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SYMMETRIC PERFECT 2-COLORINGS ON J(lO, 3) 

PAULTRICOT 

Graduate School of Information Sciences, Tohoku University, Japan 

1. INTRODUCTION 

A perfect 2-coloring of a Johnson graph can be associated to one of the non-principal eigenvalue 
of the graph 01 > • • • > 0k, The perfect 2-colorings of the Johnson graphs J(n, 3) associated with 
01 have been characterized by Meyerowitz [7], and those associated with 03 by Martin [6]. Those 
associated with 02 have been studied by several mathematicians. Evans, Gavrilyuk, Goryainov and 
Vorob'ev [l, 3] classified them for n odd and for n > 10. Avgustinovich and Mogilnykh also 
studied these perfect 2-colorings [2, 5], in particular for n = 6, 7 and 8. 

In [l], Gavrilyuk and Goryainov proved that a perfect 2-coloring of J(n, 3) associated with 02 

and symmetric quotient matrix is possible only when n E {6, 10}. In this paper, we survey the 
known constructions in the case n = 6, we give a new construction for the two known perfect 
2-colorings in the case n = 10, and prove that these are the only possible ones. 

2. PRELIMINARIES 

The Johnson graph J(n, k) with parameters n, k E N has as vertices the subsets of [n] ·­
{1, ... , n} of size k. The vertices x and y are connected when Ix n YI = k - 1. The distance 
between the vertices x, y is given by d(x, y) = k - Ix n YI• The graph J(n, k) is regular, with 
valency k(n - k). 

A perfect m-coloring of a regular graph r is a partition Pi, ... , Pm of the vertices such that there 
exist fixed numbers Pi,j (i, j E [m]) that verify 

Vx E P;, lf(x) n Pjl = Pi,j, 

where r(x) is the neighborhood of x in r, which is the set of all its neighbors. The matrix 
P = [Pi,jh<::i,j<::m is called the quotient matrix of the coloring. This means that for every vertex 
x E P;, x has exactly Pi,j neighbors in Pj, We will say that the perfect coloring is symmetric when 
the quotient matrix is symmetric. 

The eigenvalues of J(n, k) are 0i := (k - i)(n - k - i) - i for i E {O, ... , k }. 

Lemma 1 (C. Godsil, 1993). If Pis the quotient matrix of a perfect m-coloring of J(n, k), then 
the eigenvalues of Pare among those of J(n, k) including 00. 

We say that a perfect 2-coloring is associated with 0s when the eigenvalues of its quotient matrix 
are 00 and 08 • We will consider perfect 2-colorings of Johnson graphs associated with 02 • 

A perfect m-coloring can sometimes be merged into a perfect coloring with less parts. 



72
PAULTRICOT 

The quotient matrix becomes: -----, [li li lil -------' [22 11] . 

In general, we have the following: 

Lemma 2. If Pi, ... , Pm is a peifect m-coloring with quotient matrix [Pi,j], and Ci, ... , Cz is a 
partition of [m], then 

LJ Pi, ... , LJ I{ 

is a peifect [-coloring if and only if each of the submatrices lPx,y]xECi,yECj for i E [l], j E [l - 1] 
has constant row sum. 

The entry i, j of the quotient matrix of the perfect [-coloring is the row sum of lPx,y]xECi,yECj · 

3. SYMMETRIC PERFECT 2-COLORINGS ON J(6, 3) 

In [1], Gavrilyuk and Goryainov proved that a symmetric perfect 2-coloring with eigenvalues 00 , 

02 on J(n, 3) is possible only when n E {6, 10}, and in this case the quotient matrix can only be 

[2: ~ 18 
2:-=._ 18]. In [5], Avgustinovich and Mogilnykh showed the following construction for 

the case n = 6. 

