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Joint Music Segmentation and Clustering Based on
Self-Attentive Contrastive Learning of Multifaceted

Self-Similarity Representation
Tsung-Ping Chen and Kazuyoshi Yoshii , Senior Member, IEEE

Abstract—This paper describes a method of music structure
analysis that aims to partition a music recording into musically
meaningful segments and group similar segments with the same
label. A basic approach to this task is to extract latent acoustic
features with a deep neural network (DNN) and then perform
segmentation and clustering based on self-similarity matrices over
those features. The performance of this approach, however, is
essentially limited because the latent features are not necessarily
optimal for the following step, and the self-similarity matrices
have often been hand-crafted based on prior knowledge of musical
sections. To overcome this limitation, we propose a jointly-trainable
network that has a feature extraction subnetwork followed by
segmentation and clustering branches. The extraction subnetwork
is implemented with a Transformer encoder, whose multi-head
self-attention mechanism is expected to learn multifaceted self-
similarity matrices in a data-driven manner. The clustering branch
is implemented by deep-unfolding the expectation-maximization
(EM) algorithm of a Gaussian mixture model and thus has no
trainable parameters. The segmentation branch is introduced for
supervised boundary detection, encouraging the temporal conti-
nuity of labels estimated by the clustering branch. The evaluation
results show the effectiveness of the joint optimization and the
superiority of the proposed method over state-of-the-art methods.

Index Terms—Clustering, contrastive learning, music structure
analysis, segmentation, transformer encoder.

I. INTRODUCTION

MUSIC structure analysis (MSA) aims to find musically
meaningful segments that compose a music signal and

to categorize the segments by their relationships. In the field
of music information retrieval (MIR), it has a wide variety of
applications including music summarization for effective trial
listening with large-scale music collections. Segmentation and
labeling are two typical subtasks of MSA, which aim to estimate
musical boundaries and classify the segments, respectively. For
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Fig. 1. The overview of music structure analysis. The frontend extracts latent
features from a music signal, and the backend performs segmentation and
clustering of the feature sequence.

the labeling task, clustering and classification frameworks have
been addressed in previous research, where either semiotic la-
bels (e.g., A, B, and C) [1], [2], [3] or semantic labels (e.g.,
intro, verse, and chorus) [4], [5] are used to categorize musical
segments. Considering the absence of a standard taxonomy and
a specification for the semantic labeling of music structure,
we hence focus on the semiotic labeling using a clustering
framework in this paper.

A basic approach to MSA consists of a feature extraction
frontend and a segmentation-and-clustering backend (Fig. 1). In
the frontend, low-level features such as mel-spectrograms [6],
chromagrams [7], and tempograms [8] are extracted from mu-
sic signals as effective clues for MSA. Based on the acoustic
features, higher-level representations can be further generated
by using non-negative matrix factorization (NMF) [9], [10],
hidden Markov models (HMMs) [11], or deep neural networks
(DNNs) [12], [13]. In the backend, the self-similarity matrix
(SSM) derived from the frontend representations is a building
block of music segmentation [14], [15] and clustering [16], [17],
[18], [19]. The main limitation of this two-stage framework is
that the performance of MSA relies heavily on the compatibility
between the frontend and backend.

To address this issue, we propose a holistic approach to
MSA that tightly connects the feature extraction frontend and
the segmentation-and-clustering backend with a joint optimiza-
tion framework, inspired by similar ideas proposed in other
fields [20], [21], [22], [23], [24], [25]. For the frontend, a variant
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of the Transformer encoder [26] is used to represent acoustic
features at the frame level. It internally computes self-attention
matrices that mimic multifaceted self-similarities [13] and thus
has a high affinity for MSA. For the backend, a Gaussian mixture
model (GMM) is integrated into the deep unfolding frame-
work [27], [28] to cluster the latent representations. Specifically,
the expectation-maximization (EM) algorithm comprising al-
ternate E and M steps is unfolded to optimize the parameters
of the GMM and refine the clustering estimation iteratively.
In addition to the GMM, a segmentation branch estimating
musical boundaries is employed in the backend to reduce the
frequent label switching in the cluster assignments. Given the
framewise posterior probabilities of classes (semiotic labels)
estimated by the last E step, a contrastive learning strategy is
then used to compute losses for optimizing the joint system.
The employed contrastive losses are agnostic on the taxonomy
of the ground-truth labels and thus can be applied to various
datasets with distinct structure annotations.

The main contribution of this study is to propose a deep
clustering framework [29], [30], [31] that connects the feature
extraction stage with the clustering stage in the context of MSA.
Our contrastive learning strategy can be readily used for vari-
ous datasets in a taxonomy-agnostic manner. We demonstrate
through extensive experiments that our method is capable of
achieving the state-of-the-art performance of MSA.

