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THE CLEBSCH-GORDAN COEFFICIENTS OF Uq(,s'2) 
AND GRASSMANN GRAPHS 

HAU-WEN HUANG 

ABSTRACT. In the first section, I will mention a connection between the Clebsch-Gordan 
coefficients of U(s[2 ) and Johnson graphs. In the second section, I will develop a q-analog 
connection between the Clebsch-Gordan coefficients of Uq(s[2) and Grassmann graphs. 

1. THE CLEBSCH-GORDAN COEFFICIENTS OF U(s(2) AND JOHNSON GRAPHS 

The notation N denotes the set of nonnegative integers. The notation C denotes the 
complex number field. The unadorned tensor product ® is meant to be over C. For any 
set X the notation ex stands for the vector space over C that has a basis X. A vacuous 
summation is interpreted as 0. A vacuous product is interpreted as 1. An algebra is meant 
to be a unital associative algebra. An algebra homomorphism is meant to be a unital algebra 
homomorphism. For any two elements x, yin an algebra, the bracket [x, y] is defined as 

[x,y] = xy-yx. 

The universal enveloping algebra U(s(2) of s(2 is an algebra over C generated by E, F, H 
subject to the relations 

[H,E] = 2E, 

The element 

[H,F] = -2F, 

H2 
A= EF +FE+ 2 

[E,F]=H. 

is called the Casimir element of U(s(2). For any n EN there exists an (n + 1)-dimensional 

irreducible U(s(2)-module Ln that has a basis { vt)}i=O such that 

Evt) = ivtl (1 ~ i ~ n), 

Fvt) = (n - i)vi~)1 (0 ~ i ~ n - 1), 

Hvt) = (n - 2i)vt) (0 ~ i ~ n). 

Fv(n) = 0 n , 

Every (n + 1)-dimensional irreducible U(s(2)-module is isomorphic to Ln. 
Recall that the comultiplication b. of U(s(2) is an algebra homomorphism U(s(2) ---+ 

U(s(2) ® U(s(2) given by 

E f---+ E® l+l®E, 

F f---+ F®l+l®F, 

H f---+ H®l+l®H. 

The U(s(2)-module Lm ® Ln has the basis 

(0 ~ i ~ m; 0 ~ j ~ n). 
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The Clebsch-Gordan rule states that the U(s(2)-module Lm 0 Ln is isomorphic to 

min{m,n} 

Thus the vectors 
(m+n-2p) 

vi 

ffi Lm+n-2p· 
p=O 

(0:::; p:::; min{m, n}; 0:::; i:::; m + n - 2p) 

can be viewed as a basis for Lm 0 Ln- Roughly speaking the Clebsch-Gordan coefficients 
of U(s(2) are the entries of the transition matrix from the first basis to the second basis for 
Lm®Ln. 

The universal Hahn algebra 1i is an algebra over (C generated by A, B, C and the relations 
assert that 

[A,B]=C 
and each of 

[C,A] + 2A2 + B, 

[B,C] +4BA+2C 

is central in 1i. Note that the algebra 1i is generated by A and B. The Clebsch-Gordan 
coefficients of U(s(2) can be expressed in terms of Hahn polynomials. The phenomenon can 
be explained as follows: 

Theorem 1.1 (Theorem 1.5, [5]). There exists a unique algebra homomorphism q : 1i ---+ 
U(s(2) 0 U(s(2) that sends 

A c-+ 
H®l-l®H 

4 

B c-+ ~(A) 
2 

By pulling back via q every U(s(2 ) 0 U(s(2)-module can be considered as an 1i-module. 
Let V denote a U(s(2 ) 0 U(s(2)-module. For any 0 E (C we define 

V(0) = {v EV I ~(H)v = 0v}. 

Since ~(H) is in the centralizer of q(1i) in U(s(2 ) 0 U(s(2 ) the space V(0) is an 1i-submodule 
of V. 

Let O stand for a finite set with size D. Let 2° denote the power set of 0. The notation 
C:::: stands for the covering relation of this subset lattice (2n, ~)- For any integer k with 
0:::; k:::; D let 

(~) = { all k-element subsets of O}. 