The graph J(6, 3) is antipodal of diameter 3, which means that for any vertex v there is a unique 
vertex at distance 3 from v. Two such vertices are called antipodal vertices. J(6, 3) can be parti­
tioned into 10 pairs of antipodal vertices, which forms a perfect 10-coloring with quotient matrix 
J - I (where J is the all 1 matrix and J the identity matrix). This perfect 10-coloring can be merged 

into a perfect 2-coloring with quotient matrix [ ! 1] by taking any two groups of five pairs each. 

J(6, 3) is small enough that a computer search can be used to list all possible symmetric perfect 
2-colorings. It turns out that the only possible ones are those mentioned above, and that they are all 
isomorphic to one of the two perfect 2-colorings {Xi, X2 } and {XL X~} whose induced subgraphs 
are represented below. 
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1,5,6 1,2,3 

2,5,6 1,4,6 1,2,4 1,3,5 

2,3,5 1,3,4 2,4,6 3,5,6 

2,3,4 4,5,6 

1,2,5 3,4,5 

1,2,3 1,5,6 1,4, 5 2,3,5 

2,3,4 4,5,6 1,4, 6 2,3,6 

3,4,6 1,2,6 

FIGURE 1. Induced subgraphs of symmetric perfect 2-colorings of J(6, 3) 

4. SYMMETRIC PERFECT 2-COLORINGS ON J(lO, 3) 

It is mentioned in [l] that for J(lO, 3) there are only two non-isomorphic perfect 2-colorings 

with the symmetric quotient matrix [ 19
2 

1
9
2] . But since a formal proof has never been written, we 

will attempt to do it here by extending the method used in [3] by R.J. Evans, A.L. Gavrilyuk, S. 
Goryainov and K. Vorob'ev. 

There are two known non-isomorphic constructions of perfect 2-colorings of J(lO, 3) with the 
above mentioned symmetric quotient matrix. One of the construction was found by Gavrilyuk and 
Goryainov (but to our knowledge does not appear in any publication), by using the orbit construc­
tion method from two 5-cycles. The second construction can be found in [2, Construction 3], using 
the same method from a complete bipartite graph with parts of size 5, from which we remove a 
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perfect matching. 

What follows is a different construction for those two 2-colorings. 

Let Q be the cycle graph on 10 vertices, and consider the action of Aut(Q) on J(lO, 3). The 
group Aut(Q) is known as the dihedral group of order 20 consisting of 10 rotations (powers of 
the cycle permutation (1, 2, ... , 10) ) and 10 reflections. For instance it is generated by the two 
permutations (1, 2, ... , 10) and (2, 10)(3, 9)(4, 8)(5, 7). Thus the eight orbits of Aut(G) acting on 
J(lO, 3) are: 

•A:= {{a,b,c} E J(l0,3) d(a,b) = 1,d(b,c) = 1,d(a,c) = 2}, 
• B := {{a,b,c} E J(l0,3) d(a,b) = 1,d(b,c) = 2,d(a,c) = 3}, 
• C := {{a,b,c} E J(l0,3) d(a,b) = 1,d(b,c) = 3,d(a,c) = 4}, 
• D := {{a,b,c} E J(l0,3) d(a,b) = 1,d(b,c) = 4,d(a,c) = 5}, 
• E := {{a,b,c} E J(l0,3) d(a,b) = 2,d(b,c) = 2,d(a,c) = 4}, 
• F := {{a,b,c} E J(l0,3) d(a,b) = 2,d(b,c) = 3,d(a,c) = 5}, 
• G := {{a,b,c} E J(l0,3) d(a,b) = 2,d(b,c) = 4,d(a,c) = 4}, 
• H := {{a,b,c} E J(l0,3) d(a,b) = 3,d(b,c) = 3,d(a,c) = 4}. 

