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1.  Introduction

The study of the free oscillations of the Earth’s 
atmosphere has long been developed in a common 
framework with the study of atmospheric tides. The 
free oscillations are solutions of normal modes with-
out forcing satisfying the rigid boundary condition at 
the bottom and the energy decay boundary condition 
at the top. When the primitive equations are linearized 
from a stationary atmosphere as the reference field, 

the system is separated into the horizontal structure 
equation, or Laplace’s tidal equation (LTE), and the 
vertical structure equation (VSE) if the temperature 
is a function of altitude only. The vertical structure of 
the normal mode solution has the same structure as 
that of the Lamb wave (Lamb 1911) if the atmosphere 
is isothermal, and the corresponding equivalent depth 
h is given as h = γH, where γ  is the heat capacity ratio 
and H is the scale height of the isothermal atmosphere, 
and the latitudinal structure is determined by solving 
the LTE for the equivalent depth. For these details, 
including the historical background, see Chapman and 
Lindzen (1970).

The Earth’s atmosphere is, of course, neither iso-
thermal nor stationary, but Taylor (1929) estimated 
the equivalent depth to be about 10.4 km based on the 
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propagation speed of pressure disturbances observed 
during the 1883 eruption of Krakatoa. Since then, the 
equivalent depth of the free oscillations of the Earth’s 
atmosphere has been considered to be about 10 km, 
and this has also been considered to be the only 
equivalent depth for the realistic vertical temperature 
profile of the Earth’s atmosphere (However, there 
have recently been new studies on this subject, which 
will be discussed later in this section).

Once the equivalent depth is determined, the eigen-
frequencies and latitudinal structures of the normal 
modes can be determined by (numerically) solving 
the LTE according to the method of Longuet-Higgins  
(1968). Many studies have been carried out to 
detect the free oscillation modes of the atmosphere 
determined in this way from observational data. For 
example, the global Rossby modes were detected 
from satellite observations of the upper stratosphere 
by Hirota and Hirooka (1984). However, these studies 
were limited to relatively long period modes, and the 
detection of short period free oscillation modes had to 
wait for Sakazaki and Hamilton (2020) (for a detailed 
review of the history of attempts to detect free oscilla-
tion modes, see the description therein).

In Sakazaki and Hamilton (2020), it was shown that 
free oscillation modes with periods not only of several 
days but also of as short as about 2 hours could be 
comprehensively detected by spectral analysis of 38 
years of hourly global reanalysis data, although not 
the observational data, and there the frequency, verti-
cal structure, and latitudinal structure of the detected 
modes were compared with those of the LTE solutions 
for a stationary atmosphere. As a result, it was shown 
that the frequency of the detected modes was most 
consistent with that of the LTE solution when the 
equivalent depth was set to 10 km, but there were 
some differences from the classical tidal theory in the 
frequency and latitudinal/vertical structure, reflecting 
the fact that the real atmosphere has a non-zero zonal 
wind field and a latitudinally dependent temperature 
field, and that the bottom boundary is not horizontally 
uniform.

How the normal modes of free oscillations vary 
with the background field was studied by Geisler and 
Dickinson (1976), Schoeberl and Clark (1980), and 
Salby (1981a, b). In particular, in Salby (1981a, b), re-
alistic latitudinal/vertical structures of zonally uniform 
zonal wind and temperature fields were given and a 
periodic external forcing was applied to the linearized 
primitive equations with respect to the given basic 
field to extract modes showing amplitude increase 
near resonance. He showed that the frequencies of the 

Rossby and Rossby-gravity modes were consistent 
with those of the modes detected in the observational 
studies. However, since the method used there was to 
study the response to periodic forcings to the linear-
ized equations, the individual eigenmodes were not 
considered to be completely separated, and the modes 
considered there were also limited to those with 
relatively long periods. On the other hand, Kasahara  
(1980) performed a linear eigenvalue analysis using a 
linearized shallow water equation by setting the zonal 
flow profile at the 500 hPa surface and the balanced 
height field to it as the basic field. There, the eigen-
modes were obtained comprehensively, including 
not only Rossby and Rossby-gravity modes but also 
Kelvin and gravity modes. The eigenfrequencies 
and latitudinal structures of the modes were studied 
in relation to the LTE solution, to clarify how they 
vary with the zonal flow profile (and the height field 
balanced by the zonal flow). However, this calculation 
was performed only for a barotropic atmosphere, and 
it was not possible to investigate how the baroclinicity 
of the zonal flow affects the normal modes.

Based on the above research background, in the 
present study, we extend the research of Kasahara 
(1980) to a baroclinic atmosphere by performing a 
direct eigenvalue analysis of the three-dimensional 
primitive equations linearized with respect to a basic 
field in which the latitudinal/vertical structures of a 
realistic zonally uniform zonal wind field and tem-
perature field are specified. We investigate how the 
frequencies and latitudinal/vertical structures of the 
normal mode solutions are affected by the background 
field. By performing a direct eigenvalue analysis, all 
types of Lamb modes are treated comprehensively and 
compared with the modes detected by Sakazaki and 
Hamilton (2020) in order to clarify to what extent the 
effect of the background field can explain the differ-
ence in characteristics between the modes detected by 
Sakazaki and Hamilton (2020) and the normal mode 
solutions for a stationary atmosphere. In the present 
study, modes with vertical structures corresponding to 
Lamb waves are referred to as Lamb modes, including 
when they are deformed by the background field.

Before closing this section, the possible existence of 
free oscillation modes with equivalent depths smaller 
than about 10 km should also be mentioned. As 
mentioned above, the equivalent depth has only one 
value in the case of an isothermal atmosphere, but the 
temperature of the real atmosphere varies significantly 
in the vertical direction. Depending on the vertical 
profile of the temperature, there may be several equiv-
alent depths for which there exist solutions satisfying 
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the lower and upper boundary conditions for the VSE. 
In fact, Pekeris (1937) showed that, by assuming 
unrealistically high temperatures for the stratopause, 
an equivalent depth mode of about 8 km could exist, 
in addition to about 10 km. However, in Salby (1979), 
using a more realistic temperature profile, U.S. Stan-
dard Atmosphere, 1976, the equivalent depths obtained  
(although the mode was not completely evanescent at 
the top, since the very high temperature thermosphere 
was also taken into account there) were shown to be 
9.6 km and 5.8 km. The latter corresponds to the mode 
predicted by Pekeris (1937), the reality of which was 
first demonstrated in Watanabe et al. (2022), which 
first detected the predicted mode from an analysis of 
satellite brightness temperature data during the 2022 
eruption of the Hunga Tonga-Hunga Ha’apai volcano. 
There, not only the Lamb wave propagating at a phase 
velocity corresponding to about 10.1 km equivalent 
depth was detected, but also a wave packet propagat-
ing at a phase velocity corresponding to about 6.1 km 
equivalent depth, and the latter was named the Pekeris 
wave in Watanabe et al. (2022). This equivalent depth 
of 6.1 km differs from the 5.8 km obtained by Salby 
(1979), but Ishioka (2023) pointed out a problem 
with the accuracy of the calculation in Salby (1979) 
and showed that the corresponding equivalent depth 
was 6.6 km when calculated correctly using the tem-
perature profile of U.S. Standard Atmosphere, 1976. 
Furthermore, Ishizaki et al. (2023) showed that the 
equivalent depth of the Pekeris wave was about 6.5 
km, even using the vertical profile of the average tem-
perature in the tropics at the time of the 2022 eruption 
of the Hunga Tonga-Hunga Ha’apai volcano, which 
corresponds better to the position of the spectral peak 
of the Kelvin wave in the spectral analysis of the 
reanalysis data in Watanabe et al. (2022). The term 
atmospheric free oscillation usually refers to Lamb 
modes, but considering the recent studies mentioned 
above, those with vertical structures corresponding to 
the Pekeris wave should also be considered and are 
referred to as Pekeris modes. However, in the present 
study, we do not consider Pekeris modes not only 
because we intend to focus mainly on the comparison 
with the Sakazaki and Hamilton (2020) results, but 
also because in order to properly extract Pekeris modes  
as eigenmodes, more vertical expansion degrees of 
freedom are required, as described in the next section, 
which makes the numerical calculations more difficult.