Recall that the Johnson graph J(D, k) is a simple connected graph whose vertex set is (~) 
and two vertices x, y are adjacent if and only if x n y c:: x. By [2, Theorem 13.2] there exists 
a U(s(2 )-module C20 given by 

Ex = Ly for all x E 2°, 

Fx=LY for all x E 2°, 
XQ/ 
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Hx = (D - 2lxl)x for all x E 2n. 

The action of A on the U(s[2)-module (C20 is as follows: 

Ax= ( D + (D -}xl)2) x + 2 L y 

IYl=lxl 
xnycx 

for all x E 2n. 

Note that the above sum corresponds to a direct sum of the adjacency operators of J(D, k) 
for all integers k with O ::S: k ::S: D. 

Fix an element Xo E 2n. The vector spaces C2n\xo and C2x0 are U(s[2)-modules. Hence 
C20\xo 0 C2x0 is a U(s[2) 0 U(s[2)-module. There exists a unique linear map i(xo) : C20 ---+ 
C20\xo 0 C2x0 that sends 

x r-+ (x \ x0 ) 0 (x n xo) for all x E 2n. 

Note that i(x0 ) is a linear isomorphism. For any element X E U(s[2) the following diagram 
commutes: 

c2n l(xo) c2n\xo 0 c2xo 

xl l "(X) 

c2n c2n\xo 0 c2xo 
l(Xo) 

By identifying C20 with C20\xo 0 C2x0 via i(x0 ), this induces a U(s[2) 0 U(s[2)-module struc­
ture on (C20 . We denote this module by 

c20 (xo)-

By pulling back via q the U(s[2) 0 U(s[2)-module C20 (x0 ) is an 1-l-module. The action of A 
on the 1-l-module C20 (x0 ) is as follows: 

Ax=(~_ lxo\xl;lx\xol)x for all x E 2n. 

Applying the above commutative diagram with X = A yields that the action of B on the 
1-l-module C20 (x0) is as follows: 

Bx=(~+ (D-42lxl)2)x+ Ly 
IYl=lxl 
xnycx 

for all x E 2°. 

Applying the above commutative diagram with X = H yields that 

d~) = (C20 (xo)(D - 2k) (0 ::S: k ::S: D). 

Hence d~) is an 1-l-submodule of C20 (x0). We denote this 1-l-module by d~)(x0). 
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Now we assume that 1 ~ k ~ D - 1 and set x 0 E (~). Let T(x0) denote the Terwilliger 
algebra of J(D, k) with respect to x 0 . Since J(D, k) is a P- and Q-polynomial associa-

tion scheme, the algebra T(x0) is the subalgebra of End(d~)) generated by the adjacency 
operator A and the dual adjacency operator A*(x0 ) of J(D, k). Recall that 

A*(x0 )x = (D - 1) ( 1 - D(lxo2i[~ ~I:)\ xol)) x for all x E (~)-

Therefore the following equations hold on the 1-l-module d~) (x0): 

A= B _ D _ (D - 2k)2 

2 4 ' 

A*( ) = D(D - 1) (A_ (D - 2k)2 ) _ 

xo k(D-k) 4D 

We have seen the following connection between the Clebsch-Gordan coefficients of U(sl2) 
and Johnson graphs: 

Theorem 1.2 (Theorem 5.9, [5]). Let 1-l ---+ End(d~)) denote the representation corre­

sponding to the 1-l-module d~) (x0 ). Then the following equality holds: 

T(x0) = Im ( 1-l---+ End(d~))) . 

2. THE CLEBSCH-GORDAN COEFFICIENTS OF Ug(_sl2) AND GRASSMANN GRAPHS 

Assume that q is a nonzero complex number which is not a root of 1. For any two elements 
x, y in an algebra over CC, the q-bracket [x, y]q is defined as 

[x, y]q = qxy - q-1yx. 

The q-analog [n]q of any integer n is defined as 
qn _ q-n 

[n]q = -1 . 
q-q 

My first step is to develop a q-analog of the commutative diagram in Section 1. The 
quantum algebra Uq(,sl2) is an algebra over CC generated by E, F, K±l subject to the relations 

KK- 1 = K-1K = 1, 

[E, K]q = [K, F]q = 0, 

[E,F] = K -K_-1 
q- q l 

The element 

A = ( q - q-l )2 EF + q-1 K + qK-1 

is called the Casimir element of Uq(,sl2). Recall that a common comultiplication b. of Uq(,sl2) 
is an algebra homomorphism Uq(,s[2) ---+ Uq(,s[2 ) ® Uq(,s[2 ) given by 

E f--t E ® 1 + K ® E, 

F f--t F ® K-1 + 1 ® F, 
K±l f-t K±l ® K±l. 



