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1. Introduction

This study aims at confirming the presence of the 
recently reported array of normal modes (Sakazaki 
and Hamilton 2020; hereinafter SH20) through a 
simple analysis of raw barometric observations taken 
at many individual stations over the globe. 

In common with other natural systems, the global 
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Abstract

The earliest attempts to study the global normal mode oscillations of the atmosphere used time series of 
barometric in situ observations, but such approach is limited by the spatial and temporal inhomogeneity of  
meteorological station data. A major advance on the subject was recently made by applying a zonal-time spectral 
analysis to the surface pressure field in hourly gridded ERA5 reanalysis data, which disclosed an array of spectral 
peaks at theoretically predicted zonal wavenumber-frequency pairs, including many peaks with periods between 
2 hours and 12 hours. However, this result relies on adequate representation of the modes in ERA5, which (i) 
ingests data sources that cannot explicitly resolve high frequency modes (e.g., radiosondes and polar satellite ob-
servations), and (ii) employs a numerical forward model that potentially introduces spurious effects. The present 
study provides “ground truth” for the reanalysis by a simple analysis of hourly barometric observations taken at 
~ 3800 stations over the globe. For each putative global mode, a time series of its index is computed by filtering 
the hourly ERA5 pressure fields. The station data is then regressed onto this index, revealing, for each mode, a 
characteristic, globally coherent spatial pattern of regression coefficients. The meridional structures of the regres-
sion patterns agree fairly well with the corresponding Hough functions, not only for low-frequency Rossby and 
Rossby-gravity modes, but also for high-frequency modes such as Kelvin and inertia-gravity modes. Even the 
Pekeris resonance is identified for a couple of Kelvin modes. These findings both solidify the evidence for a rich 
spectrum of global normal modes in the real atmosphere and also lend credence to their representation in ERA5. 
It is impressive that ERA5, by combining a numerical model with scattered meteorological observations, even 
reproduces the tiny (~ 0.1 – 1 Pa amplitude) pressure signals of the high-frequency global normal modes.
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atmosphere displays normal mode (also called res-
onant or free) oscillations, occurring at discrete fre-
quencies and each associated with its own horizontal 
and vertical structure. Resonant mode solutions are 
predicted by classical tidal theory that considers the 
inviscid primitive equations for an atmosphere above a 
rotating, smooth, spherical Earth. These equations are 
linearized about a motionless mean state with tempera-
ture assumed to be a function only of the vertical coor-
dinate (e.g., Chapman and Lindzen 1970). Within the 
approximations of classical tidal theory, the governing 
equations can be combined into a single second- 
order partial differential equation for, e.g., the geopo-
tential perturbation. That equation is separable into 
ordinary differential equations for the time, zonal, 
meridional, and vertical domains. The solutions in time  
and the zonal direction are simple Fourier harmonics, 
while the meridional equation is the Laplace tidal 
equation (LTE) with known Hough function solutions 
(Longuet-Higgins 1968; Kasahara 1976). The vertical 
structure equation (VSE) is a second-order equation 
that requires boundary conditions at the Earth’s 
surface and a specified “top of the atmosphere.” The 
normal mode oscillations correspond to the homoge-
neous solutions in this system (i.e., the eigen solutions 
in case of no external forcing) and the geopotential 
perturbation for each mode is expressed as
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where z is altitude, θ  is latitude, k is zonal wavenum-
ber, λ  is longitude and t is time. Here, each vertical 
mode (m: vertical mode index) is characterized by 
the equivalent depth (hm ) and the vertical structure 
function [Z m ( z)] that are obtained as the eigenvalue 
and eigenfunction of the VSE, respectively. For each 
vertical solution [hm , Z m ( z)], there is an associated 
complete set of horizontal modes (i.e., LTE solutions), 
describing linear shallow-water waves with a specific 
zonal wavenumber (k) component in a fluid with 
depth hm on a rotating sphere. The LTE solutions are 
associated with infinite sets of eigen-frequencies (ωm

k, n) 
and meridional structure functions [Hough function 
Θm

k, n (θ )].
Because the atmosphere is unbounded at its upper 

limits, only one or two eigen solutions(s) are theoret-
ically predicted for the VSE (i.e., m = 1, 2), at least 
for a realistic vertical mean temperature profile (Salby 
1979; Ishioka 2023; Ishizaki et al. 2023). The more 
robust solution is the so-called “Lamb resonance” (m 
= 1, h1 ~ 10 km), characterized by a Lamb wave struc-
ture in Z and energy trapped near the surface (Lamb 
1911). The other solution is “Pekeris resonance” (m = 

2, h2 ~ 6.5 km) with its energy trapped both around the 
stratopause and the surface (Pekeris 1937). The Lamb 
resonance solution satisfies the physically reasonable 
“top of the atmosphere” boundary condition and is 
robust to changes in the assumed mean temperature 
profile. By contrast, the existence of Pekeris resonance 
depends on the detailed mean temperature profile as-
sumed. Ishioka (2023; see his Fig. 2) showed that the 
Pekeris solution does not exactly satisfy the upper and 
lower boundary conditions and so may correspond to 
a mode that would actually leak some energy rather 
than act as a perfect resonance. The relevance of the 
Pekeris mode in real atmospheric flow has been doubt-
ed (e.g., Salby 1980) and clear observational evidence 
for the presence of this mode has only recently been 
obtained (see below). 

Figure 1 shows the theoretical dispersion curves for 
Lamb (h = 10 km; closed circles) and Pekeris (h = 6.5 
km; open circles) resonance. The modes are further 
classified into Rossby (blue), Rossby-gravity (orange), 
Kelvin (red), and inertia-gravity (magenta) modes 
(Matsuno 1966). Note that eastward components in 
Rossby-gravity modes are sometimes classified into 
inertia-gravity modes (“n = 0 eastward inertia-gravity 
modes,” e.g., Kiladis et al. 2009), but this study refers 
to both westward and eastward components as Rossby- 
gravity modes.