The remainder of the present study is organized as 
follows. In Section 2, we describe the method of the 
eigenvalue analysis of free oscillation including the 
effect of a zonal mean field which is determined by 

averaging reanalysis data. The results of the eigenval-
ue analysis are presented in Section 3. Discussion is 
presented in Section 4, along with additional analyses 
to interpret the results of the eigenvalue analysis. 
Summary is given in Section 5.

2.  Methods and data

In the present study, we perform a linear eigenvalue- 
eigenvector analysis for the case of a perturbation 
applied to a zonally uniform field, using a system of 
primitive equations in σ-coordinates on a rotating 
sphere as the governing equations. We follow the 
formulation of Ishioka et al. (2022) and use the 
completely non-dimensionalized primitive equations, 
where the length scale, the temperature scale, and the 
time scale are nondimensionalized by using the radius 
of the sphere (a*), the reference temperature (T0*), and 
a R T* * *0 , respectively. Here, R* is the gas constant 
for the dry atmosphere. The full nonlinear primitive 
equations are omitted here (see Ishioka et al. 2022) 
because it would be redundant, but the linearized 
equations, given an infinitesimally small perturbation 
to a zonally uniform basic field, can be written as 
follows.
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Here, Ω is angular velocity of the sphere, κ  = R*/Cp* ,  
where Cp* is specific heat at constant pressure, t is 
time, λ  is longitude, μ = sin ϕ , where ϕ  is latitude, 
σ  = p*/p0* , where p* is pressure and p0* is surface 
pressure of the basic state. Note that since the effect 
of the μ  dependence of p0* is considered to be small, 
as shown by Ishizaki et al. (2023) in calculating the 
equivalent depths of the Lamb and Pekeris modes, we 
assume here for simplicity that p0* is uniform in the 
μ  direction. The temperature field and the eastward 
wind field of the basic state are represented by T ( μ , σ) 
and U ( μ , σ), respectively. The variable s̃ is defined as  
ps*/p0* , where ps* (λ , μ , t) is the surface pressure 
perturbation, Φ  (λ , μ , σ , t) is the geopotential pertur-
bation,  τ̃  (λ , μ , σ , t) is the temperature perturbation, 
and the variables δ̃(λ , μ , σ , t) and ζ̃  (λ , μ , σ , t) are the 
perturbations of the horizontal divergence and the 
vertical component of the vorticity, respectively. The 
rightmost terms (Dζ̃  , Dδ̃  , Dτ̃  ) in (1) – (3) are dissipation 
terms which will be defined later. The variable χ is 
the velocity potential perturbation, and ψ is the stream 
function perturbation. Note that the above parameters 
and variables without the subscript “*” are inherently 
dimensionless, or have been nondimensionalized as 
described above.

As a preparation for deriving the eigenvalue cal-
culation form of a matrix, we assume the following 
wave-like solution for the longitude-time dependence 
of the field of each perturbation,
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Here, Re(∙) means to take real parts and i= −1 . 
Note that the reason why the imaginary unit is at-
tached differently depending on the type of perturba-
tion is to ensure that the final matrix for the eigenvalue 
calculation is a real matrix (when dissipative effects 
are not considered). Substituting the expression (15) –  
(30) into (1) – (14), we obtain the following equations.
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Next, we expand ζ, δ, τ, and s in the μ  direction by the 
associated Legendre functions and in the σ  direction 
by the Legendre polynomials as follows.
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Here, Pn, m ( μ) is the associated Legendre function, 
which is defined as follows,
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and the parameters M and L are the horizontal and 
vertical truncation wavenumber, respectively. The 
Legendre polynomial Pl (1 - 2σ) is defined as the case 
where n = l and m = 0 with μ = 1 - 2σ . Note that in 
(47) the right-hand side is multiplied by σ  to eliminate 
the singularity of the function under integration on 
the right-hand side of (39) and that since s does not 
depend on σ , so there is no expansion in the σ  direc-
tion for (48).

Formally substituting (45) – (48) into (31) – (34) and 
multiplying both sides of (45) and (46) by Pn, m ( μ)  
Pl (1 - 2σ), both sides of (47) by σPn, m ( μ) Pl (1 - 2σ) 
and both sides of (48) by Pn, m ( μ) and integrating both 
sides of (45) – (48) in the interval [-1, 1] for μ  and 
in the interval [0, 1] for σ  (i.e., applying the Galerkin 
method), we obtain a matrix eigenvalue problem for 
each zonal wavenumber m of the following form after 
several matrix operations (for details see Ishioka et al. 
2022).

Av = ωv.	 (50)

Here, v is an N-dimensional vector, where N = 3(M -  
m + 1)(L + 1), consisting of (ζm, 0 , …, ζM, L , δm, 0 , …,  
δM, L , τm, 0, …, τM, L-1 , sm , …, sM ), and A is an N ´ N 
matrix. This is a problem of finding the eigenvalues 
and eigenvectors of the matrix, where the real part 
of ω  is the eigenfrequency of the eigenmode and the 
imaginary part of ω  is the growth rate of the eigen-
mode (if the imaginary part is negative, its absolute 
value is the decay rate).

Note that the integration in [-1, 1] with respect 
to μ  and the integration in [0, 1] with respect to σ  
required to derive (50) are done by multiplying the 
values in the Gaussian node by the Gaussian weight 
and summing, unless it is easy to do the integration 
analytically. That is, if F ( μ) and G (σ) are the integra-
tion functions depending on μ  and σ  respectively, the 
numerical integration is performed as follows.
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Here, ( μ j , wj ) ( j = 1, 2, …, J ) and (σ k , Wk ) (k = 1, 2,  
…, K ) are the (Gaussian nodes, Gaussian weights) 
for μ  and σ  spaces, respectively. For their definitions 
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when setting the numbers of the Gaussian nodes J and 
K, please see Ishioka et al. (2022). In addition, in the 
derivation of (50), we need to mention how to treat 
the basic fields U ( μ , σ) and T ( μ , σ) and their partial 
derivatives. As we will see later, U and T are given by 
the grid values of reanalysis data, but the positions of 
the grid points in the μ  and σ  directions are different 
from those of the Gaussian nodes above. First, for 
the μ  direction, noting that μ = sin ϕ  and using the 
given grid point data, we perform a discrete sine 
series expansion for U by the colatitude π/2 - ϕ  and 
a discrete cosine series expansion for T, and then use 
the expansion to obtain their values and their μ  partial 
derivatives at the Gaussian node μ j ( j = 1, 2, …, J ) by 
interpolation. For the σ  direction, the dimensionless 
logarithmic pressure coordinate z = -ln σ  is intro-
duced and the grid data are linearly interpolated to the 
values at zk = -ln σ k (k = 1, 2, …, K ) corresponding 
to the Gaussian nodes in the z coordinate. The σ  par-
tial differential values are calculated from the z partial 
differential values in the linearly interpolated interval.

The basic framework of the eigenvalue analysis 
method in the present study has been described above, 
but in order to extract the deformed Lamb modes as 
eigenmodes given a realistic basic field, several ad-
ditional procedures are required, as described below. 
First of all, even in the implementation of the 3D 
spectral method for the primitive equations that we 
are now using, the domain that extends infinitely in 
the vertical direction is calculated in the finite domain 
[0, 1] of σ . In the present study, as can be seen from (8), 
the boundary condition of σ⋅  = 0 is imposed at the σ 
= 0 surface, so energy cannot escape upwards. Due to 
the reflection of waves from such an upper boundary, 
when eigenvalue analysis is performed without dis-
sipative terms, many spurious modes (which cannot 
naturally exist) will appear as eigenmodes satisfying 
the boundary conditions (e.g., Lindzen et al. 1968). 
Therefore, it is necessary to set up a region that acts as 
a sponge to suppress the effect of reflection from the 
upper boundary and to increase the damping rate of 
such spurious modes so that the Lamb modes, which 
are the natural free oscillation modes, can be separated 
from them. With this intention, the dissipation terms 
(Dζ , Dδ , Dτ ) are introduced as the following equations 
in the form of Rayleigh friction or Newtonian cooling:

D D D
� � �� � � � � � � � �� � �

� � �=− =− =−( ) , ( ) , ( ) . 	(52)