48
THE CLEBSCH-GORDAN COEFFICIENTS AND GRASSMANN GRAPHS 

Now assume that O is a vector space over a finite field lF that has finite dimension D. Set 
the parameter 

q = v'fif. 
The notation £(0) stands for the set of all subspaces of 0. This symbol C::: now represents 
the covering relation of this subspace lattice (£(0), ~)- For any integer k with O :s; k :s; D 
let 

L'.k(O) = { all k-dimensional subspaces of O}. 

Recall that the Grassmann graph Jq(D, k) is a simple connected graph whose vertex set is 
£k(O) and two vertices x, x' are adjacent if and only if xnx' c::: x. It is known from [6, Section 
33] that there exists a Uq(,s[2)-module (CL:(!1) given by 

Ex= ql-DLx' for all x E £(0), 

Fx= Lx' for all x E £(0), 

for all x E £(0). 

Fix an element Xo E £(0). Let i(xo) : c£(!1) -t c£(!1/xo) ® c£(xo) denote the linear map that 
sends 

x f--+ (x + x 0 )/x0 ® x n xo for all x E £(0). 

Unfortunately, the following diagram is not commutative for any element XE Uq(,s[2): 

cccnJ 
l(xo) 

c£(!1/xo) ® c£(xo) 

xl l ,>(X) 

cccnJ c£(!1/xo) ® c£(xo) 
l(xo) 

I choose another comultiplication ~ of Uq{,s[2) [3, Lemma 1.2] which is an algebra homo­
morphism Uq(,s[2 ) -t Uq(,s[2 ) ® Uq{,s[2 ) given by 

E f--+ E ® 1 + K-1 ® E, 

F f--+ F@K+l®F, 

K±l M K±l ® K±l_ 

I consider a more general setting of the Uq{,s[2)-module structure on (CL:(!1) [3, Proposition 
11.2]: Suppose that >. is a nonzero scalar in C. Then there exists a unique Uq(s[2)-module 
(CL:(!1) such that 

x'cx 

for all x E £(0), 

for all x E £(0), 

for all x E £(0). 
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We denote the Uq(,sl2 )-module by (C.C(rl) (>.). The previous Uq(,sl2 )-module (C.C(rl) is identical 
to the Uq(,sl2 )-module (C.C(rll(q). The action of A on the Uq(,s(2 )-module (C.C(rll(>.) is as follows: 

Ax= (qD-2dimx+l + q2dimx-D+l + q-1-D _ ql-D)x 

for all x E .C(D). 
dimx'=dimxx, 

xnx'8X 

Note that the above sum corresponds to a direct sum of the adjacency operators of Jq(D, k) 
for all integers k with O ::; k ::; D. 

Recall the triple coordinate system for the subspace lattice (.C(D), ~), introduced in 
Dunkl's 1977 paper [1, Section 4]. Define .C(D)xo to be the set of all triples (y,z,T) where 

• y E .C(D/xo); 
• z E .C(xo); 
• T is a linear map from y into x0 / z. 

For any two triples (y, z, T), (y', z', T1) E .C(D)xo we write (y, z, T) ~ (y', z', T1) whenever the 
following conditions hold: 

• y ~ y'. 
• z ~ z'. 
• T(u) ~ T1(u) for all u E y. 

Note that (.C(D)x0 , ~) is a poset. Fix a subspace x1 of D such that D = x 0 EB x1. For any 
u E D we write u0 and u1 for the unique vectors u0 E x0 and u1 E x1 such that u = u0 + u1. 
For any x E .C(D) we define the linear map T!~(x): x + x0/x0 ---+ x0/x n x0 by 

u + x0 f-t u0 + (x n x0) 

The map <I>~~ : .C(D) ---+ .C(D)x0 given by 

for all u Ex. 

x f---t (x+xo/xo,xnxo,T:;(x)) forallxE.C(D) 

is an order isomorphism. We may identify the subspace lattice (.C(D), ~) with the triple 
coordinate system (.C(D)x0 , ~). The following linear maps L1(x0), L2(x0), R1(x0), R2(x0) 
(C.C(rl) ---+ (C.C(rl) were mentioned in [1]: 