Most previous attempts to find observational evi-
dence for various modes in the real atmosphere consid-
ered low-frequency modes, mostly Rossby or Rossby- 
gravity modes (see SH20 and references therein). 
Because of the “red” nature of the power spectrum, 
these modes have relatively large amplitudes and 
thus are easier to detect. In their pioneering work on 
the westward propagating 5-day wave, Madden and 
Julian (1972, 1973) found a westward propagating 
signal with a period of ~ 5 days by performing a 
cross-spectral analysis of surface pressure data from 
world-wide stations. Along with the composite anal-
ysis, they showed that its meridional structure agreed 
closely with the Hough function of the corresponding 
normal mode. Later studies often used geopotential 
height data from global data assimilation products (i.e., 
analyses or reanalyses) and satellite measurement data 
to identify several Rossby and Rossby-gravity modes, 
such as those referred to as the 4-day wave, 10-day 
wave, and 16-day wave (e.g., Ahlquist 1982; Hirota 
and Hirooka 1984; Madden 2007; Sassi et al. 2012; 
Madden 2019; Sekido et al. 2024). 

For high-frequency modes, Matsuno (1980) found 
a signal of k = 1 Kelvin mode using a cross-spectral 
analysis of barometric observations at a few tropical 
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stations. This was later confirmed by extended anal-
ysis of surface pressure data by Hamilton (1984) and 
Matthews and Madden (2000), and it is now known as 
the “33-hr Kelvin wave.” Hamilton and Garcia (1986) 
applied spectrum analysis to an exceptionally long 
record of raw barometric data taken at Batavia (6°S). 
Several peaks were found in the high-frequency band 
( 1 day), which the authors tentatively identified as 
theoretically predicted high-frequency modes, includ-
ing Kelvin and inertia-gravity modes. A few inertia- 
gravity modes have been also tentatively identified 
more recently by Shved et al. (2015) and Ermolenko 

et al. (2018). 
A much ampler array of free modes was discovered 

by SH20 based on zonal wavenumber-frequency spec-
tral analysis of near equatorial surface pressure data 
from ERA5 at hourly temporal resolution. The SH20 
result for the ratio of spectral power to the background 
noise for equatorially symmetric and anti-symmetric 
components is revisited in Fig. 1 (color shading), using  
gridded surface pressure data between 20°S and 20°N 
during 1980 to 2021 (See SH20 for the definition of 
background noise and other details). It is apparent 
that there are numerous isolated spectral peaks whose 

Fig. 1. Zonal wavenumber-frequency spectrum for equatorially (a, b) symmetric and (c, d) anti-symmetric com-
ponents calculated with ERA5 pressure data for 20°S – 20°N during 1980 – 2021. The ratio of spectra to the back-
ground spectra are presented, with the color bar shown on the right. Panels (a) and (c) span the frequency range up 
to 12 cycles day−1 (cpd), while panels (b) and (d) do so up to 2.5 cpd. Solid circles and open circles [only for panels  
(b) and (d)] are the theoretical dispersion curves for h1 = 10 km and h2 = 6.5 km, respectively, with their colors 
representing the wave type: Blue, red, orange, and magenta are for Rossby, Kelvin, Rossby-gravity and inertia- 
gravity modes, respectively (note that eastward components in Rossby-gravity modes are sometimes classified into 
inertia-gravity modes (“n = 0 eastward inertia-gravity modes”). For Rossby and inertia-gravity modes, the first 
three gravest modes are shown.
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frequencies match the expected (slightly Doppler- 
shifted) normal mode frequencies of Lamb resonance 
(h1 = 10 km; Fig. 1). SH20 found that the meridional 
and vertical structures also matched well those expect-
ed from classical theory (i.e., Hough function, Θ (θ), 
and vertical structure function, Z ( z ), respectively). 

All noted modes were identified as Lamb resonanc-
es (h1 = 10 km; closed circles in Fig. 1). Recently, by 
analyzing the pressure pulse forced by the volcano 
eruption at Tonga Hap’pai in 2022 and by reexamin-
ing the SH20 spectral results, Watanabe et al. (2022) 
discovered the other type of normal mode resonance, 
namely, Pekeris resonance (h2 = 6.5 km). Indeed, one 
can see small spectral peaks of k = 1 and k = 2 Kelvin 
modes for the Pekeris resonance in Fig. 1 (red open 
circles; see also Fig. 3).

The results by SH20 and Watanabe et al. (2022) 
appear to have provided solid evidence of the atmo-
sphere “ringing” regularly at many resonant zonal 
wavenumber-frequency pairs. One might wonder, 
however, how accurately ERA5 (or, more generally, 
any atmospheric reanalysis) can represent such free 
oscillations, given potential structural errors in the 
numerical forecast model or a shortage of pertinent 
high-frequency observations in the data assimilation. 
One aspect of interest in this regard is the treatment 
of the upper boundary in the dynamical model, which 
has to be somewhat arbitrary. Any model boundary 
condition that acts to reflect energy back downward 
from the top model level could potentially introduce 
spurious free oscillations (Lindzen et al. 1968; Kasa-
hara and Shigehisa 1983). This concern might be most 
relevant for the large-scale, high-frequency Kelvin, 
Rossby-gravity, and inertia-gravity modes identified 
by SH20, as these should be least affected by various 
sources of mechanical damping in the model. More-
over, in regard to assimilation, two key data sources, 
namely twice-daily balloon-borne radiosondes and 
polar orbiting satellites, cannot by themselves ade-
quately resolve waves with periods less than 12 hours, 
potentially leading to distortions of the high-frequency 
modes identified by SH20. Since free oscillations 
could be excited by various internal processes of the 
atmosphere such as cumulus convection and baroclinic 
activity (e.g., Miyoshi and Hirooka 1999; Zurita-Gotor  
and Held 2021), some of the normal mode signals in 
the ERA5 might be self-generated in the model, inde-
pendent of the signals in the real atmosphere.