II. RELATED WORK

Audio-based MSA has been tackled by a clustering or a
classification framework. The clustering-type MSA aims to
identify the boundaries of structural units and categorize the
units into a finite number of classes. The classification-type MSA
additionally estimates the semantic labels (e.g., intro, verse, and
chorus) of those classes. We refer the reader to [32] for a detailed
review of the audio-based MSA.

The classification-type MSA has recently been approached
with deep learning due to its excellent discriminative capability.
Wang et al. [5] attempted to jointly predict the boundaries and
semantic labels of musical segments with SpecTNT [33], a
nested Transformer encoder [26], which learns both the spectral
and temporal structures underlying the acoustic features. Shibata
et al. [4] proposed a hidden semi-Markov model (HSMM) that
represents the generative process of a sequence of acoustic fea-
tures from a sequence of semantic labels with a long short-term
memory (LSTM) network pretrained on paired data; during
inference, the most-likely latent labels for a feature sequence
can be estimated with the Viterbi algorithm. These methods,
however, require a predefined vocabulary of semantic labels and
cannot be applied directly to the hierarchical MSA [1], [19]
due to the lack of well-defined semantic labels to describe the
hierarchical structure of music.

For the clustering-type MSA, the early work took similarity-
based approaches to group audio frames represented by hand-
crafted features. McFee and Ellis [1] performed spectral cluster-
ing (SC) on the SSM derived from two types of acoustic features.
To improve segmentation accuracy, Wang and Mysore [2] used
the variable Markov oracle (VMO) to represent the SSM before

applying SC. Nieto and Bello [34] proposed the music structure
analysis framework (MSAF) that standardizes the process of
segmentation and clustering and implements several existing
methods for clustering-type MSA.

Recent work on the clustering-type MSA leverages deep
learning to obtain effective representations of handcrafted fea-
tures before the clustering stage. Buisson et al. [12], [35] pro-
posed an unsupervised contrastive learning framework that urges
the representations of adjacent audio frames to be close to each
other, and performed SC on the learned representations. Chen
et al. [13] built a feature extraction model with a Transformer-
based encoder that leverages the convolution-augmented multi-
head self-attention (CAMHSA) mechanism to capture repet-
itive structures; the extracted features were grouped into K
classes with a GMM, where the best K is selected according to
the Bayesian information criterion (BIC) [36]. Such cascading
approaches, however, are limited in performance because the
learned features might be suboptimal for the subsequent cluster-
ing method. In this study, we propose a globally optimal version
of [13] to bridge the gap between the feature extraction and
clustering stages. Specifically, we concatenate a GMM-based
clustering layer to a variant of the Transformer encoder and
train the whole network in a supervised manner with the aid of
contrastive learning.

III. PRELIMINARIES

This section elaborates on two key techniques, i.e., deep
unfolding and supervised clustering, used to integrate the GMM
into a deep neural network (DNN). The former implements
the EM algorithm with finite iterations as a parameter-free
feed-forward network and the latter allows the entire network
to be trained jointly. We first describe unsupervised learning
of the GMM via deep unfolding [27], [28], and then describe
supervised regularization via contrastive learning [37].

A. Deep Unfolding

The deep unfolding is a versatile technique that implements
an iterative optimization algorithm as forward computation for
a specific multi-layer network. This enables us to integrate a
classical probabilistic model relying on iterative optimization
with a deep learning model. The integrated network can thus
be trained with backpropagation in a globally-optimal manner
using a loss function defined for the entire network.

In this paper, we unfold the expectation-maximization (EM)
algorithm [38], which is a convergence-guaranteed optimization
algorithm that alternately iterates the expectation (E) and maxi-
mization (M) steps so that the marginal likelihood of the GMM
parameters is maximized.

1) Gaussian Mixture Model: Consider a clustering prob-
lem that aims to categorize N samples into K classes. Let
X � {xn}Nn=1 be observed variables, where xn ∈ RD is a
D-dimensional vector. Let Z � {zn}Nn=1 be the corresponding
latent variables, where zn ∈ {1, . . . ,K} denotes the latent class
of the n-th sample that generates xn. A K-component GMM
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assumes a hierarchical generative process given by

p(zn) = Categorical(zn | ω), (1)

p(xn | zn) = N (xn | μzn ,Σzn), (2)

where ω � {ωk}Kk=1 is a set of mixing ratios that sum to 1,
i.e.,

∑K
k=1 ωk = 1, and μ � {μk}Kk=1 and Σ � {Σk}Kk=1 are

the mean vectors and covariance matrices of the K Gaussian
distributions. Marginalizing zn out, we get

p(xn) =

K∑
k=1

ωkN (xn | μk,Σk). (3)

This can be viewed as the marginal likelihood of the parameter
set Θ � {ω,μ,Σ} for a given observation xn. The goal is to
estimate Θ that maximizes the marginal likelihood p(xn).