L1(xo) : x f-t L x' for all x E .C(D), 
x' CX 

x'nxo=xnxo 

L2(xo) X f-t L x' for all x E .C(D), 
x'C:x 

x' +xo/xo=x+xo/xo 

R1(xo) X f-t L x' for all x E .C(D), 
xcx' 

x'nxo=xnxo 

R2(xo) X f-t L x' for all x E .C(D). 
xe:x' 

x' +xo/xo=x+xo/xo 

Define the linear maps D1(x0 ), D2 (x0 ) : (C.C(rl) ---+ (C.C(rl) as follows: 

D1(xo) X f---t qdimrl/xo-2dim(x+xo/xo)x for all XE .C(D), 

for all x E .C(D). 
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Using the triple coordinate system (.C(D)xo, ~), it is not difficult to me to verify the following 
properties: For any nonzero >.., µ E (C the following diagrams commute: 

(C£(!1) 
L(xo) 

(C£(!1/xo)(l)@ (CL(xo)(>..) (C£(!1) 
L(xo) 

(C£(!1/xo)(>..)@ (CL(xo)(qdimxo) 

q°'"'"-[ L, (x.) + ,t•••o-D D,lx,) o L,(xo) + (C£(!1) (C£(!1/xo)(l)@ (CL(xo)(>..) (C£(!1) (C£(!1/xo)(>..)@ (CL(xo)(qdimxo) 
L(xo) L(xo) 

(C.l:(!1) 
L(xo) 

(C.L:(!1/xol(l)@ (C.L:(xol(>..) (C.l:(!1) 
L(xo) 

(C.l:(!1/xo)(>..)@ (CL(xol(qdimxo) 

q'-°'"'" R, + o D,(xo)-' + ,•-•••1 R,(xo) + (C£(!1) (C£(!1/xo)(l)@ (CL(xo)(>..) (C£(!1) (C£(!1/xo)(>..)@ (CL(xol(qdimxo) 
L(xo) L(xo) 

(C.L:(!1) 
L(xo) 

(C.L:(!1/xo)(>..)@ (CC(xo)(µ) (C.L:(!1) 
L(xo) 

(C.L:(!1/xo)(>..)@ (CC(xo)(µ) 

+) + D+o) + (C.l:(!1) (C.l:(!1/xo)(>..)@ (CL(xo)(µ) (C.l:(!1) (C.l:(!1/xo)(>..)@ (CL(xo)(µ) 
L(xo) L(xo) 

Applying the above commutative diagrams, we can conclude that 

Theorem 2.1 (Theorem 11.15, [3]). The following diagram commutes for each XE Uq(,sl2): 

Although Theorem 2.1 is a q-analog of the commutative diagram in Section 1, the linear 
map i(x0 ) is not an isomorphism in the general case. 

The universal q-Hahn algebra 1iq is an algebra over (C generated by A, B, C and the 
relations assert that each of 

[B,C]q A 
q2 _ q-2 + ' 

is central in 1iq- With respect to the first comultiplication ~ of Uq(,sl2), the algebraic 
treatment of the Clebsch-Gordan coefficients of Uq(,sl2) was given in [4, Theorem 2.9]. With 
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respect to the second comultiplication ~ of Ug(,sl2), the result [4, Theorem 2.9] can be 
modified as follows: 

Theorem 2.2 (Theorem 1.4, [3]). There exists a unique algebra homomorphism q : 1-lq -+ 
Ug(,sl2) ® Ug(,sl2) that sends 

A H 1 ® K-1, 

B H ~(A), 
C H K- 1 ®1-q(q-q-1)2E®FK-1 . 

Instead of Ug(,sb)®Ug(.s(2), I consider an algebra Wq which is inspired by the triple coordinate 
system (£(D)x0 , <;;;;) and the equations established in [7, Section 7]. 

