜆∕𝑛
(

𝑋(𝑛)
1 ∈

[

𝑥(𝑛)𝓁 + 1∕𝑛, 𝑥(𝑛)𝓁 + 𝛿
])

+ 𝑃𝜔,𝜆∕𝑛
(

𝑋(𝑛)
1 ∈

[

𝑥(𝑛)𝓁 − 𝛿 , 𝑥(𝑛)𝓁

))}

= lim inf 𝑃𝜔,𝜆∕𝑛
(

𝑋(𝑛) = 𝑥(𝑛)
)

,

𝑛→∞ 1 𝓁
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where we applied Lemmas 4.4 and 4.5 in the last equality. This completes the proof of (38), and the extension to a generic starting
point 𝛽𝑛 is straightforward. Thus we conclude the proof of the proposition. □

4.3. Sub-aging estimates under assumption (RWT)

Throughout this section, we work under the assumption (RWT), and under the coupling constructed in Section 3.2. We will
rove the sub-aging statement. We restrict the space to the box [−𝐾 , 𝐾], but we will drop this in the notation for simplicity. The
rocesses are started at 𝛽𝑛 = 𝛽 = 0 unless stated otherwise. Let us recall the definition of the following quantity for all 𝑖 ∈ Z

𝑐𝜆∕𝑛(𝑖) ∶= 𝑐𝜆∕𝑛({𝑖, 𝑖 − 1}) + 𝑐𝜆∕𝑛({𝑖, 𝑖 + 1}), (39)

which is a quenched invariant measure associated with the random walk 𝑋 under 𝑃𝜔,𝜆∕𝑛.

Proposition 4.6. For a fixed 𝑡 > 0, let 𝜌(𝑛)(𝑡) be the quenched marginal distribution of 𝑛−1𝑋𝑡𝑏𝑛 and let 𝜌(𝑡) denote the one of 𝑍𝑡, then on
he coupling described in Section 3.2 we have that, for any fixed 𝑡 ⩾ 0,

𝜌(𝑛)(𝑡)
𝑛→∞
→ 𝜌(𝑡),

vaguely. Moreover, for any atom in (𝑥𝓁 , 𝑣𝓁) ∈ supp(𝜌(𝑡)) we have that there exists 𝑗𝓁(𝑛) ∈ Z such that

𝑃𝜔,𝜆∕𝑛
(

𝑋𝑡𝑏𝑛 ∈ {𝑗𝓁(𝑛), 𝑗𝓁(𝑛) + 1}
)

→ 𝑃𝜔,𝜆
(

𝑍𝑡 ∈ 𝑥𝓁
)

.

More precisely, there exists 𝑤𝓁 such that (𝑥𝓁 , 𝑤𝓁) is an atom of 𝜈𝛼∞ and 𝑗𝓁(𝑛) is the index such that 𝑗𝓁(𝑛)∕𝑛 → 𝑥𝓁 and 𝑑−1𝑛,∞𝑐({𝑗𝓁(𝑛), 𝑗𝓁(𝑛) +
1}) = 𝑤(𝑛)

𝓁 → 𝑤𝓁 , where (𝑗𝓁(𝑛)∕𝑛, 𝑤(𝑛)
𝓁 ) is the atom of 𝜈𝛼∞ ,(𝑛) that converges to (𝑥𝓁 , 𝑤𝓁), as provided by Proposition 3.4.

For 𝛽𝑛∕𝑛 → 𝛽 as 𝑛 → ∞, the convergence above stays valid if 𝑋(𝑛) is started from 𝛽𝑛∕𝑛 and 𝑍 from 𝛽, as long as 𝛽 is a continuity point
f 𝑆𝛼0 , i.e. 𝛽 is not an atom of 𝜈𝛼0 .

To prove the proposition above, we will need the following result. In the following we denote 𝑥(𝑛)𝓁 ∶= 𝑗𝓁(𝑛)∕𝑛, where 𝑗𝓁(𝑛) is in
he sense of the statement of Proposition 4.6.

Lemma 4.7. Let (𝑥𝓁 , 𝑤𝓁) be an atom of 𝜈𝛼∞ and (𝑥(𝑛)𝓁 , 𝑤(𝑛)
𝓁 ) be the sequence converging to (𝑥𝓁 , 𝑤𝓁), as provided by Proposition 3.4. There

exists a sequence 𝜂 = 𝜂(𝛿) → 0 as 𝛿 → 0 such that

lim
𝛿→0

𝜂(𝛿)→0

lim inf
𝑛→∞

𝑃𝜔,𝜆∕𝑛
(

𝑋(𝑛)
1 ∈

{

𝑥(𝑛)𝓁 , 𝑥(𝑛)𝓁 + 1∕𝑛
}

|

|

|

|

|

|

𝑋(𝑛)
1−𝜂 − 𝑥(𝑛)𝓁

|

|

|

< 𝛿
)

= 1.

We will prove the above lemma at the end of this section. We first proceed to the proof of the proposition.

Proof of Proposition 4.6. We prove the statement for 𝑡 = 1, but the proof is identical for arbitrary 𝑡 ⩾ 0. First, the fact that
he support of 𝜌(1) is a subset of 𝜈𝛼∞ (for the first coordinate) is a consequence of Lemma 7.4. Hence, let us fix an atom (𝑥𝓁 , 𝑤𝓁)
f 𝜈𝛼∞ , and let (𝑥(𝑛)𝓁 , 𝑤(𝑛)

𝓁 ) be the sequence converging to (𝑥𝓁 , 𝑤𝓁), as provided by Proposition 3.4. To shorten the notation, let us
rite 𝑋(𝑛)

1 ∶= 𝑛−1𝑋𝑏𝑛 . Let us start by recalling that vague convergence follows from 𝐽1 process convergence in distribution and the
ontinuity of the limiting process. Moreover, vague convergence implies that

lim sup
𝑛→∞

𝑃𝜔,𝜆∕𝑛
(

𝑋(𝑛)
1 ∈

{

𝑥(𝑛)𝓁 , 𝑥(𝑛)𝓁 + 1∕𝑛
})

⩽ 𝑃𝜔,𝜆
(

𝑍1 = 𝑥𝓁
)

.

We are left with the task of proving that if we fix any atom (𝑥𝓁 , 𝑣𝓁) ∈ supp(𝜌(𝑡)), then

lim inf
𝑛→∞

𝑃𝜔,𝜆∕𝑛
(

𝑋(𝑛)
1 ∈

{

𝑥(𝑛)𝓁 , 𝑥(𝑛)𝓁 + 1∕𝑛
})

⩾ 𝑃𝜔,𝜆
(

𝑍1 = 𝑥𝓁
)

.

We notice that, for all 𝛿 , 𝜂 > 0,

𝑃𝜔,𝜆∕𝑛
(

𝑋(𝑛)
1 ∈

{

𝑥(𝑛)𝓁 , 𝑥(𝑛)𝓁 + 1∕𝑛
})

⩾ 𝑃𝜔,𝜆∕𝑛
(

𝑋(𝑛)
1 ∈

{

𝑥(𝑛)𝓁 , 𝑥(𝑛)𝓁 + 1∕𝑛
}

|

|

|

|

|

|

𝑋(𝑛)
1−𝜂 − 𝑥(𝑛)𝓁

|

|

|

< 𝛿
)

𝑃𝜔,𝜆∕𝑛
(

|

|

|

𝑋(𝑛)
1−𝜂 − 𝑥(𝑛)𝓁

|

|

|

< 𝛿
)

,

so that

lim inf
𝑛→∞

𝑃𝜔,𝜆∕𝑛
(

𝑋(𝑛)
1 ∈ {𝑥(𝑛)𝓁 , 𝑥(𝑛)𝓁 + 1∕𝑛}

)

⩾

lim
𝛿→0

𝜂(𝛿)→0

lim inf
𝑛→∞

𝑃𝜔,𝜆∕𝑛
(

𝑋(𝑛)
1 ∈ {𝑥(𝑛)𝓁 , 𝑥(𝑛)𝓁 + 1∕𝑛}||

|

|

|

|

𝑋(𝑛)
1−𝜂 − 𝑥(𝑛)𝓁

|

|

|

< 𝛿
)

𝑃𝜔,𝜆∕𝑛
(

|

|

|

𝑋(𝑛)
1−𝜂 − 𝑥(𝑛)𝓁

|

|

|

< 𝛿
)

, (40)

for all possible 𝛿 → 0 and 𝜂(𝛿) → 0. Let us focus on the second term in (40). We observe that
{

|

|

|

𝑋(𝑛)
1−𝜂 − 𝑥(𝑛)𝓁

|

|

|

< 𝛿
}

⊇
{

|

|𝑋(𝑛) −𝑍𝜆 |

| < 𝛿} ∩
{

|

|𝑥 − 𝑥(𝑛)|| < 𝛿} ∩
{

|

|𝑍𝜆 −𝑍𝜆 |

| < 𝛿} ∩
{

𝑍𝜆 = 𝑥
}

.

|

1−𝜂 1−𝜂
| 3 |

𝓁 𝓁
| 3 |

1 1−𝜂
| 3 1 𝓁
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Fig. 1. Visualisation the interval around {𝑗𝓁 (𝑛), 𝑗𝓁 (𝑛) + 1}. The two points are visualised as collapsed for simplicity.

Note that, in the last expression, the event is well-defined since we consider the coupled version of 𝑋(𝑛) and 𝑍𝜆, and we can use
Proposition 4.1 and Skorohod’s representation theorem, together with the fact that 𝑍𝜆 is continuous almost-surely. Moreover, the
event {|𝑥𝓁 − 𝑥(𝑛)𝓁 | < 𝛿∕3} is measurable with respect to the environment and is thus deterministically true for all 𝑛 large enough by
Proposition 3.4 and the construction of Section 3.2. Using a union bound we obtain

𝑃𝜔,𝜆∕𝑛
(

|

|

|

𝑋(𝑛)
1−𝜂 − 𝑥(𝑛)𝓁

|

|

|

< 𝛿
)

⩾ 𝑃𝜔,𝜆
(

𝑍1 = 𝑥𝓁
)

− 𝑃𝜔,𝜆∕𝑛
(

|

|

|

𝑋(𝑛)
1−𝜂 −𝑍𝜆

1−𝜂
|

|

|

⩾ 𝛿∕3
)

− 𝑃𝜔,𝜆
(

|

|

|

𝑍1 −𝑍1−𝜂
|

|

|

⩾ 𝛿∕3
)

.

Plugging the last estimate back into (40) and choosing 𝜂(𝛿) → 0, we observe that

lim inf
𝑛→∞

𝑃𝜔,𝜆∕𝑛
(

𝑋(𝑛)
1 ∈

{

𝑥(𝑛)𝓁 , 𝑥(𝑛)𝓁 + 1∕𝑛
})

⩾

𝑃𝜔,𝜆
(

𝑍1 = 𝑥0
)

lim
𝛿→0

𝜂(𝛿)→0

lim inf
𝑛→∞

𝑃𝜔,𝜆∕𝑛
(

𝑋(𝑛)
1 ∈

{

𝑥(𝑛)𝓁 , 𝑥(𝑛)𝓁 + 1∕𝑛
}

|

|

|

|

|

|

𝑋(𝑛)
1−𝜂 − 𝑥(𝑛)𝓁

|

|

|

< 𝛿
)

− lim
𝛿→0

lim sup
𝑛→∞

𝑃𝜔,𝜆∕𝑛
(

|

|

|

𝑋(𝑛)
1−𝜂 −𝑍𝜆

1−𝜂
|

|

|

⩾ 𝛿∕3
)

(41)

− lim
𝛿→0

𝜂(𝛿)→0

𝑃𝜔,𝜆
(

|

|

|

𝑍1 −𝑍1−𝜂
|

|

|

⩾ 𝛿∕3
)

. (42)

The term in (41) is 0 using Proposition 4.1 and the coupling given by Skorohod’s representation theorem. The term (42) is 0 by
Lemma 7.5. The result then follows from Lemma 4.7. The extension to a generic starting point 𝛽𝑛 is straightforward, and we thus
onclude the proof. □

Our goal is now to prove Lemma 4.7. For this purpose, we will first state and prove three lemmas providing random walks
estimates on the interval we define below. We will work with an atom (𝑥𝓁 , 𝑤𝓁) of 𝜈𝛼∞ and (𝑗(𝑛)𝓁 ∕𝑛, 𝑤(𝑛)

𝓁 ) the sequence converging to
(𝑥𝓁 , 𝑤𝓁) provided by Proposition 3.4. Let us fix 𝛿′ > 𝛿 > 0 and the following intervals:

• 𝐼𝛿𝑛 ∶=
[

𝑗𝓁(𝑛) − 𝛿 𝑛, 𝑗𝓁(𝑛) + 1 + 𝛿 𝑛];
• 𝐼𝛿′𝑛 ∶=

[

𝑗𝓁(𝑛) − 𝛿′𝑛, 𝑗𝓁(𝑛) + 1 + 𝛿′𝑛
]

.

See Fig. 1.
For a subset 𝐴 ⊂ Z, let us define 𝜏𝑋(𝑛) (𝐴) ∶= inf {𝑠 ⩾ 0 ∶ 𝑋(𝑛)

𝑠 ∈ 𝐴} to be the first hitting time of the set 𝐴 for 𝑋(𝑛). For any 𝜗 > 0
and 𝑦 ∈ R, define

𝛥+,𝛼0
𝑦 (𝜗) ∶= 𝑆𝛼0 ,𝜆(𝑦 + 𝜗) − 𝑆𝛼0 ,𝜆(𝑦), and 𝛥−,𝛼0

𝑦 (𝜗) ∶= 𝑆𝛼0 ,𝜆(𝑦−) − 𝑆𝛼0 ,𝜆(𝑦 − 𝜗).

Note that by the definition of 𝑗𝓁(𝑛) given below (26), 𝐼𝛿𝑛 ∕𝑛 contains the interval [𝑥𝓁 − 𝛿 , 𝑥𝓁 + 𝛿] almost-surely by construction
(respectively the same works with 𝛿′).

Lemma 4.8. The walk, started inside 𝐼𝛿𝑛 , hits {𝑗𝓁(𝑛), 𝑗𝓁(𝑛) + 1} before exiting 𝐼𝛿′𝑛 , with high probability. More precisely, there exists a
positive constant 𝐶1 > 0 such that

lim sup
𝑛→∞

sup
𝑥∈𝐼𝛿𝑛

𝑃𝜔,𝜆∕𝑛
𝑥

(

𝜏𝑋
(𝑛) (

{𝑗𝓁(𝑛), 𝑗𝓁(𝑛) + 1}) > 𝜏𝑋
(

(𝐼𝛿
′

𝑛 )𝑐
))

⩽ 𝐶1

(

𝛥+,𝛼0
𝑥𝓁 (𝛿)

𝛥+,𝛼0
𝑥𝓁 (𝛿′∕2)

+
𝛥−,𝛼0
𝑥𝓁 (2𝛿)

𝛥−,𝛼0
𝑥𝓁 (𝛿′)

)

.

Proof. Let us assume that 𝑥 ∈
[

𝑗𝑛(𝓁) + 1, 𝑗𝑛(𝓁) + 𝑛𝛿
]

. For all 𝑥 ∈ 𝐼𝛿𝑛 we have by well known electrical networks formulas (for
nstance, [32, Eqn. (9.13)]) that

𝑃𝜔,𝜆∕𝑛
𝑥

(

𝜏𝑋
(𝑛) (

{𝑗𝓁(𝑛), 𝑗𝓁(𝑛) + 1}) > 𝜏𝑋
(

(𝐼𝛿
′

𝑛 )𝑐
))

=
𝑅𝜆∕𝑛 (𝑗𝓁(𝑛) + 1, 𝑥)

𝑅𝜆∕𝑛
(

𝑗𝓁(𝑛) + 1, 𝑗𝓁(𝑛) + ⌊𝑛𝛿′⌋ + 2) .

As we work under the coupling of Section 3.2, we have that, almost surely,

lim sup
𝑛→∞

sup
𝑥∈[𝑗 (𝓁)+1,𝑗 (𝓁)+1+𝑛𝛿]

𝑅𝜆∕𝑛 (𝑥, 𝑗𝓁(𝑛) + 1)

𝑅𝜆∕𝑛
(

𝑗 (𝑛) + 1, 𝑗 (𝑛) + 1 + ⌊𝑛𝛿′⌋ + 1) ⩽ 𝐶1
𝛥+,𝛼0
𝑥𝓁 (𝛿)

𝛥+,𝛼0 (𝛿′∕2)
.

𝑛 𝑛 𝓁 𝓁 𝑥𝓁
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Following symmetric arguments for 𝑥 ∈
[

𝑗𝑛(𝓁) − 𝑛𝛿 , 𝑗𝑛(𝓁)
]

(taking into account the asymmetry of the jumps of 𝑆𝛼0 ,𝜆), we conclude
he proof. □

The lemma below shows that a walk started inside 𝐼𝛿𝑛 and reflected at the boundary of 𝐼𝛿′𝑛 hits {𝑗𝓁(𝑛), 𝑗𝓁(𝑛) + 1} quickly. We will
denote 𝐸𝜔,𝜆∕𝑛

𝑥,|𝐼𝛿′𝑛 |

the expectation associated with this reflected random walk, started at 𝑥.

Lemma 4.9. There exists a positive constant 𝐶2 > 0 such that

lim sup
𝑛→∞

sup
𝑥∈𝐼𝛿𝑛

𝐸𝜔,𝜆∕𝑛
𝑥,|𝐼𝛿′𝑛 |

[

𝜏𝑋 (𝑥, {𝑗𝓁(𝑛), 𝑗𝓁(𝑛) + 1})
]

⩽ 𝐶2

(

𝛥+,𝛼0
𝑥𝓁 (𝛿) + 𝛥−,𝛼0

𝑥𝓁 (2𝛿)
) (

𝛥+,𝛼∞
𝑥𝓁 (𝛿′) + 𝛥−,𝛼∞

𝑥𝓁 (2𝛿′)
)

𝑏𝑛.

Proof. As we consider the reflected random walk, the network it evolves on is finite, and thus we can then apply the commute
time identity ([32, Prop. 10.7] and [32, Cor. 2.21]) and get that, for any 𝑥 ∈ {𝑗𝑛(𝓁) + 1, 𝑗𝑛(𝓁) + 𝑛𝛿}

𝐸𝜔,𝜆∕𝑛
𝑥,|𝐼𝛿′𝑛 |

[

𝜏𝑋 (𝑥, {𝑗𝓁(𝑛), 𝑗𝓁(𝑛) + 1})
]

⩽ 𝑅𝜆∕𝑛 (𝑥, 𝑗𝓁(𝑛) + 1)
𝑗𝑛(𝓁)+𝑛𝛿′
∑

𝑖=𝑗𝓁 (𝑛)+1
𝑐𝜆∕𝑛({𝑖, 𝑖 + 1}).

As we work under the coupling of Section 3.2, we obtain that

lim sup
𝑛→∞

sup
𝑥∈{𝑗𝑛(𝓁)+1,𝑗𝑛(𝓁)+𝑛𝛿}

𝑅𝜆∕𝑛 (𝑥, 𝑗𝓁(𝑛) + 1)
𝑗𝑛(𝓁)+𝑛𝛿′
∑

𝑖=𝑗𝓁 (𝑛)+1
𝑐𝜆∕𝑛({𝑖, 𝑖 + 1})

⩽ 𝐶2𝑑𝑛,∞𝑑𝑛,0𝛥
+,𝛼∞
𝑥𝓁 (𝛿′)𝛥+,𝛼0

𝑥𝓁 (𝛿).