Whereas the accuracy of reanalyses is relatively 
clear in the case of low-frequency modes (e.g., Rossby 
and westward Rossby-gravity modes; see Sakazaki 
2021), SH20 also made an argument for ERA5 to 

accurately depict high-frequency, global-scale atmo-
spheric variability. In particular, SH20 noted that the 
principal lunar semidiurnal (L2) oscillation, as seen in 
sub-daily barometric observations at many individual 
stations throughout the world (e.g., Haurwitz and 
Cowley 1969), has been previously shown to be well 
captured in the predecessor of ERA5 (Kohyama and 
Wallace 2014; Schindelegger and Dobslaw 2016, 
hereafter referred to SD16). Since the gravitational 
forcing is not included in the underlying dynamical 
model, any analyzed L2 signal must be introduced 
through the assimilation of real data. This inference in 
turn implies that at least some portion of high-frequen-
cy normal modes (those with amplitudes of > 0.1 hPa 
and periods of < 12 hours) would be also realistically 
represented and constrained by observations.

Although encouraging, the SD16 “ground truth” 
study applies directly only to L2 . In the present paper 
we report on a somewhat similar effort to obtain direct 
evidence of normal modes in raw measurements, spe-
cifically globally-distributed, hourly pressure observa-
tions. However, there are difficulties in extracting the 
normal mode signal exclusively from raw barometric 
data at individual stations, even when decades-long 
records are available (Hamilton and Garcia 1986). 
One problem is that the mode amplitudes are generally  
small compared to the background noise, while also 
the frequencies of some modes are too close together to 
be separated well enough (cf. Fig. 3 of Hamilton and 
Garcia 1986). In this regard, cross-spectral analysis or 
zonal wavenumber-frequency spectrum, as was done 
by SH20, would be desirable; however, such a proce-
dure is challenging due to the inhomogeneity of raw 
barometric data, both in time and space (see Fig. 2). 

Here, we pursue a different approach to obtain 
ground-based evidence for the wide variety of global 
normal modes. Specifically, we create a “pacemaker 
index” of normal mode signals from ERA5 surface 
pressures. By regressing raw barometric data onto 
this putative mode index time series, we can condense 
these data to any fluctuations synchronized with the 
normal modes in ERA5. A key advantage of our 
method is that, at individual stations, we can calculate 
the regression coefficient even for irregularly sampled 
observations. By examining the horizontal distribution 
of the regression coefficients, it is also possible to 
delineate the mode structure. Of course, this approach 
would work only if the normal mode variations in 
ERA5 are realistic, but it will be demonstrated that the 
extracted signals have a clear global wave structure 
that closely matches theoretical predictions.

The remainder of the manuscript is organized as fol-
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lows. Section 2 describes the datasets, while Section 3 
explains the analysis procedure, underpinned by step-
by-step examples. Section 4 presents the meridional 
structure for various normal modes. Finally, Section 5  
summarizes the main findings and discusses some 
implications.

2. Data

2.1 Barometric observations
Following SD16, we mainly analyze data from the 

International Surface Database (ISD, Smith 2011). 
This dataset contains surface meteorological observa-
tions taken at nearly 20,000 stations over more than 
100 years (1900 to present). For the work at hand, 
we consider sea level pressure data over 42 years, 
between 1980 and 2021 (i.e., restricted to the period 
in which satellite data are routinely assimilated into 
atmospheric reanalyses). Sampling times and intervals 
vary by station, and sometimes even change at a given 
station over the observation period. As an approach to 
quality control, we focus on the lunar semidiurnal tide 
(L2). Compared to synoptic observations, L2 signals 
are quite small, about 5 Pa in amplitude, and hence 
their representation serves as an indication for the data 
quality at a given station. We therefore subset the ISD 
to ~ 4,100 stations that were considered to feature 
realistic L2 signals in the analysis of SD16. 

Since the equatorial region is rather sparsely covered  
by the ISD stations, meteorological buoy data with 
a sampling of 10 minutes from the Global Tropical 
Moored Buoy Array (GTMBA) Program at 43 stations 
are also analyzed. The GTMBA program consists of 
three subsets: (i) the Tropical Atmosphere Ocean/ 
Triangle Trans-Ocean Buoy Network (TAO/TRITON) 
over the Pacific (McPhaden et al. 1998), (ii) the Pre-

diction and Research Moore Array (PIRATA) over the 
Atlantic (Bourles et al. 2008), and (iii) the Research 
Moored Array for African–Asian–Australian Monsoon 
Analysis and Prediction (RAMA) over the Indian 
(McPhaden et al. 2009). Note that portions of these 
datasets were previously used to detect small L2 signals  
over the ocean (SD16; Sakazaki and Hamilton 2018). 

We additionally consider data at 43 stations during 
1980 – 2015 from the International Surface Pressure 
Data bank (ISPD v4) (Compo et al. 2019) that were 
again found to have a good representation of L2 signals  
by SD16.

For further quality control, we only analyze data 
from stations at altitudes < 1,000 m and with records 
including at least 10,000 individual observations (we 
confirmed that eliminating the criterion for the altitude  
does not significantly change the results). In total, 
3,734 stations from ISD, 42 buoys and 21 ISPD sta-
tions are used; see Fig. 2 for their location across the 
globe. As mentioned above, the data distribution is far 
from uniform in either latitude or longitude: ISD/ISPD  
stations are densely concentrated in Europe, Eastern 
Asia, North America, and Australia, while there are 
few over the tropical regions of the African and South 
American continents or over the ocean. Tropical buoys  
are distributed somewhat uniformly in the zonal direc-
tion, filling gaps in the ISD/ISPD spatial coverage over 
the tropical ocean. In any case, the inhomogeneity  
in distribution should be borne in mind as a possible 
limitation of our analysis, especially for the Southern 
Hemisphere and for high-order normal modes charac-
terized by shorter length scales. Hereafter, we refer to 
our final compilation as “ISD/Buoy” data. Note that 
most of these data are assimilated in ERA5 (Hersbach 
et al. 2020).

