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THE CLEBSCH-GORDAN COEFFICIENTS OF U,(sls)
AND GRASSMANN GRAPHS

HAU-WEN HUANG

ABSTRACT. In the first section, I will mention a connection between the Clebsch—Gordan
cocfficients of U(sly) and Johnson graphs. In the second section, I will develop a g-analog
connection between the Clebsch-Gordan coefficients of Uy(slz) and Grassmann graphs.

1. THE CLEBSCH—GORDAN COEFFICIENTS OF U(sly) AND JOHNSON GRAPHS

The notation N denotes the set of nonnegative integers. The notation C denotes the
complex number field. The unadorned tensor product ® is meant to be over C. For any
set X the notation CX stands for the vector space over C that has a basis X. A vacuous
summation is interpreted as 0. A vacuous product is interpreted as 1. An algebra is meant
to be a unital associative algebra. An algebra homomorphism is meant to be a unital algebra
homomorphism. For any two elements x,y in an algebra, the bracket [x,y] is defined as

[z.y] = 2y — ya.

The universal enveloping algebra U (sly) of sly is an algebra over C generated by E, F, H
subject to the relations

[H,E] =2F, [H,F] = —2F, [E,F] = H.
The element

2
A:EF+FE+H7

is called the Casimir element of U(sly). For any n € N there exists an (n + 1)-dimensional
irreducible U (sly)-module L,, that has a basis {vf")}?zo such that

Eo™ =™ (1<i<n), Evi" =0,
Fol™ = (n - z)vz(_?l 0<i<n-1), Fo™ =0,
Hol™ = (n—2ip™  (0<i<n).

Every (n + 1)-dimensional irreducible U (sly)-module is isomorphic to L.

Recall that the comultiplication A of U(sly) is an algebra homomorphism U(sly) —
U(sly) ® U(sly) given by

E — E®1+1®E,
F — F1+1®F,
H — Hol+1®H.

The U(sly)-module L,, ® L, has the basis

Moo (0<i<m;0<j<n).
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The Clebsch—Gordan rule states that the U(sly)-module L,, ® L, is isomorphic to

min{m,n}

@ Lm+n72p-
p=0

Thus the vectors
(A=) (0 <p<min{m,n}; 0 <i<m-+n-—2p)

can be viewed as a basis for L,, ® L,. Roughly speaking the Clebsch-Gordan coefficients
of U(sly) are the entries of the transition matrix from the first basis to the second basis for
Ly @ Ly,
The universal Hahn algebra H is an algebra over C generated by A, B, C and the relations
assert that
[A,B]=C
and each of
[C, A] + 2A% + B,
[B,C]+4BA+2C

is central in H. Note that the algebra H is generated by A and B. The Clebsch—Gordan
coefficients of U(sly) can be expressed in terms of Hahn polynomials. The phenomenon can
be explained as follows:

Theorem 1.1 (Theorem 1.5, [5]). There exists a unique algebra homomorphism § : H —
U(sly) @ U(sly) that sends

A o H®1—1®H’
4
A(A
B — %

By pulling back via g every U(sly) ® U(sly)-module can be considered as an H-module.
Let V' denote a U(sly) ® U(sly)-module. For any 6 € C we define

V(0) ={veV|AH)v=0v}.

Since A(H) is in the centralizer of §(#) in U(sly) @ U (sly) the space V(6) is an H-submodule
of V.

Let € stand for a finite set with size D. Let 2% denote the power set of 2. The notation
C stands for the covering relation of this subset lattice (2, C). For any integer k with
0<k<Dlet

Q
<k> = {all k-element subsets of Q}.

Recall that the Johnson graph J(D, k) is a simple connected graph whose vertex set is (skz)
and two vertices x,y are adjacent if and only if x Ny G z. By [2, Theorem 13.2] there exists

a U(sly)-module C2" given by
Ex = Zy for all z € 29,
yCx

Fx:Zy for all z € 2,

zCy
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Hx = (D - 2|z|)x for all z € 2.

The action of A on the U(sly)-module C2* is as follows:

-2
Am:<D+< |21 ) —i-QZy for all z € 2%

ly|=lz|
zNYyCr

Note that the above sum corresponds to a direct sum of the adjacency operators of J(D, k)
for all integers k with 0 < k < D.