A symmetric argument for 𝑥 ∈ {𝑗𝑛(𝓁) − 𝛿 𝑛, 𝑗𝑛(𝓁)} completes the proof. □

Lemma 4.10. A walk started inside {𝑗𝓁(𝑛), 𝑗𝓁(𝑛) + 1} exits 𝐼𝛿′𝑛 slowly enough, because it spends a lot of time around its starting point.
More precisely, for all 𝜂 > 0, we have that

lim inf
𝑛→∞

min
𝑥∈{𝑥(𝑛)

𝓁
,𝑥(𝑛)
𝓁

+1∕𝑛}
𝑃𝜔,𝜆∕𝑛
𝑥

(

𝑋(𝑛)
[0,𝜂] ∈

[

𝑥𝓁 − 𝛿′, 𝑥𝓁 + 𝛿′
]

)

⩾ 𝑃𝜔,𝜆
𝑥𝓁

(

‖

‖

‖

𝑍[0,𝜂] − 𝑥𝓁
‖

‖

‖∞
> 𝛿′

2

)

.

Here 𝑋[0,𝑡] denotes the whole trajectory of the process 𝑋 between time 0 and 𝑡.

Proof. The key step of the proof is recalling from Proposition 4.1 that 𝐏̃ almost surely, on the coupling of Section 3.2 we have that
for 𝛽𝑛 ∈ {𝑥(𝑛)𝓁 , 𝑥(𝑛)𝓁 + 1∕𝑛}

𝑃𝜔,𝜆∕𝑛
𝛽𝑛

(

(

𝑛−1𝑋𝑡𝑏𝑛

)

𝑡⩾0
∈ ⋅

)

,

converges, weakly as a probability measures on 𝐷([0,∞),R), to the law of (𝑍𝜆
𝑡 )𝑡⩾0 started from 𝑥𝓁 . To establish this fact, one just

eeds to notice that 𝑥𝓁 is almost-surely a continuity point for the resistance metric. Since 𝑍𝜆
𝑡 is almost-surely continuous, using

korohod’s representation theorem, we can couple the processes so that 𝑃𝜔,𝜆∕𝑛
𝛽𝑛

almost surely

sup
𝑡∈[0,𝜂(𝛿)]

‖

‖

‖

𝑋(𝑛)
𝑡 −𝑍𝜆

𝑡
‖

‖

‖∞
→ 0, as 𝑛 → ∞.

Then, we can write that, for 𝛽𝑛 ∈
{

𝑥(𝑛)𝓁 , 𝑥(𝑛)𝓁 + 1∕𝑛
}

lim inf
𝑛→∞

𝑃𝜔,𝜆∕𝑛
𝛽𝑛

(

𝑋(𝑛)
[0,𝜂] ∈

[

𝑥𝓁 − 𝛿′, 𝑥𝓁 + 𝛿′
]

)

⩾

lim inf
𝑛→∞

𝑃𝜔,𝜆∕𝑛
𝛽𝑛 ,𝑥𝓁

(

‖

‖

‖

𝑋(𝑛)
[0,𝜂] −𝑍𝜆

[0,𝜂]
‖

‖

‖∞
⩽ 𝛿′

3
, ‖‖
‖

𝑍𝜆
[0,𝜂] − 𝑥𝓁

‖

‖

‖∞
⩽ 𝛿′

2

)

.

Using the coupling, we get that the first event in the last probability happens almost-surely for all 𝑛 large enough. So we get the
following bound

lim inf
𝑛→∞

𝑃𝜔,𝜆∕𝑛
𝛽𝑛

(

𝑋(𝑛)
[0,𝜂] ∈

[

𝑥𝓁 − 𝛿′, 𝑥𝓁 + 𝛿′
]

)

⩾ 𝑃𝜔,𝜆
𝑥𝓁

(

‖

‖

‖

𝑍[0,𝜂] − 𝑥𝓁
‖

‖

‖∞
⩽ 𝛿′

2

)

,

as desired. □

Lemma 4.11. When the random walk is inside 𝐼𝛿′𝑛 , then it spends almost all the time on the set {𝑗𝓁(𝑛), 𝑗𝓁(𝑛) + 1}. More precisely, there
xists a positive constant 𝐶4 > 0 such

lim sup
𝑛→∞

sup
𝑠>0

max
𝛽𝑛∈{𝑗𝓁 (𝑛),𝑗𝓁 (𝑛)+1}

𝑃𝜔,𝜆∕𝑛
𝛽𝑛 ,|𝐼𝛿

′
𝑛 |

(

𝑋𝑠 ∉ {𝑗𝓁(𝑛), 𝑗𝓁(𝑛) + 1}
)

⩽ 𝐶4

(

𝛥+,𝛼∞
𝑥𝓁 (𝛿′) + 𝛥−,𝛼∞

𝑥𝓁 (2𝛿′)
)

𝜈𝛼∞ (𝑥𝓁)𝑒−2𝜆𝐾
.
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Proof. Start by observing that

𝜋(𝑥) = 𝑐𝜆∕𝑛(𝑥)
𝑐𝜆∕𝑛({𝑗𝓁(𝑛), 𝑗𝓁(𝑛) + 1})

is an invariant measure for the walk and 𝜋(𝛽𝑛) ⩾ 1. Hence, for either value of 𝛽𝑛, we have that, for all 𝑠 > 0

𝑃𝜔,𝜆∕𝑛
𝛽𝑛 ,|𝐼𝛿

′
𝑛 |

(

𝑋𝑠 ∉ {𝑗𝓁(𝑛), 𝑗𝓁(𝑛) + 1}
)

⩽ 1
𝑐𝜆∕𝑛({𝑗𝓁(𝑛), 𝑗𝓁(𝑛) + 1})

∑

𝑥∈𝐼𝛿′𝑛 ∖{𝑗𝓁 (𝑛),𝑗𝓁 (𝑛)+1}

𝑐𝜆∕𝑛(𝑥). (43)

The coupling of Section 3.2 implies that
1

𝑑𝑛,∞
𝑐𝜆∕𝑛({𝑗𝓁(𝑛), 𝑗𝓁(𝑛) + 1}) 𝑛→∞

→ 𝜈𝛼∞ (𝑥𝓁)𝑒−𝜆𝑥𝓁 , (44)

and

lim sup
𝑛→∞

1
𝑑𝑛,∞

∑

𝑥∈𝐼𝛿′𝑛 ∖{𝑗𝓁 (𝑛),𝑗𝓁 (𝑛)+1}

𝑐𝜆∕𝑛(𝑥) ⩽ 𝐶4

(

𝛥+,𝛼∞
𝑥𝓁 (𝛿′) + 𝛥−,𝛼∞

𝑥𝓁 (2𝛿′)
)

. (45)

One can conclude the proof by inserting (44) and (45) into (43). □

Proof of Lemma 4.7. Recall that (𝑥𝓁 , 𝑤𝓁) is an atom of 𝜈𝛼∞ and (𝑥(𝑛)𝓁 , 𝑤(𝑛)
𝓁 ) is the sequence converging to (𝑥𝓁 , 𝑤𝓁), as provided by

Proposition 3.4. Let us fix the notation 𝐴𝑛 ∶= {𝑥(𝑛)𝓁 , 𝑥(𝑛)𝓁 + 1∕𝑛}, and let 𝜏∗ ∶= inf {𝑠 ⩾ 0 ∶ 𝑋(𝑛)
𝑠 ∈ 𝐴𝑛}. Fix 𝛿′ > 𝛿 and observe that,

sing Markov’s property,

𝑃𝜔,𝜆∕𝑛
(

𝑋(𝑛)
1 ∉ 𝐴𝑛

|

|

|

|

|

|

𝑋(𝑛)
1−𝜂 − 𝑥(𝑛)𝓁

|

|

|

< 𝛿
)

⩽ sup
𝑥∈𝐼𝛿𝑛

𝑃𝜔,𝜆∕𝑛
𝑥

(

𝑋(𝑛)
𝜂 ∉ 𝐴𝑛

)

⩽ sup
𝑥∈𝐼𝛿𝑛

𝑃𝜔,𝜆∕𝑛
𝑥

(

𝜏∗ > 𝜂) + sup
𝑥∈𝐼𝛿𝑛

𝑃𝜔,𝜆∕𝑛
𝑥

(

𝑋(𝑛)
𝜂 ∉ 𝐴𝑛, 𝜏∗ ⩽ 𝜂

)

.

Let 𝜃𝑡 be the canonical time shift by time 𝑡. Then the last term in the sum can be bounded from above by

2 sup
𝑥∈𝐼𝛿𝑛

max
𝑦∈𝐴𝑛

𝑃𝜔,𝜆∕𝑛
𝑥

(

𝜏∗ ⩽ 𝜂 , 𝑋(𝑛)
𝜏∗ = 𝑦,𝑋(𝑛)

𝜂−𝜏∗◦𝜃𝜏∗ ∉ 𝐴𝑛

)

= 2 sup
𝑥∈𝐼𝛿𝑛

max
𝑦∈𝐴𝑛

𝐸𝜔,𝜆∕𝑛
𝑥

[

1{

𝜏∗⩽𝜂 ,𝑋(𝑛)
𝜏∗ =𝑦

} 𝑃𝜔,𝜆∕𝑛
𝑦

(

𝑋(𝑛)
𝜂−𝑡 ∉ 𝐴𝑛

)

|

|

|

|𝑡=𝜏∗

]

Hence, by applying standard computations, we get that for 𝐶 > 0

𝑃𝜔,𝜆∕𝑛
(

𝑋(𝑛)
1 ∈ 𝐴𝑛

|

|

|

|

|

|

𝑋(𝑛)
1−𝜂 − 𝑥(𝑛)𝓁

|

|

|

< 𝛿
)

⩾ 1 − 𝐶
(

sup
𝑥∈𝐼𝛿𝑛

𝑃𝜔,𝜆∕𝑛
𝑥

(

𝜏∗ > 𝜂)

+ max
𝑦∈𝐴𝑛

𝑃𝜔,𝜆∕𝑛
𝑦

(

‖

‖

‖

𝑋(𝑛)
[0,𝜂] − 𝑥𝓁

‖

‖

‖∞
> 𝛿′

)

+ max
𝑦∈𝐴𝑛

sup
𝑠>0

𝑃𝜔,𝜆∕𝑛
𝑦,|𝐼𝛿′𝑛 |

(

𝑋(𝑛)
𝑠 ∉

{

𝑥(𝑛)𝓁 , 𝑥(𝑛)𝓁 + 1∕𝑛
})

)

,

where we recall that 𝑃𝜔,𝜆∕𝑛
𝑦,|𝐼𝛿′𝑛 |

denotes the measure associated with the random walk reflected on the boundary of 𝐼𝛿′𝑛 . In order to
onclude, let us fix 𝛿′ ∈ (0, 1) and 𝜀 > 0. First, by Lemma 4.11, together with the fact that 𝜈𝛼∞ (𝑥𝓁) > 0 and that the subordinator is
ight-continuous with left limits, we have that we can choose 𝛿′ > 0 small enough so that

lim sup
𝑛→∞

max
𝑦∈𝐴𝑛

sup
𝑠>0

𝑃𝜔,𝜆∕𝑛
𝑦,|𝐼𝛿′𝑛 |

(

𝑋(𝑛)
𝑠 ∉

{

𝑥(𝑛)𝓁 , 𝑥(𝑛)𝓁 + 1∕𝑛
})

⩽ 𝜀.

Second, by Lemmas 4.10 and 7.6, we can choose 𝜂 > 0 small enough such that

lim sup
𝑛→∞

max
𝑦∈𝐴𝑛

𝑃𝜔,𝜆∕𝑛
𝑦

(

‖

‖

‖

𝑋(𝑛)
[0,𝜂] − 𝑥𝓁

‖

‖

‖∞
> 𝛿′

)

⩽ 𝑃𝜔,𝜆
𝑥𝓁

(

‖

‖

‖

𝑍[0,𝜂] − 𝑥𝓁
‖

‖

‖∞
> 𝛿′

2

)

⩽ 𝜀.

Finally, using Lemmas 4.8, and 4.9, we can choose 𝛿 > 0 small enough, depending on 𝜂 and 𝛿′, such that

lim sup
𝑛→∞

sup
𝑥∈𝐼𝛿𝑛

𝑃𝜔,𝜆∕𝑛
𝑥

(

𝜏∗ > 𝜂) ⩽ 𝜀.

Overall, we have shown that

lim inf
𝑛→∞

𝑃𝜔,𝜆∕𝑛
(

𝑋(𝑛)
1 ∈ {𝑥(𝑛)𝓁 , 𝑥(𝑛)𝓁 + 1∕𝑛}||

|

|

|

|

𝑋(𝑛)
1−𝜂 − 𝑥(𝑛)𝓁

|

|

|

< 𝛿
)

⩾ 1 − 4𝐶 𝜀,

which is enough to conclude the proof, since 𝜀 can be chosen arbitrarily small by taking the appropriate 𝛿 and 𝜂(𝛿). □
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5. Proof of the aging results

In Lemma 5.1 we prove Theorem 2.1 and Proposition 2.2. In Section 5.2, we prove the first part of Proposition 2.3, which is the
ging statement. For this purpose, we first prove the result restricted to the box [−𝐾 , 𝐾], in Proposition 5.2, and then extend it to
he whole process. Using Propositions 4.3 and 4.6 is crucial is this section.

5.1. Aging under (RW)

Again, we work under the coupling of Section 3.2. Let P𝜆∕𝑛,𝐾 be the annealed law of the random walk reflected at the boundary
of the box [−𝐾 𝑛, 𝐾 𝑛] and P𝜆,𝐾 that of the corresponding diffusion reflected at the boundary of [−𝐾 , 𝐾], with 𝐾 ∈ N. Recall the
efinition (15) of Gap𝜆𝑛(𝑡) and Gap𝜆(𝑡). Under P𝜆∕𝑛,𝐾 , we assign a deterministic value 𝐶∗ ∈ R+ to Gap𝜆𝑛(𝑡) (respectively Gap𝜆(𝑡)) if
𝑎𝑛 = 𝐾 𝑛 (respectively 𝑍𝜆

1 = 𝐾).
Our main goal here is to prove Theorem 2.1 but, before that, we need to prove the convergence of the relevant point processes.

nder the coupling of Section 3.2, let us define 𝑣(𝑛)𝑖 ∶= 𝑃𝜔,𝜆∕𝑛,𝐾 (𝑋𝑎𝑛 = 𝑖∕𝑛) and, for an atom 𝑥𝓁 ⩾ 0 of 𝜈𝛼0 , 𝑣𝓁 ∶= 𝑃𝜔,𝜆,𝐾 (𝑍1 = 𝑥𝓁).
Note that

𝜌(𝑛)(1) =
∑

𝑖∕𝑛∈[0,𝐾]
𝛿𝑖∕𝑛𝑣

(𝑛)
𝑖 ,

𝜌(1) =
∑

𝓁∶𝑥𝓁∈[0,𝐾]
𝛿𝑥𝓁𝑣𝓁 ,

where 𝑥𝓁 are the locations of the atoms of the measure 𝜌(1) (which is purely atomic, see Lemma 7.2 below), together with the
convention 𝑥0 = 𝐾. Set for simplicity 𝑟(𝑛)({𝑖, 𝑖 + 1}) = 𝑑−1𝑛,0𝑟

𝜆∕𝑛({𝑖, 𝑖 + 1}). Let us define
𝜋(𝑛)(𝑑 𝑥) ∶=

∑

𝑖∕𝑛∈[0,𝐾]
𝛿𝑟(𝑛)({𝑖,𝑖+1})𝑣

(𝑛)
𝑖 ,

𝜋(𝑑 𝑥) ∶=
∑

𝓁∶𝑥𝓁∈[0,𝐾]
𝛿𝑒−𝜆𝑥𝓁 𝜈𝛼0 (𝑥𝓁 )𝑣𝓁 ,

where we attach the special value 𝑟(𝑛)({𝐾 𝑛, 𝐾 𝑛 + 1}) = 𝑒−𝜆𝐾𝜈𝛼0 (𝑥0) = 𝐶∗.

Lemma 5.1. Under Assumption (RW), for almost every realisations of the environment, as 𝑛 → ∞

𝜋(𝑛)(𝑑 𝑥) → 𝜋(𝑑 𝑥),
both vaguely and in the point process sense.

Proof. By Lemma 7.2 we get that every atom (𝑒−𝜆𝑥𝓁 𝜈𝛼0 (𝑥𝓁), 𝑣𝓁) of 𝜋 corresponds to an atom (𝑥𝓁 , 𝑤𝓁) of 𝜈𝛼0 (restricted to [0, 𝐾])
efined in (11), with an extra atom at 𝐾. By Proposition 4.3 we immediately have that Condition 1 is satisfied by the measures
(𝑛) and 𝜋. Note that this is also true for the special atom at 𝐾. We just need to prove vague convergence. Let 𝐼𝛿 ∶= {𝑖∶ 𝑖∕𝑛 ∈
[0, 𝐾] and 𝑣(𝑛)𝑖 > 𝛿}, then for any continuous and non-negative function on [−𝐾 , 𝐾], we have that

∫ 𝑓 (𝑥)𝜋(𝑛)(𝑑 𝑥) =
∑

𝑖∈𝐼𝛿

𝑣(𝑛)𝑖 𝑓
(

𝑟(𝑛)(𝑖, 𝑖 + 1)) +
∑

𝑖∉𝐼𝛿

𝑣(𝑛)𝑖 𝑓
(

𝑟(𝑛)(𝑖, 𝑖 + 1)) .

As {𝓁 ∶ 𝑣𝓁 > 𝛿} is almost-surely finite, the observation above concerning Condition 1 yields

lim
𝑛→∞

∑

𝑖∈𝐼𝛿

𝑣(𝑛)𝑖 𝑓
(

𝑟(𝑛)(𝑖, 𝑖 + 1)) =
∑

𝓁∶𝑣𝓁>𝛿
𝑣𝓁𝑓

(

𝜈𝛼0 (𝑥𝓁)𝑒−𝑥𝓁
)

for Lebesgue almost-every 𝛿 > 0. The right-hand side is monotone and bounded by ‖𝑓‖∞, thus as 𝛿 → 0 it converges to ∫ 𝑓 (𝑥)𝜋(𝑑 𝑥).
nalogously, we obtain that

lim sup
𝑛→∞

∑

𝑖∉𝐼𝛿

𝑣(𝑛)𝑖 𝑓
(

𝑟(𝑛)(𝑖, 𝑖 + 1)) ⩽ ‖𝑓‖∞

(

1 − lim inf
𝑛→∞

∑

𝑖∈𝐼𝛿

𝑣(𝑛)𝑖

)

⩽ ‖𝑓‖∞

(

1 −
∑

𝓁∶𝑣𝓁>𝛿
𝑣𝓁

)

.

Since 𝜌(1) is almost-surely a purely atomic measure, we conclude the proof by taking the limit as 𝛿 → 0. □

Now, we are ready to prove the convergence of the gap processes.