Definition 2.3 (Definition 2.1, [3]). The algebra Wq is an algebra over <C defined by gen­
erators and relations. The generators are E1, E2, F1, F2, Kf 1, K"#: 1 , J±1. The relations are as 
follows: 

I is central in Wq, 

1r1 = r 11 = 1, 

K1K11 = K11 K1 = 1, 

K2K21 = K21 K2 = 1, 

[K1,E2] = [K1,F2] = [K1,K2] = [K2,E1] = [K2,F1] = 0, 

[E1, K1]q = [Ki, F1]q = [E2, K2]q = [K2, F2]q = 0, 

[E1, E2] = [E1, F2] = [Fi, E2] = [Fi, F2] = 0, 

K 1 - IK11 

[E1, F1] = 1 , q-q-

[E F, l = IK2 - K:; 1 

2, 2 -1 q-q 

By [3, Theorem 2.2] there exists a unique algebra surjective homomorphism b Wq -+ 
Ug(_s(2) ® Ug(.s(2) that sends 

E1 H E®l, E2 H l®E, 

F1 H F®l, F2 H l®F, 
K±1 1 H K±1 ® 1, K±1 2 H 1 ®K±1, 

J±l H 1 ® 1. 

Therefore Wq is an algebraic covering of Ug(,s(2) ® Ug(,s(2). It can be shown that b is not 
an isomorphism [3, Proposition 2.4]. By [3, Theorem 3.1] there exists a unique algebra 
homomorphism .6.: Ug(,s(2)-+ Wq that sends 

E H E1 + K11E2, 

F H FiK2 +F2, 
K±l H K±lK±l 

1 2 · 

Moreover the following diagram commutes [3, Theorem 3.2]: 
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Li Uq(,s(2) ____ ______, ®q 

~ U,(sl,) L,(s~) 

Thus~ is a lift of D. across b. By [3, Theorem 5.2] there exists a unique algebra homomor­
phism q : 1-lq ---+ ®q that sends 

A r-+ K21 , 

B r-+ Li(A), 
C c-+ IK11 -q(q-q-1)2E1F2K21. 

Moreover the following diagram commutes [3, Theorem 5.3] 

Thus i is a lift of q across b. 
Let D3 (x0 ) and D4 (x0 ) denote the linear maps (CL(r!) ---+ (CL(r!) defined as follows: 

(x + xo/xo, x n xo, T) for all x E £(0), 
(x+xo/xo,xnxo,T)E£(rl)x0 

rk( T:J (x)-T )=l 

lxUxol 
c-+ ---x for all x E £(0). 

lxnxol 

It can be shown that the map D 3 (x0 ) is independent of the choice of x 1 . The map D 3(x0 ) 

is a direct sum of the adjacency operators of some bilinear forms graphs. By [3, Lemmas 
12.10-12.13] the following equations hold: 

• [D3(xo), L1(xo)]q = q-1(1 - qdimxo D2(xo)) o L1(xo)-
• [D4(xo), L1(xo)]q = -(q - q-1)(1 - qdimxo D2(xo)) o L1(xo). 
• [L2(xo), D3(xo)]q = q-1(1 - qD-dimxo D1(xo)-1) o L2(xo). 
• [L2(xo), D4(xo)]q = -(q - q-1)(1 - qD-dimxo D1(xo)-1) o L2(xo). 
• [R1(xo), D3(xo)]q = q-1(1- qdimx0D2(xo)) o R1(xo)-
• [R1(xo), D4(xo)]q = -(q - q-1)(1 - qdimxo D2(xo)) o R1(xo)-
• [D3(xo), R2(xo)]q = q-1(1- qD-dimxaD1(xo)-1) o R2(xo)-
• [D4(xo), R2(xo)]q = -(q - q-1 )(1 - qD-dimxa D1(xo)-1) o R2(xo)-

Thus the map (q2 - l)D3(x0 ) + D4(x0 ) satisfies the following equations [3, Lemma 12.15] 

• [(q2 - l)D3(xo) + D4(xo), L1(xo)]q = 0. 
• [L2(xo), (q2 - l)D3(xo) + D4(xo)]q = 0. 
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• [R1(xo), (q2 - l)D3(xo) + D4(xo)]q = 0. 
• [(q2 - l)D3 (xo) + D4(xo), R2(xo)]q = 0. 