2) Expectation-Maximization Algorithm: The E step com-
putes the posterior distribution of the latent variables Z given
the observation X, while the M step updates the parameters
Θ. These steps are alternately iterated until convergence. In
the E step of the i-th iteration, given the latest estimate of Θ,
denoted by Θ(i−1) � {ω(i−1),μ(i−1),Σ(i−1)}, we compute the
posterior probability as follows:

p(zn = k | xn) =
p(xn, zn)

p(xn)
=

p(xn | zn)p(zn)
p(xn)

=
ω
(i−1)
k N (xn | μ(i−1)

k ,Σ
(i−1)
k )∑K

k′=1 ω
(i−1)
k′ N (xn | μ(i−1)

k′ ,Σ
(i−1)
k′ )

� γ
(i)
nk . (4)

In the M step, given the current estimate of the class posterior
probability, i.e., γ(i)

nk , the parameters are updated as follows:

N
∗(i)
k =

N∑
n=1

γ
(i)
nk , (5)

ω
(i)
k =

N
∗(i)
k

N
, (6)

μ
(i)
k =

1

N
∗(i)
k

N∑
n=1

γ
(i)
nkxn, (7)

Σ
(i)
k =

1

N
∗(i)
k

K∑
k=1

γ
(i)
nk(xn − μ

(i)
k )(xn − μ

(i)
k )�. (8)

After a sufficient number of iterations, denoted by I , we obtain
the clustering result, where the n-th sample is categorized into
the k-th class with the probability of γ(I)

nk .
3) Network Implementation: The EM algorithm with I itera-

tions can be unfolded into a feed-forward network consisting of
I layers. The i-th layer takes as input both the observationX and
the parameter estimate Θ(i−1) given by the (i− 1)-th layer and
outputs the new estimate Θ(i), where (4)–(8) are sequentially
computed inside the layer. The initial estimate Θ(0) fed into the
first layer is obtained with random sampling outside the network
consisting of only deterministic transforms in a sense similar to
the reparameterization trick [39]. The final estimate of the class
posterior probabilities γn � {γ(I)

nk }Kk=1 are obtained from the
last I-th layer.

Note that the unfolded network is not trainable in the sense
of deep learning terminology. The forward computation through
the stacked I layers intrinsically maximizes the marginal likeli-
hood of Θ as the EM algorithm does.

4) Clustering vs Classification: The unsupervised clustering
model based on the unfolded EM algorithm may seem similar
to the typical supervised classification model with the softmax
function in a sense that they both yield the posterior probabilities
of K classes. In the classification task, one may use a one-layer
network given by

p(zn = k | xn) =
ew

�
kxn∑K

k′=1 e
w�

k′xn
, (9)

where wk ∈ RD is a trainable representation of the k-th class,
which is optimized for paired data of X and Z in the training
phase such that the posterior probability p(zn | xn) for the
ground-truth class zn is maximized. In the test phase, wk is
frozen and is used directly to classify new samples, making the
classification model different from the clustering model, where
the GMM parameters Θ are optimized by the EM steps for the
given X in both the training and the test phases.

The clustering model has no trainable parameters, but proves
its worth when connected to a trainable feature extraction model.
Thanks to the differentiability of the clustering model with
respect to the posterior probabilities γ

(I)
nk , a loss evaluated for

γ
(I)
nk can be backpropagated through the I layers of the clustering

model to the feature extraction model. The feature extraction
model can thus be trained so that the extracted latent features
are optimal for clustering.

B. Supervised Clustering

In supervised clustering, where ground-truth classes Z of ob-
served dataX are given, a DNN can be trained such that the pos-
terior probability p(Z | X) estimated by the DNN is maximized,
as in supervised classification. Due to the class-agnostic nature
of clustering, the major problem of such supervised training is
the alignment between the ground-truth annotations and the class
indices. A basic solution to this problem is permutation-invariant
training (PIT) [40], [41], [42] that computes the posterior proba-
bilities for all possible alignments and uses the highest posterior
probability (best alignment) as a maximization target. This
approach, however, is computationally inefficient as it requires
K! permutations for K classes.

Another promising solution to the permutation ambiguity
in supervised clustering is contrastive learning that computes
pairwise losses without referring to class indices [22], [31],
[43]. Specifically, one can train a DNN such that the posterior
distribution p(za|xa) given by the DNN is closer to p(zb|xb)
than to p(zc|xc) if xa and xb are drawn from the same class and
xc is drawn from another class:

K∑
k=1

γak · γbk >

K∑
k=1

γak · γck, (10)

where γnk = p(zn = k|xn). We use this technique to compute
the loss function with the posterior probabilities given by the
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Fig. 2. Schematic diagram of the proposed model.

unfolded GMM layers. This enables us to jointly optimize the
GMM and the feature extraction network using the backpropa-
gation algorithm.

