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Radio Labeling on Corona Product
Sarbaini

Abstract
This study aims to determine the labeling L(3,2,1) of the corona product graph
of a circle graph C,,. The labeling L(3,2,1) was determined by calculating the lower
bound and upper bound based on the maximum degree A. The results of the labeling
L(3,2,1) of Cp, ©® P3 are 2A + 4 for even m, 2A 4+ 5 for m = 3,7, and 2A + 6 for odd
m where m # 3, 7.

1 Introduction

Graph theory finds extensive utility in practical contexts. One of them regulates the techno-
logical application of FM frequencies, specifically in radio. To transmit a signal, a frequency
must be allocated to each transmitter. The initial challenges regarding frequency assignment
arose from the observation that transmitters assigned to identical or nearly similar frequen-
cies were susceptible to interference [5]. In order to mitigate interference, a simple solution
involved designating distinct transmitters to non-interfering frequencies, or approaching this
objective as closely as possible in light of the constraints. Determining how to select a new
frequency and reducing the frequency range utilised to reduce costs is an additional concern.

In 2004, Liu and Shao [6] defined an L(3,2,1) labeling. They get results about A32; in
several classes of graphs, with determining boundaries for Az, on irregular graphs, Halin
Graphs, and Planar Graphs with a maximum degree A. Then in 2005, Clipperton et al.
[2] studied X321 on classes of graphs like path graphs, cycle graphs, n-ary tree graphs, and
regular caterpillar graphs.

In 2011, Chia et al. [1] studied some general concepts regarding the labeling L(3,2,1)
and gave an upper bound of A3, for any graph with a maximum degree A. Furthermore,
they also described the labeling L(3,2,1) on a tree, rooted tree, and Cartesian product of
path graphs and cycle graphs.

2 Definition and Notation

The degree (or valency) of a vertex of a graph G is the number of edges that are incident to
the vertex. The degree of a vertex v is denoted by deg(v) and A(G) = max,ec deg(v).

Definition 2.1. The corona product of G and H is the graph G ® H obtained by taking one
copy of G, called the center graph, |V (G)| copies of H, called the outer graph, and making
the i — th vertex of G adjacent to every vertex of the i —th copy of H, where 1 <1i < |V(G)|.



3 Radio Labeling

Theorem 3.1. For any cycle C,,, with n > 3,

6, ifn=3,
A321(Cn) = " z:fn Z:S eoem
- 8, ifn is odd and n # 3,7,
9, ifn=".

Theorem 3.2. For any path P,, with n > 1,

0, ifn=1,

3, ifn=2,
A321(Pn) =<5, ifn=34,

6, ifn=25,6,7,

7, ifn>8.

Definition 3.3. [2] Let G = (V, E) be a graph and f be a mapping [ : V — N. Then f is
an L(3,2,1)-labeling of G if, for all z,y € V,

37 Zf d(it,y) = 17
|fl@) = fWl =<2, if dlz,y) =2,
1, if d(z,y) =3

Definition 3.4. [2] Let k € NU{0}. A k — L(3,2,1) labeling is an labeling L(3,2,1) such
that every label used is not greater than k. The L(3,2,1) number on G, denoted as A321(G),
is the smallest number k so that G has the labeling k-L(3,2,1).

Lemma 3.5. [1] If G’ is a subgraph of G, then X321(G’) < A321(G).

PROOF. Suppose A321(G’) > A321(G). Let A\321(G’) = ki and A321(G) = ko, meaning that
ky is the smallest number so that G has the labeling k1-L(3,2,1). Let f be a k1-L(3,2,1)
labeling on a G. G' ¢ G, V(G') C V(G), E(G") C E(G) and [ labeling k-L(3,2,1)
on G. Thus, for any vertices u,v € V(G') C V(G), |f(u) — f(v)| > 3 for any vertices
u,v € V(G') C V(G) with d(u,v) = 1, | f(u)— f(v)| > 2 for any vertices u,v € V(G') C V(G)
with d(u,v) = 2 and | f(u) — f(v)| > 1 for any vertices u,v € V(G') C V(G) with d(u,v) = 3.
This means that there is a k1-L(3,2,1) on G'. A321(G’) = ko and ks > ki, meaning that
there is a number smaller than ks (named ki) so that G’ has labeling ky-L(3,2,1). This
contradicts the minimality of A351(G"). Therefore A321(G") < A32.1(G).