Here, we consider the following form as the σ  depen-
dence of α .
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where αR and σR are the parameters that determine the 
strength of the dissipation and the σ  range in which  
it acts, respectively. The function form of this α  is 
such that α ® αR (σ ® 0), but if σR  1 then α  αR 
as σ ® 1. In other words, the upper atmosphere that 
satisfies σ < σR has a sponge-like effect, while the 
dissipation becomes almost ineffective in the lower  
atmosphere where the energy of the Lamb mode is 
large. In the present study, we set σR = 1 ´ 10−3 and 
α αR R a R T= ×( )∗ ∗ ∗ ∗0 , where αR* = 1 ´ 10−5 s−1, not 
only to suppress the spurious modes sufficiently but 
also to keep the eigenfrequencies and the latitudinal/
vertical structures of the eigenmodes to be as unaffect-
ed as possible by the dissipation. Figure 1 shows the 
vertical profile of the relaxation time due to dissipa-
tion. The relaxation time is almost one day above 1 
hPa, where the dissipative effect is strong, but it in-
creases rapidly with decreasing altitude, reaching about 
100 days at 10 hPa and increasing further at lower  
altitudes, where the dissipative effect becomes negli-
gible. Thus, the vertical structures of the eigenmodes 
obtained in the next section are affected by dissipation 
above about 10 hPa and should be treated with cau-
tion. The effect of this dissipation parameter on the  
eigenfrequencies and the structure of the eigenmodes 
is discussed at the beginning of the next section.

Even with the sponge layer set up as described 
above, the damping rates of spurious eigenmodes with  
vertical nodes are not sufficiently large, and it is diffi-
cult to objectively distinguish them from Lamb modes 

Fig. 1.  The vertical profile of dissipation relaxation 
times introduced into the eigenvalue analysis 
model.
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deformed in the basic field only by the amplitude of 
the damping rate. Therefore, we consider the orthog-
onal relationship between the eigenmodes and the 
vertical phase structure to separate the modes. First, 
it is known that the latitudinal structure of the free 
oscillation modes for a stationary and horizontally 
isothermal atmosphere has the following orthogonal 
relationship for each zonal wavenumber m (Kasahara 
1976).

� �
�
� � � � �� � � � � � � �k l k l k l

k l

† † †− ∇ + ∇( ){ } =

≠
−∫

1
02 2

1

1

d

( ). 	 (54)

Here, the superscript dagger denotes the complex 
conjugate and the subscript denotes the eigenmode 
number, and ε  is the Lamb parameter, which is defined 
as,

� = ∗ ∗

∗ ∗

4
2 2a
g h
�
, 	 (55)

where, Ω* is the (dimensional) angular velocity of the 
sphere, g* is the (dimensional) gravity acceleration, 
and h* is the (dimensional) equivalent depth of the 
free eigenmode. Also, φ represents the zonal wave-
number m component of the (non-dimensionalized) 
geopotential perturbation in the p coordinate system, 
and is obtained from Φ  in the σ  coordinate defined by 
(39) as follows.

�� � �= +� T s, 	 (56)

where T− (σ) is the global mean of T ( μ , σ).
Using the formula (54) we can define the inner 

product taking into account the latitudinal structure of 
the eigenmodes, but it is inconvenient to use it if the 
equivalent depth has not been determined beforehand, 
since the Lamb parameter ε  is not determined until the 
equivalent depth has been determined. As an alterna-
tive, we use only the kinetic energy part of (54) and 
define a function  (σ) as,
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to examine the vertical phase structure of the eigen-
modes obtained by solving (50). This  (σ) will be a 
complex number for which arg [ (σ)] can be calcu-
lated to examine the global average phase structure 
of the eigenmode with respect to the σ = 1 surface. If 
arg [ (σ)] = θ , then this eigenmode is phase-shifted 
to the east by θ  at the specified σ  surface with respect 
to the σ = 1 surface. Since the Lamb modes for a sta-

tionary and horizontally isothermal atmosphere do not 
tilt in phase in the vertical direction, the following cri-
teria are imposed in order to extract the Lamb modes 
deformed by the fundamental field separately from the 
spurious eigenmodes.

A1  | arg [ (σ)]| < π/2 at any levels of σ .
A2 � Select those with eigenfrequencies greater than 

1/2 cpd.

Here, cpd is “cycle per day,” and the criterion A2 
is imposed to remove the slow “continuous” mode 
caused by advection by zonal wind. The value 1/2 cpd 
is introduced by considering that the maximum period 
of the Kelvin mode is 33 hours. In the present study, 
when simply referring to the eigenfrequency, we will 
refer to the absolute value of the eigenfrequency. 
When it is necessary to refer to the sign, it will be 
indicated by stating whether the corresponding eigen-
mode is eastward or westward.

With the A1 and A2 criteria set above, the high fre-
quency Lamb modes can be extracted. However, for 
the low frequency Lamb modes, that is, the Rossby 
modes and the westward Rossby-gravity modes, 
the criterion A2 should obviously not be imposed. 
Furthermore, for the low frequency modes with large 
zonal wavenumbers, when given a realistic back-
ground field, the westward tilt of the phase of these 
modes in the upper layer becomes large, and the A1 
criterion becomes too strict to extract these modes. 
We therefore relax the criterion A1 a little and con-
sider allowing a phase tilt in the upper atmosphere as 
| arg [ (σ)]| < π/2 (σ  > 0.1). However, when the cri-
terion is relaxed in such a way, spurious modes whose 
latitudinal structure is far from the Rossby mode and 
the westward Rossby-gravity mode are also extracted. 
In order to extract the eigenmodes whose latitudinal 
structure is consistent with the Rossby mode and 
the westward Rossby-gravity mode in the stationary 
atmosphere, we introduce the following inner product 
and scalar quantities induced by the inner product.

��H H H H= ( , , ),� � �� � � 	 (58)
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Here, ΘΘH is the reference solution corresponding to 
the Rossby or westward Rossby-gravity mode, which 
is calculated as an eigensolution of the LTE at the 
equivalent depth of 10 km. On the other hand, ΘΘM is 
the surface (at σ = 1) structure of the mode obtained 
from the eigenvalue analysis to be checked. Note that 
in (60), the Lamb parameter ε  is calculated with h* = 
10 km. The scalar value  calculated by (61) takes 
values in the range [0, 1]. As the value approaches 1, 
the eigensolution under test ΘΘM gets closer to the ref-
erence solution ΘΘH . From the above, we introduce the 
following criteria for extracting the Rossby or west-
ward Rossby-gravity modes.

B1  | arg [ (σ)]| < π/2 (σ > 0.1).
B2   > 0.7.
B3 � From the modes that satisfy the above two con-

ditions, the one with the lowest damping rate is 
selected.

Here, the reference solutions used in criterion B2 are 
only those for the westward Rossby-gravity mode 
and the 1st Rossby mode with north-south symmetry 
of the geopotential perturbation field. This is because 
the extraction of free oscillation modes in the present 
study is mainly considered for comparison with Saka-
zaki and Hamilton (2020). In criterion B2, the number 
0.7 is somewhat arbitrary, but if this value is too 
small, modes with latitudinal structures that differ sig-
nificantly from the latitudinal structure of the mode to 
be extracted will be mixed in. If the value is too close 
to 1, the target mode cannot be extracted because the 
latitudinal structure of the mode is distorted by the 
zonal mean field. Considering these factors, a figure 
of 0.7 is adopted, albeit empirically. The criterion of 
B3 is also imposed because there are cases where the 
mode is not uniquely determined by the criteria of B1 
and B2 alone.

As a background field for the eigenvalue analysis, 
we use pressure-level (Hersbach et al. 2023) and 
model-level (Hersbach et al. 2017) zonal wind and 
temperature data in ERA5 (Hersbach et al. 2020), 
the latest atmospheric reanalysis dataset produced 
by the European Centre for Medium-Range Weather 
Forecasts (ECMWF). The model-level data are used 
together because, as described in Ishizaki et al. (2023), 
the ERA5 pressure-level data are only available up to 
the 1 hPa surface, and the model-level data are used 
to compensate for the part above that. As described 
in Ishizaki et al. (2023), model-level data are used at 
71.1187 hPa and above, and pressure-level data at 100 
hPa and below, which together are used as 81 level data 
from 1000 hPa to 0.01 hPa. The longitude-latitude grid 

interval is 1° ´ 1° for both the model-level data and 
the pressure-level data. The temporally and zonally 
averaged background field of the data described above 
from 2011 to 2020 is used in this analysis. The reason 
for using 10-year averaged data for the background 
field in the present study is that Sakazaki and Hamil-
ton (2020) performed a spectral analysis over a whole 
year and averaged it over 38 years, so it is appropriate 
to perform an eigenvalue analysis of a climatological 
field averaged over a long period for comparison with 
Sakazaki and Hamilton (2020). It should therefore 
be noted that seasonal dependence is not considered 
in the present study. The distribution of this field is 
shown in Fig. 2. In Fig. 2, a strong eastward jet is 
observed in the tropical mesosphere. This is caused by 
the model specification as described in Shepherd et al. 
(2018), but for the Lamb mode, which is the focus of 
the present study, its energy is trapped near the ground 
surface and the influence of this unrealistic jet is 
considered to be negligible, so this background field is 
used as it is.