IV. PROPOSED METHOD

We propose a novel clustering-type MSA method based on
joint optimization of feature extraction and clustering.

A. Problem Specification

Given a sequence of acoustic features X � {xn ∈ RF }Nn=1

extracted from a music signal, we aim to estimate a set of
consecutive non-overlapping segments S � {sm}Mm=1 covering
the whole sequence, where F is the feature dimension, N is
the number of frames, M is the number of segments, and
sm � (nm, km) with nm and km being the start frame and the
class of the m-th segment, respectively.

We reformulate this task as a sequence labeling problem
and estimate 1) a sequence of binary variables B � {bn ∈
{0, 1}}Nn=1 representing the absence or presence of segment
boundaries and 2) a sequence of class indices Z � {zn ∈
{1, . . . ,K}}Nn=1. The boundary information B is necessary
to retrieve consecutive segments of the same class from Z.
Specifically, S can be retrieved from B and Z by taking nm ∈
{n : bn = 1} and km = znm

.

B. Network Design

Our network is based on a feature extraction model followed
by clustering and segmentation branches (Fig. 2).

1) Feature Extraction: We aim to extract from the input X
a sequence of latent features H � {hn ∈ RD}Nn=1 based on the
self-similarity of X, which has been considered to be one of
the most effective clues for MSA. This approach raises a re-
search question: how to compute the self-similarity from what?
Our approach to this problem is to combine a convolutional
neural network (CNN) that locally extracts latent features and
a Transformer encoder that globally aggregates these features

based on the multi-head self-attention maps, which uncover a
multifaceted self-similarity [13].

Specifically, a sequence of intermediate latent features E �
{en ∈ RD}Nn=1 is extracted from X with 2-D CNNs, where the
feature dimension is transformed from F to D while the number
of frames N is preserved:

E = CNN(X). (11)

Following [13], three types of acoustic features are used as
inputs, i.e., the mel spectrogram (Xm), the chromagram (Xc),
and the tempogram (Xt), each of which is processed with a
CNN, and the latent features are concatenated to form E.

Then, H is obtained by representing E with a variant of
the Transformer encoder with the CAMHSA mechanism [13]
considering the global dependency:

H = TransformerEncoder(E). (12)

2) Segmentation: We aim to estimate B from H with a seg-
mentation network, which can achieve better boundary detection
compared to using only a clustering network. Specifically, the
posterior probabilities p(B|H) = {βn ∈ [0, 1]}Nn=1 � PB are
computed as follows:

PB = sigmoid(f ′
c(ReLU(fc(H)))), (13)

where fc : RN×D �→ RN×D and f ′
c : RN×D �→ RN×1 denote

1-D convolutions along the N dimensions.
3) Clustering: We aim to estimate Z from H with a K-

component GMM. The deep unfolding technique described in
Section III-A is used to make the whole network differentiable.
For the initial estimate Θ(0) � {ω(0),μ(0),Σ(0)}, ω(0)

k is set

to be 1/K, μ
(0)
k ∈ RD is drawn from a standard Gaussian

distribution, Σ(0)
k ∈ RD×D is set to an identity matrix. In this

paper, each Σ
(i)
k is assumed to be a diagonal matrix because this

worked comparably with the full covariance modeling in our
preliminary experiments. The latent features H (corresponding
to X in Section III-A) are fed to the network, and the posterior
probabilities p(Z|H) = {γn ∈ [0, 1]K}Nn=1 � PZ are obtained
through the unfolded EM steps:

PZ = UnfoldedEM(H). (14)

To achieve hierarchical MSA, we introduce additional sets of
the segmentation and clustering branches into the network. In
this scenario, the feature extraction model is shared by all the
branches in a multi-task learning manner.

C. Inference

Given the boundary posterior probabilities PB and the class
posterior probabilities PZ, our goal is to estimate both the
segment boundaries B and the segment classes Z. A naive
solution is to determineZ fromPZ such thatγnzn = p(zn|hn) is
maximized at each framen. However, the resultingZ tends to be
fragmented as the GMM does not consider temporal continuity
over the frames. We therefore retrieve B from PB, and Z is
determined subsequently by both B and PZ.
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More specifically, we detect boundary frames nm from PB

using a peak-picking algorithm proposed for MSA [34].1Z is
then determined by aggregating the class posterior probabilities
between adjacent boundaries:

zn = argmax
k

nm+1−1∑
n′=nm

γn′k ∀n ∈ [nm, nm+1). (15)

D. Training

Given the segment boundaries B and the class indices Z, we
aim to jointly train the feature extraction, segmentation, and
clustering models in a supervised manner (Fig. 2). The loss
function L to be minimized is given by

L = LH + LB + LZ, (16)

where LH, LB, and LZ are the feature extraction loss, the
segmentation loss, and the clustering loss, respectively.