Corollary 3.6. [1] For any graph G with A(G) = A > 0 we have A\321(G) > 2A + 1. If
A321(G) = 2A + 1 and f is any labeling 2A+1-L(3,2,1), then for every v € V(G) where
d(v) = A such that f(v) € {0,2A + 1}.

Corollary 3.7. [4] Let G be a graph with A > 1. If there is vy, vy € V(G) with d(vy,vq) = 2
and d(v) = d(vy) = A, then A321(G) > 2A + 2.
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4 Results

Theorem 4.1. For m be a positive integer with m > 3, we have

2A +4,  if m even,
A3p1(Cr © P3) = S 2A 45, if m =3,7,
2A +6, if m odd and m # 3,7.

The proof will be explained in the subsections below.

4.1 The Lower Bounds
Let V(Cp, © P3) = {v1, 02,03, ..., v} UL {0}, v, 03}

1. Case m even
It will be shown that X321 (Cp, @ P3) < 2A 4 3 does not happen.

2. Case m =3,7
It will be shown that A3 1(Cp, ® Ps) < 2A 4 4 does not happen.

3. Case m odd and m # 3,7
It will be shown that A3 1(Cp, ® Ps) < 2A 45 does not happen.

4.2 The Upper Bounds
4.2.1 m even
Let V(Cy, ® P3) = {v1, 02,03, ..., 0} UL {0}, 02, 0P}

1. Subcase m = 4p for p € Z~
Claim: If m = 4p, then A\301(C,, ® P3) = 2A + 4.

0, ifi=1 mod 4,
5, if i = 2 mod 4,
flvs) = 2, ifi = 3 mod 4,
7, if i =0 mod 4.

For i =1 (mod 4)



For i =2 (mod 4)

; 8, ifj=1,
CH R R O L
22774+ 4943, ifj=2,3.

For : =3 (mod 4)

(14, ifj =1,
F) =9 7
3j+1), ifj=23.
For i =0 (mod 4)

; 4, ifj=1,
fh) =95 . L
22774943, ifj=2,3.

=
S

Figure 1: )\3’2’1(04 O) P3> =14

2. Subcase m = 6p for p € Z~q
Claim: If m = 6p, then A\301(C,, ©® P3) = 2A +4

0, ifi=1 (mod 6),

3, ifi=2 (mod 6),

flay= 4% BI=3 mocd)
, ifi=4 (mod 6),

4, ifi=5 (mod 6),

7, ifi=0 (mod 6)

For i =1 (mod 6)

63



64
For i =2 (mod 6) and i =4 (mod 6)
(s, ifj=1,
fh) =95 . L
22774943, ifj=2,3.
For i =3 (mod 6) and i =5 (mod 6)
- 9, ifj=1,
f) =95 . e
227 4544, ifj=23.
For i =0 (mod 6)

; 2, ifj=1,
flvi) = L L
T+ +3, ifj=23.

Figure 2: A\321(Cs ® P3) = 14

3. Subcase m is other even

According to Theorem 3.1, each labeling L(3,2,1) for C,, even is formed from a
combination derived from positive multiplication in the labeling pattern, Cy and Cg.
This case applies also to labeling L(3,2,1) on graphs C,, ® P; for m even. Will be
shown labeling L(3,2,1) combination results Cy ® P; and Cs ® Ps in the Figure 3.

4.2.2 m=3T

1. Subcase m =3
Claim: If m = 3, then A\351(C,,, © P3) =2A +5

f(on) 0, ifi=1 (mod 3),
v;) =
5, ifi=2 (mod3)andi=0 (mod 3).



Fori=1 (mod 3)

_ 3 ifj=1
=<7 4 7
f(vz) {24—j _1_]‘4—], 1f] = 2, 3.
Fori =2 (mod 3)
_ 9 ifj=1
) = ’ ; ,
f(vz) {25—]' + 24—]7 lfj = 2, 3.
Fori=0 (mod 3)
4 ifj=1
7Y = - ; ’
f(vz) {25] + 24*17 1f] = 2, 3.