The parameters used in the numerical calculations 
are described below. Ω* = 7.29212 ´ 10−5 s−1, R* = 
287 m2 s−2 K−1, a* = 6.371229 ´ 106 m, κ  = 2/7, g* = 
9.80 m s−2, and p0* = 1000 hPa. The horizontal trun-
cation wavenumber M is 21, the number of latitudinal 
grid points J = 32. The vertical truncation wave-
number L is set to 85 and the number of vertical grid 
points K = 128. Then, the top of the vertical grid of 

Fig. 2.  Distribution of temporally and zonally 
averaged zonal wind (contours) and temperature 
(color shading) of the ERA5 monthly averaged 
data from 2011 to 2020. The contour interval is 8 
m s−1 (that of thick line is 16 m s−1) and the dashed 
lines show negative values (i.e., westward wind).
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the spectral method used for eigenvalue calculations is 
at 0.0875560 hPa.

3.  Results

An eigenvalue analysis is first performed for the 
linear model used in the present study with a station-
ary isothermal background field to check the accuracy 
of the eigenvalue analysis and the effect of the intro-
duced dissipation terms. The isothermal atmospheric 
temperature T* treated here is determined such that the 
equivalent depth of the Lamb mode, h* , determined by 
the following equation, is 10 km.

h R T
g∗
∗ ∗

∗

=
γ .

Here, γ = 1/(1 - κ) = 7/5. Hence, we set T* = 243.90  
K. Table 1 shows the dependence of the eigenfre-
quencies of four representative modes of zonal wave-
number 1 on the two dissipation parameters (σR , αR*). 
Note that since the phase tilt in the vertical direction 
is small in the case of a stationary isothermal atmo-
sphere, regardless of the parameters in the dissipation 
terms, all modes, including the Rossby and westward 
Rossby-gravity modes can be extracted using only 
the A1 criterion described in the previous section. In 
Table 1, as σR or αR* becomes small, the deviation 
of the eigenfrequency of each eigenmode from the 
LTE solution decreases and is within 1 % relative 
error when σR = 1 ´ 10−3 and αR* = 1 ´ 10−5 s−1 (the 
default setting). Therefore, in the default case of dis-
sipation introduced in the present study (D), we have 
confirmed that the difference from the eigenfrequen-
cies without considering dissipation is small, and we 
will use this dissipation parameter in the calculations 
including latitudinal/vertical structures of the zonal 
wind and temperature field based on the reanalysis 
data. However, there are cases where the relative error 
of 1 % can be important, which will be discussed in 

Section 4.3.
The dependence of the vertical structures of the 

latitudinally averaged (| ϕ  | < 20°) geopotential fields 
for the corresponding four modes on the dissipation 
parameters is shown in Fig. 3. Note that for compari-
son with Sakazaki and Hamilton (2020), the amplitude 
at each level  (σ) is calculated as follows,

( ) | ( , ) | ,� � � � �
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where μ 0 = sin 20°, and the phase at each level 
arg [ (σ)] is obtained by taking the argument of the 
complex number  (σ) as follows,

 ( ) ( , ) ( , ) .� � � � � � � �
�

�
= =

−∫
 

0

0

1
†

d 	 (63)

Similar to the eigenfrequency, as σR or αR* becomes 
small, the deviation of the amplitude and phase profile 
of each eigenmode from the VSE solution for the 
stationary isothermal atmosphere decreases, and the 
deviation does not become significant up to the 10 hPa 
level when σR = 1 ´ 10−3 and αR* = 1 ´ 10−5 s−1 (the 
default setting). In case (A), where both dissipation 
parameters are large, the deviation of the amplitude 
and phase structure from the VSE solution is clearly 
seen from the level of 100 hPa, but still, in this iso-
thermal stationary atmosphere, the phase tilt is very 
small compared to the cases of the eigenvalue analysis 
with the latitudinal/vertical structure of the zonal wind 
and temperature fields obtained from the reanalysis 
data, which will be shown later. Nevertheless, refer-
ring again to Table 1, it can be seen that in case (A), 
the eigenfrequency is significantly smaller than that of 
the LTE solution, which can be interpreted as an effect 
of the introduction of a sponge layer with a strong 
dissipative effect in the upper layer of the atmosphere, 
which effectively reduces the equivalent depth since 
the dissipative effect limits the vertical extent of the 

Table 1.  Dependence of the eigenfrequencies (cpd) of the zonal wavenumber 1 eigenmodes obtained from the eigenvalue 
analysis on the dissipation term parameter when a stationary isothermal atmosphere at 243.90 K is used as the background 
field. Each row corresponds to the Kelvin mode, the gravest equatorially symmetric eastward gravity mode, the westward 
Rossby-gravity mode and the gravest equatorially symmetric Rossby mode. Columns A – E represent different combina-
tions of dissipative parameters. A: σR = 1 ´ 10−2, αR* = 1 ´ 10−4 s−1; B: σR = 1 ´ 10−2, αR* = 1 ´ 10−5 s−1; C: σR = 1 ´  
10−3, αR* = 1 ´ 10−4 s−1; D (the default setting): σR = 1 ´ 10−3, αR* = 1 ´ 10−5 s−1; E: σR = 1, αR* = 0. The rightmost 
column shows the eigenfrequencies obtained from the LTE with an equivalent depth of 10 km.

A B C D E LTE
Kelvin
Eastward gravity
Westward Rossby-gravity
Rossby

0.7085
2.5042
0.8291
0.1866

0.7240
2.5351
0.8384
0.1946

0.7277
2.5419
0.8398
0.1954

0.7326
2.5521
0.8421
0.1974

0.7389
2.5649
0.8441
0.1990

0.7403
2.5684
0.8445
0.1992
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Lamb mode.
We now consider zonal mean zonal wind and tem-

perature distributions based on the reanalysis data for 
the eigenvalue analysis. Figure 4 shows the difference 
between the eigenfrequencies obtained from the ei-
genvalue analysis for the zonal mean zonal wind and 
the zonal mean temperature field and those obtained 
from the LTE with the equivalent depth of 10 km. 
The reason for showing such deviations is to facilitate 
comparison with Sakazaki and Hamilton (2020).  
Except for the Kelvin mode, where the deviation is 

close to zero, the deviations are positive for the east
ward modes and negative for the westward modes, 
with one exception (Rossby mode with wavenumber 
1). The zonal wavenumber dependence of the devi-
ations for each mode obtained from the eigenvalue 
analysis of the present study is in good quantitative 
agreement with the results of the spectral analysis 
of the reanalysis data shown in Figs. 12a and 12b of 
Sakazaki and Hamilton (2020). As we will see in the 
next paragraph, this dependence can be understood to 
some extent as an effect of the Doppler shift due to the 

Fig. 3.  Dependence of the vertical structures of the latitudinally averaged (| ϕ  | < 20°) geopotential fields of the 
zonal wavenumber 1 eigenmodes obtained from the eigenvalue analysis on the dissipation term parameter when 
a stationary isothermal atmosphere at 243.90 K is used as the background field. The amplitude of each mode as a 
function of the pressure is plotted as curves, and the longitudinal phase is indicated by points: (a) Kelvin mode, (b)  
the gravest equatorially symmetric Rossby mode, (c) the gravest equatorially symmetric eastward gravity mode, 
and (d) the westward Rossby-gravity mode. The labels indicating the dissipation parameter sets (A – E) are the 
same as in Table 1. The color legend is shown in the figure. The theoretical vertical amplitude structures obtained 
from the VSE for the stationary isothermal atmosphere are also shown in the figure.
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zonal flow. However, while the eastward modes, with 
the exception of the Kelvin modes, show an increase 
in deviation almost proportional to the zonal wave-
number, the westward modes show a dependence that 
is not linear, and for the 1st symmetric gravity and 
Rossby-gravity modes the wavenumber dependence is 
not even monotonic.