These orbits corresponds to the 3 "types" of triple of points in the 10-cycle: 

A B C D 

E F G H 

FIGURE 2. Visualisation of the orbits of Aut(Q) acting on J(lO, 3) 
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This is a perfect 8-coloring of J(lO, 3) with quotient matrix 

2 6 4 4 2 2 1 0 
3 3 4 2 2 4 1 2 
2 4 3 4 1 2 2 3 
2 2 4 5 1 4 2 1 
2 4 2 2 2 4 4 1 
1 4 2 4 2 5 1 2 
1 2 4 4 4 2 2 2 
0 4 6 2 1 4 2 2 

that can be merged in two ways into perfect 2-colorings. First by Pi := A U B U C U H and 
A :=DUE U FU G. In the quotient matrices below, we can see that the highlighted submatrices 
have constant row sums, so we can use Lemma 2. 

A -+ 
B -+ 
C -+ 
D -+ 
E -+ 
F -+ 
G -+ 
H -+ 

A B C 

+ + + 
2 6 4 
3 3 4 
2 4 3 
2 2 4 
2 4 2 
1 4 2 
1 2 4 
0 4 6 

D E 

+ + 
4 2 
2 2 
4 1 
5 1 
2 2 

1! 
2 
4 

12 1 

F G H 

+ + + 
2 1 0 
4 1 2 
2 2 3 
4 2 1 
4 4 1 
5 

~I 
2 

2 2 
4 2 1 2 

Secondly, the merging can be done by P{ :=CUD U GU Hand P~ :=AU BUE U F. 

A B C D E F G H 

+ + + + + + + + 
A -+ 2 6 4 4 2 2 1 0 
B -+ 3 3 4 2 2 4 1 2 
C -+ 2 4 3 1 2 2 3 
D -+ 2 2 4 1 4 2 1 
E -+ 2 4 2 2 4 4 1 
F -+ 1 4 2 4 2 5 1 2 
G -+ 1 2 4 4 4 2 2 2 
H -+ 0 4 6 2 1 4 2 2 

The two resulting perfect 2-colorings are not isomorphic since it can be computed that the sub­
graph of J(n, 3) induced by Pi have different eigenvalues than the one induced by P{ or P~. 

5. CLASSIFICATION 

We now want to prove that {Pi, P 2 } and { P{, P~} are the only perfect 2-colorings (up to isomor­
phism). We will use the notations and tools of [l] and [3]. In the rest of this section, we consider 
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a perfect coloring of 1(10, 3) into two parts X 1, X2 such that the quotient matrix is 

simple counting argument shows that IX11 = IX2I = 60. 

[12 9] 
9 12 . A 

We will denote abc := { a, b, c }, ab* := { a, b, x I x E [10] \ { a, b} }, and denote the intersec­
tion with X1 in this way: abc = lifabc E X 1 and0otherwise,andforS ~ 1(10,3), S := ISnX11. 

The method consists in looking at how the neighborhood of a point can be distributed between 
the two parts. The subgraph of 1(10, 3) induced by the neighborhood of a point abc is isomorphic 
to a 3 by 7 grid, and we can represent its distribution among X 1 and X 2 by the nb-array [3]: 

abd abe abf +- ab-row 
N(abc) : acd ace acf +-- ac-row 

bed bee bcf +-- be-row 

t t t 
d e f 

The order of the rows and columns is arbitrary. 

Most of the proof will rely on the following lemma from [3]. 

Lemma 3 ([3]). For any five distinct elements a, b, c, d, e E [10], we have 

ab* - ac* = 3(abd + abe + cde - acd - ace - bde). 

In particular, since ab* - abc is the row sum of the row ab in N(abc), we can see that the 
difference between two row sums in N ( abc) is always a multiple of 3. Moreover each row consists 
of seven 0 and 1, so each row sum is between 0 and 7, and the difference between two row sums is 
0, 3 or 6. And since when abc = 1 the total sum of the nb-array must be 12, we have the following. 

Lemma 4. For abc E X1, the multiset of row sums of N(abc) is among 

{3,3,6},{4,4,4},{2,5,5},{0,6,6},{1,4,7}. 

