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1 Introduction 

In recent years, many papers have reported that the backstepping method is very effective 
for solving stabilization problems and state estimation problems for systems of first-order 
hyperbolic partial differential equations [1, 2, 3, 6, 7, 8, 9]. The backstepping method is a 
method to determine the feedback gain or observer gain so that the original system or the 
error system is transferred to the asymptotically stable target system by Volterra integral 
transformation or Fredholm integral transformation. 
This paper addresses the state estimation problem for a first-order hyperbolic system 
with two delays in the nonlocal boundary condition. Time delay elements included in 
the boundary condition can be expressed using transport equations, and an observer is 
constructed for the equivalent system. As a result, the observer gains can be completely 
determined in seven steps. Next, we focus on a first-order hyperbolic system in which 
integral terms including delays are added to the van der Pol type boundary condition 
that produces chaotic waveforms, and show that the above observer design method can 
be applied to this system. In addition, we mention a secure communication method for 
image data using it. Since the weight functions and time lags included in the introduced 
integral terms can be used as a common encryption key, the key space can be greatly 
expanded compared to previous research [10, 11, 12, 13]. In [5], the key space is expanded 
by a method using a neural network for a hyperbolic system with local boundary condition. 
Image communication is being actively researched in the current information society, and 
this paper, which utilizes the synchronization of chaotic system described by delayed 
hyperbolic PDEs, will provide one direction. Time delay systems are difficult to handle, 
but when used for secure communication, they have the aspect of increasing security. 

2 System description 

Let "/i(x) (i = 1, 2) be real-valued functions satisfying'Yi E H1(0, 1) and'Yi(O) ='Yi(l) = 0 
and巧 (i= 1, 2) be positive numbers satisfying O < T1 < T2. Let r. be a real constant. 
Consider the following first-order hyperbolic system defined on the interval [O, 1], whose 
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boundary condition includes time lags Tか

X。:

叫t,x)＝叩(t,X)，叫t,x) = -vx(t, x), 

釘(t)＋叫t),for O :S t <巧，

u(t, 1)＝く［印）u(t-T1,x)dx十的(t),for巧さ t< T2, 

［叫）u(t-T1,x)dx+1112(x)u(t-T2,x)dx, forT2さt,

゜v(t, 0) = r;,u(t, 0), 

u(O,x) = uo(x), v(O,x) = vo(x), 

(1) 

where uo, Vo Eび(0,1), ¢1 Eび(0,町）， and¢2 Eび(0，乃）． Forthis system, we state 
the observer design method to estimate the state variables u, v. First, expressing the 
time lags included in the system by using transport equations, system (1) is equivalently 
written as follows: 

％ ： 

叫t,x)＝妬(t,X)，叫t,x)= -vx(t,x), 

u(t, 1) = w(t, 0) + z(t, 0), v(t, 0)＝氏u(t,O),

u(O, x) = u0(x), v(O, x) = v0(x), 

叫t,x)＝叫(t,X)，均(t,x) = Zx(t, x), 

w(t，町） ＝ ［万(x)u(t,x)dx, 

z(t,乃） ＝ j1叫）u(t,x)dx, 

゜w(O, x) = ¢1(x), z(O, x)＝的(x).

3 Observer design 

(2) 

For system (2), consider the following hyperbolic system with input v(t, 1). This is called 
an observer. 

~l: 

叫t,x)＝妬(t,x) + f(x)(v(t, 1) -iJ(t, 1)), 

切(t,x) =―妬(t,x) + g(x)(v(t, 1)一iJ(t,1)), 

叫 1)＝心(t,0)＋ゑ(t,0), iJ(t, 0) =屈（t,0), 

u(O,x)＝如（x), iJ(O, x)＝約(x),

叫 t,x)＝血(t,x) + h(x)(v(t, 1)一 iJ(t,1)), 

均(t,x)＝主(t,x) + i(x)(v(t, 1) -iJ(t, 1)), 

心(t，乃）＝［,1(x)u(t,x)dx, 

ゑ(t,乃） ＝ j1如）0（t,x)dx, 
Ô 

心（O,x)＝釘(x)，る(0,x)＝西(x).