Fix an element 29 € 22. The vector spaces C27° and C2 are U(sly)-modules. Hence
C2" % €2 is a Ul(sly) ® U(sly)-module. There exists a unique linear map o(z) : C2* —
€2 ® C2™ that sends

r = (z\z0)®(xNaxg)  forall z €2

Note that t(xg) is a linear isomorphism. For any element X € U(sly) the following diagram
commutes:

Q t(zo)

C2Q\a:o ® CQJO
X A(X)

C2Q CQQ\&:U ® Czwo
ey

By identifying C2” with C2"""° © C2" via 1(xy), this induces a U (sly) @ U(sly)-module struc-
ture on C2. We denote this module by
C?* (o).

By pulling back via f the U(sly) ® U(sly)-module C2”(z) is an H-module. The action of A
on the H-module C2* (1) is as follows:

D
Ax:<—|$0\x|+|x\xo|>x for all z € 2.

4 2

Applying the above commutative diagram with X = A yields that the action of B on the
H-module C2* (1) is as follows:

D (D —2|z| Q
B:::=<2+> Zy for all x € 2.
5l

Applying the above commutative diagram with X = H yields that
cl) = (zo)(D - 2k) (V< k< D).

Hence C(%) is an H-submodule of C2° (o). We denote this H-module by c() (xq)-
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Now we assume that 1 < k£ < D — 1 and set 2y € (g]z) Let T(zo) denote the Terwilliger
algebra of J(D, k) with respect to xg. Since J(D, k) is a P- and Q-polynomial associa-

tion scheme, the algebra T(xg) is the subalgebra of End((C(SID) generated by the adjacency
operator A and the dual adjacency operator A*(zg) of J(D, k). Recall that

Dﬂ%\kaw\%D>x

A*(zg)z = (D —1) (1 - for all x € (2)

2k(D — k)
Therefore the following equations hold on the H-module c®) (@o):
_ 912
a_p D (D-2p
2 4
D(D-1) (D — 2k)?
A" = A— .
(o) ku)—k)( 4D

We have seen the following connection between the Clebsch-Gordan coefficients of U(sly)
and Johnson graphs:

Theorem 1.2 (Theorem 5.9, [5]). Let H — End((C(?)) denote the representation corre-
sponding to the H-module c® (x9). Then the following equality holds:

Q

k

T(x@::hn(¢t—>Endmﬂ b).

2. THE CLEBSCH—GORDAN COEFFICIENTS OF Uy(sl;) AND GRASSMANN GRAPHS

Assume that ¢ is a nonzero complex number which is not a root of 1. For any two elements

x,y in an algebra over C, the ¢-bracket [x,y], is defined as
2.yl = qzy — ¢y

The g-analog [n], of any integer n is defined as

" —q"
Cog—q Y

My first step is to develop a g¢-analog of the commutative diagram in Section 1. The
quantum algebra U,(sly) is an algebra over C generated by E, F, K*! subject to the relations

KK '=K'K =1,
[E, K], = [K,F]; =0,
K—-K1

q—qt

[l

[EvF]:

The element
A=(q—q VEF +¢ 'K +qK'
is called the Casimir element of U,(sly). Recall that a common comultiplication A of U, (slz)
is an algebra homomorphism U, (sly) — U,(sly) ® U,(sly) given by
E — E®1+KQFE,
F = FK'+1®F,
Kil — Kil ® Kil.
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Now assume that € is a vector space over a finite field ' that has finite dimension D. Set

the parameter
q=|F|.

The notation £(§2) stands for the set of all subspaces of 2. This symbol G now represents
the covering relation of this subspace lattice (£(€2), C). For any integer k¥ with 0 < k < D
let

L1 (2) = {all k-dimensional subspaces of §2}.

Recall that the Grassmann graph J,(D, k) is a simple connected graph whose vertex set is
L(Q) and two vertices x, 2" are adjacent if and only if xNa’ G 2. Tt is known from [6, Section
33] that there exists a U, (sly)-module CX(Y given by

Ex =q¢'7"? Z ' forall z € L(),
' Cx

Fx:Za;' for all z € L(Q),

zCx!