Fig. 2. Distribution of (blue circles) ISD, (magenta triangles) buoy and (light blue circles) ISPD stations used for 
normal mode analysis.
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2.2 ERA5
ERA5 (Hersbach et al. 2020), the latest atmospheric 

reanalysis by the European Centre for Medium-Range 
Weather Forecasts (ECMWF), is used for creating 
the normal mode index, as well as for examining the 
horizontal mode structure that will be compared to 
that deduced from ISD/Buoy data. Similar to other 
atmospheric reanalysis, ERA5 was constructed by 
adjusting the forward-integrated state of a numerical 
weather model to agree, within specified uncertainties, 
with available in situ and remote-sensing observations. 
We analyze hourly ERA5 diagnostics for surface pres-
sure and mean sea-level pressure at a grid spacing of 
1° over the period 1980 – 2021 (Hersbach et al. 2023).

3. Analysis methods

The working hypothesis of our analysis is that 
ERA5 represents normal mode oscillations in a real-
istic manner. Using the ERA5 surface pressure data, 
we create single time series that depict the magnitude 
and phase of each mode. In short, individual time 
series of ISD/Buoy data are then regressed onto this 
ERA5-based index. If the global pattern of regression 
coefficients agrees with the theoretical mode structure, 
we can conclude that our working hypothesis is true 
and that the raw barometric (ISD/Buoy) data contain 
global normal-mode signals that are consistent with 
those evident in ERA5. 

The regression analysis is repeated for two versions 
of ERA5 sea level pressures: (1) a subset of the ERA5 
data, sampled at times and locations of the ISD/Buoy 
stations (this is hereafter referred to as “Obs-sampled-
ERA5”), and (2) the entire gridded, hourly dataset 
over 1980 – 2021 (referred to as “All-ERA5”). By 
comparing the two regression branches, we can evalu-
ate how the results are affected by the inhomogeneous 
global distribution of the ISD/Buoy data.

In the following subsections, we explain the analy-
sis strategy in more detail by showing two examples: 
Kelvin modes with k = 1 and 5 (these are referred to 
as KL1 and KL5, respectively). Note that the former 
has been identified as the “33-hour Kelvin wave” in 
station barometric data (Matsuno 1980; Hamilton 
1984), while the latter has only been identified so far 
through analysis of the ERA5 data (SH20).

3.1 Normal mode index based on ERA5
Following SH20 and Sakazaki (2021), we create the 

normal mode index (time series) from meridionally 
averaged ERA5 surface pressures, adopting the 20°S –  
20°N latitude band for the equatorially symmetric 
component, and the difference between 0° – 20°N and 

20°S – 0° (divided by a factor of 2) for the equatorially 
anti-symmetric component (note that the results do not 
change significantly when sea level pressure data, in-
stead of surface pressure data, are used for producing 
the index). Figure 3 exemplarily shows the frequency 
spectrum of the equatorially symmetric, eastward- 
propagating k = 1 and 2 components. The spectral 
peaks denoted by “L” correspond to those for Kelvin 
modes of Lamb resonance and are well approximated 
by the Lorentzian function; the red horizontal lines 
are estimates of the width of each resonance based on 
an objective Lorentzian fit (see below). The filtering 
is based on the two-dimensional Fourier transform, 
mapping space to the zonal wavenumber-frequency 
domain: Only spectral coefficients with the corre-
sponding zonal wavenumber k and within the frequen-
cy range ( f0 - 3d, f0 + 3d ) are retained (the other 
Fourier components are simply set to zero) and are 
Fourier transformed back to the physical space. Here 
f0 and d are the central frequency and spectral width, 
respectively, empirically determined by the fitting to 
the Lorentzian function (see Table 1 of SH20). Note 
that the Lorentzian function is defined such that it 
takes its maximum at f0 and decreases by a factor of 
10−1 at f0 ± 3d. 

For m = 2 vertical modes (Pekeris resonance), 
two Kelvin modes (k = 1 and 2) are examined, as in 
Watanabe et al. (2022). This limited selection is un-
derstandable from Fig. 1; the peaks for Pekeris modes 
(denoted by “P”) are well separated from those for 
Lamb modes (denoted by “L”) only for high-frequency  
modes (Kelvin or inertia-gravity modes). On the other 
hand, the peak amplitude is one order smaller than 
the Lamb series (m = 1) (cf. Fig. 3), making it rather 
difficult to identify high-frequency modes such as 
Kelvin modes with large k or inertia-gravity modes. 
Such a trade-off results in our study being confined 
to two isolated Pekeris resonance peaks. For the 
filtering, we set ( f0, d ) = (0.58, 0.02) for k = 1 and 
( f0 , d ) = (1.165, 0.038) for k = 2 (see blue horizontal 
lines denoted with “P” in Fig. 3; these are subjectively 
determined instead of using Lorentzian fitting). 

The actual index time series is calculated every 
year, using the 365 (or 366 for leap years) ± 20 
day data. The resultant pressure anomalies are a 
function of longitude and time. From these data, four 
time series at 0°E lagged by lπ/4 (l = 0, 1, 2, 3) are 
produced and used as normal mode indices after nor-
malized by their standard deviation over time. Figures 
4a and 4b illustrate the index time series for KL1 and 
KL5, respectively, over a week in early October 2010. 
It is evident that the index indeed oscillates with the 
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characteristic periods (~ 32 hours for KL1 and ~ 7 
hours for KL5; see Fig. 1), while amplitudes change 
over a much longer time scale.

