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Abstract 

A Leontief two-sector growth model is examined with production and 

depreciation delays, where the growth rate of labor is exogenously given. 

After the equilibrium states are characterized, the two-delay dynamic 

system for labor is formulated. The dynamic analysis is given in three 

cases: the no delay, one delay and two delays are examined in detail. The 

presence of a positive eigenvalue makes the systems unstable in the classi-

cal sence. The dynamic system is called stable if the growth rate of labor 

as time variable converges to the exogenously given growth rate. Condi-

tions are given for the stability of the systems in this sense. The analysis 

is based on complete characterizations of the locations of all eigenvalues. 

The theoretical results are demonstrated with numerical studies. 
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1 Introduction 

In the classical literature of economic growth, Keynes's short-run analysis is 
extended into the long-run period by Harrod (1939) and Domar (1946). It is 
suggested that the key factors for long-run economic growth are the saving rate 

and the productivity of capital investment. Their model, called the Harrod-
Domar model, could give rise to, at best, a knife-edge equilibrium growth only 
when the warranted growth happens to coincide with the natural rate of growth. 
Any small derivation from the path is amplified and results in a further devi-
ation, otherwise. This knife-edge instability is due to the Leontief production 
function in which production has fixed proportions of capital and labor. It 

is well-known that Solow (1956) and Swan (1956) overcome the instability of 
Harrod-Domar model's solution by replacing the Leontief production functions 
with the neoclassical production functions and guarantee the existence and sta-
bility of the golden age path. The Solow-Swan model or the neoclassical growth 
model becomes a prototype model to analyze economic growth and is applied 
to study multisector growth, nonlinear population growth, cross-country income 
differences, to name only a few. 

However, in real economies business cycles are often observed and very lim-
ited research was conducted to explain such phenomenon since in the basic 
model having the neoclassical properties, the steady state was always locally as-
ymptotically stable. Therefore the basic structure had to be modified. Among 
others, Day (1982) introduced two opposite nonlinear effects in the increasing 
capital stock into ala neoclassical growth model. One is the essential source 
of economic growth and the other is the source of environmental distortion. 
In the discrete time framework it was shown that persistent irregular fluctua-
tions and even chaos can be observed when the nonlinearities become strong 
enough. Following the spirit of Kalecki (1935) suggesting that production delay 
might be a source of economic fluctuations, Matsumoto and Szidarovszky (2011) 
constructed a continuous time version of Day's discrete time model with produc-
tion delay and numerically verified the possibility of chaotic behavior through 
period-doubling cascade. This finding indicates that the delay nonlinear model 
of a dynamic economy may explain various dynamic behavior of economic vari-
ables. In the recent literature, Guerrini et al. (2019a, 2019b) have already 
confirmed that the neoclassical model with two distinct delays could generate 
a wide variety of dynamics ranging from monotonic convergence to chaotic dy-
namics. Further, Matsumoto and Szidarovszky (2020) demonstrate that the two 
delays can be a source of complex behavior of the extended Solow-Swan model 
augmented with human capital. 

It is also well known that there is another direction for developing the 
Harrod-Domar model. Shinkai (1960) extends the one-sector Harrod-Domar 
model to a two-sector model that consists of a capital-good sector and a consumption-
good sector. It is shown that the balanced growth can be stable when the 
consumption-good sector is more capital-intensive. Further, Furuno (1965) in-
troduces production delay in the capital good sector and shows that the insta-
bilizing effect of the production delay shrinks the stability region. In the re-
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cent literature, a Leontief two-sector growth model is thrown into the limelight. 
Nishimura and Yano (1995) demonstrate the possibility of ergodically chaotic 
optimal accumulation. Deng et al. (2019) present a complete characterization 
of optimal policy. However, these considerations are confined to a discrete-time 
framework in which complex dynamics can emerge if some strong nonlinearities 
are involved. In the existing literature, it is not revealed whether persistent 
fluctuations of capital accumulation may appear in a continuous time Leontief 
growth model. The main purpose of this study is to demonstrate to what ex-
tent the delays in the production process and depreciation can contribute to the 
birth of oscillatory behavior in otherwise stable system. 

The paper develops as follows. In Section 2, the two-sector growth model 
with Leontief production functions is introduced, equilibrium conditions are 
formulated. In Section 3, the stability conditions of the no-delay and the 
single-delay cases are discussed. Section 4 contains the two-delay cases, with 
equal and different delays. And finally, Section 5 offers concluding remarks and 
further research directions. 

2 Two-Sector Model 

2.1 Model Construction 

There are two sectors, investment sector producing capital goods Y1 and con-
sumption sector producing consumption goods Y2 and there are two kinds of 
agents, workers and capitalists, in each sector. }'i (i = 1, 2) is produced by the 
Leontief production function having two inputs, capital goods and labor denoted 
by Ki and Li, used in technologically pre-determined proportions, 

1 -- 1 
}"i = Fi(K凸） ＝min[元瓦，` (1) 

where 1/ai and 1/bi are the capital productivity and the labor productivity of 
sector i. If no capital and labor is wasted, then 

1 Y 1 Y 
- =— and - ＝ -
ai Ki ~.. -bi Li. 

(2) 

The capital-labor ratio of sector i is denoted as ki and considered constant, 

ki 
Ki • = 
Li 

(3) 

with which ai can be written as 

ai = kibi・

Workers only consume while capitalists only save, all savings are reinvested and 
all labor incomes are expended. The growth rate n of labor (L = L1 + L2) is 
exogenously given, 

L(t) = nL(t). (4) 
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If k1 = k2, then the two-sector model loses its economic meaning. Hence the 
following condition is imposed: 

A ssumption 1. k1 =/-k2. 