K = gP2dimey for all z € L(Q).
Fix an element z € £(Q). Let t(zq) : CX) — CF/20) @ CF@0) denote the linear map that
sends
x = (x+x)/x0 @ NI for all x € L(Q).
Unfortunately, the following diagram is not commutative for any element X € U,(sl,):

«(zo0)

CL©) CE®/@o) & CL(xo)

X A(X)

CLE®) 5 CEO/z0) ) CL (o)
two)

I choose another comultiplication A of U,(sly) [3, Lemma 1.2] which is an algebra homo-
morphism Uy (sly) — U,(sly) ® U,(sly) given by
E = Ex1+K'9E,
F = FK+1®F,
Kil — Kil ® Kil.
I consider a more general setting of the U,(sly)-module structure on CY [3, Proposition

11.2]: Suppose that A is a nonzero scalar in C. Then there exists a unique U,(sly)-module
C*(Y such that

Ex=X\" Z 2 forall z € L(Q),
' Cx

Fr =\ Z x for all z € L(Q),
rCx’

K = ¢P~2dimey for all z € L(Q).
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We denote the U, (sly)-module by CX)()). The previous U,(sly)-module C*(¥ is identical
to the U, (sly)-module C*(¥(g). The action of A on the U, (sly)-module C*(¥()) is as follows:

Az — (qD—Qdimz+1 + q2dimw—D+1 + q—l—D — ql_D)x
+ gt P —g1)? Z for all z € L(Q).
dimm’:/dimxz/
Nz’ Cx

Note that the above sum corresponds to a direct sum of the adjacency operators of J,(D, k)
for all integers k£ with 0 < k < D.

Recall the triple coordinate system for the subspace lattice (£(Q),C), introduced in
Dunkl’s 1977 paper [1, Section 4]. Define £(Q),, to be the set of all triples (y, z, 7) where

oy e L(Oxg);

o 2 € L(xg);

e 7 is a linear map from y into xg/z.
For any two triples (y,z,7), (v, 2, 7") € L(Q),, we write (y,z,7) C (v, 2',7') whenever the
following conditions hold:

ey Cy.

o 2 C 7.

o 7(u) C 7'(u) for all u € y.
Note that (L£(€2)4,, C) is a poset. Fix a subspace x; of Q such that Q = ¢ @ z;. For any
u € €2 we write ug and uy for the unique vectors ug € x¢ and u; € x; such that v = ug + uy.
For any x € £(€2) we define the linear map 77! (z) : © + 2o/x0 — 2o/ N 20 by

(]

u+xy = u+ (xNag) for all u € x.
The map ®7! : L(Q) — L(2),, given by
v = (z+x0/20,2 N T0, Tt (T)) for all x € L(Q)
is an order isomorphism. We may identify the subspace lattice (£(€2), C) with the triple

coordinate system (L£(€)z,, C). The following linear maps Li(x¢), La(zo), R1(zo), Ra(zo) :
CESY — CE9) were mentioned in [1]:

Li(zg) : z Z 2 forall x € L(Q),

z'Cx
' Nxo=xNxo

Lay(xg) : z +— Z ' forall x € L(Q),

7' Cx
z'+xo/To=2+T0/T0

Ri(zo) : . Z ¥ forall x € L(Q),

zCa’
' Nzo=xNz0

Ry(zg) : & — Z ' forall x € L().

zCx’
'+xo/To=2+T0/T0

Define the linear maps D;(z¢), Da(x0) : CH) — CE) as follows:
Di(zo) : & s qlim@/mom2dimltao/ro)y, for all x € L£(N),
Dy(xg) @ & s glimzo2dimanzo, for all x € L(Q).
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Using the triple coordinate system (£(£2).,, C), it is not difficult to me to verify the following
properties: For any nonzero A, u € C the following diagrams commute:

THE CLEBSCH-GORDAN COEFFICIENTS AND GRASSMANN GRAPHS

(o) ¢(zo)

CL(SZ)

Cﬁ(fz/xo)(l) ® CL(xo)()\) (CL(SZ) (CL(Q/zo)(/\) ® CL(zo)(qdimxo)

gdimeo— L1 (o) E®l glimeo—Pp, Z0) o La(zo) 1@ FE

CLe Cﬁm/zo)(l) R Cﬁ(xo)()\) CLe (CL(Q/zo)()\) ® Cﬁ(zo)(qdimzo)

1(0) ¢(zo)

CL©) Uo) s CEO/70)(1) i CL@I(\)  CED) Uzo) s CEO/70)()\) g CEGo) (gdimeo)
qlfdimroRl( O)ODQ(ZO)—I Fil ql—dimz Rz(ﬂvo) 1 F

(CL(Q) 5 CL(sz/xo)(l) ® CL(zo)()\) CL(Q) 5 Cﬁ(sz/zo)()\) ® CL(zo)(qdimzo)