(3) 
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Introducing the error variables ii := u -u, v := v -v,面：＝ W -心， z:= z -z, we have 
the error system 

叫t,x)＝出(t,x)-f(x)v(t, 1), 

訊 x)=―む(t,x)-g(x)v(t, 1), 

叫 1)＝w(t,o)＋乏(t,o), v(t, o)＝直(t,0), 

u(O, x) =如（x), v(O, x) = v0(x), 

匂t,x)＝血(t,x)-h(x)v(t, 1), 

叫 x)＝ら(t,x) -i(x)v(t, 1), 

訓t,町)＝11'Yi(x)ii(t, x)dx, 

ゑ(t，乃）＝ j1乃(x)U(t,x)dx,
j) 

訓O,x)=¢1(x)，ゑ(0,x)＝応(x).

(4) 

Here, we use the Volterra-Fredholm integral transformation 

((t, x)＝面(t,x) -11 k(x, y)ii(t, y)dy -11 l(x, y)v(t, y)dy, 

W, x) ~ Z(t, x) -l m(x, y)U(t, y)dy -1'n(x, y)ii(t, y)dy, 
n(t,x) ＝ 0(t,x) -［p(x,y)U(t,y)dy -[l q(x,y)0(t,y)dy 

First of all, we set the domains of integral kernels k, l, m, n, p, and q as follows: 

Dk= Dz= {(x,y); 0 S xさ町，0さyさ1},

Dm = Dn = {(x, y); 0さX< T2,0さyさ1},
DP= {(x,y); 0さxさ1,0さyさx},

Dq = {(x,y); 0 S x S 1,0 Sy S 1}. 
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The problem is to determine the integral kernels k, l, m, n, p, q of (5)―(7) and the gains 
f, g, h, i of (4) so as to achieve u(t,•) • o, v(t, •)• o, w(t,•) → 0, ゑ（t,•) → 0 as t→ 00 
(if possible, to determine the integral kernels and the gains such that all error variables 
become zero in a finite time). These can be determined using the backstepping method 
of partial differential equations. 
Differentiating (5) and performing integration by parts, (t(t, x) -(x(t, x) is calculated 
as 

叫 x)-(x(t,x) 

= {-h(x) + l(x, 1) + 11 k(x, y)f(y)dy + 11 l(x, y)g(y)dy}v(t, 1) 

゜



65

-k(x, 1)｛面(t,0) + z(t, O)} + {k(x, 0) -11,l(x, O)}ii(t, 0) 

＋［{kx(x, y)十島(x,y)}ii(t, y)dy + 11 {lx(x, y) -ly(x，切｝v(t,y)dy. (8) 
゜Similarly, differentiating (6) and performing integration by parts, ~t(t, x) -~x(t, x) is 

calculated as 

~t(t, x)ーも(t,x) 

= {-i(x) + n(x, 1) + 11 m(x, y)f(y)dy + 11 n(x, y)g(y)dy}v(t, 1) 

゜-m(x, 1)｛面(t,0) + z(t, O)} + { m(x, 0) -""n(x, O)}u(t, 0) 

+Jl｛叫（x,y)＋叫x,y)}u(t, y)dy + j1｛叫（x,y) —叫x,y)}v(t, y)dy. (9) 
0 JO 

Further, differentiating (7) and performing integration by parts, rJt(t,x)-rJx(t,x) is cal-
culated as 

叫t,x) -"lx(t, x) 

= {-f(x) + q(x, 1) + 1x p(x, y)J(y)dy + 11 q(x, y)g(y)dy}v(t, 1) 

゜+{p(x, 0) -"'q(x, O)}u(t, 0) 

＋［加(x,y) + Py(x, y)}u(t, y)dy +［如(x,y) -qy(x, y)}v(t, y)dy. (10) 
゜We here note the following facts: 

(i) If all the terms enclosed in { ・} of the right-hand side of (8) are zero, (t(t, x) -
叫，x)= 0 holds for all ii, v,心，ゑ

(ii) If all the terms enclosed in { •} of the right-hand side of (9) are zero, ~t(t, x) -
ら(t,x) = 0 holds for all ii, v, w,ゑ

(iii) If all the terms enclosed in { •} of the right-hand side of (10) are zero,りt(t,x) -
ル(t,x)= 0 holds for all ii, v. 