An equilibrium is described by the following conditions: 

(e1) K = K1 + K2: full capacity of capital, 
(e2) L = L1 + L2: full employment, 
(e3) PiY1 = RK: equity of investment and saving, 
(e4) P2 Y2 = W L: equity of consumption demand and supply, 

(e5) P,ぷ＝ RKi+ W Li: budget constraint for sector i 

where K is a total stock of capital, L total supply of labor, R returns to cap-

ital, W the wage rate, P1 price of capital goods and P2 price of consumption 
goods that is assumed to be unity (i.e., consumption goods are chosen to be the 
numeraire). Given K(t) and L(t) at time t, the equilibrium is attained in the 
following way. The equilibrium allocation of labor is obtained by solving 

K山1(t)＋朽L2(t)= K(t), 
(5) 

£1 (t)＋ら(t)= L(t). 

The solutions are 

Li(t) = 
K(t) -k2L(t) 

k1 -k2 
(6) 

L;(t) = 
柘L(t)-K(t) 

k1 -k2 

and from both of which the equilibrium capital stock and the equilibrium output 
of sector i are determined, 

By (e4) 

L:(t) 
K1(t) = kiい(t)and ~*(t) = ~ for i = 1, 2. 

bi 

W*(t) = 
Y2*(t) 
L(t). 

By (c3) and (e5), solving RK = RKt + WLi for R, 

R*(t) = 
W*(t)Li(t) 

K2(t) 

which is substituted into (e3) to obtain 

P「(t)= 
R*(t)K*(t) 

Yt(t). 
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At time t, the equilibrium conditions（釘）ー(e5)determine five variables, Li(t), 
L;(t) (as well as Kr(t) and K~(t) through (3)), W*(t), R*(t) and P「(t).At the 
next instantaneous time, the stock of capital increases by investment at time t 

and so does the labor force by nL(t). With these new values of capital and labor, 
the new five variables are determined so as to satisfy the equilibrium conditions. 
Then the economy evolves itself in the same way. 

2.2 Dynamic System 

Following Furuno (1965), we make the following assumption: 

Assumption 2. There is a production delay仇＞ 0in investment process, 

兄(t-01) = mi 
k[-01) Ll(t -01). 

= min [麟 ’b 1 ] 

In addition to Assumption 1, a delay in depreciation process is also assumed.1 
The capital accumulation is then described by 

K(t) = Y1(t -01) -8K(t -0叫， (7) 

where 8 ?: 0 is the depreciation rate of capital and 02 ?: 0 is the depreciation 
delay. The labor changes according to equation (4). Using the equilibrium 

conditions (e1) and (e2), the dynamic equations (4) and (7) are transformed 
into 

｛砂(t)＋ K山 (t)＝い-01)-6[K山 (t-0分十 k山（t-恥）］， （8) 

L1(t) + L2(t)＝叫（t)+叫(t).

We look for exponential solutions, 

L1(t) = e入tu1andら(t)= e入tu2

which are substituted into the dynamic equations to obtain the following form, 

（恥ーi/＋ 6k印―入的

入— n

心＋入— n ―入02)（：:）＝ (：) 
Then the characteristic equation is obtained, 

土（入— n) ［入(k1 -kふ— e―入01 + 8(k1 -k2)加―入02]=0 (9) 
b1 

that has one positive root, 

ふ＝ n> 0. (10) 

1 See Guerrini et al (2019a) for more detailed explanation on the depreciation delay. 
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Since the characteristic equation has one positive root, the dynamic system is 
not "stable" in the usual sense that any time trajectories converge to a steady 
state. In this paper we use "stability" in the following sense. The growth rate 
of labor is exogenously given as n. We say that the dynamic system is stable 
if the growth rate as time variable converges to n.2 Hence stability depends on 
the values of any other roots that solve the equation, 

入kb1-e―入01+ 8kb1e―入02= 0 (11) 

where k = k1 -k2 and k -/c Oby Assumption 1. We identify four cases, depending 
on the values of the two delays, 

Case I: 01 =恥＝ 0,

Case II: 01 > 0,恥＝ 0,

Case III: 01 =恥＞ 0,

Case IV: 01 > 0,恥＞ 0,01 -I 02. 

Arranging the terms in (8), we have the delay dynamic system of the two-sector 
model, 

1 
い(t)= ¼ {-nk2 Li=lム（t)+玩い(t-01) -8江＝lkふ（t-い｝，

恥）＝］｛心と7=1Li(t)一臼(t-0リ＋心=lkふ（t-恥）｝．

3 Classic Models Revisited 

(12) 

Although Shinkai (1960) and Furuno (1965) have already examined Cases I and 
II, we revisit them and complement their results in our way in this section. 