3.2 Regression analysis using raw barometric data
We regress the time series of raw barometric data 

from ISD/Buoy onto the normalized normal mode 
index, after first removing the annual and semiannual 
harmonics. For the actual calculation, the index is 
linearly interpolated to the times of observation at 
individual stations. Figures 4c and 4d show the global 
distribution of the regression coefficient (R ) on the 
normal index time series with l = 0 (lag zero) for KL1 
and KL5 modes, respectively, as deduced from ISD/
Buoy data, and corresponding coefficients from All-
ERA5 data are depicted in Figs. 4e and 4f. We see that 
the regression pattern of ERA5 (Figs. 4e, f) exhibits  
a Kelvin mode structure with the expected wave-
numbers [i.e., k = 1 for (e), and k = 5 for (f)]. Similar 
inferences can be made for ISD/Buoy (Figs. 4c, d), 
although data coverage in the tropics is too sparse to  
clearly delineate every modal trough and high for 
KL5. We emphasize that the results in Fig. 4 are ob-
tained without any a priori assumption for the modes’ 
horizontal structure. 

Next, a zonal wavenumber (harmonic) fitting is 
performed for R to obtain the meridional structure in 

amplitude and phase of the target zonal wavenumber 
components [again, k = 1 (5) for KL1 (KL5)]. The 
fitting is done using data binned in latitude bands with 
5° width. The calculation is made only when there 
are at least 20 valid data points in longitude, after 
removing values exceeding the 3-σ  level in each lat-
itude band (σ : standard deviation in zonal direction). 
Figures 4g – j, for instance, show how the fitting works 
for latitude bands of 2.5°S – 2.5°N and 32.5 – 37.5°N, 
with the results based on two lagged indices (cf. Sec-
tion 3.1, Figs. 4a, b). Again, the zonal distribution of 
R is clearly represented by a single harmonic, albeit 
modulated by noticeable short spatial scale variability 
in the extratropics. 

A special treatment is necessary for the k = 0 com-
ponent for which R (ideally) takes the same value at 
all longitudes, since it is the zonally symmetric com-
ponent (in this case, zonal wavenumber fitting cannot 
determine the amplitude and phase). As shown in Fig. 
5a for k = 0 Rossby-gravity wave mode, the zonally 
averaged R changes with the lag for the index (l ). 
We thus determine its amplitude (A) and phase (δ) by 
harmonic fitting to the zonal-mean R (at each latitude 
belt) as a function of lag, i.e., A l

cos
� �
4
−( ) as shown 

by red curve in Fig. 5b.
The 95 % confidence intervals for the calculated 

amplitude and phase are estimated using a bootstrap 

Fig. 3. Frequency spectrum for the equatorially symmetric, eastward-propagating zonal (black) wavenumber 1 (E1) 
and (gray) 2 (E2) components as deduced with surface pressure data between 20°S and 20°N in ERA5. The spec-
trum is calculated every year from 1980 to 2021 and the results over the 42 years are averaged. The E2 spectrum is 
multiplied by a factor of 10−1 for better presentation. The spectral peaks marked by “L” and “P” denote the Lamb  
(m = 1) and Pekeris (m = 2) resonance, respectively. Red and blue horizontal lines denote the frequency range 
used for the filtering for Lamb and Pekeris peaks, respectively: For the Lamb peaks, the range is determined ob-
jectively based on the fitting to the Lorentzian function (green solid curves; the fitting parameters are adopted from 
Table 1 of SH20), while it is determined subjectively for the Pekeris peaks; see the main text.
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Fig. 4. Illustration of the procedure to extract normal mode signals from ISD/Buoy data for (left columns) KL1 and 
(right columns) KL5. (a, b) Normal mode index created with the filtered, normalized tropical surface pressure data 
from ERA5 at 0°E with different lags: (blue) 0 and (orange) π/2. (c – f) Regression coefficients on the normal index 
time series with lag = 0 as deduced from (c, d) ISD/Buoy data and (e, f) All-ERA5 data (unit: Pa). Color bars 
are shown at the bottom of panels (e, f). (g – j) Zonal distribution of regression coefficients (unit: Pa) obtained for 
the index with (g, h) lag = 0 and (i, j) lag = π/2, with the upper and bottom panels showing the results for 35°N 
(32.5 – 37.5°N) and 0°N (2.5°S – 2.5°N), respectively. Blue, closed circles are for ISD and ISPD data, magenta,  
triangles are for buoy data, gray curves are for gridded ERA5 data, and red solid curves are the harmonic fitting for 
(left) k = 1 and (right) k = 5 for observation (ISD/Buoy/ISPD). See text for details.
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method. We iterate the calculation of amplitude and 
phase values for the zonal harmonic of interest 1,000 
times with resampled datasets, where each resample is 
generated from the original data with random replace-
ment. The 97.5 and 2.5 percentile values are obtained 
from the resulting distribution and taken as the upper 
and lower confidence bounds (see error bars in, e.g., 
Fig. 6). 

4. Results and discussion

4.1 Lamb resonance (m = 1)
a. Kelvin modes

Figure 6 shows the meridional structures for ampli-
tude and phase of R for Kelvin modes, as obtained 
with ISD/Buoy (red circles) and All-ERA5 (gray 
curves for amplitude and gray open circles for phase). 

Fig. 5. (a) Meridional structure of the zonally averaged regression coefficient (R) (unit: Pa) calculated for normal 
mode index time series with the four different lags (x-axis) for Rossby-gravity wave mode k = 0, as derived with 
ISD/Buoy data. (b) Zonally averaged R for 40°N (37.5° – 42.5°N band) for the four different lags (black circles). 
Red curve shows the harmonic fit, wherein the gray, dashed vertical line denotes the phase determined with this fit (it 
is nearly zero in this case). 