1) Feature Extraction Loss: To encourage the feature ex-
traction model to produce latent features H with better cluster
separability, we use a contrastive learning approach based on
the ground-truth Z in a class-agnostic fashion (Section III-B).
We thus minimize the intra-class variances and maximize the
inter-class variances on H.

More specifically, LH is defined as a class-agnostic con-
trastive loss that makes hn close to the centroid of the class
it belongs to and far away from the centroids of the other classes
as proposed in [44], [45], [46]:

LH = − 1

N

N∑
n=1

log
e−‖hn−gzn‖2∑
k 
=zn

e−‖hn−gk‖2 , (17)

where gk is the centroid of class k defined as follows:

gk =
1

Nk

N∑
n=1

1k(zn)hn, (18)

where 1k(zn) is an indicator function that takes 1 if zn = k and
0 otherwise, and Nk is the number of frames in class k.

2) Segmentation Loss: Considering that positive samples
(boundary frames) are much fewer than negative samples (non-
boundary frames) in the ground-truth B (i.e., B is imbalanced),
we use the logarithmic dice loss [47] as well as the standard
cross entropy loss for supervised learning. Specifically, LB is
given by a weighted sum of the binary cross entropy loss Lce

B

and the logarithmic dice loss Lld
B :

LB = Lce
B + λBLld

B , (19)

Lce
B = − 1

N

N∑
n=1

bn log(βn) + (1− bn) log(1− βn), (20)

Lld
B = − log

(
2
∑N

n=1 bnβn∑N
n=1 bn +

∑N
n=1 βn

)
, (21)

1 The parameters of the peak-picking algorithm were configured based on a
preliminary experiment using a small amount of data.

where λB is a weighting factor. We combine the two losses for
they concern different aspects of the input. The cross entropy
loss is calculated for each individual frame, while the dice loss
underlines the collective behavior of the input as a whole.

3) Clustering Loss: Considering the imbalance of class fre-
quencies in the ground-truth Z, the clustering loss is defined
in a way similar to the segmentation loss. Instead of using the
computationally-prohibitive PIT, we take a contrastive learning
approach. Let Ẑ ∈ {0, 1}N×N be a binary matrix, where Ẑij

takes 1 if frames i and j belong to the same class (i.e., zi = zj),
and 0 otherwise. Similarly, let Γ̂ ∈ [0, 1]N×N be a real-valued
matrix, where Γ̂ij � γ�

i γj is assumed to represent the posterior

probability of Ẑij . We defineLZ as a weighted sum of the binary
cross entropy loss Lce

Z and the logarithmic dice loss Lld
Z :

LZ = Lce
Z + λZLld

Z , (22)

Lce
Z = − 1

N2

N∑
i,j=1

Ẑij log(Γ̂ij) + (1− Ẑij) log(1− Γ̂ij), (23)

Lld
Z = − log

(
2
∑N

i,j=1 ẐijΓ̂ij∑N
i,j=1 Ẑij +

∑N
i,j=1 Γ̂ij

)
, (24)

where λZ is a weighting factor.

V. EVALUATION

We report comparative experiments and ablation studies car-
ried out to evaluate the proposed MSA method in terms of
segmentation and clustering.

A. Data

For our experiments, we used the Beatles dataset [48] and
the SALAMI dataset [49], which have been commonly used
in studies on MSA. For the Beatles dataset, we used 174 tracks
with refined structure annotations.2 For the SALAMI dataset, we
used 996 tracks (441 from the Internet Archive3 and 555 from
YouTube4) with the version 2.0 annotations.5 The SALAMI
annotations contain both semantic labels representing flat music
structures and semiotic labels representing hierarchical music
structures. We used the semiotic labels to evaluate the ability of
the proposed method to analyze hierarchical structures.

1) Statistics: The statistics of the annotations for the Beatles
dataset are summarized in Fig. 3. The most frequent labels are
verse and refrain because many songs take the verse-
refrain form (Fig. 3(a)). The original annotations distinguish
variations of a section (e.g., repetitions of verse) with extra
markers (e.g.,verseA andverseB). To standardize the dictio-
nary of section classes, we removed the variation markers while
keeping the number of sections unchanged. For example, given
two consecutive sections, verseA and verseB, we converted
them into the same class verse but preserved the boundaries

2 [Online]. Available: https://pythonhosted.org/msaf/datasets.html
3 [Online]. Available: https://archive.org/
4 [Online]. Available: https://github.com/jblsmith/matching-salami
5 [Online]. Available: https://github.com/DDMAL/salami-data-public

https://pythonhosted.org/msaf/datasets.html
https://archive.org/
https://github.com/jblsmith/matching-salami
https://github.com/DDMAL/salami-data-public
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Fig. 3. Statistics of structure annotations for the Beatles dataset.