3.1 Shinkai Model:仇＝島＝ 0.

Case I corresponds to the Shinkai version (1960) of the model. With no delay, 
equation (11) is reduced to 

（入＋ 8)kb1-1 = 0 

and a solution for equation (13) is 

1-8kb1 
入2=

kb1. 

(13) 

(14) 

2Consider two functions, f(t) = aen(t+l) and g(t) = bent_ Although the difference between 
two function does not converge to zero as time goes to infinity, their growh rates converge to 
the same value (actually, two have the same growth rate). We say that two time trajectories 
described by these functions are stable. 
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Taking account of normal circumstances in the real economy尺Shinkai(1960) 
assumes that the product of the capital coefficient k1 b1 of the investment section 
and the growth rate n of labor is less than unity. In Shinkai's model, the 
depreciation rate 8 does not play any crucial role and thus is assumed to be 
zero. On the other hand, we will consider how the depreciation delay affects the 
growth of economy, hence we assume not only 8 > 0 but the following inequality 
that extends Shinkai's conjecture: 

A ssumption 3. 1 -(n + 8)k1b1 > 0. 

We have 1 -(n + 8)kb1 > 0 under Assumption 3 as k1 > k. The root入2is 
positive and larger than n if k > 0 and negative if k < 0, 

入2> n > 0 if k > 0 and入2< 0 if k < 0. 

With two distinct real roots, n andふ， thegeneral solution of Li(t) can be 
written as 

勾(t)= Aient + Bie心tfor i = 1, 2 (15) 

where the coefficients Ai and Bi are determined by the parameter specification 
and the initial values of capital and labor. Except some special cases,4 the 
asymptotic behavior is governed by the term Bieふtif k > 0 as the dominant 
root is入2(> n) and by Ai臼 ifk < 0 as the dominant root isふ＝ n.The results 
in Case I are summarized as follows, which are the same as those obtained in 
Shinkai (1960): 

Theorem 1 The growth path of employment is approaching the balanced growth 
path if the consumption-good industry is more capital-intensive (i. e.，柘<kり
and moves away from the balanced growth path if the investment-good industry 
is more capital-intensive (i.e., k1 > k2} where, due to Assumption 3, k1 has the 
upper bound, 

柘く 1 
(n + 8)b1. 

3.2 Furuno Model:仇＞ 0and的＝ 0.

In this section we revisit and further develop the model of Furuno (1965) that 
introduces the production delay (i.e., 01 > 0) in capital accumulation. Our aim 

3See Section 2 of Sinkai (1960). 
4The coefficients of equation (15) are 

l k2 
ふ＝ cLo,B1= ¼ (Ko -~Lo) 

and 

A2 = (1 -c)Lo and B2 = -B1 with c = 
(n + 8)k西

1-(n + 8)kb1 
where Ko and Lo are the initial values. If B1 = 0, then B2 = 0 and Li(t) = A1ent, L2(t) = 
A四nt_In addition, if c = 1 -c holds, then A1 = A2 = A, implying that Li(t) = L2(t) = 
Aent. The time trajectories become identical. In both cases, the balanced growth is realized. 
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of this section is to classify the possible stable and unstable paths depending on 
the production delay. 

For notational simplicity 01 = 0. The characteristic equation (11) is rewritten 
as 

F（入） ＝ （入＋ 6）kb1 -e―入0= 0. (16) 

Similarly to Assumption 3, we make the following assumption that is the same 
as was imposed by Furuno (1965),5 

Assumption 4. e-n° -(n + 8)い＞ 0.

Needless to say, Assumption 4 is stronger than Assumption 3 in the sense 
that its upper bound of k1 is smaller for 0 > 0, 

応(O)＝ e―nO< 1 
(n + 8)b1―(n + 8)b1 

= k;7'for 0 2 0. 

where伍(0)= kf'. Under Assumption 4, we also have 

1-8kb1 > 0. (17) 

To solve equation (16), we consider two cases according to whether k > 0 (i.e., 
the capital-good sector is capital intensive) or k < 0 (i.e., the consumption-good 
sector is capital intensive). 

(I) k > 0 

Given 0 > 0, some properties of F（入） withrespect to入areobtained, 

F(O) = 8kb1 -1 < 0, 入見匹F（入） ＝入四（入＋ 8)kb1> 0 

and 
8F（入）
8入

＝恥＋ 0e―入0> 0. 

These inequalities imply the existence of a unique positive solution入2that 
satisfies 

F囚）＝凶＋ 8)kb1-e―朽0= 0. 

Further, Assumption 4 and k1 > k > 0 imply 

F(n) = (n + 8)kb1 -e―n0 < 0. 