In [7] the linear map ( q2 - 1) D 3 ( x 0 ) + D 4 ( x 0 ) was mentioned in another way. It can be shown 
that (q2 - l)D3 (x0 ) + D4 (x0 ) is invertible [3, Lemma 12.14]. For any nonzero >., µ E (C the 
following diagram commutes [3, Lemma 12.16]: 

Inspired by the aforementioned diagrams, we discover the following result [3, Theorem 
13.19]: There exists a unique Wq-module c,C(n) given by 

E1 = limxo-D L1(xo), 

E2 = limxo-D D1(xo) o L2(xo), 

Fi= ql-dimxo R1(xo) 0 D2(xo)-1, 

F2 = ql-dimxo R2(xo), 

Kf1 = D1(xo)±1, 

Kf1 = D2(xot1, 

J±l = q'f'D D1(xo)±1 o D2(xo)"F1 o ((q2 - l)D3(xo) + D4(xo))±1. 

We denote the above Wq-module by (C£(Ol(x0). By pulling back via~' the Wq-module 
(C.L:(n) (x0 ) is also an 1-lq-module. The actions of A and Bon the 1-lq-module (CC(n) (x0 ) are as 
follows: 

Ax= q2dim(xnx0 )-dimx0 X for all x E £(0), 
Bx= (qD-2dimx+l + q2dimx-D+l + q-1-D _ ql-D)x 

+ ql-D(q- q-1)2 L x' 
X 1ELdimx(f1) 

xnx'0 

for all x E £(0). 

Assume that x 0 E £k(O) where k is an integer with 1 :S k :S D - 1. The subspace (CLk(O) of 
(C£(n)(x0 ) is an 1-lq-submodule of (CC(Ol(x0). We denote this 1-lq-module by (CLk(Ol(x0). Let 

T(x0 ) = Im (1-lq --+ End((C£k(O))) . 

Here 1-lq--+ End((C£k(0 )) denotes the representation corresponding to the 1-lq-module (C£k(Ol(x0). 

Let Jq(D, k) denote the Grassmann graph of £k(O). Let T(x0) denote the Terwilliger algebra 
of Jq(D, k) with respect to x0 . Since Jq(D, k) is a P- and Q-polynomial association scheme 
the algebra T(x0) is the subalgebra of End((C£k(n)) generated by the adjacency operator A 
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and the dual adjacency operator A*(x0 ) of Jq(D, k). The following equations hold on the 
1iq-module (CLk(!!l(x0): 

qD-l B - q2D-2k - q2k 1 
A=-------+ --(q - q-1)2 q2-1' 

* [D - l]q ( qD[D]q qk qD-k) 
A (xo) = q - q-l [k]q[D - k]q A - [D - k]q - [k]q . 

Therefore T(x0) is a subalgebra of T(x0). Please refer to [3, Section 16] for the detailed 
study of T(x0) from the above perspective. 

Acknowledgements. This work was supported by the National Science and Technology 
Council of Taiwan under the project NSTC 112-2115-M-008-009-MY2 and the Research 
Institute for Mathematical Sciences, an International Joint Usage/Research Center located 
in Kyoto University. 

REFERENCES 

1. C. F. Dunk!, An addition theorem for some q-Hahn polynomials, Monatshefte fiir Mathematik 85 (1977), 
5-37. 

2. J. T. Go, The Terwilliger algebra of the hypercube, European Journal of Combinatorics 23 (2002), 399-429. 
3. H.-W. Huang, An imperceptible connection between the Clebsch-Gordan coefficients of Uq(s[2) and the 

Terwilliger algebras of Grassmann graphs, arXiv:2308.07851 v2. 
4. __ , An algebra behind the Clebsch-Gordan coefficients of Uq(sb), Journal of Algebra 496 (2018), 

61-90. 
5. __ , The Clebsch-Gordan coefficients of U(,s12) and the Terwilliger algebras of Johnson graphs, Journal 

of Combinatorial Theory, Series A 203 (2024), 105833. 
6. P. Terwilliger, An algebraic approach to the Askey scheme of orthogonal polynomials, Orthogonal polyno­

mials and special functions: Computation and applications (Berlin) (F. Marcellan and W. Van Assche, 
eds.), Lecture Notes in Mathematics 1883, Springer, 2006, pp. 255-330. 

7. Y. Watanabe, An algebra associated with a subspace lattice over a finite field and its relation to the 
quantum affine algebra Uq(i[z), Journal of Algebra 489 (2017), 475-505. 

HAU-WEN HUANG, DEPARTMENT OF MATHEMATICS, NATIONAL CENTRAL UNIVERSITY, CHUNG-LI 

32001 TAIWAN 

E-mail address: hauwenh©math. ncu. edu. tw 