Next, in order to clarify the cause of the zonal wave-
number dependence of the deviations shown in Fig. 4, 

we perform eigenvalue analysis by separately assum-
ing the latitudinal/vertical structure of the zonal mean 
wind and zonal mean temperature fields based on the 
reanalysis data. Figure 5 shows the difference between 
the eigenfrequencies obtained from the eigenvalue 
analysis for the zonal mean zonal wind but with the 
global mean temperature field and those obtained from 
the eigenvalue analysis without the background wind 
but with the global mean temperature field. Similar 

Fig. 4.  Deviations (Δ f : vertical axis) between the eigenfrequencies obtained from the eigenvalue analysis for the 
zonal mean zonal wind and the zonal mean temperature field ( fModel) and those obtained from the LTE at the equiv-
alent depth of 10 km ( fTheory). The horizontal axis is the zonal wavenumber, with positive values indicating eastward  
modes and negative values westward modes. (a): for equatorially symmetric modes (Kelvin mode, 1st gravity 
mode, and the gravest Rossby mode). (b): for equatorially antisymmetric modes (Rossby-gravity mode and 1st 
gravity mode). The color legend is shown in the figure.

Fig. 5.  Same as Fig. 4 except that the deviation between the eigenfrequencies obtained from the eigenvalue analysis 
for the zonal mean zonal wind but with the global mean temperature field ( fWind) and those obtained from the ei-
genvalue analysis without the background wind but with the global mean temperature field ( f0 ) is shown.
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to Fig. 4, the deviations are close to zero for Kelvin 
waves and, with one exception (westward 1st antisym-
metric gravity mode with zonal wavenumber 1, the 
cause of which is discussed in Section 4.1), positive 
for eastward modes and negative for westward modes, 
which is considered to be an effect of the Doppler shift 
caused by mid-latitude westerly winds. The non-linear 
dependence of the deviation on the zonal wavenumber 
in the westward mode is also similar, although the 
value itself is different from the results in Fig. 4. 
However, there is a noticeable difference between the 
results shown in Figs. 5 and 4 in that in the former the 
deviation for the Rossby mode of wavenumber 1 is 
almost zero, so the positive deviation in the latter is 
not attributed to the zonal wind effect.

The effect of the latitudinal/vertical structure of 
the zonal mean temperature field is shown in Fig. 6 
without the effect of the zonal mean wind. Compared 
to Fig. 5, the deviations in Fig. 6 are small overall, 
indicating that the influence of the latitudinal variation 
of the temperature field is smaller than that of the 
zonal wind. From Fig. 6, it is clear that the latitudinal 
variation of the temperature field has the effect of 
increasing the eigenfrequencies of the Rossby modes, 
the cause of which will be discussed in Section 4.2. 
Therefore, the deviation of the Rossby mode with 
zonal wavenumber 1 in Fig. 4 is positive because the 
effect of the latitudinal variation of the temperature 
field exceeds that of the zonal wind. Note that the de-
viations shown in Fig. 4 are roughly equal to the sum 
of those in Fig. 5 and those in Fig. 6 for the Rossby 
and westward Rossby-gravity modes, but not for the 

other modes. The reason for this is discussed in Sec-
tion 4.3.

Since eigenvalue analysis provides not only the 
eigenfrequencies but also the structures of the eigen-
modes, we will now examine the structures of the 
eigenmodes obtained. Figure 7 shows the latitudinal 
structure of the absolute value of the surface pressure 
field of each mode obtained by the eigenvalue analysis 
with the zonal mean zonal wind and temperature field 
based on the reanalysis data with the corresponding 
Hough function structures underlaid. Except for the 
Rossby and westward Rossby-gravity modes with 
large zonal wavenumber, the latitudinal structures ob-
tained by the eigenvalue analysis are almost identical  
to the Hough function structure. For the Rossby and 
westward Rossby-gravity modes with large zonal 
wavenumber, there appears an equatorial asymmetry 
and the bimodal peaks become closer to the equator 
compared to the corresponding Hough modes. These 
features are different from those shown in Fig. 9 of 
Sakazaki and Hamilton (2020), where the latitudinal 
structures for not only the Rossby and westward  
Rossby-gravity modes but also several gravity modes 
differ significantly from the corresponding Hough 
functions.

Next, we examine the vertical structure of the 
eigenmodes obtained. Figure 8 shows the vertical 
structures of the latitudinally averaged (| ϕ  | < 20°) 
geopotential fields for the eigenmodes obtained from 
the eigenvalue analysis with the zonal mean zonal 
wind and temperature field based on the reanalysis 
data. Here, the vertical profiles of amplitude and phase 

Fig. 6.  Same as Fig. 5 except that the deviation between the eigenfrequencies obtained from the eigenvalue analysis 
without the background wind but with the zonal mean temperature field ( fTemp) and those obtained from the eigen-
value analysis without the background wind but with the global mean temperature field ( f0 ) is shown.
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Fig. 7.  Latitudinal structure of the absolute value of the surface pressure field of each mode obtained by the eigen-
value analysis with the zonal mean zonal wind and temperature field based on the reanalysis data (orange curve). 
The corresponding Hough function structures obtained by solving the LTE with the equivalent depth of 10 km are 
also underlaid (blue curve). The vertical axis is the latitude and the horizontal axis is the amplitude (normalized so 
that the maximum is the unity). The zonal wavenumbers (m) are shown at the top of the figure and the mode types 
are shown at the left of the figure. Here, (each row from the top to the bottom), “2nd G.(S)” denotes the 2nd sym-
metric gravity modes, “1st G.(S)” denotes the 1st symmetric gravity modes, “K.(S)” indicates the Kelvin modes, 
“R.(S)” denotes the (gravest) symmetric Rossby modes, “2nd G.(A-S)” denotes the 2nd antisymmetric gravity 
modes, “1st G.(A-S)” denotes the 1st antisymmetric gravity modes, and “R.-G.(A-S)” denotes the Rossby-gravity 
modes.
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Fig. 8.  Vertical structures of the latitudinally averaged (| ϕ  | < 20°) geopotential fields for the eigenmodes obtained 
from the eigenvalue analysis with the the zonal mean zonal wind and temperature field based on the reanalysis 
data. The amplitude of each mode as a function of the pressure is plotted as curves, and the longitudinal phase is 
indicated by points. The vertical amplitude structure obtained from the VSE for a stationary isothermal atmosphere 
at 243.90 K (Lamb mode structure) are also plotted (black lines). Note that since we are now considering eigen-
modes, the amplitude profile is meaningful, but the absolute value itself is not, so the amplitude of the Lamb mode is  
set much smaller than the amplitudes of the eigenmodes obtained. The mode types are shown at the top of the each 
panel. The zonal wavenumbers (m) are indicated by different colors, the legend of which is shown in each panel.
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of each mode are calculated by (62) and (63). For the 
Kelvin modes, the gravity modes, and the eastward 
Rossby-gravity modes, the amplitude profiles almost 
follow the Lamb mode structure from 100 hPa to 5 
hPa, and the phase is also almost constant below the 
10 hPa level. However, the amplification factor of the 
amplitude with decreasing pressure is smaller than the 
Lamb mode structure below the 100 hPa level, which 
is also the case for the Rossby and westward Rossby- 
gravity modes. On the other hand, for the Rossby 
and the westward Rossby-gravity modes with zonal 
wavenumbers 3 and above, the amplitude does not 
increase monotonically with decreasing pressure, and 
the phase is strongly tilted to the west above the 100 
hPa level. Except above the 5 hPa level, where the 
dissipative effects are strong, the vertical structure for 
each eigenmode shown in Fig. 8 is very similar to that 
of each eigenmode shown in Fig. 10 of Sakazaki and 
Hamilton (2020).