(iv) By (5), if k(T1, y)＝叫y)and l(T1, y) = 0 are satisfied, ((t,乃） ＝0 holds for all ii. 

(v) By (6), if m(T2, y) = 12(y) and n(T2, y) = 0 are satisfied, ~(t, 乃） ＝0 holds for all ii. 

(vi) By (5)-(7), if k(O, y) + m(O, y) = p(l, y) and l(O, y) + n(O, y) = q(l, y) are satisfied, 
く(t,0)+~(t,0) = ry(t, 1) holds for all ii, v. 

(vii) Putting x = 0 in (7), one has 

77(t, o) = u(t, o) -j1 q(O, y)v(t, y)dy. 

゜
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Under the condition'Yi(O) ='Yi(l) = 0 (i = 1, 2), we sequentially determine the kernels k, 
l, m, n, p, q and the gains f, g, h, i as follows. 

Calculation of observer gains 

Step 1. Find the solution k on Dk to the hyperbolic equation 

｛柘(x,y)＋島(x,y)＝ 0, 
k(x, 1) = 0, k(T1,Y) = 11(y). 

Similarly, find the solution m on Dm to the hyperbolic equation 

｛叫(x,y)＋叫x,y)＝ 0, 
m(x, 1) = 0, m(T2, y)＝叫y).

Step 2. Find the solution l on D1 to the hyperbolic equation 

｛叫，y）-［y(x, y) ＝ 0, 
l(x, 0) = -=-k(x, 0), l(T1, y) = 0. 

k 

Similarly, find the solution n on Dn to the hyperbolic equation 

｛四(x,y)-1四(x,y)＝0, 
n(x, 0) = -=-m(x, 0), n(T2, y) = 0. 

k 

Step 3. Find the solution p on DP to the hyperbolic equation 

｛四(x,y)＋Py(x,y) ＝ 0, 
p(l, y) = k(O, y) + m(O, y). 

Step 4. Find the solution q on Dq to the hyperbolic equation 

｛も(x,y) -[y(x,y) ＝ 0, 
q(x, 0) =.:.p(x, 0), q(l, y) = l(O, y) + n(O, y). 

k 
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Then, determine g(x) (0 :S x'.S 1) such that the solution v becomes zero fortミ1.In fact, 
we can design g(x) using the backstepping method of partial differential equations within 
this step. Specifically, it comes down to the problem of solving the following Volterra-type 
integral equation. 

g(x) = r(x, 1) + 11 r(x, y)g(y)dy, 
a: 

where 
r(x, y) = K,q(O, y -x). 

Step 6. Solve the Volterra-type integral equation 

J(x) = q(x, 1) + 1x p(x, y)J(y)dy + 11 q(x, y)g(y)dy 
0 JO 

to determine f (x) (0さxさ1).

Step 7. Calculate 

h(x) = l(x, 1) + 11 k(x, y)J(y)dy + 11 l(x, y)g(y)dy 

to determine h(x) (0さxS T1). Similarly, calculate 

心）＝ n(x,1) + 11 m(x, y)J(y)dy + 11 n(x, y)g(y)dy 

to determine i(x) (0 S x S乃）．

Stability of error system (4) 

As the target system of error system (4), consider the system 

叫t,x) = TJx(t, x), 

TJ(t, 1) = ((t, 0) + ~(t, 0), 

砧(t,x) =―応(t,x)-g(x)v(t, 1), 

v(t,O)＝K,rJ(t, 0) + 11 ri,q(O, y)v(t, y)dy, 

゜(t(t, x) = (x(t, x), ((t, T1) = 0, 

糾t,x)=ら(t,x), ~(t, 乃） ＝0. 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

In system (23), it is easy to see thatく(t,•) and ~(t, •) vanish at t =町， t= T2, respectively. 
Therefore, by O <乃＜乃， TJ(t,•) vanishes at t =乃＋ 1,and v does at t =乃＋ 2.That 
is, u(t, ・), v(t,•) ，心 (t,・), and z(t, ・) become zero fort ~乃＋ 2. In this way, all the error 
variables become zero in finite time. Actually, this is a very convenient property when 
designing a secure communication system. 
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4 Application of chaotic synchronization 

4.1 Image communication 

Assume that叫x)，冗 (i= 1, 2) satisfy the same conditions as in Section 2. Let K, be a 
real constant. Consider the following first-order hyperbolic system defined on the interval 
[O, 1]. 