Fig. 4. Statistics of structure annotations for the SALAMI dataset.

between them. We explored the number of classes in each song
and found that the most typical number of classes is 5 (Fig. 3(b)).

The statistics of the annotations for the SALAMI dataset are
summarized in Fig. 4. Similarly, we converted the original semi-
otic labels by neglecting the repetition indicators. For instance,
A’ and A” were converted into the same class A. We found that
around 96% of the songs comprise a maximum of 7 classes at
the coarse level (Fig. 4(a)) and a maximum of 18 classes at the
fine level (Fig. 4(b)).

2) Splitting: Considering that the two datasets have different
musical characteristics (the SALAMI dataset comprises music
tracks of various genres), we tested the proposed model on the
two datasets separately. For the Beatles dataset, the 14 songs
from the first album were used for evaluation, and the remaining
160 songs were used for training. As for the SALAMI dataset,
the 555 tracks from YouTube were used for training and the 441
tracks from the Internet Archive were used for evaluation. Note
that some tracks in the SALAMI dataset have two versions of
annotations, and we used only the first version for evaluation
if multiple annotations are available. For both datasets, we
augmented the training data by applying pitch shifting (±1
semitone) to each track.

B. Configurations

The audio signal of each track resampled at 32 kHz was
analyzed using the short-time Fourier transform (STFT) and
the constant-Q transform (CQT) with a Hann window of 3200

samples (100 ms) and a shifting interval of 1600 samples
(50 ms). The mel spectrogram Xm = {xmn ∈ R80}Nn=1 was
obtained by feeding the STFT spectrogram to the 80 mel fil-
terbanks whose center frequencies were equally spaced on the
mel-frequency scale from 80 Hz to 1600 Hz. The chromagram
Xc = {xcn ∈ R12}Nn=1 was obtained by accumulating the am-
plitudes of the 12 pitch classes over 7 octaves (from C1 to
B7) on the CQT-spectrogram. The temporgram Xt = {xtn ∈
R384}Nn=1 was obtained by analyzing the local autocorrelation
of the onset strength envelope with a window size of 384 [8].
In addition, all features were downsampled by a factor of 10,
resulting in a frame size of 500 ms.

The dimension of the latent features E and H was set to D =
80, the number of attention heads in the Transformer encoder
was set to 8, and the number of EM iterations was set to I = 10.
For the Beatles dataset, the number of classes was set to K = 7,
which was equal to the maximum number of classes included in
a track. For the SALAMI dataset, the number of classes was set
to K = 7 for the coarse level and K = 18 for the fine level.

C. Compared Methods

To evaluate the proposed joint feature extraction and clus-
tering method, we tested a cascading approach that extracts
latent features H with our feature extraction model (denoted by
CAMHSA) and then performs clustering on H with spectral
clustering (SC) [1], variable Markov oracle (VMO) [2], or
GMM [13]. When the GMM was used, the number of classes,
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K, was either determined with BIC (denoted by GMM-BIC)
for each track as proposed in [13] or fixed to K = 7 or 18
(denoted by GMM-K) as in the proposed method. Note that
the feature extraction and clustering models were trained or
performed independently, unlike the proposed method.

We also tested a modified version of SpecTNT [5], the state-
of-the-art method for the classification-type MSA. Specifically,
we extracted intermediate features from each of Xm, Xc, and
Xt with a compact network comprising two convolutional layers
and a residual connection [50], and then fed the concatenated
intermediate features into the SpecTNT blocks. The final clas-
sification layer of the original SpecTNT was replaced with the
proposed clustering model. Note that the feature extraction and
clustering models (denoted by SpecTNT-GMM) were jointly
trained as in the proposed method (CAMHSA-GMM).

D. Ablation Studies

To validate the design choices concerning the loss function,
the inference strategy, and the input features, we tested ablated
versions of the proposed method defined as follows:
� Without LH: To validate the contrastive learning on the

latent features H, we tested a version obtained by ablating
the feature extraction loss LH in (16).

� WithoutLld
B orLld

Z : To validate the imbalance-aware learn-
ing of the boundaries B and the classes Z, we tested
versions obtained by ablating the logarithmic dice losses
Lld
B and Lld

Z in (19) and (22), i.e., λB = 0 and λZ = 0,
respectively.

� Without Bound: To validate the supervision of estimating
the boundaries B, we tested a version that did not use
the information of PB. In other words, both B and Z
were estimated from the posterior probabilities PZ with
the Viterbi algorithm6 unlike the proposed method that
detected B from the posterior probabilities PB.

� Oracle Bound: To investigate the potential degradation of
the clustering performance caused by segmentation errors,
we tested an oracle version that used the ground-truthB for
estimating Z with (15). This represented the upper limit of
the clustering performance given the perfect segmentation.