(zo0) (zo)

L(.’Eo)

(o)

CL®) CE@/z0)(\)  CL@) (1) CEO) ¢ ;

C[:(Q/xo)()\) ® (CE(;EU) (,U)
DlJ/xo) K®l Do (zo) 19 K

CL(SZ) SN C[ﬁ(&z/zg)()\) ® (Cll(zg)(’u) Cﬁ(&l) N Cﬁ(sz/xo)()\) ® (Cﬁ(.z‘o)(/u)
t(zo) 1(z0)

Applying the above commutative diagrams, we can conclude that

Theorem 2.1 (Theorem 11.15, [3]). The following diagram commutes for each X € U,(sly):

CL(Q) (qdimxg) (o) (CL(Q/zo)(l) ® Cﬁ(mg)(qdimxo)

X A(X)

C,C(Q)(qdimxg) s CC(Q/zo)(l) ® Cﬁ(mg)(qdimxo)
1(To) )

Although Theorem 2.1 is a g-analog of the commutative diagram in Section 1, the linear
map ¢(z) is not an isomorphism in the general case.
The wuniversal g-Hahn algebra H, is an algebra over C generated by A, B,C and the

relations assert that each of
[B, Cly [A, B,
W‘FA, [C, Al,, W +C

is central in H,. With respect to the first comultiplication A of U,(sly), the algebraic

treatment of the Clebsch—Gordan coefficients of U,(sly) was given in [4, Theorem 2.9]. With
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respect to the second comultiplication A of U,(sly), the result [4, Theorem 2.9] can be
modified as follows:

Theorem 2.2 (Theorem 1.4, [3]). There exists a unique algebra homomorphism § : H, —
Uy(sly) @ Uy(sly) that sends

A= 1K,

B — A(A),

C = K'®l-qlq—q¢ ')V ERFK

Instead of U, (sly)@U,(sl2), I consider an algebra 20, which is inspired by the triple coordinate
system (L£(Q),,, C) and the equations established in [7, Section 7).

Definition 2.3 (Definition 2.1, [3]). The algebra 20, is an algebra over C defined by gen-
erators and relations. The generators are By, By, Fy, Fy, K, Ki', I*'. The relations are as
follows:

I is central in 27,
IIt=r1'r=1,
K\ K'= KK, =1,
KoKyt = KK, =1,
(K, By = [K, I] = [Ky, K| = [Ky, By] = [Ky, F1] =0,
[Eh, Kilg = [Ky, Filg = (B, Koy = [Ko, Folg = 0,
(B, Bo] = [Ey, ] = [Fy, By] = [F1, Fy] =0,

K, — IK{!

By, Fy] = 1711
q—q

IKy, — K;*

[By, Fy] = —2——2-.
q—q

By [3, Theorem 2.2| there exists a unique algebra surjective homomorphism b : 20, —
U,(sly) ® U,(sly) that sends

E, = Exl, Ey, = 1xE,
Fi - F®1, - 1®F,
Ki' = KM@l Ky' = 1@ K,

I - 11

Therefore 25, is an algebraic covering of Uy(sly) ® U,(sly). It can be shown that b is not
an isomorphism [3, Proposition 2.4]. By [3, Theorem 3.1] there exists a unique algebra
homomorphism A : U,(sly) — 20, that sends

E — B+ K;'E,,
F = FiKy+ P,
K*' = KK

Moreover the following diagram commutes [3, Theorem 3.2]:
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A
Uy(sly) ———— 20,

Uq(S[Q) ® Uq(s[g)

Thus A is a lift of A across b. By [3, Theorem 5.2] there exists a unique algebra homomor-

phism § : H, — 20, that sends

A = Ky,

B — A(A),

C = IK'—qlqg—q " )VE K"
Moreover the following diagram commutes [3, Theorem 5.3]

b

Hy ———— 2,

Uy(slz) @ Uy(sl)

Thus £ is a lift of f across b.
Let D3(wg) and Dy(7o) denote the linear maps C5(%) — C£®) defined as follows:

Ds3(zg) : x — Z (x + xo/x0,2 N, 7) for all z € L(Q),
(x40 /20,2N20,7)EL(Q)2(
rk(T;Ol (:1:)*7'):1