Proof of Theorem 2.1. We aim to prove that for every bounded 𝑓 ∶ R+ → R

lim E𝜆∕𝑛 [𝑓
(

Gap𝜆(1)
)]

= E𝜆 [𝑓
(

Gap𝜆(1)
)]

, (46)

𝑛→∞ 𝑛
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Because it is easier to work with the reflected processes, let us start by observing that

E𝜆∕𝑛
[

𝑓
(

Gap𝜆𝑛(1)
)

1{

𝜏𝑋−𝐾 𝑛∧𝜏𝑋𝐾 𝑛>𝑎𝑛
}

]

= E𝜆∕𝑛,𝐾
[

𝑓
(

Gap𝜆𝑛(1)
)

1{𝜏−𝐾 𝑛∧𝜏𝐾 𝑛>𝑎𝑛}
]

,

E𝜆
[

𝑓
(

Gap𝜆(1)
)

1{

𝜏𝑍𝜆
−𝐾∧𝜏𝑍𝜆

𝐾 >1
}

]

= E𝜆,𝐾
[

𝑓
(

Gap𝜆(1)
)

1{

𝜏𝑍𝜆
−𝐾∧𝜏𝑍𝜆

𝐾 >1
}

]

.

The above yields that
|

|

|

E𝜆∕𝑛 [𝑓
(

Gap𝜆𝑛(1)
)]

− E𝜆∕𝑛,𝐾 [

𝑓
(

Gap𝜆𝑛(1)
)]

|

|

|

⩽ ‖𝑓‖∞ P𝜆∕𝑛 (𝜏𝑋−𝐾 𝑛 ∧ 𝜏𝑋𝐾 𝑛 ⩽ 𝑎𝑛
)

, (47)
|

|

|

E𝜆 [𝑓
(

Gap𝜆(1)
)]

− E𝜆,𝐾 [

𝑓
(

Gap𝜆(1)
)]

|

|

|

⩽ ‖𝑓‖∞ P𝜆 (𝜏𝑍−𝐾 ∧ 𝜏𝑍𝐾 ⩽ 1
)

. (48)

Using Lemma A.1, we can bound the lim sup of the probability on the right-hand side of (47) as follows:

lim sup
𝑛

P𝜆∕𝑛,𝐾 (

𝜏𝑋𝐾 𝑛 ∧ 𝜏𝑋−𝐾 𝑛 ⩽ 𝑎𝑛
)

⩽ P𝜆,𝐾 (

𝜏𝑍𝐾−1 ∧ 𝜏𝑍−𝐾+1 ⩽ 2
)

. (49)

By [17, Lemma 5.3], we have that the right-hand side of (48) and (49) converge to 0 as 𝐾 goes to infinity. Hence, in order to prove
46), we only need to prove that the P𝜆∕𝑛,𝐾 -law of Gap𝜆𝑛(1) converges towards the P𝜆,𝐾 -law of Gap𝜆(1).

One can observe that

P𝜆∕𝑛,𝐾 (

Gap𝜆𝑛(1) ⩽ 𝑢
)

= 𝐄
[

𝑃𝜔,𝜆∕𝑛,𝐾
(

𝑟(𝑛)
(

𝑋𝑎𝑛 , 𝑋𝑎𝑛 + 1
)

⩽ 𝑢
)]

= 1 − 𝐄
[

𝑃𝜔,𝜆∕𝑛,𝐾
(

𝑟(𝑛)
(

𝑋𝑎𝑛 , 𝑋𝑎𝑛 + 1
)

> 𝑢
)]

= 1 − 𝐄
⎡

⎢

⎢

⎣

∑

𝑟(𝑛)({𝑖,𝑖+1})>𝑢

𝑣(𝑛)𝑖

⎤

⎥

⎥

⎦

.

Under the coupling, using Lemma 5.1 and the fact that {𝓁 ∶ 𝜈𝛼0 (𝑥𝓁) > 𝑢} is almost surely finite, we obtain that

lim
𝑛→∞

∑

𝑟(𝑛)(𝑖,𝑖+1)>𝑢

𝑣(𝑛)𝑖 =
∑

𝜈𝛼0 (𝑥𝓁 )𝑒
−𝜆𝑥𝓁>𝑢

𝑣𝓁 ,

as long as 𝑢 ≠ 𝜈𝛼0 (𝑥𝓁)𝑒−𝜆𝑥𝓁 ,∀𝓁, which is true for Lebesgue almost-every 𝑢. We conclude the proof by applying the dominated
onvergence theorem. □

Finally, we check our main aging result under assumption (RW).

Proof of Proposition 2.2. We prove that the aging statement holds in the box [−𝐾 , 𝐾], i.e. we show that

lim
𝑛→∞

P𝜆∕𝑛,𝐾
(

𝑋𝑎𝑛 = 𝑋[𝑎𝑛 ,ℎ𝑎𝑛]

)

= 𝜃(ℎ) ∶= P𝜆,𝐾
(

𝑍1 = 𝑍[1,ℎ]

)

. (50)

The extension to the whole space follows from Lemma A.1 and [17, Lemma 5.3] by repeating the steps of the proof of Theorem 2.1;
we omit the details.

We work under the coupling of Section 3.2. From the 𝐽1-convergence of 𝑋(𝑛) ∶= (𝑛−1𝑋𝑡𝑎𝑛 )𝑡⩾0 to 𝑍𝜆 of Proposition 4.1 (and the
continuity of the limiting process), we have

𝐸𝜔,𝜆∕𝑛,𝐾
0

[

𝑓
(

𝑋(𝑛)
1

)

𝑔
(

𝑋(𝑛)
1

)]

→ 𝐸𝜔,𝜆,𝐾
0

[

𝑓
(

𝑍1
)

𝑔
(

𝑍1

)]

(51)

for all continuous functions 𝑓 and 𝑔 on [−𝐾 , 𝐾]. Taking 𝑔 = 𝑔𝛿 , as defined by setting

𝑔𝛿(𝑥) ∶= (1 − 2𝛿−1|𝑥 − 𝑥𝓁|)+,

where 𝑥𝓁 is the location of a discontinuity of 𝑆𝛼0 , the right-hand side of (51) converges as 𝛿 → 0 to

𝐸𝜔,𝜆,𝐾
0

[

𝑓
(

𝑍1
)

1{𝑍1=𝑥𝓁}

]

.

As for the left-hand side of (51), recall the definition of 𝑗𝓁(𝑛) given below (26), as soon as 𝑛 is large enough, we have that
|𝑥𝓁 − 𝑗𝓁(𝑛)∕𝑛| ⩽ 1∕𝑛 ⩽ 𝛿∕2, and therefore we obtain

|

|

|

|

|

𝐸𝜔,𝜆∕𝑛,𝐾
0

[

𝑓
(

𝑋(𝑛)
1

)

𝑔𝛿
(

𝑋(𝑛)
1

)]

− 𝐸𝜔,𝜆∕𝑛,𝐾
0

[

𝑓
(

𝑋(𝑛)
1

)

1{𝑋(𝑛)
1 =𝑗𝓁 (𝑛)∕𝑛}

]

|

|

|

|

|

⩽ ‖𝑓‖∞
(

2𝛿−1|𝑥𝓁 − 𝑗𝓁(𝑛)∕𝑛| + 𝑃𝜔,𝜆∕𝑛,𝐾
0

(

𝑋𝑎𝑛 ∈ [𝑗𝓁(𝑛) − 𝛿 𝑛, 𝑗𝓁(𝑛) + 𝛿 𝑛]∖{𝑗𝓁(𝑛)}
))

,

which, by Lemmas 4.4 and 4.5, converges to 0 as 𝑛 → ∞ and then 𝛿 → 0. In particular, it follows that

𝐸𝜔,𝜆∕𝑛,𝐾
0

[

𝑓
(

𝑋(𝑛)
1

)

1{𝑋(𝑛)
1 =𝑗𝓁 (𝑛)∕𝑛}

]

→ 𝐸𝜔,𝜆,𝐾
0

[

𝑓
(

𝑍1
)

1{𝑍1=𝑥𝓁}

]

.

Combining this with Proposition 4.3 and the strict positivity of the limiting probabilities in (31) (as is confirmed by Lemma 7.3),
this yields that

𝜔,𝜆∕𝑛,𝐾
[ (

(𝑛)
)

(𝑛)
]

𝜔,𝜆,𝐾
[

( )

]

𝐸0 𝑓 𝑋1 𝑋1 = 𝑗𝓁(𝑛)∕𝑛 → 𝐸0 𝑓 𝑍1 𝑍1 = 𝑥𝓁 .
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Since the continuous function 𝑓 was arbitrary, this implies that if we define 𝜇𝑛,𝑗𝓁 (𝑛) to be the law of 𝑋(𝑛)
1 conditioned on 𝑋(𝑛)

1 = 𝑗𝓁(𝑛)∕𝑛,
and 𝜇𝑥𝓁 to be the law of 𝑍𝜆

1 conditioned on 𝑍𝜆
1 = 𝑥𝓁 , then

𝜇𝑛,𝑗𝓁 (𝑛) → 𝜇𝑥𝓁 ,

weakly as probability measures on R.
Now, from the conclusion of the previous paragraph, we obtain from Skorohod’s representation theorem the existence of random

ariables 𝐴𝑛, 𝐴 built on the same probability space so that: 𝐴𝑛 ∼ 𝜇𝑛,𝑗𝓁 (𝑛), 𝐴 ∼ 𝜇𝑥𝓁 , and 𝐴𝑛 → 𝐴, almost-surely. Noting from the proof
of [17, Lemma 5.4] that 𝐴 is almost-surely not at a discontinuity of 𝑆𝛼0 , Proposition 4.3 implies that we further have that

𝑃𝜔,𝜆∕𝑛,𝐾
𝐴𝑛

(

𝑋(𝑛)
ℎ−1 = 𝑗𝓁(𝑛)∕𝑛

)

→ 𝑃𝜔,𝜆,𝐾
𝐴

(

𝑍ℎ−1 = 𝑥𝓁
)

,

almost-surely. Taking expectations of the above limit (and again applying Proposition 4.3), we conclude that

𝑃𝜔,𝜆∕𝑛,𝐾
0

(

𝑋(𝑛)
1 = 𝑗𝓁(𝑛)∕𝑛 = 𝑋(𝑛)

[1,ℎ]

)

→ 𝑃𝜔,𝜆,𝐾
0

(

𝑍1 = 𝑥𝓁 = 𝑍[1,ℎ]

)

.

Finally, recall that 𝑣𝓁 = 𝑃𝜔,𝜆,𝐾 (𝑍1 = 𝑥𝓁), since {𝓁 ∶ 𝑣𝓁 > 𝛿} is a finite set for each 𝛿 > 0, we deduce from the above conclusion
that

∑

𝓁∶ 𝑣𝓁>𝛿
𝑃𝜔,𝜆∕𝑛,𝐾
0

(

𝑋(𝑛)
1 = 𝑗𝓁(𝑛)∕𝑛 = 𝑋(𝑛)

[1,ℎ]

)

→
∑

𝓁∶ 𝑣𝓁>𝛿
𝑃𝜔,𝜆,𝐾
0

(

𝑍1 = 𝑥𝓁 = 𝑍[1,ℎ]

)

.

Clearly, by Lemma 7.2, the right-hand side here satisfies
∑

𝓁∶ 𝑣𝓁>𝛿
𝑃𝜔,𝜆,𝐾
0

(

𝑍1 = 𝑥𝓁 = 𝑍[1,ℎ]

)

→ 𝑃𝜔,𝜆,𝐾
0

(

𝑍1 = 𝑍[1,ℎ]

)

,

as 𝛿 → 0. Moreover, as for the left-hand side, we have
|

|

|

|

|

|

𝑃𝜔,𝜆∕𝑛,𝐾
0

(

𝑋(𝑛)
1 = 𝑋(𝑛)

[1,ℎ]

)

−
∑

𝓁∶ 𝑣𝓁>𝛿
𝑃𝜔,𝜆∕𝑛,𝐾
0

(

𝑋(𝑛)
1 = 𝑗𝓁(𝑛)∕𝑛 = 𝑋(𝑛)

[1,ℎ]

)

|

|

|

|

|

|

⩽
∑

𝑖∉{𝑗𝓁 (𝑛)∶ 𝑣𝓁>𝛿}
𝑃𝜔,𝜆∕𝑛,𝐾
0

(

𝑋(𝑛)
1 = 𝑖∕𝑛

)

= 1 −
∑

𝓁∶ 𝑣𝓁>𝛿
𝑃𝜔,𝜆∕𝑛,𝐾
0

(

𝑋(𝑛)
1 = 𝑗𝓁(𝑛)∕𝑛

)

→ 1 −
∑

𝓁∶ 𝑣𝓁>𝛿
𝑣𝓁

as 𝑛 → ∞, where we have applied Proposition 4.3 to deduce the limit. Moreover, again appealing to Lemma 7.2, we see that the
final expression converges to 0 as 𝛿 → 0. This is enough to complete the proof of the result under the quenched measure when the
coupling of environments is in place. Taking expectations with respect to the environment law yields the annealed result (50), as
esired. □

5.2. Aging under (RWT)

We still work under the coupling of Section 3.2. Let P̃𝜆∕𝑛,𝐾 be the annealed law of the random walk reflected at the boundary
f the box [−𝐾 𝑛, 𝐾 𝑛] and P̃𝜆,𝐾 that of the corresponding diffusion reflected at the boundary of [−𝐾 , 𝐾], with 𝐾 ∈ N.

Proposition 5.2. Under the assumption (RWT), with 𝛼0, 𝛼∞ ∈ (0, 1), we have that, for all ℎ > 1,

lim
𝑛→∞

P̃𝜆∕𝑛,𝐾
(

|

|

|

𝑋𝑏𝑛 −𝑋ℎ𝑏𝑛
|

|

|

⩽ 1
)

= 𝜃𝐾 (ℎ) ∶= P̃𝜆,𝐾
(

𝑍1 = 𝑍ℎ

)

.

Proof of Proposition 5.2. Let us start by recalling some notation: 𝜌(𝑛)(1) denotes the quenched marginal law of 𝑋(𝑛)
1 and 𝜌(1) is

the quenched marginal law of 𝑍𝜆
1 . As 𝜌(1) is purely atomic, we can safely define the countable collection 𝐾 of atoms (𝑥𝓁 , 𝑣𝓁) such

that 𝑥𝓁 ∈ [−𝐾 , 𝐾], 𝑣𝓁 ∶= 𝑃𝜔,𝜆,𝐾 (𝑍1 = 𝑥𝓁) and

𝜌(1) =
∑

(𝑥𝓁 ,𝑣𝓁 )∈𝐾

𝛿𝑥𝓁𝑣𝓁 . (52)

We also define 𝑣(𝑛)𝑖 ∶= 𝑃𝜔,𝜆,𝐾 (𝑋𝑏𝑛 = 𝑖∕𝑛), so that

𝜌(𝑛)(1) =
∑

𝑖∕𝑛∈[−𝐾 ,𝐾]
𝛿𝑖∕𝑛𝑣

(𝑛)
𝑖 . (53)

In the rest of the proof, we will drop the 𝐾 for notational simplicity, but we are still working on the environments and processes
estricted to the finite boxes [−𝐾 𝑛, 𝐾 𝑛] and [−𝐾 , 𝐾]. Recall the definition (17) of the event 𝑛. Let us also define

𝑢(𝑛)𝑖,𝑗 ∶= 𝑃𝜔,𝜆∕𝑛
(

𝑋(𝑛)
1+ℎ = 𝑗∕𝑛|𝑋(𝑛)

1 = 𝑖∕𝑛
)

,

𝜔,𝜆
(

̃ ̃
)

𝑢𝑖,𝑗 ∶= 𝑃 𝑍1+ℎ = 𝑥𝑗 |𝑍1 = 𝑥𝑖 .
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By Proposition 4.6, for every atom (𝑥𝓁 , 𝑣𝓁) ∈ 𝐾 of 𝜌(1) there exists a function 𝑗𝓁(𝑛) such that

𝑣𝓁 = 𝑃𝜔,𝜆
(

𝑍1 = 𝑥𝓁
)

= lim
𝑛→∞

𝑃𝜔,𝜆∕𝑛
(

𝑋(𝑛)
1 ∈

{

𝑗𝓁(𝑛)
𝑛

,
𝑗𝓁(𝑛)
𝑛

+ 1∕𝑛
})

.

Moreover, by Proposition 4.6, (𝑥𝓁 , 𝑣𝓁) is an atom of 𝜈𝛼∞ , hence it is not an atom of 𝜈𝛼0 by independence. Thus, for all 𝓁 and all 𝑘,
we have that, almost surely,

(

𝑢(𝑛)𝑗𝓁 (𝑛),𝑗𝑘(𝑛)
+ 𝑢(𝑛)𝑗𝓁 (𝑛),𝑗𝑘(𝑛)+1

) 𝑛→∞
→ 𝑢𝓁,𝑘

(

𝑢(𝑛)𝑗𝓁 (𝑛)+1,𝑗𝑘(𝑛)
+ 𝑢(𝑛)𝑗𝓁 (𝑛)+1,𝑗𝑘(𝑛)+1

) 𝑛→∞
→ 𝑢𝓁,𝑘

Now, we aim to show that

𝐄̃
[

∑

𝑖
𝑣(𝑛)𝑖

(

𝑢(𝑛)𝑖,𝑖 + 𝑢(𝑛)𝑖,𝑖+1 + 𝑢(𝑛)𝑖,𝑖−1

)

]

𝑛→∞
⟶ 𝐄̃

[

∑

𝓁

𝑣𝓁𝑢𝓁,𝓁

]

, (54)

which would imply the result. Let us denote 𝑢(𝑛)𝑖 ∶=
(

𝑢(𝑛)𝑖,𝑖 + 𝑢(𝑛)𝑖,𝑖+1 + 𝑢(𝑛)𝑖,𝑖−1

)

. Using the observations above it is straightforward to notice
hat

∑

𝓁

𝑣𝓁𝑢𝓁,𝓁 = lim
𝑛→∞

∑

𝓁

(

𝑣(𝑛)𝑗𝓁 (𝑛)
𝑢(𝑛)𝑗𝓁 (𝑛)

+ 𝑣(𝑛)𝑗𝓁 (𝑛)+1
𝑢(𝑛)𝑗𝓁 (𝑛)+1

)

⩽ lim inf
𝑛→∞

∑

𝑖
𝑣(𝑛)𝑖

(

𝑢(𝑛)𝑖,𝑖 + 𝑢(𝑛)𝑖,𝑖+1 + 𝑢(𝑛)𝑖,𝑖−1

)

.
(55)

Recalling the notation from the statement of Lemma 3.5, let us define the following sets
𝐴𝑛(𝛿) ∶=

{

𝑗 ∈ 𝑇 𝛼∞
𝑛 ∶ ∃ |𝑖 − 𝑗| ⩽ 1 such that (𝑣(𝑛)𝑗 + 𝑣(𝑛)𝑖 ) > 𝛿 , 𝑢(𝑛)𝑗 > 𝛿

}

,

𝐵𝑛(𝛿) ∶=
{

𝑗 ∶ 𝑢(𝑛)𝑗 ⩽ 𝛿
}

,

𝐴𝑣
𝑛(𝛿) ∶=

{

𝑗 ∈ 𝑇 𝛼∞
𝑛 ∶ ∃ |𝑖 − 𝑗| ⩽ 1 with (𝑣(𝑛)𝑗 + 𝑣(𝑛)𝑖 ) > 𝛿

}

.