� Without Xt or X{c,t}: To validate the integration of multi-
ple types of acoustic features (i.e., the mel spectrogram
Xm, chromagram Xc, and tempogram Xt), we subse-
quently ablated Xt and Xc for the input representation.

E. Evaluation Measures

The MSA results were evaluated in terms of segmentation
and clustering performances. To evaluate the estimated structure
boundaries, we calculated the precision and recall rates with an
error tolerance of±0.5 or±3 sec and their harmonic mean called
the F-score [51]. To evaluate the performance of flat clustering
at the frame level, we computed the precision (P), recall (R),
and the F-score (F) of the pairwise agreement [11], which are

6 TensorFlow API: tfa.text.viterbi_decode.

given by

P =
|Agt ∩Aest|

|Aest| , (25)

R =
|Agt ∩Aest|

|Agt| , (26)

F =
2PR
P +R , (27)

where A∗ � {(i, j)|z∗,i = z∗,j} (∗ ∈ {gt, est}) represents a set
of frame pairs (i, j) with the same class in the ground-truth
or estimated data and |X| represents the cardinality of a set
X . To evaluate the performance of hierarchical clustering, we
also used a generalization of the pairwise agreement named the
L-measure [52]. It deals with a set of frame triplets (i, j, k),
where the frame pair (i, j) agrees at a deeper level than the
pair (i, k). The precision and recall rates and the F-score were
computed in the same way as the pairwise agreement. Note that
the L-measure was applied to only the SALAMI dataset, where
the hierarchical annotations were available.

These metrics have been used commonly in the literature [1],
[4], [5], [12], [13], [15] for evaluating the clustering performance
among other metrics such as the normalized conditional entropy
scores [53] and the V-measures [54]. All the metrics are imple-
mented in mir_eval package [55], and we used the default
parameters unless otherwise specified.

F. Results on the Beatles Dataset

The performances of the six methods on the Beatles dataset
are summarized in Table I. The proposed CAMHSA-GMM
worked best in terms of the segmentation performance and the
F-score of the pairwise agreement. It outperformed the four
cascading methods in almost all metrics. This indicates that
our joint training strategy could benefit the standard framework
of MSA. Although the sequential combination of CAMHSA
and GMM was architecturally the same as CAMHSA-GMM,
a significant performance difference was observed. This could
be attributed to the convergence issue of the GMM. During
inference, the GMM of the cascading method was trained based
on the maximum likelihood estimation, which would lead to
poor convergence when the number of components was larger
than the true number of classes. In contrast, the GMM of our
method used only a fixed number of forward steps and thus was
not subject to the convergence process.

Comparing CAMHSA-GMM and SpecTNT-GMM, we
confirmed the effectiveness of the CAMHSA mechanism over
the vanilla self-attention mechanism in feature extraction. Al-
though both CAMHSA and SpecTNT involve temporal self-
attention, the augmented convolutions of CAMHSA captured
the dependencies of multiple attention maps and thus contributed
to performance improvement. In SpecTNT-GMM, the low pre-
cision (0.562) and high recall (0.937) of the pairwise agreement
indicated that the representations generated by the SpecTNT
were indiscriminable to the clustering layer, as exemplified in
Fig. 5.
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TABLE I
COMPARATIVE EVALUATION ON THE BEATLES DATASET

TABLE II
ABLATION STUDY ON THE BEATLES DATASET

Fig. 5. Music structures estimated by the five methods for the song “Misery”
by the Beatles.

The results of the ablation study are summarized in Table II.
Using hybrid losses provided a significant performance gain
compared to using individual cross entropy losses. The seg-
mentation F-score was improved compared to Without Lld

B

(0.628/0.809vs. 0.480/0.625), and the F-score of the pairwise
agreement was improved compared to Without Lld

Z (0.758vs.
0.696). Moreover, the performance was boosted compared to
Without LH, especially in terms of the segmentation F-scores
(0.628/0.809vs. 0.617/0.765). In addition, performance degra-
dation was observed in both Without Xt and Without X{c,t},
revealing the importance of exploiting multiple types of fea-
tures. Finally, the segmentation F-score dropped severely in
Without Bound (0.628/0.809 vs. 0.270/0.443), showing that
the extra boundary prediction was beneficial to the MSA task.

In particular, the results obtained by Oracle Bound implied
that accurate boundary prediction could further improve the
clustering performance.