We also have as a direct consequence of Lemma 3 : 

Lemma 5. For any a, b, c, d E [10] with a =I= band c =I= d, ab* = cd* (mod 3). 

Because of this, we can define the type of a part X 1 of a partition to be k E {0, 1, 2} if for 
any distinct a, b E [10], ab* = k (mod 3). When abc = 1, a row sum in N(abc) must be k - 1 
(mod 3). So we can further restrict the possibilities in Lemma 4. 

Lemma 6. 1. If X 1 is of type O,for abc E X 1 the row sums of N(abc) is {2, 5, 5}. 
2. If X 1 is of type l,for abc E X1 the row sums of N(abc) is {3, 3, 6} or {0, 6, 6}. 
3. If X 1 is of type 2,for abc E X1 the row sums of N(abc) is { 4, 4, 4} or {1, 4, 7}. 

We can also use Lemma 3 to eliminate some 2 by 2 patterns that can not appear in N(abc). For 
a row r of N ( abc), denote by r the sum of the row r. If we fix the order ofrows and columns then 
ob-arrays can be seen as matrices, so we will use matrices in the next lemma for convenience. 

The next lemma is an extension of [3, Lemma 5.4]. 

Lemma 7. Let abc E 1(10, 3) and r 1 , r 2 be two rows of N(abc) such that r 1 2" r 2• Then 
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1. [~ ~J is not a submatrix of [~~l 
_ _ [o oJ [o oJ [1 oJ [o 2. If r1 - r2 ~ 3 then O 1 , 1 0 , 1 1 , 1 i J are not submatrices of [~~ J , 

3. /f r1 - r2 = 6 then [~ ~l [i iJ. [~ ~l [~ ~l U ~l rn i J are not submatrices of 

[~~l 
From this lemma, the possible forms of N ( abc) can be restricted. For convenience, in the lemmas 

below let abc E X 1 and N := N(abc). 

Lemma 8. 1. If the row sums of N are {2, 5, 5}, then N is 

1 1 1 1 1 0 0 
(1) 1 1 1 1 1 0 0 

1 1 0 0 0 0 0 

1 1 1 1 1 0 0 
(2) or 1 1 1 1 0 1 0 

1 1 0 0 0 0 0 

2. If the row sums of N are {3, 3, 6}, then N is 

1 1 1 1 1 1 0 
(3) 1 1 1 0 0 0 0 

1 1 0 1 0 0 0 

1 1 1 1 1 1 0 
(4) or 1 1 1 0 0 0 0 

1 1 1 0 0 0 0 

3. If the row sums of N are {O, 6, 6}, then N is 

1 1 1 1 1 1 0 
(5) 1 1 1 1 1 1 0 

0 0 0 0 0 0 0 

1 1 1 1 1 1 0 
(6) or 1 1 1 1 1 0 1 

0 0 0 0 0 0 0 
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4. lfthe row sums of N are { 4, 4, 4}, then N is 

1 1 1 1 0 0 0 
(7) 1 1 1 1 0 0 0 

1 1 1 1 0 0 0 

1 1 1 1 0 0 0 
(8) or 1 1 1 0 1 0 0 

1 1 1 0 1 0 0 

1 1 1 1 0 0 0 
(9) or 1 1 1 0 1 0 0 

1 1 1 0 0 1 0 

1 1 1 1 0 0 0 
(10) or 1 1 1 0 1 0 0 

1 1 0 1 1 0 0 

5. lfthe row sums of N are {l, 4, 7}, then N is 

1 1 1 1 1 1 1 
(11) 1 1 1 1 0 0 0 

1 0 0 0 0 0 0 

Using Lemma 3, the possible ob-arrays can further be reduced to the following. 

Proposition 9. We have the following. 