4.  Discussion and additional analysis

4.1  Effect of relative vorticity on the eigenfrequency
The effect of the zonal wind on the eigenfrequency 

of each eigenmode depends on the type of eigenmode 
and its zonal wavenumber, as shown in Fig. 5. Refer-
ring also to Fig. 7, for most of the eigenmodes with 
large amplitudes in the mid-latitudes, the deviations 
are positive for eastward modes and negative for 
westward modes, and the main cause of the deviations 
in Fig. 5 seems to be due to the Doppler shift of the 
mid-latitude westerlies in the troposphere. The devia-
tions for the Kelvin modes are close to zero, which is 
thought to be due to the large amplitude in the tropics; 

namely the effects of tropical easterlies cancels out 
that of extratropical westerlies. Similarly, for the west-
ward 1st symmetric gravity and westward Rossby- 
gravity modes, as the zonal wavenumber increases, the 
latitudinal structure of the eigenmode becomes more 
confined to the low-latitude region, which is thought 
to lead to the reduced susceptibility to mid-latitude 
westerlies and the non-monotonic wavenumber depen-
dence observed for these modes. However, the devia-
tion of the westward 1st antisymmetric gravity mode  
with zonal wavenumber 1 is positive, and this devia-
tion cannot be explained by the effect of the Doppler 
shift due to the zonal wind alone.

Then, in addition to the effect of the Doppler shift, 
the effect of relative vorticity due to zonal winds 
should be considered. To see the effect of the relative 
vorticity associated with the zonal flow, an eigenvalue 
analysis is performed for the case where the terms in 
which the relative vorticity associated with the zonal 

flow explicitly appears as − −( )∂
∂μ μ1

2U  in (35) and 

(36) are eliminated, and the results are shown in Fig. 
9. Note that this analysis does not neglect all terms 
that include the μ  partial derivative of the basic zonal 
wind field, but only the relative vorticity of the basic 
field that contributes to the absolute vorticity. In Fig. 
9, the deviations for the eastward modes are positive 
and those for the westward modes are negative except 
when the deviations are very small, and the deviation 
for the westward 1st antisymmetric gravity mode with 
zonal wavenumber 1 is also negative. The signs of 
these deviations are now explained by the Doppler 
shift of the zonal winds. In other words, comparing 

Fig. 9.  Same as Fig. 5 except that fWind are obtained by the eigenvalue analysis for the zonal mean zonal wind and 
the global mean temperature field with the basic field of relative vorticity set to zero.
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Fig. 5 and Fig. 9, it can be seen that not only the effect 
of the Doppler shift, but also the effect of the relative 
vorticity of the zonal winds changes the eigenfrequen-
cies, which is particularly evident as the positive devi-
ation of the westward antisymmetric 1st gravity mode 
of wavenumber 1 seen in Fig. 5. The change in the 
frequency of the gravity modes caused by the effect of 
relative vorticity may be due to the fact that the effec-
tive Colioris parameter is the planetary vorticity plus 
half the relative vorticity in the dispersion relation for 
inertial gravity waves, as pointed out by Kunze (1985) 
and Jones (2005).

4.2  �Mechanism for the change of the eigenfrequency 
due to the latitudinal temperature gradient

Let us now consider the reasons why the eigen-
frequency deviation is as shown in Fig. 6, where the 
zonal wind field is ignored and the latitudinal structure 
of the temperature field is taken into account. The 
influence of the latitudinal structure of the temperature 
field of the background field on the wave motion is 
considered to be not only through the temperature 
itself but also through the distribution of the Brunt-
Väisälä frequency and through the distribution of the 
potential vorticity. As an effect of the temperature 
profile itself, as shown in Fig. 2, the temperature in the 
lower troposphere is naturally higher in the equatorial  
region than in the global mean, and this leads to the 
equivalent depth in the equatorial region being locally 
greater than that given by the global mean vertical 
temperature profile (this can be seen by comparing 

the global mean with the tropical mean for the Lamb 
mode in column H of Table 1 in Ishizaki et al. 2023), 
which can lead to the deviation of frequency for 
the Kelvin mode seen in Fig. 6, since it has a large 
amplitude at the low latitude. On the other hand, the 
effects through the distribution of the Brunt-Väisälä 
frequency and through the distribution of the potential 
vorticity are considered on the basis of Fig. 10, which 
shows both fields for the case where the vertical dis-
tribution of the global mean temperature is given and 
where the latitudinal structure of the temperature field 
is considered. In Fig. 10, the Brunt-Väisälä frequency  
is larger at low latitudes for altitudes below 300 hPa 
when the latitudinal/vertical structure of the tempera-
ture field is considered than when the global mean 
altitude distribution is given. This difference in the 
distribution of the Brunt-Väisälä frequencies may ex-
plain the large deviations for the frequencies of gravity 
modes and eastward Rossby-gravity modes with large 
zonal wavenumbers shown in Fig. 6. The frequencies 
of these modes increase as the zonal wavenumber in-
creases, so it is not surprising that the deviations when 
considering the latitudinal dependence of temperature 
are also larger for those with larger zonal wavenum-
bers. However, since the latitudinal structures of these 
modes concentrate at lower latitudes with increasing 
zonal wavenumber, as shown in Fig. 7, these modes 
are more affected by the enhanced Brunt-Väisälä fre-
quency in the equatorial region due to the latitudinal 
dependence of temperature, and the frequency of these 
modes may increase through the increase in restoring 

Fig. 10.  Distribution of (contours) the Ertel’s potential vorticity and (color shading) the Brunt-Väisälä frequency for 
the zonal mean field with the zonal wind neglected. (a): the case where the global mean field is used as the tem-
perature field. (b): the case where the latitudinal structure of the temperature field is taken into account. Note that 
the unit of the potential vorticity is 0.5 ´ 106 m2 K s−1 kg−1 and the contour intervals are not even.
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force. In addition, the absolute value of the latitudinal  
derivative of the potential vorticity distribution is 
larger at altitudes from 300 hPa to 100 hPa in the 
extratropics for the case with the latitudinal/vertical 
structure of the temperature field than for the case 
with the global mean temperature distribution. This 
difference in the potential vorticity gradient is consid-
ered to be the reason for the positive deviation for the 
Rossby and westward Rossby gravity modes, which 
is particularly large for small zonal wavenumbers in 
Fig. 6, since the restoring force for these modes is 
increased by the enhanced β-effect.

4.3  �Considerations on the effect of deviations in the 
value of equivalent depth

The above discussion has been made on Figs. 5 and 
6, which show the results of evaluating the deviation 
of the natural frequency separately for the zonal wind 
field and the effect of the temperature field, respective-
ly, and it should be noted that Fig. 4, which shows the 
deviation from the theoretical solution when both the 
zonal wind field and the temperature field are consid-
ered, is not necessarily the sum of the results of Figs. 5 
and 6. This is not so much because the eigenvalues of 
the matrix do not respond linearly to the linear combi-
nation of the matrix itself, but rather because in Fig. 4 
the reference is the theoretical solution for an equiv-
alent depth of 10 km according to Figs. 12a and 12b 
of Sakazaki and Hamilton (2020), whereas in Figs. 
5 and 6 the reference is the stationary atmosphere 
given a vertical profile of the global mean temperature 
field. Figure 11 is a redraw of Fig. 4 as the deviation 

from the case where the vertical profile of the global 
mean temperature is given, instead of the deviation 
from the theoretical solution at the equivalent depth 
of 10 km. Comparing the deviations between Fig. 11 
and Fig. 4, we see that they are roughly consistent for 
the Rossby and westward Rossby-gravity modes, but 
for the Kelvin, gravity and eastward Rossby-gravity 
modes, the former is significantly larger than the latter. 
To consider the reasons for this discrepancy, let us 
examine the effect of setting the reference equivalent 
depth in Fig. 4 to 10 km. This 10 km setting follows 
Sakazaki and Hamilton (2020), which compared three 
reference equivalent depths of 9.5, 10.0, and 10.5 
km and concluded that the 10.0 km setting was most 
consistent with the results of the spectral analysis. It 
was also noted that for the Kelvin mode the deviation 
was close to zero when the reference equivalent depth 
was set to 10.0 km. However, the vertical profile of 
the global mean temperature used in the present study 
corresponds to that used to calculate the equivalent 
depth in the case of the long-term global average in 
column H of Table 1 of Ishizaki et al. (2023), and 
the equivalent depth for the Lamb mode calculated 
there was 9.91 km. Furthermore, as shown in column 
D of Table 1 of the present study, for the dissipation 
assumed here, the frequency of the Kelvin mode is 
about 1 % lower than the theoretical value, even in an 
isothermal atmosphere, which can be regarded as the 
effective equivalent depth being slightly smaller due 
to dissipation. Taking these considerations into ac-
count, a comparison of the deviation of each mode in 
the case of a stationary atmosphere given the vertical 