Hence 

ふ＞ n. (18) 

Let us define the boundary of Assumption 4 in terms of k and 0 by 

r.p(k,0) = e―n° -（n + 6)（K十 k2)b1= 0. (19) 

5See his equation (9). 
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The maximum value km of k along the boundary curve satisfies cp(km, 0) = 0 
where 

km=応（0)-k2 

and the maximum value 0mof 0 satisfiesゃ(0,0m) = 0 where 

1 
0m =--=-log [(n + 8) k沙叶．

n 

Graphically, the boundary curve, r.p(k, 0) = 0, is illustrated as the downward-
sloping solid curve, crossing the horizontal axes at k = km and the vertical axis 
at 0 = 0m in Figure 1. Notice that the down-ward sloping dotted curve is the 
boundary curve in terms of k1 and 0 and is shifted rightward with k1 from the 
solid curve and it is defined for k2 < k1く k「.Assumption4 holds in the shaded 
region with diagonal lines left to the curve and does not hold in the white region 
right to the curve. Hence, we have the following result. 

Lemma 1 Given Assumption 4 and k > 0, the characteristic equation (16) has 
a positive characteristic root入2> n fork and 0 such as r.p(k, 0) > 0. 

Direct consequence of this lemma is that since入2dominates n, the dynamic 
system (12) with 01 = 0 > 0 and 02 = 0 can generate only unbalanced growth 
paths, that is, the system is unstable. Notice that Lemma 1 is essentially the 
same as the second half of Theorem 1 (i.e., the system is unstable when k > 
0). However the instability interval of k becomes smaller due to Assumption 4. 
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(II) k < 0 



123

Let the first term in the right hand side of F（入） bef（入） andthe second 
term g（入）． Bothare decreasing in入． Whenone curve is tangent to the other for 
入＝入， thefollowing tangency conditions hold: 

(i) f（入） =g（入） or（入＋6）kbl = e―Xe: the ordinates are eq叫

and 
(ii)『（入） ＝ g'（入） orkb1 = -0e―入0:the slopes are equal 

From (i) and (ii), the abscissa of the tangency point is, 

5. = -
1+60 

゜
<0 (20) 

that is substituted into equation F（入） toobtain the relation of k and 0 that 
should hold at the tangency point, 

1 
F（入）＝一一心(k,0)=0

゜
(21) 

with 
心(k,0)= kb1 +0e1+6°. 

Total differentiatingゆ(k,0) = 0 reveals that 0 is decreasing in k, 

d0 bl 
＝一

-(1十60)
dk (1 + 80) e < 0. 

If心(k,0) < 0, then the（入＋ 8)kb1 -line rotates to the right around the 
horizontal intercept at入＝ー8and becomes steeper.6 Hence it crosses the 
e―入0-curvetwice. That is, equation (16) yields two negative roots, 

ふく入＜入2< 0. 

As t goes to infinity, the terms associated with the negative roots approach zero, 
regardless of the values of 0. Therefore, the solutions are getting closer to the 
balanced growth path as time goes on. Hence the first result obtained in case 
of k < 0 is summarized as follows: 

Lemma 2 For k and 0 such asゆ(k,0) < 0, the roots of characteristic equation 
(16} are negative and thus the time delay does not affect asymptotic behavior of 
labor and capital. 

On the other hand, ifゆ(k,0) > 0, then the（入＋ 8)kb1-line moves counter-
clockwise and becomes flatter. It then does not intersect the e―入0-curveand 

hence equation (16) has infinitely many complex roots. Let入＝ a+if] with 
a 2 0 and fJ > 0 be a complex characteristic root. 7 Substituting it into F（入）
presents 

F(a + i/3) =(a+ i/3十 8)-e―(a十岨）0=0

6 Remember that k < 0 is assumed here. 
7 a < 0 does not harm asymptotic stability whereas/3 ＞0 is assumed only for simplicity 

as the conjugate root generates exactly the same result. 
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that is separated into the real and imaginary parts, 

cos(30 =(a+ 8)kb叩°,

sin(30 = -kb1(3e呵

Adding the squares of two equations and solving for所present

(32 
[e―ae -(a+ 8)kb1] [e―ae +(a+ 8)k叫

= (kb1)2 

(22) 

(23) 

where (k研＞ 0and e-ae -(a+ 8)kb1 > 0 since k < 0. The sign of e―a0 + 

(a+ 8)kbi is ambiguous in general as the first term is positive and the second 
2 is negative. If c"'0 +(a+ 8)kb1さ0,then(3:S O and thus there is no(3 ＞0, 

implying no stability switch occurs. It is already shown that the dynamic system 
with no delays is stable if k < 0 (i.e., see the first half of Theorem 1). Therefore 
no occurrence of the stability switch means that stability is preserved under the 
positive delay. 