U
Dy(xg) : x 2V o|

for all z € L().
|z N 2o

It can be shown that the map Ds(xg) is independent of the choice of x1. The map D3(xo)
is a direct sum of the adjacency operators of some bilinear forms graphs. By [3, Lemmas
12.10-12.13] the following equations hold:

° [Dg(l'o;, Li(wo)]y = ¢ (1 — ¢¥™m®0 Dy(x)) o Ly (o).

o [Du(20), L1(20)]g = —(q — ¢7")(1 = ¢™™ % Dy(9)) o Ly (o).
o [La(x0), D3(x0)]g = g~ (1 — g7~ ™0 Dy (20) ") 0 La(w).
® [La(9), Da(20)lg = —(q — ¢~ ")(1 = ¢" =™ Dy (20) ") © Ly ().
o [Ri(x0), D3(w0)]g = g~ (1 — "™ Dy(x0)) o Ri (o).
o [Ri(x0), Da(20)]g = —(q — ¢~ ") (1 — g™ ™ Dy(x0)) 0 Ry (o).
o [Ds(x0), Ra(w0)]g = ¢ (1 — ¢~ Dy () ") 0 Ro (o).
o [Di(0), Ra(0)]g = —(¢ — ¢ ")(1 — ¢~ "™ Dy(20) ') 0 Ra().
Thus the map (¢2 — 1) D3(z0) + Da(z0) satisfies the following equations [3, Lemma 12.15]
o [(¢> — 1)D3(x0) + Da(wo), L1 (20)]q = 0.

® [La(x0), (¢* — 1) D3(0) + Dalw0)]q = 0.
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o [Ry(9), (¢* — 1) Ds(w0) + Da(0)]y = 0.
o [(¢*> — 1)Ds(x0) + Da(xo), Ra(20)], = 0.

In [7] the linear map (q* — 1) D3(z0) + Dy4(z¢) was mentioned in another way. It can be shown
that (¢* — 1)Ds(xo) + Dy(z0) is invertible [3, Lemma 12.14]. For any nonzero A, u € C the
following diagram commutes [3, Lemma 12.16]:

ce@ ) oe@rm) (3 g CLE (1)

(¢* = 1)Ds(x0) + Da(xo) "K' g K

CL@) > CLE/m0) ()\) @ CE@) (1)

t(z0)

Inspired by the aforementioned diagrams, we discover the following result [3, Theorem
13.19]: There exists a unique 2J,-module C* given by

Ey = ¢"™ 7 P Ly (),
By = ¢"™™0~P Dy (20) 0 La(),
Fy = "% Ry (20) 0 Dy(wo) ™!
Fy = ¢ Mm@ R (1)

K = Dy (20)*,

K = Dy(x0)*,

I = q™P Dy (o)™ 0 Da(0)™ o ((¢* — 1) Ds(wo) + Dalw)) ™.

3

3

We denote the above 20,-module by CF)(z0). By pulling back via E, the 20,-module

CE) () is also an H,-module. The actions of A and B on the H,module C*? (z) are as
follows:

Ax = ?dim@nzo)—dimzo, g1 9]l 1 € L£(1),

Br = (qD—Qdimx+1 + q2dimac—D+1 + q—l—D o ql_D)x
+ ¢ Plg—q)? D 2 forallze L(Q).
&' €LAim = ()
Nz’ Cx

Assume that 2o € L;(Q) where k is an integer with 1 < k < D — 1. The subspace C*+) of
CF)(z4) is an H,-submodule of CXY(x5). We denote this H,-module by C**)(z). Let

T(x0) = Im (#, — End(CH®)) .

Here H, — End(C*+(Y) denotes the representation corresponding to the H,-module C+) (z).

Let J,(D, k) denote the Grassmann graph of L,(€2). Let T(zo) denote the Terwilliger algebra
of J,(D, k) with respect to x¢. Since J,(D, k) is a P- and @-polynomial association scheme
the algebra T(z) is the subalgebra of End(C%*(?)) generated by the adjacency operator A
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and the dual adjacency operator A*(zg) of Jy(D, k). The following equations hold on the
H,module CF+(V) (z):

¢P'B — P2k _ g%k 1

A = — + )
(¢ —q 1) ¢ -1
O 1 | P12 PR Y s
A'(wo) = q—qt ([k]q[D - k}qA [D — k], [K]q ) .

Therefore T(zy) is a subalgebra of T(zg). Please refer to [3, Section 16] for the detailed
study of T(xg) from the above perspective.
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