Fig. 11.  Same as Fig. 4 except that the deviation between the eigenfrequencies obtained from the eigenvalue anal-
ysis for the zonal mean zonal wind and temperature field ( fModel) and those obtained from the eigenvalue analysis 
without the background wind but with the global mean temperature field ( f0 ) is shown.
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profile of the global mean temperature with setting the 
reference equivalent depth for the LTE to 10 km and 
9.8 km is shown in Fig. 12. Figure 12 shows that the 
deviations for the Rossby modes and the westward 
Rossby-gravity modes are almost negligible whether 
the reference equivalent depth is set to 9.8 km or 10 
km. However, for the high frequency modes, such as 
the Kelvin modes, the gravity modes and the eastward 
Rossby-gravity modes, the effect of changing the 
reference equivalent depth is large. Given the verti-
cal profiles of the global mean temperature and the 
dissipation coefficients assumed in the present study, 
the effective equivalent depth is found to be about 
9.8 km, because the deviation is close to zero even 
for these high frequency modes when the reference 
equivalent depth is set to 9.8 km. From the above, it is 
clear that the difference between Fig. 11 and Fig. 4 is 
caused by the fact that the effective equivalent depth 
in the present model is 9.8 km instead of 10 km, given 
the vertical profile of the global mean temperature. 
Since the effective equivalent depth can vary to some 
extent depending on the dissipation setting, the very 
good quantitative agreement between Fig. 4 in the 
present study and Figs. 12a and 12b of Sakazaki and 
Hamilton (2020) may mean that the dissipation used 
in the present study has the same degree of influence 
on the free oscillation modes as the dissipation in the 
model used in ERA5 and/or the dissipation existing 
in the real atmosphere. Note again that with respect to 
the Rossby and westward Rossby-gravity modes, the 

influence of the small differences in equivalent depth 
is negligible and does not interfere with the discussion 
already made such that the effect of the latitudinal 
variation of the temperature field is larger than that of 
the zonal wind on the eigenfrequency of the Rossby 
mode with zonal wavenumber 1.

4.4 � Mechanism for the distortion of vertical structures 
under the influence of background fields

Let us now consider the determinants of the vertical 
structure of the eigenmodes. As shown in Fig. 8, the 
amplitude profiles of the Kelvin, gravity, and eastward 
Rossby-gravity modes almost follow the theoretical 
solution of the Lamb mode under the assumption of an  
isothermal atmosphere. However, the rate of ampli-
tude increase with increasing altitude is slightly lower  
in the upper levels above about 5 hPa where the 
dissipation of the model used in the present study is 
stronger, and in the lower levels below 100 hPa. For 
these high-frequency modes, since they are relatively 
insensitive to zonal winds, the deviation of the vertical 
amplitude profile from the theoretical solution for an 
isothermal atmosphere can be approximately explained  
by the vertical temperature profile. In Ishizaki et al. 
(2023), the VSE in the absence of dissipation is solved 
by a shooting method, given the same vertical profile 
of global mean temperature as used in the present 
study, to compute the equivalent depth and vertical 
structure for the Lamb and Pekeris modes, respective-
ly. However, the vertical structure shown there is the 

Fig. 12.  Same as Fig. 4 except that the deviation between the eigenfrequencies obtained from the eigenvalue analy-
sis without the background wind but with the global mean temperature field ( f0 ) and those obtained from the LTE 
at the equivalent depth (h) of 9.8 km ( fTheory) are plotted (closed dots). The deviation for the case where fTheory is 
obtained at the equivalent depth of 10 km is also plotted (open circles). Note that the range of the vertical axis is 
different from that in Figs. 4, 5, 6, 9, and 11.
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logarithmic pressure velocity scaled by the square root 
of the pressure, W, so to convert it to the geopotential 
perturbation profile corresponding to Fig. 8 in the 
present study, we should plot: 

dW
dz

W ez−( )
2

2/ 	 (64)

according to Eq. (4.2.6a) in Andrews et al. (1987), 
where z is the dimensionless logarithmic pressure 
coordinate as defined in Section 2 of the present study. 
The resulting profile is shown in Fig. 13. Comparing 
Fig. 8 with Fig. 13, it can be seen that the feature of 
the vertical profiles of the amplitudes of the Kelvin, 
gravity, and eastward Rossby-gravity modes observed 
in Fig. 8, i.e., that they mostly follow the amplitude 
profile of the theoretical solution assuming an isother-
mal atmosphere, but that below the 100 hPa surface, 
the amplitude increase rate with height is smaller than 
that of the theoretical solution, is consistent with the 
solution obtained by the shooting method shown in 
Fig. 13. Note again, however, that the lower amplifi-
cation rate above the 5 hPa surface seen in Fig. 8 is 
due to dissipation, which is not seen in the calculation 
of Fig. 13, which does not include dissipation, and 
should be compared with Fig. 2. Note also that in Fig. 
13, the decrease in the amplification rate above the 
1 hPa surface is a reflection of the negative vertical 

temperature gradient, as is the case in the lower part 
below the 100 hPa surface. It can be understood that 
the amplification rate with increasing altitude is small-
er in regions where the vertical temperature gradient 
is negative, as follows. Considering Eq. (3) of Ishizaki 
et al. (2023) and (64), the amplification rate r of the 
geopotential disturbance with increasing dimension-
less altitude z can be approximately expressed as,

r kz= − −1

2

2
, 	 (65)

where kz is the dimensionless complex vertical wave-
number, which is defined as,
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where T−* (z) is the dimensional temperature of the 
background field. In (66), since g* h* = γR*T−* for an 
isothermal atmosphere, the amplification rate becomes:

r = − − = − − −

= − − =

1

2

1

4

1

2

1

4
1

1

2

1

2
1 2

�
�

� �

� �

( )

( ) . 	 (67)

On the other hand, in regions where T−* (z) is a decreas-
ing function of z, the temperature gradient is found to 
have an effect in the direction of reducing the amplifi-
cation rate.

Next, focusing on the vertical profile of the phase 
shown in Fig. 8, it is noticeable that for Rossby and 
Rossby-gravity modes at wavenumbers 3 and above, 
the phase is significantly tilted to the west with 
heights in the upper levels above 100 hPa. This large 
westward phase tilt is not observed in the eigenvalue 
analysis performed to draw Fig. 6 when only the zonal 
wind is removed (not shown), so it is thought that the 
cause of this is mainly due to the latitudinal/vertical 
distribution of the zonal wind. In the following, we 
discuss qualitatively the effects of zonal flows on the 
phase structures of these modes. For simplicity, we 
follow Matsuno (1966) and assume that the dimen-
sional eastward phase velocities of the 1st symmetric 
Rossby and Rossby-gravity modes in the equatorial 
beta-plane are expressed by the following equations, 
respectively.
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Fig. 13.  The vertical amplitude structure of the 
geopotential of Lamb mode obtained by solving 
the VSE under the global mean temperature field 
(blue curve). That obtained for the isothermal at-
mosphere is also plotted (black curve). Similar to 
Fig. 8, the absolute value itself is not meaningful, 
so the amplitude profile for the case of isothermal 
atmosphere (black curve) is set much smaller than  
that for the case of global mean temperature filed 
(blue curve).
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where kx* is the dimensional longitudinal wavenumber, 
β * = 2Ω*/a* , lE* = ( g* h*)

1/4 β *
−1/2 is the dimensional 

equatorial deformation radius, and U−* (z) is the back-
ground eastward wind speed, which we assume to be 
a function of z only. To be an eigenmode, the phase 
velocity must be constant independent of z, and since 
β * and kx* are constant, the local lE* must vary with z 
in the presence of the z-dependent background flow. 
Once the local lE* is determined in this way, the local 
g* h* is obtained as g* h* = lE*

4 β *
2, and then kz

2 is deter-
mined by (66). The vertical profile θ(z) of the phase 
relative to z = 0 for each mode is determined by nu-
merically solving the following initial value problem 
for the differential equation.