We reveal the parametric condition of k and 0 for which the stability switch 

occurs. If k1 2". -k (= -(k1 -k叫） ork1 2". k2/2, then 

(a+ 8)k1bi 2". (a+ 8) (-k) b1 

leading to 
e-aO -(a+ 8)k1b1：：：：： e噴 0-(a十 6)←k)bじ (24) 

The sign of e―ae -(a+ 8)k1b1 is ambiguous in general as the first term is 
decreasing in a and the second term is increasing. Assumption 4 implies the 

existence of a unique and positive a > 0 such as 

e―ao = （a + 6)K山 anda> n 

implying 

e―ae -(a+ 8)k1b1 2: 0 for aさa (25) 

where the equality holds for a = a. Hence k1 2: -k, (24) and (25) result in 

e-ae -(a+ 8) (-k) b1 > 0 for O <a< a. (26) 

Therefore 
2 (3 ＞0 for O < a < a. (27) 

On the other hand, if k1 < -k or 2柘 <k2,then (a+ 8)(-k)b1 > (a+ 8)k1b1・

Ife―ne +(a+ 8)kb1 > 0, then there exists a such as 

e―&0 = (a+8)(-k)b1 and n <a< a, 

otherwise take a= n. Then the following relation holds for a E (a, a), 

(a+8)(-k)bi>e―a0 

which leads to炉<0.For analytical simplicity, we confine our analysis to the 
case in which the pair of (k1, k2) satisfies the following inequality: 
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Assumption 5. k2さ2k1・

(22) implies that cos(30 < 0 and sin(30 > 0 for (1/2+2m)nく (30< (1+2m)n, 
form= 0, 1, 2,…Then solving the first equation of (22) for 0 gives8 

1 
0a(k, m) = i--{ cos―1 [(a+ 8)kb1e叫＋2叩｝ form=0, 1, 2,…（28) 

(3a 

where 

丸＝
[e-<>0 -(a+ 8)kb叶[e-<>0+(a+ 8)kb叶

(kb1)2 

Notice that equation (28) is an alternative expression of F(a + i/3) = 0. We 

have already seen from (26) that, for O ~ a < o:, 

0 > (a+ 8)kb1砂° > -1 

under which 0a(k, m) is definitely determined. Equation (28) describes the locus 
of (k, 0) on which Re（入） ＝a and Im（入） ＝丸． Thelocation of the locus depends 
on the value of m, the shift parameter. Increasing the value of m shifts the locus 
upward in the (k, 0) plane. We focus on the locus located in the lowest position, 
that is, we confine attention to the case of m = 0 henceforth. Among others, 
we consider two special cases, a = 0 and a = n. 

When the characteristic root is pure imaginary (i.e., a = 0), equation (28) 
can be written in an implicit form as 

with 

1 
¢0(k, 0) = 0 --i-cos―1 (8kb1) = 0 

g。

(3。＝

(29) 

that can be written as F（磁0)= 0. When the real part of the characteristic root 
is equal to the growth rate of labor (i.e., a=  n), equation (28) is also written 
in an implicit form as 

with 

1 
叫 k,0) = 0 --;i-{ cos―1 [(n + 8)kb1en8]} = 0 (30) 

丸

ぬ＝
[e-n° -(n + 8)kb1] [e-n° + (n + 8)kb1] 

(kb1)2 

that is equivalent to F(n + i/3n) = 0. 
Under Assumption 5 and k < 0, the domain of k1 for which Assumption 4 

holds is given by 
1 
-K2さk1く k2.
2 

8Solving the second equation yields the same value of 0 in the different form. 
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Returning to (19), the domain of k for cp(k, 0) is changed to 

1 
-~k2::; k < 0. 
2 

We then summarize the results obtained. 

(31) 

Lemma 3 Given Assumption 4 (i.e., rp(k, 0) > 0), the characteristic equation 
{16) in case of k < 0 has various roots, depending on combinations of k and 0, 

(1) complex roots with Re（入）く 0for (k, 0) such asゆ(k,0)＜の。(k,0)< 0, 

(2) complex roots with O < Re（入） ＜n for (k, 0) such as c/>n(k, 0) < 0 < c/>。(k,0), 
(3) complex roots with Re（入） ＞n for (k,0) such as c/>n(k,0) > 0. 

Notice the shaded region is the instability region defined by 

U = {(k,0) I k < 0, c/Jn(k,0) > 0 and rp(k,0) > O}. 

From Lemmas 2 and 3, we have the stability result in Case II: 

Theorem 2 Given Assumptions 4 and 5, if there is a delay in production 
process, the equilibrium path is unstable in case of k > 0 whereas the equilibrium 
path could be destabilized for (k, 0) E U even in case of k < 0. 

Lemmas 2, 3 and Theorem 2 are graphically confirmed in Figure 4 in which 
k2 = 2 and the following parameter specification is taken, 

(S) : n = 0.1, 8 = 0.05 and b1 = 2. 

The red and blue curves describes ¢0(k, 0) = 0 andゆ(k,0) = 0 and cross the 
left-side vertical axis at 

0a -:::: 0. 710 and 0b -:::: 3.359. 