I:;2 : 

叫t,x)＝叩(t,X)， 叫t,x)＝一叩(t,x), 

Fa,(J(v(t, 1))＋釘（t)+む(t),for O'.St< T1, 

Fa,f3(v(t, 1)) + j¥1(x)u(t -T1, x)dx十必(t), for町:::::;t <乃，

叫 1)＝< Fag(V(t, 1)） ＋ ［泊）u（t-T1,x)dx+ ［如）u（t-T2,x)dx, 
、 forT2さt,

v(t, 0) = K,U(t, 0), 

u(O, x) = u0(x), v(O, x) = v0(x), 

(24) 

where uo, Vo Eび(0,1), 釘€び(0，町）， and ¢2 Eび(0,乃）． Therelation u = Fa,f3 (v) is 
implicitly defined by 

/3(u -v)3 + (1 -a)(u -v) + 2v = 0. (25) 

For the cubic equation (25), given any v ER, there exists a unique u ER  when O < a :S 1, 
(3 ＞0 [4]. 
The system whose boundary condition of u at x = 1 of system (24) is replaced by 

u(t, 1) = Fa,13(v(t, 1)) (26) 

has been introduced in [4], and it is shown that, for some values of a,(3，and K-, the 
solution (u, v) behaves chaotically. Also, an observer with v(t, 1) as an input has been 
given in [12], and a secure communication method for image data is proposed based on 
Ushio's result [14, 15]. 
Furthermore, the system whose boundary condition of u at x = 1 of system (24) is 
replaced by 

u(t, 1) = Fa,f3(v(t, 1)) + 11 ry(x)u(t,x)dx 

゜
(27) 

has been introduced in [11], and an observer with v(t, 1) as an input is designed using 
the backstepping method. It is also applied to the secure communication of image data 
using the same method as [12]. The weight function 1(x) in the integral term of equation 
(27) is the common encryption key for secure communication. Unlike a,(3，and ;;,, it is a 
function on [O, 1], so the key length is long and security is enhanced. However, there is 
only one weight function. 
For system (24), an observer whose input is v(t, 1) can be constructed by the method 
described in Section 3. First, expressing the time lags included in the system by using 
transport equations, system (24) is equivalently written as follows: 
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葛：

叫t,x)＝叫(t,X)，切(t,x)= -vェ(t,x), 

u(t, 1) = Fa,f3(v(t, 1)) + w(t, 0) + z(t, 0), v(t, 0) = t,,u(t, 0), 
u(O,x) = u0(x), v(O,x) = v0(x), 

叫 (t,X)＝叫(t,X)，均(t,x) = Zx(t, x), 

w(t，町） ＝ J11心）u(t,x)dx, 
0 1 

z(t，乃） ＝ J 泊）u(t,x)dx, 

゜、 w(O,x)＝の心）， z(O,x)=む（x).

For system (28), consider the following system with input v(t, 1). 

均：

叫t,x)＝妬(t,x) + f(x)(v(t, 1) -v(t, 1)), 
叫t,x)=一如(t,x) + g(x)(v(t, 1) -v(t, 1)), 
叫 1)= Fa,13(v(t, 1))＋心(t,0)＋る(t,o), v(t,o)＝叫(t,0), 

u(O,x) =如（x), v(O, x) = vo(x), 

叫t,x)＝血(t,x) + h(x)(v(t, 1) -v(t, 1)), 
命(t,x) =迄（t,x) + i(x)(v(t, 1) -v(t, 1)), 

訓t,町)＝j111(x)u(t,x)dx, 

ゑ(t，乃）＝j＼（x)U(t,x)dx,
Ô 

訓O,x)＝釘(x)，ゑ(0,x)＝如(x).