/\

7
Figure 4: )\3’2’1(03 ® Pd) =15

2. Subcase m =7
Claim: If m = 7, then )\3,2’1(Cm ® P3) =2A + 5.



66

0, ifi=1 (modT7),
6, ifi=2 (modT7),
2, ifi=3 (modT7),
flv)) =48, ifi=4 (mod7),
5, ifi=5 (mod7),
12, ifi=6 (mod7),
15, ifi=0 (mod?7).
Fori=1 (mod7)
} 13 ifj=1
fw) {251—1, it j—2,3.

For i =2 (mod 7)
- 9, if j=1,
peny=4% =
955 4 j44, ifj=23
Fori=3 (mod 7)
2 ifj =1,
COEE S
270 42 41, ifj=2,3.
Fori=4 (mod 7)

; 11, ifj=1,
PO =9 i 1 s
-8 4+ 45, ifj=23.

Fori=5 (mod 7)
4 10, =1,
GRS L
-8 4+454+1, ifj=23.
Fori=6 (mod 7)
o, ifj =1,
=4 =
27 —1, ifj=23.
Fori=0 (mod 7)

, 2, ifj =1,
fO) =19 s oas L
2070 4240 — 9 if j=23.



Figure 5: A\321(C7 ©® P3) =15

4.2.3 m odd and m # 3,7

1. Subcase m = 5p for Vp € Z+
Claim: If m = 5p, then A\321(Cp, © P3) =2A 46

0, ifi=1 (mod}5),
5, ifi=2 (mod5),
flv;)) =<13, ifi=3 (mod5),
10, ifi=4 (mod 5),
7, ifi=0 (mod5).

Fori=1 (mod 5)

: 3, if =1,
fl) =19, o
3743, ifj=23.

For i =2 (mod 5)

; 2, ifj=1,
fh) =9, L
45+3, ifj=223.

For i =3 (mod 5)

: 3 ifj=1
‘.] — b )
f(vz) {2j+1’ lf] — 273

Fori=4 (mod 5)
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For i =0 (mod 5)

) = . ;
f( z) {2]+1_25—J+2, 1fj:273

Figure 6: \321(C5 ® P3) =16

2. Subcase m =11
Claim: If m = 11, then )\3’2’1(Cm ® Pg) =2A + 6.

0, ifi=1 (mod11),
ifi=7 (mod 11),
3, ifi=2 (mod 11),
6, ifi=8 (mod11),
1, ifi=3 (mod 11),
flv))=1<4, ifi=9 (mod 11),
7, ifi=4 (mod 11),
5, ifi=2 (mod 11),
8, ifi=5 (mod 11),
2, ifi=6 (mod 11),
14, ifi=0 (mod 11).

Fori=1 (mod 11)

: 11, ifj=1,
flh)y =4, L
2041, ifj=2,3.

Fori=2 (mod 11)andi =4 (mod 11)

j 8 ifj=1
flog) =18 o . l. j. ’
27+ 5 +3, ifj=23.
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Fori=3 (mod 11) andi =5 (mod 11)

, 9 ifj=1
Vi 1) =9 o 7
f( 2Z71) {25J _|_] + 47 1f] = 2,3

Fori=6 (mod 11)

; 2, ifj=1,
fh) =1, L
3j+4, ifj=23.

Fori=7 (mod 11)

. 11, ifj=1,
Fh) =905 o L
953 4 211 43 ifj =2 3.
Fori=8 (mod 11)

; 10, ifj=1,
FOD =905 L oici o rs
2077 4200 429, ifj =2,3.

Fori=9 (mod 11)

; 14, if j =1,
fw) =91 ... g
2079 42543, ifj=2,3.

For i =10 (mod 11)

- 6, if j =1,
fw) =1, L
45 +4, ifj=23.

Fori=0 (mod 11)

. 13, ifj=1,
fll)=4.. L
3j+1, ifj=23.

. Subcase m is other odd

According to Theorem 3.1, each labeling L(3,2,1) for C,, even is formed from a
combination derived from positive multiplication in the labeling pattern, C5 and Cj.
This case applies also to labeling L(3,2,1) on graphs C,, ® P5 for m odd, m > 7 and
m # 11. Will be shown labeling L(3,2,1) combination results Cy ® P3 and C5 ® P; in
the Figure 8.
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Figure 8: A\321(Cy ® P3) = 14
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