如(k,0) < 0 below the red curve and如(k,0) > 0 above.心（k,0) < 0 below 
the blue curve andゆ(k,0) > 0 above. The locus of r.p(k, 0) = 0 corresponds to 
the boundary of Assumption 4 and is plotted as the downward-sloping green 
curve that crosses the left-hand vertical axis at 0c仝 12.04and the right-side 
vertical axis at 0m -:::: 5.11. The domain of k is [-1, 0) where -1 = -k2/2. 
Given Assumption 4, we confine to the region under the green curve in which 
r.p(k, 0) > 0. The characteristic equation (16) has two distinct negative roots for 
(k, 0) below the blue curve (i.e., Lemma 2) and complex roots with a < 0 in 
the region between the blue and the red curves (i.e., Lemma 3(1)). The region 
above the red curve and below the green curve is divided into two subregions by 

the black locus of ¢n(k, 0) = 0. The real part of the complex root is less than n 
in the subregion left to the black curve (i.e., Lemma 3(2)) and greater than n in 
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the shaded subregion to the right (i.e., Lemma 3(3)). Thus the dynamic system 
is unstable in the region shaded with diagonal lines (i.e., Theorem 2). The time 
trajectories starting in the white subregion below the green curve asymptotically 
approach the balanced growth. 9 

When the value of k is specified, we can obtain the specific values of 0. The 
vertical dotted line at k = -1/2 crosses the red, black and green curve at 
00 c::::-. 1.61, 013 c::::-. 2.24 and 0, c::::-. 7.99. Hence the characteristic equation (16) has 

Re（入） ＝0 for 00, Re（入） ＝n for仇 andAssumption 4 holds for 0 < 0,. Thus 
the one-delay dynamic system is unstable for 0 E (013,0,) and stable for 0 < 013. 
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Figure 2. Stability and instability regions ゚

4 Two Delay Models 

In Case III of 01 = 02 = 0 > 0, equation (11) divided by 1 -8kb1 is written as 

kb1 

1 -8kb1 
入— e―入0 = 0 (32) 

This is very similar to equation (16) and thus analytical considerations in Case 
III might be similar to those done in the previous section. To avoid repetition, 
we skip this case and jump to Case IV in which 01 > 0, 02 > 0 and 01 -/c 02. 
Since Case III is also a special case of Case IV, we will numerically confirm some 
results that could be obtained in Case III. 

9It might be possible that initial disturbances make some trajectories to take nagtive values 
although they are assymptotically stable. 
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4.1 Analytical Consideration 

The characteristic equation (11) with two distinct delays is written as 

G（入） ＝ kb1入— e―入81 + 8kb1e―入02= 0. 

Since the following inequality holds for k > 0 and 02 > 0, 

(n + 8)k1b1 > (n + 8e―ne2)k1 b1, 

Assumption 4 implies 

e―n01 -(n + 8e―n°2)k1b1 > 0. 

As before, we solve equation (33) in two cases, k > 0 and k < 0. 

(I) k > 0 

Given 01 > 0 and恥＞ 0,we have the followings, 

and 

G(O) = 8kb1 -l < 0 and _lim G（入） ＞〇
入→(X)

dG（入）
d入

= (1 -80四―入02)kb1 + 01e―入01> 0 

(33) 

(34) 

where we impose 802く 1as 8 could be very small and 02 is thought to be not 
so large. Hence there is a unique and positive入2solving equation (33), 

G（ふ）＝ kb心ー e―閲1+ 8kb1e―入02= 0. 

Due to (34), G(n) < 0 implying 

入2> n. 

From (34) with given厖 wecan find a pair of k and 01 such as 

ep(k, 01, 0砂＝ e―n01 -(n+8e―n02)(k +朽）b1= 0 (35) 

with 
的 (k,01，恥）

802 
= (k十朽）b直 e―n02> 0. 

The results, which is similar to Lemma 1, are summarized: 

(36) 

Lemma 4 Given Assumption 4 and k > 0, the characteristic equation {33) has 
a positive characteristic root入2> n fork, 01 and 02 such as ep(k, 01, 0分＞ 0.

Graphical representation of Lemma 4 is given in Figure 3 in which three 
loci of {p（入，01,0叫＝ 0with three different values of 02, 02 = 0, 02 = 5 and 
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02 = 10, are illustrated as downward-sloping curves where the intercepts with 
the horizontal axis are 

K以'.:::c1.33, k~'.:::c 1.84 and k認'.:::c2.22 

and the intercepts with the vertical axis are 

0瓜'.:::c5.11, 0孟'.:::c6.51 and 0認'.:::c7.47. 

Notice that the locus of {p（入，01,0) = 0 is the boundary of the green region in 
Figure 3 and identical with the downward sloping curve in Figure 1. Due to 
(36), the curve shifts upward as the value of 02 increases. This means that 02 
is a destabilizing factor as increasing 02 enlarges the instability region. 
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Figure 3. Instability regions with 

different values of 0 
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(II) k < 0 
To determine the type of the movement controlled by the characteristic equa-

tion (33), the non-negative region of the (0ぃ恥） planeis divided as seen in Fig-
ure 4 in which the parameter specification (S) and k = -1/2 are adopted. The 
dotted three points, the horizontal dotted three lines and the dotted diagonal 
are ignored for the time being. There the upward-sloping black curve is the 
boundary of (34). The inequality of (34) holds in the region left to this curve. 
The real parts of the characteristic roots of (33) are zero on the red-blue curve, 
negative in region to its left and positive to its right.10 The stability of the time 
trajectories is preserved in the region left to the red-blue curve as the real parts 
of the characteristic equation is negative. We numerically determine pairs of 01 