(56)

Notice that 𝐴𝑛(𝛿) ∪𝐵𝑛(𝛿) ∪
(

𝐴𝑣
𝑛(𝛿)

)𝑐 contains all the indices. On the event 𝑛, thanks to Proposition 4.6 and the fact that the number
f terms in 𝐴𝑛(𝛿) is finite almost-surely, we get that, for Lebesgue almost-every 𝛿,

lim sup
𝑛→∞

∑

𝑖∈𝐴𝑛(𝛿)
𝑣(𝑛)𝑖 𝑢(𝑛)𝑖 ⩽

∑

(𝑥𝓁 ,𝑣𝓁 )∈𝐴(𝛿)
𝑣𝓁𝑢𝓁,𝓁 , (57)

where 𝐴(𝛿) is the set of atoms (𝑥𝓁 , 𝑣𝓁) ∈ 𝐾 such that 𝑣𝓁 > 𝛿. Moreover

lim sup
𝑛→∞

∑

𝑖∈𝐵𝑛(𝛿)
𝑣(𝑛)𝑖 𝑢(𝑛)𝑖 ⩽ 𝛿 lim sup

𝑛→∞

∑

𝑖∈𝐵𝑛(𝛿)
𝑣𝑖 ⩽ 𝛿 .

Finally, let us denote by 𝐶𝑛(𝛿) the complement of 𝐴𝑣
𝑛(𝛿), then

lim sup
𝑛→∞

∑

𝑖∈𝐶𝑛(𝛿)
𝑣(𝑛)𝑖 𝑢(𝑛)𝑖 ⩽ lim sup

𝑛→∞

∑

𝑖∈𝐶𝑛(𝛿)
𝑣(𝑛)𝑖 ⩽ 1 − lim inf

𝑛→∞

∑

𝑖∈𝐴𝑣
𝑛(𝛿)

𝑣(𝑛)𝑖 . (58)

But, we also have that

lim inf
𝑛→∞

∑

𝑖∈𝐴𝑣
𝑛(𝛿)

𝑣(𝑛)𝑖 ⩾
∑

𝑖∶𝑣𝑖>𝛿
𝑣𝑖,

and this last sum converges to 1 as 𝛿 → 0 since 𝜌 is purely atomic. By putting together (57)–(58) we get

lim sup
𝑛→∞

∑

𝑖
𝑣(𝑛)𝑖 𝑢𝑖 ⩽

∑

𝓁∈𝐴(𝛿)
𝑣𝑖𝑢𝑖,𝑖 + 𝛿 +

(

1 −
∑

𝑖∶𝑣𝑖>𝛿
𝑣𝑖

)

. (59)

The bound from above follows by taking the limit as 𝛿 → 0. Using (55) and (59), one can prove (54) by applying the dominated
onvergence theorem. This concludes the proof. □

We now have all the tools and are able to prove the aging part of Proposition 2.3.

Proof of Proposition 2.3. Part I. It is immediate to notice that, for 𝑛 large,

P̃𝜆∕𝑛,𝐾
(

|

|

|

𝑋𝑏𝑛 −𝑋ℎ𝑏𝑛
|

|

|

⩽ 1, 𝜏𝑋𝐾 𝑛 ∧ 𝜏𝑋−𝐾 𝑛 > 2ℎ𝑏𝑛
)

= P̃𝜆∕𝑛
(

|

|

|

𝑋𝑏𝑛 −𝑋ℎ𝑏𝑛
|

|

|

⩽ 1, 𝜏𝑋𝐾 𝑛 ∧ 𝜏𝑋−𝐾 𝑛 > 2ℎ𝑏𝑛
)

,

and analogously

P̃𝜆,𝐾
(

𝑍1 = 𝑍ℎ, 𝜏𝑍𝐾 ∧ 𝜏𝑍−𝐾 > 2ℎ
)

= P̃𝜆
(

𝑍1 = 𝑍ℎ, 𝜏𝑍𝐾 ∧ 𝜏𝑍−𝐾 > 2ℎ
)

.

So, by Proposition 5.2, we have, for every 𝐾 ∈ N and every ℎ ⩾ 1,

lim sup
𝑛→∞

P̃𝜆∕𝑛
(

|

|

|

𝑋𝑏𝑛 −𝑋ℎ𝑏𝑛
|

|

|

⩽ 1
)

⩽ P̃𝜆
(

𝑍1 = 𝑍ℎ

)

+ P̃𝜆 (𝜏𝑍 ∧ 𝜏𝑍 ⩽ 2ℎ
)

+ lim sup P̃𝜆∕𝑛 (𝜏𝑋 ∧ 𝜏𝑋 ⩽ 2ℎ𝑏𝑛
)

.
𝐾 −𝐾 𝑛 𝐾 𝑛 −𝐾 𝑛
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By (76) in Lemma A.1 we have that

lim sup
𝑛

P̃𝜆∕𝑛 (𝜏𝑋𝐾 𝑛 ∧ 𝜏𝑋−𝐾 𝑛 ⩽ 2ℎ𝑏𝑛
)

⩽ P̃𝜆 (𝜏𝑍𝐾−1 ∧ 𝜏𝑍−𝐾+1 ⩽ 2ℎ + 1) .

Thus we have that

lim sup
𝑛→∞

P̃𝜆∕𝑛
(

|

|

|

𝑋𝑏𝑛 −𝑋ℎ𝑏𝑛
|

|

|

⩽ 1
)

⩽ P̃𝜆
(

𝑍1 = 𝑍ℎ

)

+ 2P̃𝜆 (𝜏𝑍𝐾−1 ∧ 𝜏𝑍−𝐾+1 ⩽ 2ℎ + 1) .

By reasoning in the same way, one can obtain

lim inf
𝑛→∞

P̃𝜆∕𝑛
(

|

|

|

𝑋𝑏𝑛 −𝑋ℎ𝑏𝑛
|

|

|

⩽ 1
)

⩾ P̃𝜆
(

𝑍1 = 𝑍ℎ

)

− 2P̃𝜆 (𝜏𝑍𝐾−1 ∧ 𝜏𝑍−𝐾+1 ⩽ 2ℎ + 1) .

The conclusion follows by taking 𝐾 to infinity and applying Lemma 7.8. □

6. Proof of the sub-aging result under the assumption (RWT)

At the end of this section, we prove the second part of Proposition 2.3. We will need several tools before being able to prove
the main result. The crucial step is the following proposition; its proof is the core of this section. We still work under the coupling
of Section 3.2. Recall that P̃𝜆∕𝑛,𝐾 is the annealed law of the random walk reflected at the boundary of the box [−𝐾 𝑛, 𝐾 𝑛] and P̃𝜆,𝐾

that of the corresponding diffusion reflected at the boundary of [−𝐾 , 𝐾], with 𝐾 ∈ N.

Proposition 6.1. Under the assumption (RWT), with 𝛼0, 𝛼∞ ∈ (0, 1), we have that, for all ℎ > 0,

lim
𝑛→∞

P̃𝜆∕𝑛,𝐾
(

|

|

|

𝑋𝑏𝑛+𝑠1𝑑𝑛,∞ −𝑋𝑏𝑛+𝑠2𝑑𝑛,∞
|

|

|

⩽ 1, ∀𝑠1, 𝑠2 ∈ [0, ℎ]
)

= 𝜃(ℎ) ∶= Ẽ𝜆,𝐾

[

𝑒−ℎ
𝐴0+𝐴2

2𝐴1

]

,

where 𝐴0, 𝐴1, 𝐴2 are such that 𝐴1 (d)
= 𝜈𝛼∞ (𝑍𝜆

1 ) and 𝐴0, 𝐴2 are distributed as independent conductances under 𝐏̃, independent of 𝑍𝜆. In this
tatement 𝜈𝛼∞ is restricted to [−𝐾 , 𝐾] and 𝑍𝜆

1 is reflected at the boundary.

We postpone the proof of the result as we will first need to establish several preliminary results. Let us assume the construction
of Section 3.2. Recall the notation defined in (52) and (53), and note that each 𝑥𝓁 is both an atom of 𝜌(1) with weight 𝑣𝓁 and an
atom of 𝜈𝛼∞ with weight 𝜈𝛼∞ (𝑥𝓁). Also, recall that there exists 𝑗𝓁(𝑛) such that 𝑗𝓁(𝑛)∕𝑛 converges to 𝑥𝓁 and for which the masses of
the relevant discrete measures converge (see the proof of the following result for details). To ease the notation, we will drop the
superscript 𝐾 in the proofs but we will still work with the restricted processes.

Set for simplicity 𝑐(𝑛)(𝑖) = 𝑑−1𝑛,∞𝑐(𝑖). Under Assumption (RWT), let us define the following two measures
𝜋(𝑛)(𝑑 𝑥) ∶=

∑

𝑖∕𝑛∈[−𝐾 ,𝐾]
𝛿𝑐(𝑛)(𝑖)𝑣

(𝑛)
𝑖 ,

𝜋(𝑑 𝑥) ∶=
∑

(𝑥𝓁 ,𝑣𝓁 )∈𝐾

𝛿𝜈𝛼∞ (𝑥𝓁 )𝑣𝓁 .

Lemma 6.2. Under Assumption (RWT), for almost every realisations of the environment, as 𝑛 → ∞

𝜋(𝑛)(𝑑 𝑥) 𝑣
→ 𝜋(𝑑 𝑥).

Moreover, for any atom (𝜈𝛼∞ (𝑥𝓁), 𝑣𝓁) ∈ 𝜋 there exists an index 𝑗𝓁(𝑛) such that, almost-surely, as 𝑛 → ∞

𝑐(𝑛)
(

𝑗𝓁(𝑛)
)

→ 𝜈𝛼∞ (𝑥𝓁),

𝑐(𝑛)
(

𝑗𝓁(𝑛) + 1) → 𝜈𝛼∞ (𝑥𝓁),

𝑣(𝑛)𝑗𝓁 (𝑛)
+ 𝑣(𝑛)𝑗𝓁 (𝑛)+1

→ 𝑣𝓁 .

Proof. Let us start by proving the second part of the lemma. By Proposition 4.6, we have that for each atom (𝑥𝓁 , 𝑣𝓁), there exists
a function 𝑗𝓁(𝑛) such that

𝑑−1𝑛,∞𝑐
(

{𝑗𝓁(𝑛), 𝑗𝓁(𝑛) + 1}) → 𝜈𝛼∞ (𝑥𝓁),

𝑣(𝑛)𝑗𝓁 (𝑛)
+ 𝑣(𝑛)𝑗𝓁 (𝑛)+1

→ 𝑣𝓁 .

On the event 𝑛 of Lemma 3.5 we have that, almost-surely,

𝑑−1𝑛,∞
(

𝑐
(

{𝑗𝓁(𝑛) + 1, 𝑗𝓁(𝑛) + 2}) + 𝑐
(

{𝑗𝓁(𝑛) − 1, 𝑗𝓁(𝑛)}
))

→ 0,

which implies the second part of the lemma. Let us now prove vague convergence. Recall the definition (56) of the set 𝐴𝑣
𝑛(𝛿). For

a continuous and non-negative function on [−𝐾 , 𝐾], we have that

∫ 𝑓 (𝑥)𝜋(𝑛)(𝑑 𝑥) =
∑

𝑣
𝑣(𝑛)𝑖 𝑓

(

𝑐(𝑛)(𝑖)
)

+
∑

𝑣
𝑣(𝑛)𝑖 𝑓

(

𝑐(𝑛)(𝑖)
)

.

𝑖∈𝐴𝑛(𝛿) 𝑖∉𝐴𝑛(𝛿)
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As {𝓁 ∶ 𝑣𝓁 > 𝛿} is almost-surely finite, the observation above yields

lim
𝑛→∞

∑

𝑖∈𝐴𝑣
𝑛(𝛿)

𝑣(𝑛)𝑖 𝑓
(

𝑐(𝑛)(𝑖)
)

=
∑

𝓁∶𝑣𝓁>𝛿
𝑣𝓁𝑓

(

𝜈𝛼∞ (𝑥𝓁)
)

for Lebesgue almost-every 𝛿. The right hand side is monotone and bounded by ‖𝑓‖∞, thus as 𝛿 → 0 it converges to ∫ 𝑓 (𝑥)𝜋(𝑑 𝑥).
nalogously, we obtain that

lim sup
𝑛→∞

∑

𝑖∉𝐴𝑣
𝑛(𝛿)

𝑣(𝑛)𝑖 𝑓
(

𝑐(𝑛)(𝑖)
)

⩽ ‖𝑓‖∞
⎛

⎜

⎜

⎝

1 − lim inf
𝑛→∞

∑

𝑖∈𝐴𝑣
𝑛(𝛿)

𝑣(𝑛)𝑖

⎞

⎟

⎟

⎠

⩽ ‖𝑓‖∞

(

1 −
∑

𝓁∶𝑣𝓁>𝛿
𝑣𝓁

)

.

We conclude by taking the limit as 𝛿 → 0 since 𝜌(1) is almost surely a purely atomic measure. □

Proposition 6.3. Recall the definition (39), then, for all points of continuity 𝑢 of the right-hand side,

lim
𝑛→∞

𝐄̃
[

𝑃𝜔,𝜆∕𝑛,𝐾
(

𝑑−1𝑛,∞𝑐
(

𝑋𝑏𝑛

)

⩽ 𝑢
)]

= 𝐄̃
[

𝑃𝜔,𝜆,𝐾
(

𝜈𝛼∞
(

𝑍1

)

⩽ 𝑢
)]

.

Proof. Note that

𝐄̃
[

𝑃𝜔,𝜆∕𝑛
(

𝑐(𝑛)
(

𝑋𝑏𝑛

)

⩽ 𝑢
)]

= 1 − 𝐄̃
[

𝑃𝜔,𝜆∕𝑛
(

𝑐(𝑛)
(

𝑋𝑏𝑛

)

> 𝑢
)]

= 1 − 𝐄̃
⎡

⎢

⎢

⎣

∑

𝑐(𝑛)(𝑖)>𝑢

𝑣(𝑛)𝑖

⎤

⎥

⎥

⎦

.

However on our coupling, by Lemma 6.2 and using that {𝓁 ∶ 𝜈𝛼∞ (𝑥𝓁) > 𝑢} is almost-surely finite, we obtain that

lim
𝑛→∞

∑

𝑐(𝑛)(𝑖)>𝑢

𝑣(𝑛)𝑖 =
∑

𝜈𝛼∞ (𝑥𝓁 )>𝑢
𝑣𝓁 ,

as long as 𝑢 ≠ 𝜈𝛼∞ (𝑥𝓁),∀𝓁, which is true for Lebesgue almost-every 𝑢. Note that this is true otherwise the vague convergence of
Lemma 6.2 would be violated. We conclude the proof by applying the dominated convergence theorem. □

Let us introduce the following set:

𝑁𝛼∞
𝑛 ∶=

{

𝑖 ∶ 𝑖∕𝑛 ∈ [−𝐾 , 𝐾], 𝑖 ∉ 𝑇 𝛼∞
𝑛 , ∃𝑗 ∈ 𝑇 𝛼∞

𝑛 such that |𝑖 − 𝑗| = 1} .

By construction, the conductances {𝑐({𝑖, 𝑖 + 1})}𝑖∈𝑁𝛼∞
𝑛

are i.i.d. and distributed as 𝑐({0, 1}) conditional on 𝑐({0, 1}) ⩽ 𝑑1−𝛿𝑛,∞ . Let us
lso define a family of i.i.d. random variables {𝑐(𝑛)𝑖 }𝑖∈Z distributed like 𝑐({0, 1}) conditional on 𝑐({0, 1}) ⩽ 𝑑1−𝛿𝑛,∞ . The next lemma
uarantees that re-sampling the conductances in 𝑁𝛼∞

𝑛 does not affect the almost-sure convergence of Proposition 3.4.

Lemma 6.4. The following limits hold almost-surely
1

𝑑𝑛,∞

∑

𝑖∈𝑁𝛼∞
𝑛

𝑐({𝑖, 𝑖 + 1}) 𝑛→∞
→ 0, 1

𝑑𝑛,0

∑

𝑖∈𝑁𝛼∞
𝑛

1
𝑐({𝑖, 𝑖 + 1})

𝑛→∞
→ 0 (60)

and
1

𝑑𝑛,∞

∑

𝑖∈[−2𝐾⌈𝑛3∕4⌉,2𝐾⌈𝑛3∕4⌉]

𝑐(𝑛)𝑖
𝑛→∞
→ 0, 1

𝑑𝑛,0

∑

𝑖∈[−2𝐾⌈𝑛3∕4⌉,2𝐾⌈𝑛3∕4⌉]

1
𝑐(𝑛)𝑖

𝑛→∞
→ 0. (61)

Proof. Firstly, let us focus on the terms in (60). On the event 𝑛, defined at (17), we get that almost-surely
∑

𝑖∈𝑁𝛼∞
𝑛

𝑐({𝑖, 𝑖 + 1}) ⩽
∑

𝑖∉𝑇 𝛼∞
𝑛

𝑐({𝑖, 𝑖 + 1}) and
∑

𝑖∈𝑁𝛼∞
𝑛

1
𝑐({𝑖, 𝑖 + 1}) ⩽

∑

𝑖∉𝑇 𝛼0
𝑛

1
𝑐({𝑖, 𝑖 + 1}) ,

for all 𝑛 large enough. This observation makes the proof symmetric for the conductances and the resistances. Let us just present the
first one. One may also note that for all 𝛿 > 0 and all 𝑛 large enough the indices 𝑖 ∉ 𝑇 𝛼0

𝑛 are contained in 𝐼 (𝑛),𝛼∞0 ∖𝐼 (𝑛),𝛼∞𝛿 (restricted
to [−𝐾 , 𝐾]), as defined in (22). Using Eqs. (23), (24) and (25) we get that for all 𝜀 > 0 and all 𝑛 large enough

1
𝑑𝑛,∞

∑

𝑖∉𝑇 𝛼∞
𝑛

𝑐({𝑖, 𝑖 + 1}) ⩽ 𝜀,

which concludes the proof of (60).
Let us now prove (61). First, we dominate the sums that appear in the statements with the sum of conductances (respectively

esistances) that are not conditioned. This is needed because we aim to use the monotonicity trick already used in the proof of
26 



D.A. Croydon et al.