1. If X1 is of type 0, then for any abc E X 1, N(abc) has the form (2). 
2. If X 1 is of type 1, then for any abc E X 1, N ( abc) has the form (3) or ( 6). 
3. If X 1 is of type 2, then for any abc E X 1, N(abc) has the form (10) or (11). 

These cases occur in the construction depicted at the beginning of the section. 

For the first perfect 2-coloring {Pi, P2 }, Pi is of type 0 and P2 is of type 2. When taking 
X 1 = Pi, all of its vertices have an nb-array of the form (2). When taking X 1 = A, vertices from 
E and G have an nb-array of the form (10), while vertices from D and F have an nb-array of the 
form (11). 

For the second perfect 2-coloring { P{, P~}, P{ and P~ are both of type 1. When taking X 1 = P{, 
vertices from C, D and H have an nb-array of the form (3) and those from G have the form (6). 
When taking X 1 = P~, vertices from A, Band F have an nb-array of the form (3) and those from 
E have the form (6). 
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Theorem 10. There is only one peifect 2-coloring with a part of type 0, which is also the only 
peifect 2-coloring with a part of type 2, up to isomorphism. 

Proof Denote t1 the type of X1 and t2 the type of X2. Since lab* nX1 I+ lab* nX2 I = lab* I = 8, 
we have t 1 + t 2 = 2 ( mod 3). So if X 1 is of type O then X 2 is of type 2, and vice versa. Therefore, 
it is enough to show that the perfect 2-coloring with a part of type O is unique. 

Suppose that X 1 is of type 0, and fix abc E X 1. Then from Proposition 9 

1 1 1 1 1 0 0 +- ab-row 
N(abc) : l 1 1 1 0 1 0 +- ac-row 

1 1 0 0 0 0 0 +- be-row 
t t t t t t t 
d e f g h i J 

Since the rest of the proof relies on many applications of Lemma 3 and is quite fastidious, we 
will leave the verification to a computer. 

We consider the 120 values xyz (xyz E J(lO, 3)) as variables for multivariate polynomials. The 
variables having {O, 1} values translates to xyz2 - xyz = 0. Lemma 3 and the values fixed in 
N ( abc) also give some multivariate polynomials that must have value 0. The ideal generated by 
these polynomials can be computed by magma. 

We can then check if xyz = E (E E {0, 1}) can be deduced by checking if xyz - E belongs to 
the ideal. Moreover, we can check if xy z = x' y' z' or xy z -=/- x' y' z' (xy z, x' y' z' E J ( 10, 3)) can be 
deduced by checking if xy z - x' y' z' or xy z + x' y' z' - 1 belongs to the ideal. 

In this way, 48 of the xyz values are deduced to be 1, and 48 of them are 0. The remaining 
ones are separated into two groups U1 and U2 of size 12, with identical value within a group. Since 
IX 1 I = IX 21 = 60, there are two possibilities for the coloring ( X 1, X 2), either the values in the 
group U1 are O and those in the group U2 are 1, or the opposite. But it is computed in the magma 
code that the transposition (f, g) is an isomorphism between those two possible colorings. 

□ 
Theorem 11. There is only one peifect 2-coloring with a part of type 1 up to isomorphism. 

Proof Suppose that X 1 is of type 1 and fix abc E X 1 . Then from Proposition 9, N(abc) has the 
form (3) or (6). If N(abc) has the form (6), then the second part of the magma code shows that 
there exists an element of X 1 which has an nb-array of the form (3). The case (3) is very similar to 
the proof of Proposition 9 so we will give an almost identical magma code. 

□ 

6. CONCLUSION 

By a proof similar to Theorem 10, we can see that a perfect 2-coloring with a part of type 1 
must have the other part also of type 1. Thus, these last two theorems show that there are only two 
symmetric perfect 2-colorings of J(lO, 3) associated to 02 • One of them has parts of type O and 2, 
and the other one has both parts of type 1. Theorem 11 also implies that the two parts of the perfect 
2-coloring with parts of type 1 are isomorphic to each other. 
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