10The analytical derivation of this red-blue curve is given in the Appendix. 
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and 02 for which the stability is lost and connect these pairs to construct the 
vertical-like dotted curve. Since one characteristic root is equal to the growth 
rate of labor, n, the real parts of the other characteristic roots are less than n in 
the region to its left and greater than n to its right. For 01 and 02 belonging to 
the region between the red-blue curve and the dotted curve, the growth rate of 
any trajectory oscillates and converges to n as O < Re（入） ＜n. Lastly for 01 and 
02 in the region between the dotted curve and the black curve, the trajectories 
oscillate, diverge and take negative values sooner or later, stopping production 
of output when L1 becomes zero. Summarizing the result, the constraint (34) 
holds in the region left to the black curve, the trajectories are stable in the 
region left to the dashed curve and unstable in the region right. 
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4.2 N umerical Simulations 

To confirm the analytical results, we simulate the dynamic system (12). The 
initial values of labor and capital are taken to be Lo = 20 and K。=（K叶朽）Lo/2
and the initial functions are assumed to be constant for t :::; 0, 

叫 t)= 
K。-k2L。 k1L。- K。

and r.p2(t) = k1 -k2 ---r "''1 k1 -k2 

where k1 = 3/2 and k2 = 2, leading to k = -1/2. To see what dynamics is 
generated before convergence, we first pick up three points denoted as A, B 
and C in the upper-left area of Figure 4. Their ordinates are the same, 02 = 9 
but their abscissas are different, 

叶＝ 1,0f = 2 and 0『=3.
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Notice that point A is located in the left side of the red-blue curve, implying 
that the real parts of the complex roots or the real roots are negative. Accord-
ingly, the time trajectories of the employment approach the balanced growth 
path and their growth rates exhibit damping oscillations moving around the bal-

anced growth rate, n. This indicates that equation (33) generates complex roots 
having negative real parts at point A. The numerical simulations are visualized 
in Figure 5 in which the variables in the investment sector are illustrated with 
the blue curve and those of the consumption sector with the red curve. The 
dotted curves describe the corresponding trajectories generated by the Shinkai 
model where there are no delays. It is seen in Figures 5(A) and 5(B), the delay 
trajectories do not converge to the dotted trajectories, however their growth 
rate quickly converges to n (= 0.1). In Figure 5(B), there are kinks of the 
trajectories at t = 0↑due to the assumption of the constant initial functions. 
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Figure 5. Simulations at point A with 01 = 1 and的＝ 9 

Point B is located in the region left to the red-blue curve and right to the 
dashed curve.11 This selection of the point implies two issues; one is that the 
characteristic equation (33) gives rise to complex roots and the other is that 
their real parts are positive but less than n. Accordingly, the time trajectories 
exhibit damping oscillations around the no-delay trajectories as seen in Figure 
6(A). It is seen in Figure 6(B) that the growth rates oscillate and approach to 
n、.

11The critical value of 01 with 02 = 9 is 01 ~ 2.06. At point B, Bf = 2, which is strictly 
less than the critical value and thus point B is located in the left from the dotted curve. 
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Figure 6. Simulations at point B with with 01 = 2 and恥＝ 9 

Point C is in the right side of the dotted curve. The characteristic root is 
complex and its real part is larger than n. Thus the trajectories exhibit explosive 
oscillations. As seen in Figure 7(A), the red trajectory takes negative value for 
t = t0(~ 24.45) and implies that the trajectories alternately take positive and 
negative values as time goes on. When the red trajectory (i.e., L2(t)) is zero at 
t = t0, the output of consumption goods ceases and the capital will be over-
accumulated, losing economic meaning of the two sector model. In Figure 7(B), 
the growth rate ofら(t)(that is, the red curve) goes to negative infinity as time 

comes closer to t。•

7A 
0

0

0

 

0

0

0
 

3

2

1
 

(-)C
7

-（
-)
-
7
 

゜゚
10 20 k

"―
 

g.pdf t 

(A) Time trajectories 

5

5

 

0

0

 

」

o
q
e
7
J

。ClJ-e
エ
q
u
A
0ぷ〇

10 

t 

(B) Growth rates 

20 L
 

Figure 7. Simulations point C with with仇＝ 3and恥＝ 9 

This two delay model includes the previous models as its special cases. The 
Shinkai model corresponds to the origin in which the two delay model is stable 
in its small neighborhood. Along the horizontal axis, 01 > 0 and 02 = 0 for 
which the premise of Furuno model is satisfied. The red-blue, the dotted and 
black curves cross the horizontal axes, respectively, at 

0f c:::-1.62, 0『c:::-2.24 and 0] c:::-7.99 
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/3 where 0'{ is not labelled in Figure 4 in order to avoid notational congestion. 
Returning to Figure 2, it can be seen that the vertical dotted line standing 
at k = -1/2 crosses the red curve at似 atwhich Furuno model generates 
Re（入） ＝0, the black curve at 0 /3 where Re（入） ＝n and the green curve at似
where 

0『=0a, 0『=0g and oi = 0T' 

As is clear from Figure 2, stable region between the red and black curves becomes 
larger as the absolute value of k gets larger. In the same way, it can be mentioned 
that the vertically long stable region between the red-blue and the dotted curves 
in Figure 4 could become larger if the absolute value of k becomes larger. Along 
the dashed diagonal, 01 =恥 holdsthat are the premise of Case III. In Figure 
4, the diagonal crosses the red-blue, dotted and black curves at points a, band 
c where 

Ba'::::'1.500b仝 1.97and Be'::::'10.41. 