𝑐

T
i

t
U

𝜔

t
f
p

Stochastic Processes and their Applications 182 (2025) 104562 
Lemma 3.5. The conditioning creates a problem in this case because as 𝑛 increases the conductances have more room to be large.
For every 𝑐(𝑛)𝑖 , we can find a coupling with a 𝑐𝑖 which is distributed as a standard conductance and the coupling is such that 𝑐𝑖 ⩾ 𝑐(𝑛)𝑖 .
In particular, we can suppose, for all 𝑛 and 𝑖,

𝑐𝑖 = 𝐵(𝑛)
𝑖 𝑐(𝑛)𝑖 + (1 − 𝐵(𝑛)

𝑖 )𝑐(𝑛)𝑖 ⩾ 𝑐(𝑛)𝑖 ,

where 𝑐(𝑛)𝑖 is distributed as 𝑐({0, 1}) conditional on 𝑐({0, 1}) > 𝑑1−𝛿𝑛,∞ , and 𝐵(𝑛)
𝑖 is a Bernoulli random variable (independent of 𝑐(𝑛)𝑖 and

(𝑛)
𝑖 ) with parameter 𝐏(𝑐({0, 1}) ⩽ 𝑑1−𝛿𝑛,∞ ). Thus, in order to prove (61), it will suffice to show that

lim
𝑛

1
𝑑𝑛,∞

4𝐾⌈𝑛3∕4⌉
∑

𝑗=1
𝑐𝑗 = 0, 𝐏-a.s..

For the sum of the inverses appearing in the statement, we can follow the same procedure, defining a family {𝑟̃𝑖}
4𝐾⌈𝑛3∕4⌉
𝑖=1 , where 𝑟̃1

is distributed as 𝑟({0, 1}) conditional on 𝑟({0, 1}) ⩾ 1; this conditioning is necessary because 1∕𝑐(𝑛)1 is conditioned on 𝑐(𝑛)1 ⩽ 𝑑1−𝛿𝑛,∞ . Let
us define the events

𝐶𝛼∞
𝑛 =

⎧

⎪

⎨

⎪

⎩

4𝐾⌈𝑛3∕4⌉
∑

𝑗=1
𝑐𝑖 ⩽ 𝑑1−𝛿∕2𝑛,∞

⎫

⎪

⎬

⎪

⎭

and 𝐶𝛼0
𝑛 =

⎧

⎪

⎨

⎪

⎩

4𝐾⌈𝑛3∕4⌉
∑

𝑗=1
𝑟̃𝑖 ⩽ 𝑑1−𝛿∕2𝑛,0

⎫

⎪

⎬

⎪

⎭

.

We want to apply the Fuk–Nagaev inequality [8, Theorem 5.1], which gives the following property of random variables with
regularly varying tails. Let S (𝑚) ∶= ∑𝑚

𝑖=1 𝑋𝑖 and M (𝑚) ∶= max𝑖∈{1,…,𝑚} 𝑋𝑖, then there exists a constant 𝑐 > 0 such that, for all
𝑦 ⩽ 𝑥,

𝑃 (S (𝑚) > 𝑥, M (𝑚) < 𝑦)⩽
(

𝑐 𝑚𝑦
𝑥
𝐿(𝑦)𝑦−𝛾

)𝑥∕𝑦
. (62)

Let us use (62) with 𝑥 = 𝑑1−𝛿∕2𝑛,∞ , 𝑦 = 𝑑1−𝛿𝑛,∞ and 𝑚 = 4𝐾 𝑛3∕4, and recall that a slowly varying function is eventually smaller than any
polynomial. This implies that there exists 𝜈 > 0 such that, for 𝑛 large enough,

𝐏̃
(

(𝐶𝛼∞
𝑛 )𝑐

)

⩽ 𝑛−𝜈 and 𝐏̃
(

(𝐶𝛼0
𝑛 )𝑐

)

⩽ 𝑛−𝜈 .

We can define the event

̂𝛼∞
𝓁 ∶=

4𝐾⌈(2𝓁)3∕4⌉
∑

𝑗=1
𝑐𝑖 ⩽ 𝑑1−𝛿∕2𝓁,∞ ,

and applying again (62) implies that 𝐏(̂𝛼∞
𝓁 ) ⩾ 1 − 𝓁−𝜈 . We can now apply the monotonicity trick already used in the proof of

Lemma 3.5 by noticing that (𝐶𝛼∞
𝑛 )𝑐 ⊆ (̂𝛼∞

𝓁 )𝑐 for all 𝑛 = 𝓁,… , 2𝓁, and get that 𝐶𝛼∞
𝑛 happens almost-surely for all 𝑛 large enough.

he proof for the event 𝐶𝛼0
𝑛 follows the same lines. We wish to highlight the fact that the application of the Fuk–Nagaev inequality

s not affected by the conditioning of the 𝑟̃𝑖 because it simply multiplies the tail probability by a constant. □

For simplicity, let us set the notation 𝑐𝑖 = 𝑐({𝑖, 𝑖+ 1}) in what follows. Let us denote by 𝜔̂ the environment induced by substituting
he variables {𝑐𝑖}𝑖∈𝑁𝛼∞

𝑛
with the conductances {𝑐𝑖}𝑖∈Z (and 𝐏̂ its law). Note that the distribution of 𝜔̂ is the same as the one of 𝜔.

sing Lemma 6.4, we could replicate the procedure of Section 3.2 and get that Propositions 4.1 and 4.6 would still hold. Crucially,
we also obtain that, for any atom (𝑥𝓁 , 𝑣𝓁) ∈ supp 𝜌(1), that, almost surely

𝑃𝜔,𝜆
(

𝑍1 = 𝑥𝓁
)

= lim
𝑛→∞

𝑃𝜔,𝜆∕𝑛
(

𝑋𝑏𝑛 ∈ {𝑗𝓁(𝑛), 𝑗𝓁(𝑛) + 1}
)

= lim
𝑛→∞

𝑃 𝜔̂,𝜆∕𝑛
(

𝑋𝑏𝑛 ∈ {𝑗𝓁(𝑛), 𝑗𝓁(𝑛) + 1}
)

.
(63)

Recall 𝐴𝑣(𝛿) = {𝓁 ∶ 𝑣𝓁 > 𝛿}, let 𝐴𝑣
𝑛(𝛿) be its discrete counterpart in the environment 𝜔 (see (58)) and 𝐴𝑣

𝑛(𝛿) the one in the environment
̂.

Let us define the random variable 𝑇 ∶= inf {𝑡 ⩾ 0 ∶ |r ange(𝑋𝑡)| > 2}. Recall 𝜃𝑡 is the canonical time shift by 𝑡, then

𝑇 (𝑛) ∶= 1
𝑑𝑛,∞

𝑇 ◦𝜃𝑏𝑛 .

Let us fix some further notation, let 𝑋 (⋅) be the Laplace transform of the random variable 𝑋. In particular, we recall that, for 𝜉 > 0,

exp(𝜆) (𝜉) =
𝜆

𝜆 + 𝜉
,

where exp(𝜆) here denotes an exponential random variable with parameter 𝜆. Furthermore, let 𝑑𝐏̃(⋅) be the measure associated with
he distribution function 𝐏̃(𝑐0 ⩽ 𝑡). Finally, let 𝑑𝐹 be the measure associated with the distribution function P̃𝐾 (𝜈𝛼∞ (𝑍𝜆

1 ) ⩽ 𝑡). The
ollowing proposition aims to show that the distribution of the random variable 𝑇 (𝑛) converges to an exponential distribution of
arameter with the correct parameter (in the sense of Proposition 6.1).
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Proposition 6.5. For every 𝜉 > 0,

Ẽ𝜆∕𝑛,𝐾
[

𝑒−𝜉 𝑇 (𝑛)
] 𝑛→∞

→ Ẽ𝜆,𝐾
⎡

⎢

⎢

⎣


exp

(

𝐴0+𝐴2
2𝐴1

) (𝜉)
⎤

⎥

⎥

⎦

,

where 𝐴0, 𝐴1 and 𝐴2 are defined as in Proposition 6.1. More explicitly, we have

Ẽ𝜆,𝐾
⎡

⎢

⎢

⎣


exp

(

𝐴0+𝐴2
2𝐴1

) (𝜉)
⎤

⎥

⎥

⎦

= ∫

∞

0 ∫

∞

0 ∫

∞

0 ∫

∞

0
𝑒−𝜉 𝑠 𝑡1 + 𝑡2

2𝑢
𝑒−𝑠

𝑡1+𝑡2
2𝑢 𝑑 𝑠𝑑𝐏̃(𝑡1)𝑑𝐏̃(𝑡2)𝑑𝐹 (𝑢).

Before proving this result we need to show that the random variable 𝑇 (𝑛) is well-approximated by an exponential random variable
hose parameter depends on the discrete environment.

Lemma 6.6. For every 𝜉 > 0, for all 𝛿 > 0, for almost all realisations of 𝜔 we have that

𝐄̂
⎡

⎢

⎢

⎣

∑

𝓁∈𝐴𝑣(𝛿)

|

|

|

|

𝑣(𝑛)𝑗𝓁 (𝑛)
𝐸𝜔̂,𝜆∕𝑛
𝑗𝓁 (𝑛)

[

𝑒
−𝜉 𝑇

𝑑𝑛,∞

]

+ 𝑣(𝑛)𝑗𝓁 (𝑛)+1
𝐸𝜔̂,𝜆∕𝑛
𝑗𝓁 (𝑛)+1

[

𝑒
−𝜉 𝑇

𝑑𝑛,∞

]

− 𝑣𝓁
exp

( 𝑐𝑗𝓁 (𝑛)−1
+𝑐𝑗𝓁 (𝑛)+1

2𝜈𝛼∞ (𝑥𝓁 )

) (𝜉)
|

|

|

|

|

|

|

𝜔
⎤

⎥

⎥

⎦

converges to 0 as 𝑛 → ∞.

Proof. Note that, for all 𝑛 large enough, 𝑗𝓁(𝑛) ∈ 𝑇 𝛼∞
𝑛 , which implies {𝑗𝓁(𝑛) − 1, 𝑗𝓁(𝑛) + 1} ∈ 𝑁𝛼∞

𝑛 , Then 𝑐𝑖 ⩽ 𝑑1−𝛿𝑛,∞ for
= {𝑗𝓁(𝑛) − 1, 𝑗𝓁(𝑛) + 1}. Furthermore, we have that 𝑐𝑗𝓁 (𝑛)−1, ̂𝑐𝑗𝓁 (𝑛)+1 are independent of 𝜔. We already know that

𝑣𝑗𝓁 (𝑛) + 𝑣𝑗𝓁 (𝑛)+1 → 𝑣𝓁 and 𝑑−1𝑛,∞𝑐𝑗𝓁 (𝑛) = 𝑑−1𝑛,∞𝑐𝑗𝓁 (𝑛) → 𝜈𝛼∞ (𝑥𝓁). (64)

For simplicity of notation, let us set 𝑗𝓁(𝑛) = 0, the general case being an easy adaptation. Let us define 𝑇 + ∶= inf {𝑡 ⩾ 0 ∶ 𝑋𝑡 ∉ {0, 1}}
and 𝑝∗𝑛(0) = 𝑃 𝜔̂,𝜆∕𝑛

0 (𝜏−1 < 𝜏1). Observe that, under the quenched law,

𝐸𝜔̂,𝜆∕𝑛
𝑥

[

𝑒
−𝜉 𝑇+

𝑑𝑛,∞

]

− 𝑝∗𝑛(𝑥) ⩽ 𝐸𝜔̂,𝜆∕𝑛
𝑥

[

𝑒
−𝜉 𝑇

𝑑𝑛,∞

]

⩽ 𝐸𝜔̂,𝜆∕𝑛
𝑥

[

𝑒
−𝜉 𝑇+

𝑑𝑛,∞

]

+ 𝑝∗𝑛(𝑥)

Start by noting that

𝑝∗𝑛(0) ⩽ 𝑛−𝛿 → 0 as 𝑛 → ∞.

It remains to control the Laplace transform of 𝑇 +. Define

𝑝1 =
𝑐𝜆∕𝑛−1

𝑐𝜆∕𝑛−1 + 𝑐𝜆∕𝑛0

, 𝑝2 =
𝑐𝜆∕𝑛1

𝑐𝜆∕𝑛1 + 𝑐𝜆∕𝑛0

and 𝑝𝑛 = 1 − (1 − 𝑝1)(1 − 𝑝2).

Under the measure 𝑃 𝜔̂,𝜆∕𝑛
0 , we have that

𝑌 ∗
∑

𝑖=1

(

𝑒2𝑖−1 + 𝑒2𝑖
)

≼ 𝑇 + ≼

( 𝑌 ∗
∑

𝑖=1

(

𝑒2𝑖−1 + 𝑒2𝑖
)

+ 𝑒0

)

,

where ≼ denotes stochastic domination, {𝑒𝑖}𝑖⩾0 is a family of i.i.d. exponential random variables of mean 1 (independent of
verything else), 𝑌1 and 𝑌2 are geometric random variables of parameters 𝑝1 and 𝑝2 respectively, and 𝑌 ∗ = min{𝑌1, 𝑌2} ∼ Geom(𝑝𝑛).
ll these geometric random variables take values in {0, 1, 2,… }. We can discard 𝑒0 in the sum as 𝑑−1𝑛,∞𝑒0 → 0 in probability. A
traightforward computation yields that

𝑝𝑛 =
𝑐𝜆∕𝑛0 (𝑐𝜆∕𝑛−1 + 𝑐𝜆∕𝑛1 )

(𝑐𝜆∕𝑛0 + 𝑐𝜆∕𝑛−1 )(𝑐𝜆∕𝑛0 + 𝑐𝜆∕𝑛1 )
+

𝑐𝜆∕𝑛−1 𝑐𝜆∕𝑛1

(𝑐𝜆∕𝑛0 + 𝑐𝜆∕𝑛−1 )(𝑐𝜆∕𝑛0 + 𝑐𝜆∕𝑛1 )
.

Furthermore, by using the exact form of the Laplace transform of a geometric sum of i.i.d. random variables we get that

𝐸𝜔̂,𝜆∕𝑛
0

[

𝑒
−𝜉 𝑇+

𝑑𝑛,∞

]

=
𝑝𝑛𝑑𝑛,∞

( 𝜉+𝑑𝑛,∞
𝑑𝑛,∞

)2

𝑝𝑛𝑑𝑛,∞ + 2𝜉 + 𝜉2𝑑−1𝑛,∞
+ 𝑜(𝑛)(1).

We now focus on showing that
|

|

|

|

|

|

|

|

𝑝𝑛𝑑𝑛,∞
( 𝜆+𝑑𝑛,∞

𝑑𝑛,∞

)2

𝑝𝑛𝑑𝑛,∞ + 2𝜆 + 𝜆2𝑑−1𝑛,∞
− 

exp
(

𝑐−1+𝑐1
2𝜈𝛼∞ (𝑥𝓁 )

) (𝜉)

|

|

|

|

|

|

|

|

𝑛→∞
→ 0. (65)

Let us make the following observations, using the facts which were stated in (64) and immediately above that:

1.
|

|

|𝑝𝑛𝑑𝑛,∞ −
𝑐−1 + 𝑐1
𝛼

|

|

| =
(

𝑐−1 + 𝑐+1
)

𝑜(𝑛)(1),

|

|

𝜈 ∞ (𝑥𝓁) |
|
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2.
|

|

|

|

|

( 𝜉 + 𝑑𝑛,∞
𝑑𝑛,∞

)2
− 1

|

|

|

|

|

= 𝑜(𝑛)(𝑛−1),

3.
|

|

|

|

|

𝑝𝑛𝑑𝑛,∞ + 2𝜉 + 𝜉2𝑑−1𝑛,∞ −
𝑐−1 + 𝑐+1
𝜈𝛼∞ (𝑥𝓁)

− 2𝜉
|

|

|

|

|

=
(

𝑐−1 + 𝑐+1
)

𝑜(𝑛)(1).

By plugging these estimates in to the left-hand side of (65) we get that it is bounded from above by
(

𝑐−1+𝑐1
𝜈𝛼∞ (𝑥𝓁 )

+ 2𝜉
)

𝑜(𝑛)(1)
(

𝑐−1+𝑐1
𝜈𝛼∞ (𝑥𝓁 )

+ 2𝜉
)2

(1 − 𝑜(𝑛)(1))
,

and this quantity goes to 0 as 𝑛 → ∞ for all 𝜉 > 0. Observe that, thus far we showed that

lim sup
𝑛

|

|

|

|

|

|

𝐸𝜔̂,𝜆∕𝑛
0

[

𝑒
−𝜉 𝑇

𝑑𝑛,∞

]

− 
exp

(

𝑐−1+𝑐1
2𝜈𝛼∞ (𝑥𝓁 )

) (𝜉)
|

|

|

|

|

|

= 0.

By mirroring this argument we also get that

lim sup
𝑛

|

|

|

|

|

|

𝐸𝜔̂,𝜆∕𝑛
1

[

𝑒
−𝜉 𝑇

𝑑𝑛,∞

]

− 
exp

(

𝑐−1+𝑐1
2𝜈𝛼∞ (𝑥𝓁 )

) (𝜉)
|

|

|

|

|

|

= 0.

This, together with 𝑣𝑗𝓁 (𝑛) + 𝑣𝑗𝓁 (𝑛)+1 → 𝑣𝓁 , is enough to conclude that each term in the sum over 𝐴𝑣(𝛿) goes to 0 almost surely.
However, since we also know that 𝐴𝑣(𝛿) is almost-surely finite, this observation and an application of the dominated convergence
heorem finishes the proof. □

Lemma 6.7. For all 𝛿 > 0, conditional on 𝜔, if we define 𝐴𝑣(𝛿) = {𝓁 ∶ 𝑣𝓁 > 𝛿}, the collection
(

{𝑐𝑗𝓁 (𝑛)−1, ̂𝑐𝑗𝓁 (𝑛)+1}
)

𝓁∈𝐴𝑣(𝛿)

converges in distribution to an i.i.d. collection of random variables distributed as {𝑐0, 𝑐1}, where 𝑐0, 𝑐1 are distributed as two independent
conductances under 𝐏̃.

Proof. For almost all realisations of 𝜔, we have that, for 𝑛 large enough, {𝑗𝓁(𝑛) − 1, 𝑗𝓁(𝑛) + 1} ∈ 𝑁𝛼∞
𝑛 for all 𝓁 ∈ 𝐴𝑣(𝛿), and moreover

the relevant pairs are disjoint. Hence, independently, each of the pairs {𝑐𝑗𝓁 (𝑛)−1, ̂𝑐𝑗𝓁 (𝑛)+1} are independent, with distribution of the
conductance 𝑐({0, 1}) conditioned on being no greater than 𝑑1−𝛿𝑛,∞ . Since the event in the latter conditioning has probability converging
to one, the result readily follows. □

Proof of Proposition 6.5. Let us recall the definition of the following set, which is measurable with respect to 𝜔,

𝐴𝑣
𝑛(𝛿) =

{

𝑗 ∈ 𝑇 𝛼∞
𝑛 ∶ ∃ |𝑖 − 𝑗| = 1 such that

(

𝑣(𝑛)𝑖 + 𝑣(𝑛)𝑗

)

> 𝛿
}

,

and define analogously 𝐴𝑣
𝑛(𝛿) in the environment 𝜔̂. Using (63), we have that there exists a 𝑛0 such that for all 𝑛 ⩾ 𝑛0 the indices

appearing in 𝐴𝑣
𝑛(𝛿) and 𝐴𝑣

𝑛(𝛿) are the same for all 𝑛 ⩾ 𝑛0, and in particular, they are the 𝑗𝓁(𝑛), 𝑗𝓁(𝑛) + 1 corresponding to the atoms
of 𝐴𝑣(𝛿) = {𝓁 ∶ 𝑣𝓁 > 𝛿}. By the Markov property, we can write

Ẽ𝜆∕𝑛
[

𝑒−𝜉 𝑇 (𝑛)
]

= 𝐄̂
[

∑

𝑖∕𝑛∈[−𝐾 ,𝐾]
𝑣(𝑛)𝑖 𝐸𝜔̂,𝜆∕𝑛

𝑖

[

𝑒
−𝜉 𝑇

𝑑𝑛,∞

]

]

.