Fig. 6. Meridional structure of (top) amplitude and (bottom) phase for Kelvin modes of Lamb resonance (m = 1) for 
(from left to right) k = 1 to 5. Red circles denote the results from ISD/Buoy, with their vertical bars showing the 
95 % confidence level. The number in the parentheses at the top of each panel denotes the wave frequency (unit: 
CPD). Gray curves (for amplitude) and open circles (for phase) show the results for All-ERA5 data, while green 
curves for amplitude represent the Hough function fitted to the results for All-ERA5 (gray curves). The phase rep-
resents the lag from the index time series and is drawn only if the amplitude is > 0.1 Pa. “Not shown” indicates 
either that the spectral peaks are too close to diurnal harmonics or that the fitting to the Lorentzian function failed. 
See Supplementary for the comparison with the results from Obs-sampled-ERA5.
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See Supplementary for the results including Obs-sam-
pled-ERA5 and also Table 1 for the difference be-
tween ISD/Buoy and Obs-sampled-ERA5. The results 
for k = 1 and k = 5 are of course identical to KL1 and 
KL5 as discussed in Section 3. Panels reading “Not 
shown” indicate that either that the spectral peaks are 
too close to diurnal harmonics or that the fitting to the 
Lorentzian function failed (see Fig. 9 of SH20 for  
details). Here, the amplitude has been multiplied by a 
factor of 2  so that it represents a typical wave am-
plitude (recall that the normal mode index is normal-
ized by its standard deviation). 

Moreover, the depicted amplitudes and phases 
are the average of the four results obtained with the 
four lagged indices. Because the four indices and 
the resultant zonal distributions in R are lagged by a 
quarter cycle (e.g., Figs. 4g, i), R obtained from the 
index with lag of lπ/4 is shifted by 90l/k °E in zonal 
direction so that the four results are in phase; after 
that, the average for harmonic coefficients and, then 

their amplitude and phase, are calculated. The phase 
shown in Fig. 6 thus simply represents the lag from 
the variation at the equator (positive and negative 
values indicate the variation precedes and follows 
that at the equator, respectively). Additionally, as in 
SH20, the corresponding Hough functions are fitted to 
the All-ERA5 results to see how close the meridional 
structure is to the theoretical mode structure (green 
curves in upper panels). 

We find that both ISD/Buoy and ERA5 show a 
global Kelvin mode structure with maximum ampli-
tudes at the equator and the phase being constant at 
almost all latitudes (note again that we did not assume 
any meridional structure). It is also discernible that the 
meridional extent in amplitude decreases with increas-
ing zonal wavenumber. These structures are largely 
consistent with the theoretical Hough functions, clear-
ly indicating that the normal-mode signals in ERA5 
do exist in the raw observation data, i.e., ISD/Buoy in 
our case. 

Table 1. Root-mean-square-error (RMSE) for the meridional structure between ISD/Buoy and Obs-sampled-ERA5 data 
[RMSE in amplitude (unit: Pa) (RMSE in amplitude normalized by the maximum value)/RMSE in phase (unit: π-1 
radian)]. For phase, only latitudes with amplitude larger than 0.1 Pa are considered for the calculation of RMSE. Modes 
with a long dash (–) are those well not defined or those too close to diurnal harmonics (see text for details).

Zonal wavenumber
Symmetric mode

Rossby Kelvin 1st Gravity 2nd Gravity Kelvin (Pekeris)
−5
−4
−3
−2
−1
0
1
2
3
4
5

–(–)/–
0.41(0.01)/0.01
0.18(0.01)/0.00
0.33(0.01)/0.02
0.35(0.00)/0.00

N/A
N/A
N/A
N/A
N/A
N/A

N/A
N/A
N/A
N/A
N/A
N/A

0.09(0.01)/0.01
0.10(0.03)/0.02
0.12(0.03)/0.03

–(–)/–
0.14(0.09)/0.06

–(–)/–
0.14(0.09)/0.03
0.14(0.08)/0.02

–(–)/–
0.11(0.04)/0.03

–(–)/–
0.09(0.07)/0.05

–(–)/–
–(–)/–

0.17(0.20)/0.22
–(–)/–

–(–)/–
0.23(0.24)/0.08

–(–)/–
0.11(0.11)/0.13
0.11(0.11)/0.03
0.08(0.05)/0.03

–(–)/–
0.15(0.22)/0.09

–(–)/–
–(–)/–
–(–)/–

N/A
N/A
N/A
N/A
N/A
N/A

0.18(0.04)/0.03
0.10(0.03)/0.20

–(–)/–
–(–)/–
–(–)/–

Zonal wavenumber
Anti–symmetric mode

Rossby–Gravity 1st Gravity 2nd Gravity
−5
−4
−3
−2
−1
0
1
2
3
4
5

0.21(0.02)/0.03
0.15(0.02)/0.06
0.20(0.03)/0.01
0.09(0.01)/0.01
0.08(0.02)/0.01
0.07(0.02)/0.04
0.07(0.03)/0.06
0.05(0.03)/0.01

–(–)/–
0.13(0.12)/0.02
0.15(0.14)/0.04

0.24(0.24)/0.09
–(–)/–

0.08(0.08)/0.05
0.11(0.10)/0.06
0.06(0.05)/0.04
0.09(0.05)/0.08
0.09(0.08)/0.03

–(–)/–
0.10(0.15)/0.05

–(–)/–
–(–)/–

–(–)/–
–(–)/–

0.17(0.18)/0.05
–(–)/–

0.09(0.08)/0.02
–(–)/–

0.19(0.19)/0.07
–(–)/–
–(–)/–

0.19(0.27)/0.38
–(–)/–
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The extracted amplitude for KL1 is ~ 10 Pa, com-
mensurate with the value reported in previous studies 
that spectrally analyzed barometric measurements 
at tropical stations (Hamilton 1984; Matthews and 
Madden 2000). On the other hand, the components of 
k ³ 3 have never been conclusively identified based 
on raw observation data, meaning that the present 
results are the first, ground-based evidence for these 
modes. Notably, their amplitude is fairly small (e.g., 
~ 1 Pa for KL5), but they are well defined in that the 
amplitude and phase have meridionally systematic 
structures. It is impressive that ERA5, synthesizing 
a necessarily imperfect numerical model with noisy 
observations, captures such small-amplitude, high- 
frequency pressure signals.