G. Results on the SALAMI Dataset

The performances of the six methods on the SALAMI dataset
are summarized in Table III. The proposed method outperformed
the other methods at the fine level in terms of the F-scores,
although such superiority was not clear at the coarse level. Con-
sidering that the number of ground-truth boundaries at the coarse
level was less than that at the fine level, the deep learning-based
methods (SpecTNT-GMM and CAMHSA-GMM) might have
suffered from the extremely imbalanced training data and thus
obtained lower segmentation performances than the cascading
methods. Nevertheless, the cascade of CAMHSA and GMM-
BIC, which can be regarded as a two-stage alternative to the pro-
posed method, obtained better performances at the coarse level
(in terms of the F-scores of segmentation and the L-measure),
indicating that our approach has a great potential to outper-
form the cascading methods by leveraging data augmentation
techniques.

Regarding the loss functions, the use of the hybrid losses
had a positive impact on the model performance, especially the
L-measure, as shown in Table IV(a). Compared with Without
Xt and Without X{c,t}, employing multiple types of acoustic
features was crucial to the segmentation task. In comparison
to Without Bound, the joint boundary estimation gained con-
sistent improvements in the F-score of the pairwise agreement
at both the coarse and fine levels. Nonetheless, as shown in
Table IV(b), the use of ground-truth boundary annotations did
not provide a better clustering performance at the fine level.
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TABLE III
COMPARATIVE EVALUATION ON THE SALAMI DATASET

TABLE IV
ABLATION STUDY ON THE SALAMI DATASET

This implies that the extracted fine-level features might be
indistinctive for clustering.

H. Observation

Compared with the evaluation results on the Beatles dataset,
the lower performances on the SALAMI dataset reflected the
diversity of the audio tracks in terms of music genre and sound
quality. Nevertheless, we observed several consistent effects
on both datasets. First, the standard cascading approaches of
MSA benefited from our joint clustering framework. Second, the
proposed method worked better than SpecTNT-GMM on aver-
age, highlighting the effectiveness of the CAMHSA mechanism

in capturing structure-related features. Moreover, the auxiliary
dice losses (i.e., Lld

B and Lld
Z ) provided performance gains in the

segmentation and clustering tasks, respectively. Finally, the extra
boundary prediction in the clustering layer not only smoothed
the outcome of the frame-level clustering but also improved the
F-score of the pairwise agreement.

I. Cross-Dataset Evaluation

To further investigate the generalization capability of the pro-
posed method, we performed a cross-dataset evaluation where
the training data of the Beatles and SALAMI datasets (Sec-
tion V-A2) were swapped. Only the course-level evaluation
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TABLE V
CROSS-DATASET EVALUATION

was conducted in this scenario because the Beatles dataset has
no fine-level annotations. The evaluation results are summa-
rized in Table V. When the proposed method was trained on
the SALAMI dataset and tested on the Beatles dataset, both
the segmentation and clustering performances were degraded,
compared to those obtained in the within-dataset evaluation
(Table I). In contrast, when the proposed method was trained
on the Beatles dataset and tested on the SALAMI dataset, the
segmentation performance was improved slightly, compared
to the within-dataset counterpart (Table III(a)). This could be
partly explained by the facts that the SALAMI training data
contain audio tracks of various genres including classical mu-
sic, which is especially challenging for the MSA task, and
that the SALAMI test data mainly comprise audio tracks of
live performances in noisy recording environments. Further
study would thus be required to improve the robustness of the
proposed method against diverse music genres and recording
environments.

VI. CONCLUSION

This paper presented a deep learning framework that jointly
optimizes the feature extraction and clustering stages of MSA.
We used a GMM with a deep unfolding technique for soft clus-
tering and computed a contrastive loss for supervising the clus-
tering results. The comprehensive investigation demonstrated an
improvement over two-stage approaches in the performance of
frame-level segmentation and clustering. In particular, the pro-
posed model showed its superiority over the baseline methods
on the Beatles dataset. The experiment results also indicated
that accurate estimation of the section boundaries can boost the
clustering performance significantly. In this regard, we could
integrate a sophisticated segmentation method into the proposed
system and take into account other elements that are closely re-
lated to the identification of musical boundaries such as harmony
and rhythm.

The main limitation of the proposed model is that a heuris-
tic postprocessing stage is required to accommodate the sec-
tion boundaries and classes estimated separately with the two
branches, making the clustering result suboptimal. To overcome
this limitation, we plan to design a joint segmentation and
clustering method with a consistency guarantee. For further per-
formance improvement, we could use the hidden Markov model
(HMM) instead of the GMM as the clustering module to favor
the temporal smoothness of section classes. For hierarchical
(multi-level) structure analysis, a novel peak-picking strategy
that takes more than one level as input would be required to
obtain a reliable consistent segmentation.

We took a clustering rather than a classification approach to
MSA due to its flexibility in analyzing diverse music data. This

enabled us to analyze music structure from a macro perspective
without being limited by vocabulary and music genre. Such a
process might provide interesting and valuable insights into the
universal construction of music than may be observed otherwise
within a certain music style. We hope that our research will draw
more attention to music structure and encourage deep learning
techniques for MSA.
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