Let us split the sum as follows:

𝐄̂
⎡

⎢

⎢

⎣

∑

𝑖∕𝑛∈𝐴𝑣
𝑛(𝛿)

𝑣(𝑛)𝑖 𝐸𝜔̂,𝜆∕𝑛
𝑖

[

𝑒
−𝜉 𝑇

𝑑𝑛,∞

]

⎤

⎥

⎥

⎦

+ 𝐄̂
⎡

⎢

⎢

⎣

∑

𝑖∕𝑛∉𝐴𝑣
𝑛(𝛿)

𝑣(𝑛)𝑖 𝐸𝜔̂,𝜆∕𝑛
𝑖

[

𝑒
−𝜉 𝑇

𝑑𝑛,∞

]

⎤

⎥

⎥

⎦

. (66)

The contribution of the second term can be estimated as

lim sup
𝑛→∞

𝐄̂
⎡

⎢

⎢

⎣

∑

𝑖∕𝑛∉𝐴𝑣
𝑛(𝛿)

𝑣(𝑛)𝑖 𝐸𝜔̂,𝜆∕𝑛
𝑖

[

𝑒
−𝜉 𝑇

𝑑𝑛,∞

]

⎤

⎥

⎥

⎦

⩽ lim sup
𝑛→∞

𝐄̂
⎡

⎢

⎢

⎣

∑

𝑖∕𝑛∉𝐴𝑣
𝑛(𝛿)

𝑣(𝑛)𝑖

⎤

⎥

⎥

⎦

⩽

(

1 − 𝐄̃
[

∑

𝓁∈𝐴𝑣(𝛿)
𝑣𝓁

])

.

Let us define

𝑅1(𝛿) = 1 − 𝐄̃
[

∑

𝓁∈𝐴𝑣(𝛿)
𝑣𝓁

]

,

and note that 𝑅1(𝛿) converges to 0 as 𝛿 goes to 0, using the dominated convergence theorem and the fact that the marginals of 𝑍𝜆

are almost-surely purely atomic. For the first part of (66), we can rewrite it as

𝐄̂
⎡

⎢

⎢

∑

𝑣(𝑛)𝑖 𝐸𝜔̂,𝜆∕𝑛
𝑖

[

𝑒
−𝜉 𝑇

𝑑𝑛,∞

]

⎤

⎥

⎥

= 𝐄̂
⎡

⎢

⎢

𝐄̂
⎡

⎢

⎢

∑

𝑣(𝑛)𝑖 𝐸𝜔̂,𝜆∕𝑛
𝑖

[

𝑒
−𝜉 𝑇

𝑑𝑛,∞

]

|

|

|

𝜔
⎤

⎥

⎥

⎤

⎥

⎥

⎣𝑖∕𝑛∈𝐴𝑣
𝑛(𝛿) ⎦ ⎣ ⎣𝑖∕𝑛∈𝐴𝑣

𝑛(𝛿) ⎦⎦
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= 𝐄̃
⎡

⎢

⎢

⎣

𝐄̂
⎡

⎢

⎢

⎣

∑

𝑖∕𝑛∈𝐴𝑣
𝑛(𝛿)

𝑣(𝑛)𝑖 𝐸𝜔̂,𝜆∕𝑛
𝑖

[

𝑒
−𝜉 𝑇

𝑑𝑛,∞

]

|

|

|

𝜔
⎤

⎥

⎥

⎦

⎤

⎥

⎥

⎦

.

The last term, by the observation at the beginning of the proof, can be re-written as the expectation of the sum appearing in
Lemma 6.6. Then, applying said lemma, we can write it as

lim sup
𝑛→∞

𝐄̃
⎡

⎢

⎢

⎣

𝐄̂
⎡

⎢

⎢

⎣

∑

𝑖∕𝑛∈𝐴𝑣
𝑛(𝛿)

𝑣(𝑛)𝑖 𝐸𝜔̂,𝜆∕𝑛
𝑖

[

𝑒
−𝜉 𝑇

𝑑𝑛,∞

]

|

|

|

𝜔
⎤

⎥

⎥

⎦

⎤

⎥

⎥

⎦

= lim sup
𝑛→∞

𝐄̃
[

∑

𝓁∈𝐴𝑣(𝛿)
𝐄̂
[

𝑣(𝑛)𝑗𝓁 (𝑛)
𝐸𝜔̂,𝜆∕𝑛
𝑗𝓁 (𝑛)

[

𝑒
−𝜉 𝑇

𝑑𝑛,∞

]

+ 𝑣(𝑛)𝑗𝓁 (𝑛)+1
𝐸𝜔̂,𝜆∕𝑛
𝑗𝓁 (𝑛)+1

[

𝑒
−𝜉 𝑇

𝑑𝑛,∞

]

|

|

|

𝜔
]

]

⩽ lim sup
𝑛→∞

𝐄̃
⎡

⎢

⎢

⎣

∑

𝓁∈𝐴𝑣(𝛿)
𝑣𝓁𝐄̂

⎡

⎢

⎢

⎣


exp

( 𝑐𝑗𝓁 (𝑛)−1
+𝑐𝑗𝓁 (𝑛)+1

2𝜈𝛼∞ (𝑥𝓁 )

)

|

|

|

𝜔
⎤

⎥

⎥

⎦

⎤

⎥

⎥

⎦

.

Using Lemma 6.7 and the boundedness of the function inside the expectation, we obtain

lim sup
𝑛→∞

𝐄̃
⎡

⎢

⎢

⎣

∑

𝓁∈𝐴𝑣(𝛿)
𝑣𝓁𝐄̂

⎡

⎢

⎢

⎣


exp

( 𝑐𝑗𝓁 (𝑛)−1
+𝑐𝑗𝓁 (𝑛)+1

2𝜈𝛼∞ (𝑥𝓁 )

)

|

|

|

𝜔
⎤

⎥

⎥

⎦

⎤

⎥

⎥

⎦

= 𝐄̃
⎡

⎢

⎢

⎣

∑

𝓁∈𝐴𝑣(𝛿)
𝑣𝓁𝐄̂

⎡

⎢

⎢

⎣


exp

(

𝐴0+𝐴1
2𝜈𝛼∞ (𝑥𝓁 )

)

|

|

|

𝜔
⎤

⎥

⎥

⎦

⎤

⎥

⎥

⎦

.

Plugging back in the sum the terms 𝓁 ∉ 𝐴𝑣(𝛿) we get, by the dominated convergence theorem,

lim sup
𝑛→∞

Ẽ𝜆∕𝑛
[

𝑒−𝜉 𝑇 (𝑛)
]

⩽ Ẽ𝜆
⎡

⎢

⎢

⎣


exp

(

𝐴0+𝐴2
2𝐴1

) (𝜉)
⎤

⎥

⎥

⎦

+ 2𝑅1(𝛿).

By reasoning analogously one gets

lim inf
𝑛→∞

Ẽ𝜆∕𝑛
[

𝑒−𝜉 𝑇 (𝑛)
]

⩾ Ẽ𝜆
⎡

⎢

⎢

⎣


exp

(

𝐴0+𝐴2
2𝐴1

) (𝜉)
⎤

⎥

⎥

⎦

− 2𝑅1(𝛿).

Which is enough to conclude the proof, since 𝛿 is arbitrary and lim𝛿→0 𝑅1(𝛿) = 0. □

Proof of Proposition 6.1. Note that we can write

P̃𝜆∕𝑛,𝐾
(

|

|

|

𝑋𝑏𝑛+𝑠1𝑑𝑛,∞ −𝑋𝑏𝑛+𝑠2𝑑𝑛,∞
|

|

|

⩽ 1, ∀𝑠1, 𝑠2 ∈ [0, ℎ]
)

= P̃𝜆∕𝑛,𝐾 (

𝑇 (𝑛) ⩾ ℎ
)

.

Using Proposition 6.5 and Lévy’s continuity Theorem (see [28, Theorem 5.3]), we get that

lim
𝑛→∞

P̃𝜆∕𝑛,𝐾 (

𝑇 (𝑛) ⩾ ℎ
)

= Ẽ𝐾

[

𝑒−ℎ
𝐴0+𝐴2

2𝐴1

]

,

also due to the shape of the upper tail of the distribution of an exponential random variables. □

Proof of Proposition 2.3. Part II. The proof is very similar to the one of Part I above. We can once again notice that
P̃𝜆∕𝑛

(

|

|

|

𝑋𝑏𝑛+𝑠1𝑑𝑛,∞ −𝑋𝑏𝑛+𝑠2𝑑𝑛,∞
|

|

|

⩽ 1, ∀𝑠1, 𝑠2 ∈ [0, ℎ], 𝜏𝑋𝐾 𝑛 ∧ 𝜏𝑋−𝐾 𝑛 > 2𝑏𝑛
)

= P̃𝜆∕𝑛,𝐾
(

|

|

|

𝑋𝑏𝑛+𝑠1𝑑𝑛,∞ −𝑋𝑏𝑛+𝑠2𝑑𝑛,∞
|

|

|

⩽ 1, ∀𝑠1, 𝑠2 ∈ [0, ℎ], 𝜏𝑋𝐾 𝑛 ∧ 𝜏𝑋−𝐾 𝑛 > 2𝑏𝑛
)

,

and analogously

Ẽ𝜆

[

𝑒−ℎ
𝐴0+𝐴2

2𝐴1 1{

𝜏𝑍𝐾 ∧𝜏𝑍−𝐾>2
}

]

= Ẽ𝜆,𝐾

[

𝑒−ℎ
𝐴0+𝐴2

2𝐴1 1{

𝜏𝑍𝐾 ∧𝜏𝑍−𝐾>2
}

]

.

So, by Proposition 6.1, we have that, for all 𝐾 ∈ N and ℎ > 0,

lim sup
𝑛→∞

P̃𝜆∕𝑛
(

|

|

|

𝑋𝑏𝑛+𝑠1𝑑𝑛,∞ −𝑋𝑏𝑛+𝑠2𝑑𝑛,∞
|

|

|

⩽ 1, ∀𝑠1, 𝑠2 ∈ [0, ℎ]
)

⩽ Ẽ𝜆

[

𝑒−ℎ
𝐴0+𝐴2

2𝐴1

]

+ P̃𝜆 (𝜏𝑍𝐾 ∧ 𝜏𝑍−𝐾 ⩽ 2
)

+ lim sup
𝑛

P̃𝜆∕𝑛 (𝜏𝑋𝐾 𝑛 ∧ 𝜏𝑋−𝐾 𝑛 ⩽ 2𝑏𝑛
)

.

By applying (76), we get that

lim sup
𝑛→∞

P̃𝜆∕𝑛
(

|

|

|

𝑋𝑏𝑛+𝑠1𝑑𝑛,∞ −𝑋𝑏𝑛+𝑠2𝑑𝑛,∞
|

|

|

⩽ 1, ∀𝑠1, 𝑠2 ∈ [0, ℎ]
)

⩽ Ẽ𝜆

[

𝑒−ℎ
𝐴0+𝐴2

2𝐴1

]

+ 2P̃𝜆 (𝜏𝑍𝐾−1 ∧ 𝜏𝑍−𝐾+1 ⩽ 2
)

.
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Reasoning in the same way, one can also get

lim inf
𝑛→∞

P̃𝜆∕𝑛
(

|

|

|

𝑋𝑏𝑛+𝑠1𝑑𝑛,∞ −𝑋𝑏𝑛+𝑠2𝑑𝑛,∞
|

|

|

⩽ 1, ∀𝑠1, 𝑠2 ∈ [0, ℎ]
)

⩾ Ẽ𝜆

[

𝑒−ℎ
𝐴0+𝐴2

2𝐴1

]

− 2P̃𝜆 (𝜏𝑍𝐾−1 ∧ 𝜏𝑍−𝐾+1 ⩽ 2
)

.

Applying Lemma 7.8 finishes the proof. □

7. Some results on the limiting processes

In this section, we collect together a number of useful results for the limiting processes 𝑍𝜆 and 𝑍𝜆. We start by showing that,
at a fixed time, 𝑍𝜆 is P𝜆-a.s. not located at its maximum.

Lemma 7.1. Recall that 𝑍𝜆
𝑡 was defined in (8). For this process, it holds that

P𝜆
(

𝑍𝑡 < 𝑍𝑡

)

= 1, ∀𝑡 > 0.

Proof. In the proof, we drop the 𝜆 superscript of P𝜆, 𝑍𝜆 (and other objects) for simplicity. Let 𝐵 and 𝑆 ∶= 𝑆𝛼0 be as in Section 2.1,
and introduce the 𝜎-finite measure 𝜈(𝑑 𝑥) = 𝑒2𝜆𝑥𝑑 𝑥 on R. Set

Q ∶= 𝐏𝐵 × 𝐏𝑆 × 𝜈 ,
where we write 𝐏𝐵 for the law of 𝐵 and 𝐏𝑆 for the law of 𝑆. Then, if (𝐵 , 𝑆 , 𝑋) is ‘‘chosen’’ according to Q, we write 𝐵𝑋 = 𝐵+𝑆(𝑋),
i.e. conditional on (𝑆 , 𝑋), 𝐵𝑋 is the standard Brownian motion started from 𝑆(𝑋). We also define 𝐻𝑋 from 𝐵𝑋 analogously to the
definition of 𝐻𝜆 at (7), and set

𝑍𝑋 ∶= 𝑆−1
(

𝐵𝑋
𝐻𝑋

⋅

)

.

Similarly to the proof of [17, Lemma 5.4], we observe that, for 𝐏𝑆 -a.e. realisation of 𝑆, under Q(⋅ | 𝑆), the process 𝑌 𝑋 ∶= 𝐵𝑋
𝐻𝑋

⋅
is

the Markov process naturally associated with the resistance metric measure space
(

𝑆(R)∖{𝑆∞}, 𝑑 , 𝜇
)

,

where 𝑆∞ ∶= lim𝑡→∞ 𝑆(𝑡), 𝑑 is the Euclidean metric and 𝜇 ∶= 𝜇𝜆, as defined at (6), started from 𝑆(𝑋). In particular, we highlight
that, by [31, Theorem 10.4], 𝑌 𝑋 admits a jointly continuous, symmetric transition density (𝑝𝑌 (𝑥, 𝑦))𝑥,𝑦∈𝑆(R)∖{𝑆∞}, 𝑡>0 with respect to

(that does not depend on 𝑋). Again following the proof of [17, Lemma 5.4], one can use these facts and that

𝑆 ∶ R∖𝐷 → 𝑆(R)∖

(

⋃

𝑠∈𝐷
{𝑆(𝑠−), 𝑆(𝑠)} ∪ {

𝑆∞
}

)

,

where 𝐷 is the set of discontinuities of 𝑆, is a homeomorphism to check that: for 𝐏𝑆 -a.e. realisation of 𝑆 and 𝑋 ∉ 𝐷, it holds that
𝑍𝑋 is Q(⋅ | 𝑆 , 𝑋)-a.s. continuous and, under Q(⋅ | 𝑆 , 𝑋), is Markov with symmetric transition density

(

𝑝𝑍 (𝑢, 𝑣))𝑢,𝑣∈R, 𝑡>0 ∶=
(

𝑝𝑌 (𝑆(𝑢), 𝑆(𝑣))1𝑢,𝑣∉𝐷
)

𝑢,𝑣∈R, 𝑡>0
with respect to 𝜈. As an easy consequence of the latter property, we note it 𝐏𝑆 -a.s. holds that, for any continuous, bounded functions
of compact support 𝑓0, 𝑓1,… , 𝑓𝑘 and times 0 = 𝑡0 < 𝑡1 < ⋯ 𝑡𝑘 = 𝑇 ∈ (0,∞),

Q

( 𝑘
∏

𝑖=0
𝑓𝑖

(

𝑍𝑋
𝑡𝑖

)

𝑆

)

= ∫ 𝜈⊗(𝑘+1)(𝑑 𝑥0𝑑 𝑥1 … 𝑑 𝑥𝑘)𝑓0(𝑥0)
𝑘
∏

𝑖=1
𝑝𝑍𝑡𝑖−𝑡𝑖−1 (𝑥𝑖−1, 𝑥𝑖)𝑓𝑖(𝑥𝑖)

= ∫ 𝜈⊗(𝑘+1)(𝑑 𝑥0𝑑 𝑥1 … 𝑑 𝑥𝑘)𝑓𝑘(𝑥𝑘)
𝑘
∏

𝑖=1
𝑝𝑍(𝑇−𝑡𝑖−1)−(𝑇−𝑡𝑖)(𝑥𝑖, 𝑥𝑖−1)𝑓𝑖−1(𝑥𝑖−1)

= Q

( 𝑘
∏

𝑖=0
𝑓𝑖

(

𝑍𝑋
𝑇−𝑡𝑖

)

𝑆

)

.

Together with the continuity of 𝑍𝑋 , this implies that, 𝐏𝑆 -a.s., under Q(⋅ 𝑆),
(

𝑍𝑋
𝑡
)𝑇
𝑡=0

𝑑
=
(

𝑍𝑋
𝑇−𝑡

)𝑇
𝑡=0 . (67)

Next, we claim that

Q
(

𝑍𝑋
0 = 𝑍𝑋

𝑇

)

= 0, ∀𝑇 > 0. (68)

To prove this, we start by fixing a typical realisation of 𝑆 and 𝑋, and a sequence 𝛿𝑖 ↓ 𝑋 in 𝐷. Let us denote, to ease the notation,
𝑆𝛿𝑖 ∶= 𝑆(𝛿𝑖). For the elements in the sequence 𝛿𝑖, we will check that Q(⋅ 𝑆 , 𝑋)-a.s., the hitting time

𝐵𝑋 { 𝑋 }
𝜏 (𝑆𝛿𝑖 ) ∶= inf 𝑡 > 0 ∶ 𝐵𝑡 = 𝑆(𝛿𝑖)
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is equal to 𝐻𝑋
𝑡𝑖

for some (random) time 𝑡𝑖 > 0. Indeed, since the local time of Brownian motion is strictly positive on an open interval
of its starting point for any positive time and also 𝜇([𝑆𝛿𝑖 , 𝑆𝛿𝑖 + 𝜀]) > 0 for any 𝜀 > 0, it Q(⋅ 𝑆 , 𝑋)-a.s. holds that

∫ 𝐿𝑋
𝜏𝐵𝑋 (𝑆𝛿𝑖 )+𝑡

(𝑥)𝜇(𝑑 𝑥) − ∫ 𝐿𝑋
𝜏𝐵𝑋 (𝑆𝛿𝑖 )

(𝑥)𝜇(𝑑 𝑥) > 0, ∀𝑡 > 0,

where 𝐿𝑋 is the local time of 𝐵𝑋 . In particular 𝜏𝐵𝑋 (𝑆𝛿𝑖 ) is a point of strict increase for the continuous additive functional
𝑡 ↦ ∫ 𝐿𝑋

𝑡 (𝑥)𝜇(𝑑 𝑥), and it must therefore fall into the image of 𝐻𝑋 . Applying the same argument at 𝑡 = 0, one can verify that
𝑡 = 0 also falls into the image of 𝐻𝑋 . Hence we find that 𝐻𝑋

0 = 0 and 𝜏𝐵𝑋 (𝑆𝛿𝑖 ) = 𝐻𝑋
𝑡𝑖

for some 𝑡𝑖 > 0, as required. Consequently, it
Q(⋅ 𝑆 , 𝑋)-a.s. holds that

𝑍𝑋
𝑡𝑖

= 𝑆−1
(

𝐵𝑋
𝐻𝑋

𝑡𝑖

)

= 𝑆−1
(

𝐵𝑋
𝜏𝐵𝑋 (𝑆𝛿𝑖 )

)

= 𝑆−1
(

𝑆𝛿𝑖

)

= 𝛿𝑖,

which in turn implies that

𝑍𝑋
𝑡𝑖 > 𝑍𝑋

0 .