Despite the generally close correspondence between 
the two tested datasets, there are some differences, 
especially for larger zonal wavenumbers. In particular, 
the KL5 amplitudes deduced from ISD/Buoy are 
slightly smaller than those from ERA5 in the tropics. 
Considering the agreement between Obs-sampled-
ERA5 and All-ERA5 (Fig. S1), this small discrepancy 
may not be attributable to the sampling inhomogeneity 

of the barometric network, but rather imperfections in 
ERA5.

b. Inertia-gravity modes
Figures 7 and 8 (see also Figs. S2, S3) show the re-

sults for 1st gravest, equatorially symmetric and anti- 
symmetric inertia-gravity modes, respectively (note 
that these are sometimes called “n = 1 inertia-gravity 
mode” and “n = 2 inertia-gravity mode,” respectively; 
Kiladis et al. 2009). These modes have very small 
amplitudes (~ 1 Pa) and short periods, ranging from 
12 hours (k = 1) down to 4 hours (k = 5). Neverthe-
less, our analysis method is well capable of extracting 
even these types of oscillations. For the 1st gravest 
symmetric modes (Fig. 7), for instance, the meridional 
structures in amplitudes and phases for the modes with 
k = -4, -3, -1, 1 show quantitatively good agree-
ment between ISD/Buoy and ERA5 except for high 
latitudes. For the k = 4 mode, while the amplitude 
in ISD/Buoy is smaller than that in ERA5 especially 
in the tropics, the phase structure agrees fairly well. 
As was the case for k = 5 Kelvin mode (Fig. 6), the 
difference in amplitude is likely not due to the sam-

Fig. 7. As in Fig. 6 but for the first gravest, equatorially symmetric inertia-gravity modes for m = 1. 
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pling inhomogeneity given the significant difference 
between ISD/Buoy and Obs-sampled-ERA5 (Fig. 
S2). The anti-symmetric mode (Fig. 8) reveals good 
agreement for k = -3, -2, -1, 0, 1, but for k = 3, -5 
the ISD/Buoy amplitudes are smaller in comparison to 
ERA5 by more than 50 %.

Figures 9 and 10 (see also Figs. S4, S5) show the 
2nd gravest, equatorially symmetric and anti-symmetric 
modes (note that these are sometimes called “n = 3  
inertia-gravity mode” and “n = 4 inertia-gravity mode”, 
respectively). Amplitudes decrease to about 0.7 Pa or 
less, and the periods are ~ 1 hour shorter compared 
to the 1st gravest modes with the corresponding wav-
enumbers (cf. Fig. 1); the meridional structures are  
more complicated with more nodes in latitude (see 
green curves in Figs. 9, 10). Nevertheless, even these 
higher modes are detected in ISD/Buoy data, at least 
for the small zonal wavenumber components. For 
symmetric modes, we observe relatively tight agree-
ment in both amplitude and phase for k = -2, -1, 0, 
while amplitudes in ISD/Buoy are somewhat smaller 
than those in ERA5 for k = -4, 2 (Fig. 9). Similarly, 
for anti-symmetric modes, good agreement is ob-

served for k = -1 while for k = -3, 1, 4 amplitudes 
in ISD/buoy are too small, yet phases are in good 
agreement (Fig. 10). 

In summary, the signals extracted from ISD/buoy 
have a meridionally coherent structure that is consis-
tent with the corresponding Hough function, although 
amplitudes tend to be smaller than those seen in ERA5 
for some high zonal wavenumber (k ) components. We 
reiterate that no previous study has obtained robust 
inertia-gravity mode signals including their horizontal 
structures based on ground-based data. The present 
work thus provides solid evidence for the existence of 
high-frequency, global inertia-gravity modes. 

c. Rossby and Rossby-gravity modes
Figures 11 and 12 (see also Figs. 6, 7) show the  

results for the symmetric, gravest Rossby mode and 
antisymmetric Rossby-gravity mode (note again that 
the eastward components of the latter is sometimes 
called as “n = 0 eastward inertia-gravity mode”). As 
noted in the Introduction, Rossby and westward Rossby- 
gravity modes have relatively low frequencies (cf.  
Fig. 1), and thus they can attain relatively large ampli-

Fig. 8. As in Fig. 6 but for the first gravest, equatorially anti-symmetric inertia-gravity modes with m = 1. 
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tudes. We indeed see that these signals are clearly ex-
tracted from ISD/Buoy data and their amplitudes and 
phases closely correspond to those in Obs-sampled-
ERA5. For the k = -1 Rossby mode (“5-day wave”), 
the maximum amplitude (~ 70 Pa) is consistent with 
that reported in previous studies (e.g., Madden and 
Julian 1973). Eastward Rossby gravity modes are also 
clearly detected, though again for the weak modes 
(e.g., k = 5) amplitudes in ISD/Buoy appear some-
what smaller than those in ERA5.

It is worth mentioning that the meridional structure 
as deduced from ISD/Buoy and ERA5 is slightly dif-
ferent from the theoretical Hough function solutions  
for large, low-frequency k components. For example, 
the k = -3 and -4 Rossby modes and k = -5 Rossby- 
gravity modes exhibit a more compact structure in 
meridional direction (i.e., confined to equatorial 
region) in ISD/Buoy and ERA5, compared to the 
corresponding Hough function. These modes are more 
susceptible to background winds because of their 
slow phase speed (cf. Fig. 1) and thus the meridional 
structure may deviate from the theoretical prediction 
obtained under the assumption of no background 

winds. Recently, Ishizaki et al. (2025) generalized 
the classical linear theory to treat mean states with 
prescribed height-latitude distributions of zonal wind 
and temperature. By solving the resulting eigenvalue 
problem, they obtained the predicted frequencies and 
vertical and meridional structures of the normal mode 
oscillations. They showed that for a realistic mean 
state, the meridional structures of the Rossby and 
Rossby-gravity mode solutions differed somewhat 
from the corresponding classical theory solutions. 
Furthermore Ishizaki et al. determined that the devi-
ation from classical theory for these modes is mainly 
attributable to the vertical mean flow shear (rather 
than the horizontal shear considered by e.g., Kasahara 
1980). The Ishizaki et al. solutions allow the merid-
ional structure of the modes to vary in the vertical 
and indeed the modes become more confined near the 
equator, being consistent with the present findings 
(Figs. 11, 12). This is likely related to the fact that the 
mode is confined near the equator at heights where 
Doppler-shifted frequency is reduced (in agreement 
with Lindzen 1970, and other earlier studies of equa-
torial waves).