(28) 

(29) 

Introducing the variables ft, := u -u, v := v -v，w := w-心， z:= z —ゑ， we have the 
same error system as in (4). Therefore, an observer with input v(t, 1) can be actually 
constructed. Hence, it can be applied to secure communication of image data. In this 
case, the common encryption keys other than 0:, (3, K, are叫x)andて (i= 1, 2), and the 
key space is greatly expanded, and security is enhanced. Figure 1 is a block diagram for 
the purpose of encrypting and transmitting image data from subsystem S1 to subsystem 
S2. In this figure, by using :E; as the chaotic system and :E3 as the synchronizing system, 
secure communication of image data can be performed. Note that the vectors obtained 
by discretizing u(t, x), v(t, x), u(t, x), v(t, x) in the spatial and temporal directions are 
u[k], v[k], u[k], v[k]. Also, the value obtained by discretizing v(t, 1) is vL[k]. 

4.2 N umerical simulation 

In the numerical simulation, we performed the same discretization as in [10, 11, 12] for 
the first-order hyperbolic system. 

• A monochrome image of 145 x 305 pixel (i.e., M = 144, L = 304) is used. The size 
of L determines the mesh width for space division when solving PDEs. 
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一＇ ＇ ＇ ＇ 
見[k]

l― 
I 
I 
I 一

伍[k]

＇ 
＇ Encrypted image 

I 

＇ーー一玉1―-----: (Sendrow-by-row) :------
Original image Restored image 
(modulate row-by-row) (demodulare row-by-rO¥v) 

Figure 1: Secure communication system. 

• In chaotic system (u,v,w,z), set 11(x) = x(l -x), 12(x) = 0.5sin(1rx)，巧＝ 0.5,
乃＝ 2.5,a=  0.5,(3＝ 1, K, = (1 + μ)/(1―μ), where μ = 0.525. These are all 
common encryption keys. 

When finding the observer gains, the Volterra-type integral equations are solved using 
the successive approximation method. In Figure 2, the thick blue solid lines are the final 
observer gains, which are set as g(x) = g4(x), f(x) = Jf(x), h(x) = h!(x), i(x) = i!(x) in 
the simulation. 
Figure 3 shows the time evolution of the L2-norm of the solution of the error system 
when the proposed nonlinear observer is attached to the chaotic system. It can be seen 
that the L2-norm of all error variables becomes zero after乃＋2= 4.5. As initial conditions, 
we set ua(x) = 0.05x, va(x) = -0.05x, ¢1(x) = 0.03x,必（x)= -0.03x,如（x)= 0, 
%（x)三 0,忍1(x)三 0,む（x)三 0.
Figure 4 shows the numerical simulation result for secure communication of an image 
using the same modulation and demodulation units as in [10, 11, 12]. The runup time is 
from k = 0 steps (t = 0) to k = 13680 steps (t = 45), where the runup time is the time 
required for the waveform to reach a fully randomized chaotic state. The feature of this 
method is that the image to be transmitted is set in the system after the runup time has 
elapsed. Let the value of black be O and that of white be 0.01. Then, the maximum of 
error between the original image { s1 [ k]} and the restored image { t2 [ k]} was on the order 
of 10-17_ In Figure 4, the original image cannot be seen at all from the encrypted image 

{ C12 [kl}. 
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Figure 2: Observer gains for chaotic system. 

5 Con cl us ion 

In this paper, we first provided an observer design method for a first-order linear hy-
perbolic system with two time lags in the nonlocal boundary condition. Assuming a 
Luenberger type observer, the observer gains were determined using PDE backstepping. 
Next, we considered a chaotic system in which a nonlinear term that generates chaotic 
vibrations was added to the nonlocal boundary condition, and showed that an observer 
can be similarly designed for the nonlinear hyperbolic system. Since the designed observer 
works as a chaotic synchronization system in which the error system settles in a finite 
time, it can be applied to a secure communication system for image data, and the accu-
racy of the restored image was confirmed through numerical simulation. The proposed 
method has the advantage of expanding the key space compared to previous studies. 
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