Furthermore, note that 𝐻𝑡𝑖 = 𝜏𝐵𝑋 (𝑆𝛿𝑖 ) ↓ 0. Since 𝐻𝑋 is strictly increasing (by the continuity of 𝑡 ↦ ∫ 𝐿𝑋
𝑡 (𝑥)𝜇(𝑑 𝑥)), it follows that

𝑖 ↓ 0. In conjunction with the previous displayed equation, this leads to the conclusion that, Q(⋅ 𝑆 , 𝑋)-a.s.,

𝑍𝑋
𝑡 > 𝑍𝑋

0 , ∀𝑡 > 0,

and the result at (68) follows.
Combining (67) and (68), we conclude that Q(𝑍𝑋

𝑡 = 𝑍𝑋
𝑡) = 0 for any 𝑡 > 0. Thus, denoting by P the measure 𝐏𝐵 × 𝐏𝑆 , defining

as in (8), and writing 𝜃𝑥 for the usual shift on R,

0 = ∫ 𝜈(𝑑 𝑥)∫ 𝐏𝑆 (𝑑 𝑠)Q
(

𝑍𝑋
𝑡 = 𝑍𝑋

𝑡 𝑆 = 𝑠, 𝑋 = 𝑥
)

= ∫ 𝜈(𝑑 𝑥)∫ 𝐏𝑆 (𝑑 𝑠)P
(

𝑍𝑡 = 𝑍𝑡 𝑆 = 𝑠◦𝜃𝑥 − 𝑠𝑥
)

= ∫ 𝜈(𝑑 𝑥)P
(

𝑍𝑡 = 𝑍𝑡

)

,

where the second inequality is a simple consequence of the construction of 𝑍𝑋 , and the third is a result of the stationarity of the
istribution of the increments of 𝑆 under spatial shifts. Hence we obtain that P(𝑍𝑡 = 𝑍𝑡) = 0, which completes the proof. □

We next show that the maximum of 𝑍𝜆 is located at a discontinuity of 𝑆𝛼0 . Note we also drop lambda superscripts in the proof
f the following result.

Lemma 7.2. Recall that 𝑍𝜆
𝑡 was defined in (8) and let us define the set 𝐷 ∶= {𝑣 ∈ R ∶ 𝑆𝛼0 (𝑣) ≠ 𝑆𝛼0 (𝑣−)}. For each fixed 𝑡 > 0, it holds

hat

P𝜆
(

𝑍𝑡 ∈ 𝐷
)

= P𝜆

(

(𝐵𝐻𝜆 )𝑡 ∈
⋃

𝑣∈𝐷
{𝑆𝛼0 ,𝜆(𝑣−)}

)

= P𝜆

(

(𝐵)𝐻𝜆
𝑡
∈

⋃

𝑣∈𝐷

{(

𝑆𝛼0 ,𝜆(𝑣−), 𝑆𝛼0 ,𝜆(𝑣)
)}

)

= 1. (69)

Proof. We drop the 𝜆 superscript of P𝜆, 𝑍𝜆, 𝐻𝜆 𝑆𝛼0 ,𝜆 for simplicity. Let 𝐵 and 𝑆 ∶= 𝑆𝛼0 be as in Section 2.1. We first claim that if
𝑌 ∶= 𝐵𝐻⋅

, then it P-a.s. holds that

𝑌 𝑡 = sup{𝐵𝑠 ∶ 𝑠 ⩽ 𝐻𝑡
}

∩ 𝑆(R), ∀𝑡 > 0. (70)

Since 𝜇 has support 𝑆(R), it follows from its construction that the process 𝑌 takes values in 𝑆(R), P-a.s. Thus it is straightforward
to check that 𝑌 𝑡 is bounded above by the right-hand side of (70). Conversely, for every 𝑢 ∈ 𝐷, by applying the same argument as
sed in the proof of Lemma 7.1, it can be checked that, P-a.s., if 𝜏𝐵(𝑆(𝑢)) ⩽ 𝐻𝑡 (where 𝜏𝐵(𝑥) is the hitting time of 𝑥 by 𝐵), then

𝜏𝐵(𝑆(𝑢)) = 𝐻𝑠 for some 𝑠 ⩽ 𝑡. In particular, this implies that 𝑆(𝑢) ⩽ 𝑌 𝑡. Hence, P-a.s. we have that

sup
{

𝐵𝑠 ∶ 𝑠 ⩽ 𝐻𝑡
}

∩ 𝑆(𝐷) ⩽ 𝑌 𝑡, ∀𝑡 > 0.

Since one has that 𝑆(𝐷) = 𝑆(R) and taking closure does not affect the supremum, we thus obtain that 𝑌 𝑡 is also bounded below by
the right-hand side of (70), and thus the proof of the claim is complete.

Next, fix 𝑡 > 0, and recall from Lemma 7.1 that 𝑍𝑡 < 𝑍𝑡, P-a.s. Since 𝑍 is a continuous process, it follows that, P-a.s., there
xists a 𝛿 > 0 such that 𝑍𝑠 < 𝑍𝑡 for all 𝑠 ∈ [𝑡 − 𝛿 , 𝑡]. Using the monotonicity of 𝑆−1, one can also check the analogous claim for 𝑌 .

In particular, we P-a.s. have that there exists a 𝛿 > 0 such that

𝑌𝑡 = 𝑌𝑠 = sup{𝐵𝑟 ∶ 𝑟 ⩽ 𝐻𝑠
}

∩ 𝑆(R), ∀𝑠 ∈ [𝑡 − 𝛿 , 𝑡].
Now, the function 𝑠 ↦ 𝐻𝑠 is strictly increasing (by the continuity of 𝑟 ↦ ∫ 𝐿𝑋

𝑟 (𝑥)𝜇(𝑑 𝑥)), and so one may further deduce that
𝐻𝑡−𝛿 , 𝐻𝑡] contains a rational number, 𝑞 say. Combining these observations, we obtain that P-a.s. there exists a rational number
∈ [0, 𝐻𝑡] such that
𝑌 𝑡 = sup[0, 𝐵𝑞] ∩ 𝑆(R). (71)
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Since the set 𝑆(R) has zero Lebesgue measure (see [11, Corollary II.20]) and the supremum of a Brownian motion at a fixed time
has a distribution that is absolutely continuous with respect to Lebesgue measure (see [29, pg. 102]), it P-a.s. holds that

𝐵𝑞 ∈ (0,∞)∖𝑆(R) = (

𝑆∞,∞
)

∪
⋃

𝑢∈𝐷∶ 𝑢>0
(𝑆(𝑢−), 𝑆(𝑢)) ,

where we again write 𝑆∞ ∶= lim𝑡→∞ 𝑆(𝑡). If 𝐵𝑞 ∈ (𝑆∞,∞), then (71) implies that 𝑌 𝑡 = 𝑆∞, and from this it follows that 𝑍𝑡 = ∞.
owever, this cannot happen, since 𝑍 is a conservative process (as established in [17, Lemma 5.3]). Hence 𝐵𝑞 ∈ (𝑆(𝑢−), 𝑆(𝑢)) for

some 𝑢 ∈ 𝐷, and together with (71) this yields that 𝑌 𝑡 = 𝑆(𝑢−). Consequently, 𝑍𝑡 = 𝑢 ∈ 𝐷, which verifies that the left-hand
robability at (69) is equal to 1. Moreover, from the same argument, we see that (𝐵)𝐻𝑡

= 𝐵𝑞 ∈ (𝑆(𝑢−), 𝑆(𝑢)) for some 𝑢 ∈ 𝐷, as
equired to complete the proof. □

We can also show that the maximum of 𝑍𝜆
𝑡 has positive probability of being located at any discontinuity point of 𝑆𝛼0 on the

right of its starting point.

Lemma 7.3. Recall that 𝑍𝜆
𝑡 was defined in (8) and the set 𝐷 ∶= {𝑣 ∈ R ∶ 𝑆𝛼0 (𝑣) ≠ 𝑆𝛼0 (𝑣−)}. For each fixed 𝑡 > 0, it holds that P0-a.s.

he locations of the atoms of the distribution of 𝑍𝜆
𝑡 contain the locations of the atoms of 𝐷 ∩ (0,∞).

Proof. We drop the 𝜆 superscript of P𝜆, 𝑍𝜆, 𝐻𝜆 𝑆𝛼0 ,𝜆, 𝜇𝜆 for simplicity. Let 𝐵 and 𝑆 ∶= 𝑆𝛼0 be as in Section 2.1 and set 𝑌 = 𝐵𝐻⋅
.

ix any 𝑢 ∈ 𝐷 ∩ (0,∞), we know that (𝑆(𝑢−), 𝑆(𝑢)) has positive Lebesgue measure and that 𝑆(𝑢−) > 0. Firstly, by basic properties of
Brownian motion, we have for any 𝑞 > 0 that

P
(

𝐵𝑞 ∈ (𝑆(𝑢−), 𝑆(𝑢)) , 𝐵𝑞 ∈
(

0, 𝑆(𝑢−), 𝑞 ∈ [0, 𝐻𝑡]
)

| 𝑆
)

> 0.

(In particular, in time 𝑞, the Brownian motion can hit the interval (𝑆(𝑢−), 𝑆(𝑢)) and return to the left of 𝑆(𝑢−) without hitting 𝑆𝑢,
whilst placing arbitrarily small local time on 𝑆(R).) Hence, we are left to prove that with positive probability the maximum of
the process does not exceed 𝑆(𝑢) in the remaining time. A Brownian motion 𝐵 started from 𝑆(𝑢−) can accumulate, with positive
probability, arbitrary large local time in the set [0, 𝑆(𝑢−)] before leaving the interval (−1, 𝑟), where 𝑟 ∶= (𝑆(𝑢) + 𝑆(𝑢−))∕2. More
precisely, let 𝜎 ∶= inf {𝑡 > 0 ∶ 𝐵𝑡 ∉ (−1, 𝑟)} and let 𝐿𝐵

𝑡 [𝑥, 𝑦] ∶= inf𝑧∈[𝑥,𝑦] 𝐿𝐵
𝑡 (𝑧), then, for all 𝑠 > 0, by the Ray–Knight theorem,

P𝑆(𝑢−)
(

𝐿𝐵
𝜎 [0, 𝑆(𝑢−)] > 𝑠 | 𝑆

)

> 0.

Furthermore, by the fact that subordinators are almost surely increasing, it must be the case that 𝜇([0, 𝑆(𝑢−)]) > 0. Hence, we deduce
that

P𝑆(𝑢−)
(

𝜎 > 𝐻𝑡 | 𝑆
)

> 0.

Then, by the Markov property,

P
(

𝑌 𝑡 = 𝑆(𝑢−) | 𝑆
)

⩾ P
(

𝐵𝑞 ∈ (𝑆(𝑢−), 𝑆(𝑢)) , 𝐵𝑞 ∈ (0, 𝑆(𝑢−)) , 𝑞 ∈ [0, 𝐻𝑡] | 𝑆
)

P𝑆(𝑢−)
(

𝜎 > 𝐻𝑡 | 𝑆
)

> 0,

and we conclude by taking expectations. □

Now, turning to the model with traps, we show that 𝑍𝜆 is P̃-a.s. located in the discontinuities of 𝑆𝛼∞ .

Lemma 7.4. Recall that 𝑍𝜆
𝑡 was defined at (10) and let us define the set 𝐷∞ ∶= {𝑣 ∈ R ∶ 𝑆𝛼∞ (𝑣) ≠ 𝑆𝛼∞ (𝑣−)}. It holds that

P̃𝜆
(

𝑍𝑡 ∈ 𝐷∞

)

= 1, ∀𝑡 > 0.

Proof. Since 𝐵𝐻̃𝜆
⋅

is the time change of Brownian motion by the measure 𝜇𝜆, which is a purely atomic measure, with atoms at
𝑆𝛼0 ,𝜆
𝑢 )𝑢∈𝐷∞

, it must hold for each fixed 𝑡 > 0 that, P̃-a.s.,

𝐵𝐻̃𝜆
𝑡
∈
{

𝑆𝛼0 ,𝜆(𝑢) ∶ 𝑢 ∈ 𝐷∞
}

.

The result follows. □

From the previous result, we can check that 𝑍𝜆 is likely to be found at exactly the same location at two nearby times.

Lemma 7.5. Recall that 𝑍𝜆
𝑡 was defined at (10). It holds that

lim
𝜀↓0

P̃𝜆
(

𝑍1−𝜀 = 𝑍1

)

= 1.
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Proof. We drop the 𝜆 superscript of P̃𝜆, 𝑍𝜆, 𝐻̃𝜆, 𝑆𝛼0 ,𝜆, 𝑆𝛼∞ ,𝜆, 𝜇𝜆 for simplicity, set also 𝑆𝛼0
𝑢 ∶= 𝑆𝛼0 (𝑢). By the scaling properties of

the subordinators 𝑆𝛼0 , 𝑆𝛼∞ and the Brownian motion 𝐵, it is possible to check that, for any constant 𝑐 > 0,
(

𝑍𝑐 𝑡
)

𝑡⩾0

(d)
=

(

𝑐𝛼0𝛼∞∕(𝛼0+𝛼∞)𝑍𝑡

)

𝑡⩾0
.

Hence the statement of the lemma is equivalent to the following limit:

lim
𝜀↓0

P̃
(

𝑍1 = 𝑍1+𝜀

)

= 1.

Now, from (the proof of) Lemma 7.4, we have that 𝐵𝐻̃1
= 𝑆𝛼0

𝑢 for some 𝑢 ∈ 𝐷∞. Moreover, since a Brownian motion accumulates
 mean 𝜂∕2 exponential amount of local time at its starting point before exiting an ball of radius 𝜂 around it (cf. [33, (3.189)]),
t holds that the time-changed process 𝐵𝐻̃⋅

takes at least a mean 𝜂∕2𝜇̃({𝑆𝛼0
𝑢 }) exponential time after time 1 to escape the interval

𝑆𝛼0
𝑢 − 𝜂 , 𝑆𝛼0

𝑢 + 𝜂]. Thus

P̃
(

𝐵𝐻̃1+𝜀
≠ 𝑆𝛼0

𝑢 𝑆𝛼0 , 𝑆𝛼∞ , 𝐵𝐻̃1
= 𝑆𝛼0

𝑢

)

⩽ 1 − 𝑒−2𝜀 ̃𝜇({𝑆
𝛼0
𝑢 })∕𝜂 + P̃

(

𝐵𝐻̃𝜂
1+𝜀

≠ 𝑆𝛼0
𝑢 𝑆 , 𝐵𝐻̃𝜂

1
= 𝑆𝛼0

𝑢

)

,

where 𝐵𝐻̃𝜂
⋅

corresponds to the Brownian motion time-changed by the restricted measure 𝜇𝜂 ∶= 𝜇(⋅ ∩ [𝑆𝛼0
𝑢 − 𝜂 , 𝑆𝛼0

𝑢 + 𝜂]). For the
probability on the right-hand side above, we have the following estimate from [23, Lemma 2.5]:

P̃
(

𝐵𝐻̃𝜂
1+𝜀

≠ 𝑆𝛼0
𝑢 𝑆𝛼0 , 𝑆𝛼∞ , 𝐵𝐻̃𝜂

1
= 𝑆𝛼0

𝑢

)

⩽
𝜇
(

[𝑆𝛼0
𝑢 − 𝜂 , 𝑆𝛼0

𝑢 + 𝜂]∖{𝑆𝛼0
𝑢 }

)

𝜇
(

[𝑆𝛼0
𝑢 − 𝜂 , 𝑆𝛼0

𝑢 + 𝜂]
)

.

Hence we conclude that

P̃
(

𝐵𝐻̃1+𝜀
≠ 𝐵𝐻̃1

)

= Ẽ

[

∑

𝑢∈𝐷∞

P̃
(

𝐵𝐻̃1+𝜀
≠ 𝑆𝛼0

𝑢 𝑆𝛼0 , 𝑆𝛼∞ , 𝐵𝐻̃1
= 𝑆𝛼0

𝑢

)

P̃
(

𝐵𝐻̃1
= 𝑆𝛼0

𝑢 𝑆𝛼0 , 𝑆𝛼∞
)

]

⩽ Ẽ

[

∑

𝑢∈𝐷∞

(

1 − 𝑒−2𝜀 ̃𝜇({𝑆
𝛼0
𝑢 })∕𝜂 +

𝜇
(

[𝑆𝛼0
𝑢 − 𝜂 , 𝑆𝛼0

𝑢 + 𝜂]∖{𝑆𝛼0
𝑢 }

)

𝜇
(

[𝑆𝛼0
𝑢 − 𝜂 , 𝑆𝛼0

𝑢 + 𝜂]
)

)

P̃
(

𝐵𝐻̃1
= 𝑆𝛼0

𝑢 𝑆𝛼0 , 𝑆𝛼∞
)

]

.

Taking limits as 𝜀 → 0, this implies

lim sup
𝜀→0

P̃
(

𝐵𝐻̃1+𝜀
≠ 𝐵𝐻̃1

)

⩽ Ẽ

[

∑

𝑢∈𝐷∞

𝜇
(

[𝑆𝛼0
𝑢 − 𝜂 , 𝑆𝛼0

𝑢 + 𝜂]∖{𝑆𝛼0
𝑢 }

)

𝜇
(

[𝑆𝛼0
𝑢 − 𝜂 , 𝑆𝛼0

𝑢 + 𝜂]
)

P̃
(

𝐵𝐻̃1
= 𝑆𝛼0

𝑢 𝑆𝛼0 , 𝑆𝛼∞
)

]

.

Moreover, since P̃-a.s., for any 𝑢 ∈ 𝐷∞, as 𝜂 → 0, 𝜇([𝑆𝛼0
𝑢 − 𝜂 , 𝑆𝛼0

𝑢 + 𝜂]∖{𝑆𝛼0
𝑢 }) → 0 and 𝜇([𝑆𝛼0

𝑢 − 𝜂 , 𝑆𝛼0
𝑢 + 𝜂]) → 𝜇({𝑆𝛼0

𝑢 }) > 0, we have
from the dominated convergence theorem that the right-hand side here converges to zero as 𝜂 → 0. Thus

lim
𝜀→0

P̃
(

𝐵𝐻̃1+𝜀
= 𝐵𝐻̃1

)

= 1, (72)

and the result follows. □

A weaker version of the previous result is the following, which is a simple consequence of the continuity of 𝑍𝜆 (see, for
xample, [34, Corollary 3.1]).