Fig. 9. As in Fig. 6 but for the second gravest, equatorially symmetric inertia-gravity modes with m = 1. 
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4.2 Pekeris resonance (m = 2)
Figure 13 (see also Fig. S8) shows the extracted 

meridional structures for k = 1 and 2 Kelvin modes 
for the Pekeris resonance (m = 2). We observe clear 

signals in ISD/buoy data that follow a Kelvin mode 
structure and peak at equatorial amplitudes of ~ 5 Pa 
and ~ 3 Pa for k = 1 and 2, about 50 % smaller than 
their counterparts with Lamb resonance (Fig. 6). This 

Fig. 11. As in Fig. 6 but for the gravest, equatorially symmetric Rossby mode with m = 1.

Fig. 10. As in Fig. 6 but for the second gravest, equatorially anti-symmetric inertia-gravity modes with m = 1.
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constitutes the first robust evidence for the existence 
of Pekeris normal modes in the real atmosphere 
relying purely on raw ground-based measurements. 
Notably, unlike the Lamb series (m = 1), such internal 
modes (m = 2) might be expected to be more suscep-
tible to the effects of top boundary of the model used 
in the reanalysis procedure. The close agreement in 
amplitude between ISD/Buoy and ERA5 shown in 
Fig. 13, however, indicates that such effects may be 
negligible at least for ERA5 data. Žagar et al. (2022), 
using the Hough-mode expansion technique, showed 
that the energy in Kelvin mode takes a maximum for 
the components having an equivalent depth of ~ 7 
km. This may correspond in some part to the Pekeris 
resonance detected in this study, although Žagar et al. 
(2022) calculated the equivalent depths for a vertically 
bounded atmosphere and so their physical meaning 
was slightly different from our study. 

5. Concluding remarks

Previous attempts to detect the global normal mode 
oscillations of the atmosphere only using station ob-

servations have had to cope with the limitations, par-
ticularly the irregular space-time distribution, of the 
available in situ data. Here we have adopted a simple 
regression analysis to extract globally coherent signals 

Fig. 12. As in Fig. 6 but for the Rossby-gravity mode with m = 1. Note that the eastward component of the latter is 
sometimes called as “n = 0 eastward inertia-gravity mode.”

Fig. 13. As in Fig. 6 but for the Kelvin modes with 
m = 2 (Pekeris resonance).
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from barometric observations. The key point of our 
approach consists in regressing the raw pressure mea-
surements (ISD/Buoy) onto a single modal index time 
series created by analysis of gridded reanalysis data. 
The method does not require homogeneity in temporal 
coverage and sampling among different stations, 
allowing records to differ in length and measurement 
frequency.

As a result, we have successfully identified the 
normal mode signals in the ISD/Buoy dataset not only 
for low-frequency modes such as Rossby and Rossby- 
gravity modes, but also for high-frequency modes 
such as Kelvin and inertia-gravity modes (even down 
to 2nd gravest modes). Despite not assuming any a 
priori horizontal dependence, a globally coherent, 
characteristic mode structure emerges from our com-
puted regression coefficients, and the meridional struc-
tures obtained agree fairly well with the corresponding 
Hough functions. In addition, the same analysis was 
repeated for ERA5 itself (global data), yielding modal 
amplitudes and phases consistent with those in ISD/
Buoy data.

These findings corroborate the evidence (SH20) for 
a spectrum of global normal modes in the real atmo-
sphere that match the expectations from classical tidal 
theory. Also, the results of the regression analysis in-
dicate that the signals in ERA5 are generally in phase 
with, and of the same magnitude as, those revealed 
by analysis of raw barometric data. The agreement 
underscores the validity and usefulness of ERA5 for 
normal mode detection and investigation. Although 
the results are generally consistent between ISD/Buoy 
and ERA5, we find a few minor differences. In partic-
ular, amplitudes derived from ISD/Buoy are smaller 
than those of ERA5 for some high-frequency, high 
zonal wavenumber modes (note that the phase mostly 
display good agreement, though). In addition, the me-
ridional structure deduced from ISD/Buoy and ERA5 
deviates somewhat from the theoretical Hough func-
tion for high zonal wavenumber Rossby and westward 
Rossby-gravity modes. It is likely that background 
zonal winds alter the mode structure given that higher 
wavenumber modes are associated with smaller phase 
speeds (cf. Fig. 1).

Taken together, our results can be viewed as a 
unique evaluation of reanalysis data. As noted in the 
Introduction, it has been known that at least some 
reanalyses contain realistic depictions of the principal 
lunar air tide (~ 10 Pa). The present study shows 
that ERA5 captures even much smaller global wave 
signals, e.g., ~ 1 Pa for some inertia-gravity modes. 
Accurate representation of the pressure signal associ-

ated with the Pekeris internal resonance is particularly 
compelling and helps allay concerns about possible 
impacts of the upper boundary in the ERA5 product. 
Our simple technique that uses reanalyses to extract 
the signals from spatiotemporally inhomogeneous 
observations could be applied to any meteorological 
disturbances associated with identifiable spectral peaks 
such as equatorial waves. This may be a powerful tool 
to validate the detailed representation of other small- 
magnitude fluctuations in atmospheric reanalyses.
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NOAA/PMEL through the web site: https://www.pmel. 
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copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single- 
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Supplements

Supplementary file contaions figures (Figs. S1 – 8) 
showing the meridional structure of each normal mode 
as derived from (1) ISD/Buoy, (2) Obs-sampled-ERA5, 
and (3) All-ERA5 data, as well as the Hough mode 
fitting for (3). Note that the corresponding figures in 
the main text (Figs. 6 – 13) do not include the results 
for (2).
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