/3 Referring to Figure 2, 0 a < 0f,仇＜化 andBe > BJ lead us to conclude that 
the Re（入） ＝0 curve shifts downward and the Re（入） ＝n curve shifts outward, 
implying extension of the unstable region in Case 111.12 

5 Concluding Remarks 

This paper examined a two-sector growth model with an investment sector pro-
ducing capital goods and a consumption sector producing consumption goods. 
Two types of agents, workers and capitalists were assumed in each sector. It 

was also assumed that a special Leontief production function had two inputs, 
capital goods and labor, which were used in technologically pre-determined pro-
portions. First the equilibrium was characterized and the two-delay dynamic 
system of labor was derived. The asymptotical behavior of the delay system 
was characterized by analyzing the locations of the eigenvalues. Because of the 
presence of a positive eigenvalue, the classical definition of stability had to be 
modified accordingly. The study was conducted in three cases. Systems with no 
delay, one delay and two delays were examined in different subsections in which 
some results with equal delays are numerically examined. The main result of 
this paper was to derive conditions under which the growth rate of labor as time 
variable converges to the exogenously given constant growth rate. This study 
can be extended in several ways. More general production functions can be 
introduced. It can be also assumed that the exogenously given growth rate of 
labor is time dependent. Experimental studies could illustrate further details of 
the long-term behavior of the time trajectories especially in the unstable cases. 

12 Applying the same precedure used in Case II to Case III reveals that this conclusion is 
true. 
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Appendix 

In this Appendix, we analytically derive the red-blue curve in Figure 4, 
applying the method developed by Matsumoto and Szidarovszky (2019) that is 

based on Gu et al. (2008). 
Given two distinct positive delays, the characteristic equation (33) is written 

as 
Po（入） ＋ Pい）e―入01+ P2（入）e―入02= 0 

where 

Po（入） ＝kb1入， pl（入） ＝ー1and P2（入） ＝8kb1・

It can be checked that the following conditions hold: 

(i) deg[Po（入）]= 1 > max{deg［代（入）],deg[A（入）］｝ ＝O; 

(ii) Po (0)＋Pi(O) +凡(0)= -1 + 8kb1 cf O if 8kb1 cf 1 that holds under 
Assumption 3; 

(iii) polynomials P0（入），P心） and P心） haveno common root; 

(iv) li 
P心）凡（入）

iv) lim {凡（入） ＋凡（入） ｝ ＝0 < 1. 

The condition (ii) eliminates that入＝ 0is a root of (33) and if it is violated, 
then the characteristic function is always unstable. The condition (iii) is to 
ensure equation (33) has the lowest degree. The condition (iv) is to exclude 
large oscillations. Dividing equation (33) by Po（入） toobtain 

1 + a1（入）e―入01十四（入）e―入02= 0 

where 
1 6 

叫入） ＝ー and a2（入） ＝ー．
kb1入入

Now suppose that入＝ iwwith w > 0 for the time being. Substituting this 

solution into aい） anda心） presents

and 

i 6 
釘 (iw)=,i---and a2(iw) = -i.:_. 

kb四 W

la1(iw)I 
l .  6 

a 1 (iw) I = ~ and I a2 (iw) I = -
lkl b四

and la2(iw)I 
w 

The conditions that 1, a1(iw) and a2(iw) can form a triangle are 

la1(iw)I + la2(iw)I 2: 1 

and 

-1 ~ la1(iw)I -la正）1 さ1.
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Substituting la1(iw)I and la2(iw)I render these inequalities to 

1+6|K|bl 
w'.S 

and 

In summary, 

lkl b1' 

6 |K| bl -1 1 -6 |K| b1 
w> 
― |kl b1 

and w > 
― |kl b1. 

1 -8 lkl b1 I ~. ~ 1 + 8 lkl b1 

lkl b 
::; w ::; 

lkl b1 

that is clearly nonempty. The angles of the triangle can be obtained by law of 
cosme ， 

a1 = cos—1[~] 

and 
-1 I -1 + (8kb1)2 + (kb四）2叩＝cos-1[~]-

Notice that 

and 

arg [a, (iw)] -{  ¥ 

if k > 0, 

if k < 0. 

冗―

arg [a2(iw)] = --i--
2 

So the angles are 

and 

1 
o門(w)=-=-{arg (a1(iw)) + (2n -l)n士a1}

w 

1 
0T干(w)= ~ {arg(a2(iw)) + (2m -l)1r干 a叶．

w 

The red-blue curves on which入＝ iwholds are union n of the segments, 

where 

{ ef+(w), er―(w)} U { 0f―(w), er+(w)} for n, m = 0, l, 2,… 

W E [ 1-6|K| b1 1 +6|K| bl 
|K| b1'|K| b1 ]． 
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