Lemma 7.6. Recall that 𝑍𝜆
𝑡 was defined at (10). For all 𝛿 > 0, it holds that

lim
𝜀↓0

P̃𝜆
(

sup
𝑡∈[1−𝜀,1]

|

|

|

𝑍1 −𝑍𝑡
|

|

|

⩽ 𝛿
)

= 1.

Lemma 7.7. Recall that 𝑍𝜆
𝑡 was defined at (10) and let us define the set 𝐷∞ ∶= {𝑣 ∈ R ∶ 𝑆𝛼∞ (𝑣) ≠ 𝑆𝛼∞ (𝑣−)}. For any starting point

𝑥 ∈ R and any 𝑡 > 0 the locations of the atoms 𝐷∞ are contained in the locations of the atoms of the marginal 𝑍𝜆
𝑡 started from 𝑥.

Proof. We drop the 𝜆 superscript of P̃𝜆, 𝑍𝜆, 𝐻̃𝜆, 𝑆𝛼0 ,𝜆, 𝑆𝛼∞ ,𝜆, 𝜇𝜆 for simplicity. Note that the statement is equivalent to prove that
the atoms of the marginal of 𝐵𝐻̃𝑡

, started from any 𝑦 ∈ 𝑆𝛼0 (R), contain the atoms of the speed measure 𝜇.
By (72), for all 𝑧0 such that 𝜇(𝑧0) > 0, we have that the probability

P̃
(

𝐵𝐻̃𝑡
= 𝑧0 𝑆𝛼0 , 𝑆𝛼∞ , 𝐵𝐻̃0

= 𝑦
)

,

is continuous in 𝑡. Furthermore, this continuity extends to all 𝑧 ∈ R as Lemma 7.4 guarantees that the other points always have 0
probability. From the definition at (9), for all 𝑡′ > 𝑡 > 0 we can write

∫

𝑡′

𝑡
P̃
(

𝐵𝐻̃𝑠
= 𝑧0 𝑆𝛼0 , 𝑆𝛼∞ , 𝐵𝐻̃0

= 𝑦
)

𝑑 𝑠

= Ẽ
[

𝐿𝐵
̃ (𝑧0 − 𝑦) − 𝐿𝐵

̃ (𝑧0 − 𝑦) 𝑆𝛼0 , 𝑆𝛼∞ , 𝐵𝐻̃0
= 𝑦

]

𝜇(𝑧0). (73)

𝐻𝑡′ 𝐻𝑡
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We claim that the expectation on the right-hand side is strictly positive. Indeed, it is not hard to check that if 𝐻̃𝑡 is strictly increasing
in 𝑡 for all starting points 𝐵𝐻̃0

= 𝑦. Hence, between times 𝐻̃𝑡 and 𝐻̃𝑡′ the Brownian motion has a positive probability to cross 𝑧0 − 𝑦
and hence will strictly increase its local time there so that the right-hand side of (73) is strictly positive.

Thus, for all 𝑡 > 0 there exists 0 < 𝑠 < 𝑡 such that P̃(𝐵𝐻̃𝑠
= 𝑧0 𝑆𝛼0 , 𝑆𝛼∞ , 𝐵𝐻̃0

= 𝑦) is strictly positive. Hence, by continuity of
hese probabilities and the Markov property, we get that

P̃
(

𝐵𝐻̃𝑠
= 𝑧0 𝑆𝛼0 , 𝑆𝛼∞ , 𝐵𝐻̃0

= 𝑦
)

P̃
(

𝐵𝐻̃𝑡−𝑠
= 𝑧0 𝑆𝛼0 , 𝑆𝛼∞ , 𝐵𝐻̃0

= 𝑧0
)

> 0,

which is a lower bound for P̃(𝐵𝐻̃𝑡
= 𝑧0 𝑆𝛼0 , 𝑆𝛼∞ , 𝐵𝐻̃0

= 𝑦). We conclude by taking expectations. □

Finally, we check the conservativeness of 𝑍𝜆.

Lemma 7.8. For any 𝑢 > 0,

lim sup
𝐾→∞

P̃𝜆
(

𝜏𝑍𝐾 ∧ 𝜏𝑍−𝐾 ⩽ 𝑢
)

= 0.

Proof. The proof is similar to the one of [17, Lemma 5.3]. We aim to prove that for all 𝜀 > 0 we can find 𝐾 large enough such that

P̃𝜆
(

𝜏𝑍𝐾 ∧ 𝜏𝑍−𝐾 ⩽ 𝑢
)

⩽ 𝜀.

Let us start proving this for the symmetric process 𝑍 = 𝑍0. By symmetry, we can reduce the problem into proving that

P̃
(

𝜏𝑍𝐾 ⩽ 𝑢
)

⩽ 𝜀
2
.

Let us define

𝑀𝐾 ∶= sup
𝑡∈[1,𝐾−1]

(𝑆𝛼∞ (𝑡) − 𝑆𝛼∞ (𝑡−)) ,

𝑇𝐾 ∶= argmax
𝑡∈[1,𝐾−1]

(𝑆𝛼∞ (𝑡) − 𝑆𝛼∞ (𝑡−)) .

The number of jumps of 𝑆𝛼∞ in the interval [1, 𝐾− 1] of size larger than 𝑚 has a Poisson distribution with mean 𝑚−𝛼∞ (𝐾− 2). Hence,
for all 𝑚, we can find 𝐾0 such that, for all 𝐾 ⩾ 𝐾0,

𝐏̃
(

𝑀𝐾 < 𝑚) = 𝑒−𝑚
−𝛼∞ (𝐾−2) ⩽ 𝜀

4
.

Moreover, using the independence of the two subordinators 𝑆𝛼0 and 𝑆𝛼∞ (as well as the fact that the former is a strictly increasing
function), we can find 𝜂 ∈ (0, 1) (independent of 𝑚 and 𝐾) so that

𝐏̃
(

min{𝑆𝛼0 (𝑇𝐾 + 1) − 𝑆𝛼0 (𝑇𝐾 ), 𝑆𝛼0 (𝑇 −
𝐾 ) − 𝑆𝛼0 (𝑇𝐾 − 1)} < 𝜂) ⩽ 𝜀

4
.

Now, on the event that both 𝑀𝐾 ⩾ 𝑚 and min{𝑆𝛼0 (𝑇𝐾 + 1) −𝑆𝛼0 (𝑇𝐾 ), 𝑆𝛼0 (𝑇 −
𝐾 ) −𝑆𝛼0 (𝑇𝐾 − 1)} ⩾ 𝜂, one has by arguing as in the proof

of Lemma 7.5 that from the hitting time of 𝑇𝐾 by 𝑍𝜆 to the time it exits a ball of radius 1 around this, at least an exponential, mean
 𝑚∕2, amount of time must pass. In particular, we get that

P̃
(

𝜏𝑍𝐾 ⩽ 𝑢
)

⩽ 𝜀
2
+ P̃

(

exp
(

2
𝜂 𝑚

)

⩽ 𝑢
)

= 𝜀
2
+ 1 − 𝑒−2∕𝜂 𝑚.

Thus, by choosing first 𝜂 (which we recall could be chosen independent of 𝑚 and 𝐾), and then 𝑚 and then 𝐾 suitably large, one
an ensure this bound is smaller than 𝜀, as desired.

For the version with vanishing bias 𝜆 > 0 we notice that, by standard properties of Brownian motion

P̃𝜆
(

𝜏𝑍𝐾 ∧ 𝜏𝑍−𝐾 = 𝜏𝑍−𝐾
|

|

|

𝑆𝛼0 ,𝜆
)

=
|

|

|

𝑆𝛼0 ,𝜆(−𝐾)−1||
|

|

|

𝑆𝛼0 ,𝜆(−𝐾)−1|
|

+ |

|

𝑆𝛼0 ,𝜆(𝐾)−1|
|

.

Thanks to the fact that
(

𝑆𝛼0 ,𝜆(𝑡)
)

𝑡∈R is bounded for 𝑡 → ∞ and unbounded for 𝑡 → −∞ one can choose 𝐾 large enough such that

P̃𝜆
(

𝜏𝑍𝐾 ∧ 𝜏𝑍−𝐾 = 𝜏𝑍−𝐾
)

⩽ 𝜀
2
.

Then re-running the proof as in the symmetric case we get that, for every 𝑢, 𝜀 > 0,

P̃𝜆
(

𝜏𝑍𝐾 ∧ 𝜏𝑍−𝐾 ⩽ 𝑢
)

⩽ 𝜀

for large 𝐾. (Note that, the one adaptation required is that one should consider the event min{𝑆𝛼0 ,𝜆(𝑇𝐾 + 1) − 𝑆𝛼0 ,𝜆(𝑇𝐾 ), 𝑆𝛼0 ,𝜆(𝑇 −
𝐾 ) −

𝑆𝛼0 ,𝜆(𝑇𝐾 − 1)} ⩾ 𝜂 𝑒−2𝜆𝑇𝐾 , which still has a probability that is independent of 𝐾.) This is enough to conclude the proof. □
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Appendix. Note on 𝐉𝟏 convergence

In the proofs of Propositions 3.10 and 3.11, we claimed that the convergence of 𝜈𝛼0 ,(𝑛) towards 𝜈𝛼0 in the sense of Proposition 3.4
guarantees that, under the same coupling, almost-surely, recalling (14),

𝑆𝛼0 ,𝜆∕𝑛,(𝑛)(𝑡)
𝐽1
→ 𝑆𝛼0 ,𝜆(𝑡),

and the same holds for the 𝛼∞ process. Let us now show that the first statement of Lemma 3.9 holds. In particular, we will show
that, almost surely,

𝑆𝛼0 ,𝜆∕𝑛,(𝑛)(𝑡)
𝐽1
→ 𝑞−1∕𝛼0𝑆𝛼0 ,𝜆∕𝑞(𝑞 𝑡),

where 𝑞 ∶= (1 − 𝑝) = 𝐏̃(𝑟({0, 1}) > 1). This is enough, as a change of variable in (5) and the self-similarity of subordinators guarantee
that

(

𝑆𝛼0 ,𝜆(𝑡)
)

𝑡⩾0
(d)
=

(

𝑞−1∕𝛼0𝑆𝛼0 ,𝜆∕𝑞(𝑞 𝑡))𝑡⩾0 .

Note that, for our purpose, it is enough to prove almost sure convergence to a version of the process. Hence, in Lemma 3.9 and in
hat follows, for simplicity, we denote the rescaled process 𝑆𝛼0 ,𝜆(𝑡).

Proof of Lemma 3.9. We use the notation defined in Section 3.2. Note that 𝑑∗𝑛,0∕𝑑𝑛,0 → 𝑞−1∕𝛼0 , so let us discard that part. Concerning
otation, let us set, for 𝑥 ∈ [0, 1], 𝐵(𝑛)(𝑥) ∶= ⌊𝑛𝑥⌋ − 𝑁 (𝑛)(𝑥) and use the shorthand 𝐵(𝑛) = 𝐵(𝑛)(1). Furthermore let us introduce the

function ℎ̃𝑛(𝑥) ∶= 𝐵(𝑛)(𝑥)∕𝑛 and its right continuous inverse ℎ̃−1𝑛 . One can check that, for 𝑖 such that 𝑏𝑖 = 0, ℎ̃𝑛(𝑖∕𝑛) = (𝑖 − 𝑖∗)∕𝑛 and
−1
𝑛 ((𝑖 − 𝑖∗)∕𝑛) − 1

𝑛 = 𝑖∕𝑛, where 𝑖∗ is defined in (21). By the functional law of large numbers we have that ℎ̃𝑛(𝑥) → 𝑞 𝑥 uniformly in
0, 1] and consequently ℎ̃−1𝑛 (𝑠) → 𝑠∕𝑞.

The definition of the 𝐽1 metric on [0, 1] is the following

𝑑𝐽1 (𝑓 , 𝑔) ∶= inf
𝜉∈𝛯

(

sup
𝑡∈[0,1]

|𝑓◦𝜉(𝑡) − 𝑔(𝑡)| + sup
𝑡∈[0,1]

|𝜉(𝑡) − 𝑡|
)

, (74)

where 𝛯 is the set of continuous, strictly increasing functions that map [0, 1] onto itself (which necessarily admit continuous and
strictly increasing inverses). Thus we need to prove that for every 𝜀 > 0 there exists 𝑛0 and 𝜉𝑛 ∈ 𝛯 such that, for all 𝑛 ⩾ 𝑛0,

sup
𝑡∈[0,1]

|

|

|

𝑆𝛼0 ,𝜆∕𝑛,(𝑛)(𝑡) − 𝑞−1∕𝛼0𝑆𝛼0 ,𝜆∕𝑞(𝑞 𝜉𝑛(𝑡))||
|

+ sup
𝑡∈[0,1]

|

|

𝜉𝑛(𝑡) − 𝑡|
|

⩽ 𝜀. (75)

Recall the definition of the set 𝐼 (𝑛),𝛼∞𝛿 from (22), and consider analogously 𝐼 (𝑛),𝛼0𝛿 . Furthermore, let

𝐼𝛼0 ,𝑞𝛿 ∶= {𝑡 ∈ [0, 𝑞] ∶𝑆𝛼0 (𝑡) − 𝑆𝛼0 (𝑡−) > 𝛿} .
Let us notice the following three claims hold for any 𝛿 > 0.

• For all 𝑛 large enough, almost-surely, by the vague and point process convergence of Proposition 3.4, the two sets 𝐼 (𝑛),𝛼0𝛿 and
𝐼𝛼0 ,𝑞𝛿 will have matching atoms, in the sense that for every 𝑥𝑗 ∈ 𝐼𝛼0 ,𝑞𝛿 one can find 𝑖 ∈ 𝐼 (𝑛),𝛼0𝛿 such that

ℎ̃𝑛
( 𝑖
𝑛

)

= 𝑖 − 𝑖∗

𝑛
→ 𝑥𝑗 , 𝑔𝛼0𝑛

(

𝑆𝛼0
(

𝑖 − 𝑖∗ + 1
𝑛

)

− 𝑆𝛼0
(

𝑖 − 𝑖∗

𝑛

))

→ 𝑆𝛼0 (𝑥𝑗 ) − 𝑆𝛼0 (𝑥−𝑗 ).

• For all 𝑛 large enough the number of atoms in 𝐼 (𝑛),𝛼0𝛿 is the same as |𝐼𝛼0 ,𝑞𝛿 | and both are almost-surely finite.
• For all 𝑛 large enough the set of points {ℎ̃−1𝑛 (𝑥𝑗 ) ∶ 𝑥𝑗 ∈ 𝐼𝛼0 ,𝑞𝛿 } ∪ {0, 1} is well defined in the sense that the map ℎ̃−1𝑛 is injective

on 𝐼𝛼0 ,𝑞𝛿 and does not map any point to {0, 1}.

Thus we define 𝜉𝑛(𝑡) to be the inverse of the linear interpolation of the points {(1∕𝑞)𝑥𝑗 , ℎ̃−1𝑛 (𝑥𝑗 )} for 𝑥𝑗 ∈ 𝐼𝛼0 ,𝑞𝛿 and with the convention
hat 0 and 1 are mapped onto themselves. The observations above imply that 𝜉𝑛(⋅) is well defined and is inside 𝛯 for all 𝑛 large
nough. This choice implies that for all 𝜀 > 0, all 𝛿 > 0 and all 𝑛 large enough

sup
𝑡∈[0,1]

|

|

|

|

|

|

|

|

|

|

|

⌊𝑛𝑡⌋−1
∑

𝑖=0

𝑖∈𝐼
(𝑛),𝛼0
𝛿

𝑒−
2𝜆𝑖
𝑛 𝑔𝛼0𝑛

(

𝑆𝛼0
(

𝑖−𝑖∗+1
𝑛

)

− 𝑆𝛼0
(

𝑖−𝑖∗
𝑛

))

−
∑

𝑗∶
𝑥𝑗
𝑞 ⩽𝜉𝑛 (𝑡),

𝑥 ∈𝐼
𝛼0 ,𝑞

𝑒−
2𝑥𝑗
𝑞

(

𝑆𝛼0 (𝑥𝑗 ) − 𝑆𝛼0 (𝑥−𝑗 )
)

|

|

|

|

|

|

|

|

|

|

|

⩽ 𝜀
4
.

|

𝑗 𝛿 |
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Basically, 𝜉𝑛 exactly matches the location of the discontinuities that are larger than 𝛿. Furthermore, notice that by the third bullet
oint above and the fact that ℎ̃𝑛(𝑥) converges uniformly towards 𝑞 𝑥, for all 𝑛 large enough

sup
𝑡∈[0,1]

|

|

𝜉𝑛(𝑡) − 𝑡|
|

⩽ 𝜀
4
.

Moreover, the law of large numbers and the results in (23), (24) and (25) (re-phrased for the 𝛼0 process) imply that one can always
pick 𝛿 small enough such that, for all 𝑛 large

⌊𝑛⌋−1
∑

𝑖=0

𝑖∉𝐼
(𝑛),𝛼0
𝛿 ∖𝐼

(𝑛),𝛼0
0

𝑔𝛼0𝑛

(

𝑆𝛼0
(

𝑖 − 𝑖∗ + 1
𝑛

)

− 𝑆𝛼0
(

𝑖 − 𝑖∗

𝑛

))

+ 1
𝑑𝑛,0

∑

𝑖∕𝑛∈[0,1], 𝑏𝑖=1
𝑟({𝑖, 𝑖 + 1}) ⩽ 𝜀

4
,

∑

𝑥𝑗∉𝐼
𝛼0 ,𝑞
𝛿

𝑆𝛼0
(

𝑥𝑗
)

− 𝑆𝛼0
(

𝑥−𝑗
)

⩽ 𝜀
4
.

The last sum is taken over all discontinuity points of the stable subordinator, which is a pure jump process. This concludes the proof,
as we have shown that (75) holds as 𝑒−2𝜆𝑥 ⩽ 1 for 𝑥 ∈ [0, 1]. On this last observation, note that for the general case [−𝐾 , 𝐾] for 𝐾
ixed we can bound 𝑒−2𝜆𝑥 with the constant 𝑒2𝜆𝐾 , the result follows as 𝜀 above can be chosen arbitrarily small. □

Lemma A.1. For every 𝑡 > 0 we have that

lim sup
𝑛

P𝜆∕𝑛,𝐾 (

𝜏𝑋𝐾 𝑛 ∧ 𝜏𝑋−𝐾 𝑛 ⩽ 𝑡𝑎𝑛
)

⩽ P𝜆,𝐾 (

𝜏𝑍𝐾−1 ∧ 𝜏𝑍−𝐾+1 ⩽ 𝑡 + 1) .

and that

lim sup
𝑛

P̃𝜆∕𝑛,𝐾
(

𝜏𝑋𝐾 𝑛 ∧ 𝜏𝑋−𝐾 𝑛 ⩽ 𝑡𝑏𝑛
)

⩽ P̃𝜆,𝐾
(

𝜏𝑍𝐾−1 ∧ 𝜏𝑍−𝐾+1 ⩽ 𝑡 + 1
)

. (76)

Proof. The proof goes in the same way as the proof of [17, Lemma 5.2], being a simple consequence of 𝐽1-convergence. □
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