∂
∂
= =θ θ

z
kzRe( ); ( ) ,0 0 	 (70)

where Re(∙) is the operation of taking the real part 
of a complex number. To determine kz from (66), we 
further assume that the structures of the modes we are 
now considering are sufficiently Lamb-mode-like at z 
= 0, and we set h* = 10 km at z = 0. Furthermore, if 
the right-hand side of (66) is positive, there remains 
some arbitrariness in how the sign of Re (kz ) is de-
termined, but we will adopt the negative sign as the 
solution where the energy propagates upwards. Figure 
14 shows the vertical profiles of the Rossby and 
westward Rossby-gravity mode phases obtained in 
this way. Here, T−* (z) and U−* (z) are given by averaging 
the reanalysis data 20°N to 20°S, and the numerical 
calculation of (70) is done by the classical 4th-order 

Runge-Kutta method with setting the increments of 
z as Δ z = -ln (10−3)/104. In Fig. 14, the phases are 
more tilted for larger zonal wavenumbers and for the 
westward Rossby-gravity mode than for the Rossby 
modes. The westward tilts are observed above 100 
hPa, and this altitude coincides with the easterly 
region in the tropics shown in Fig. 2. These results 
are qualitatively consistent with Fig. 8 in the present 
study and Fig. 10 of Sakazaki and Hamilton (2020).

The effect of the zonal wind on the phase tilt of the 
modes discussed in the previous paragraph can be 
seen more clearly in the eigenvalue analysis for the 
case of a rigid-body rotating wind. Figure 15 shows 
the vertical structure of the latitudinally averaged (| ϕ  | 
< 20°) geopotential disturbances for the eigenmodes 
obtained by the eigenvalue analysis using the vertical 
profile of the global mean temperature based on the 
reanalysis data and a rigid-body rotation wind defined 
as follows,

U z Uz( , ) cos( ),� �=±� 	 (71)

where, we set ΔU = 1
γ  ´ 2.5 m s−1. This means that if 

we take a dimensional log-pressure height as z* = H* z 

and set H* = 1
γ  ´ 10 km, the wind speed at the equator 

increases by 0.25 m s−1 per 1 km of the log-pressure 
height. Figure 15 shows that for westerly rigid-body 
rotating winds, the phases of these modes do not 
change much with altitude, while for easterly winds, 
they tilt to the west with altitude, and the tilt is more 

Fig. 14.  The vertical structures of the phase for the (a) Rossby and (b) westward Rossby-gravity modes calculated 
by assuming that the frequencies at any level, determined by the respective dispersion relation in the equatorial 
β-plain approximation, are equal and using the latitudinally averaged (| ϕ  | < 20°) zonal wind and temperature 
based on the reanalysis data. The zonal wavenumbers (m) are indicated by different colors, the legend of which is 
shown in each panel.
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pronounced for the larger wavenumber modes. Com-
paring the westerly and easterly cases, even if kz

2 < 0 
and the phase does not change with height at the lower 
level, the vertical structure of the mode becomes wavy 
as kz

2 > 0 when the easterly wind increases with 
height, which together with the dissipation effect in 
the upper region of the model leads to the westward 
phase tilt. It can also be understood that the degree of 
westward tilt in the case of easterly winds differs de-
pending on the type of mode and the zonal wave
number, since the value of kz differs for the same 
background wind. In Fig. 15, not only the phase but 
also the amplitude deviates from the Lamb mode 
structure. Particularly in the case of westerly winds, 
the amplitudes decrease with height for modes with 
large zonal wavenumbers. This is because kz

2 becomes 
negative and has a large absolute value for westerly 
winds, and the amplification rate calculated by (65) 
becomes negative. Note again, however, that the effect 
of dissipation is stronger above 10 hPa. To summarize 
what has been discussed above, particularly for the 
Rossby-gravity mode and at larger zonal wavenum-
bers, in the easterly wind regions, the phase is tilted to 

the west and the amplitude is vertically amplified 
more than in the Lamb mode structure, while in the 
westerly wind regions, the phase remains almost con-
stant and the amplitude is more evanescent. In Fig. 8, 
for the Rossby and westward Rossby-gravity modes 
with zonal wavenumber 3 or more, the phase is tiled 
to the west above about 100 hPa, and the amplitude 
does not increase monotonically with decreasing pres-
sure. Considering the above analysis, the westward 
phase tilt is due to the easterly winds in the strato-
spheric equatorial regions, while the amplitude decay 
with decreasing pressure may be due to the strong 
mid-latitude westerlies.

4.5 � Mechanism for the distortion of latitudinal 
structures under the influence of background 
fields

Before closing this section, let us discuss the 
difference between the latitudinal structures obtained 
by the eigenvalue analysis and the Hough function 
structures. The Rossby and westward Rossby-gravity 
modes with large zonal wavenumbers have slow phase 
velocities and are sensitive to the zonal wind, which 

Fig. 15.  Same as Fig. 8 except that the vertical structures of the geopotential disturbances for the Rossby and west-
ward Rossby-gravity modes are obtained by the eigenvalue analysis with the vertical profile of the global mean 
temperature based on the reanalysis data and the rigid-body rotation wind defined by (71): (a) and (b) case for the 
easterly rigid-body rotation wind; (c) and (d) case for the westerly rigid-body rotation wind.
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can lead to changes in the latitudinal structures in the 
same way as the vertical structure has changed. To 
investigate the effect of the latitudinal profile of the 
zonal wind on the latitudinal structures of the eigen-
modes, the eigenvalue analysis for the zonal wind at 
the 500 hPa surface based on the reanalysis data with 
a constant mean depth of 10 km using the barotropic 
atmospheric model is performed according to the 
method of Kasahara (1980). Figure 16 shows the 
latitudinal structures of the geopotential disturbance 
for the Rossby and westward Rossby-gravity modes 
obtained by the eigenvalue analysis of the barotropic 
atmospheric model. For both types of eigenmodes, 
the absolute values of the amplitudes are larger in the 
northern hemisphere with notable differences at larger 
zonal wavenumbers. The characteristics of the ampli-
tudes being larger in the northern hemisphere at larger 
zonal wavenumbers is consistent with Fig. 7, but the 
peaks of the amplitude becoming closer to the equator 
cannot be observed. Therefore, it seems necessary to 

consider not only the latitudinal profile of the zonal 
winds but also the vertical structure of the zonal winds 
in order to understand the amplitude concentration 
near the equator in the case of large wavenumbers of 
these modes, as seen in Fig. 7.

5.  Summary

Inspired by the comprehensive detection of at-
mospheric free oscillation modes using the ERA5 
reanalysis data by Sakazaki and Hamilton (2020), in 
the present study a linear eigenvalue analysis of the 
primitive equations was performed with the zonal 
mean wind and temperature fields based on the ERA5 
data as the basic fields to investigate the effect of 
background fields on the atmospheric free oscillations 
with a Lamb mode-like vertical structure. Specifically, 
the primitive equations in the sigma coordinate were 
discretized for a given basic field uniform in longitude 
using a discretization of the three-dimensional spectral 
method according to Ishioka et al. (2022), with spher-

Fig. 16.  Same as Fig. 7 except that the latitudinal structures plotted by the orange curve are those of the geopotential 
fields obtained the eigenvalue analysis for the 500 hPa surface zonal wind based on the reanalysis data with the 
constant mean depth of 10 km using the barotropic atmospheric model, and those for only the Rossby and west-
ward Rossby-gravity modes are plotted.
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ical harmonic expansion in the horizontal direction 
and Legendre polynomial expansion in the sigma 
direction. The equations were solved numerically as a 
matrix eigenvalue problem for each zonal wavenum-
ber, and the eigenfrequencies and eigenvectors were 
obtained. Since such an eigenvalue analysis provides 
not only Lamb modes deformed by the background 
field but also spurious eigenmodes due to the finite 
model top, we introduced a dissipative term in the 
model for linear eigenvalue analysis, and focusing 
on the vertical phase structure, latitudinal structure, 
eigenfrequency, and decay rate in the time direction 
of each eigenmode, we extracted Lamb-mode-like 
solutions from these eigenmodes. The zonal mean 
of the ERA5 reanalysis data from 2011 to 2020 was 
used as the basic field for the eigenvalue analysis. In 
addition, to evaluate the influence of the latitudinal/
vertical structure of the zonal wind and temperature 
fields, eigenvalue analyses were also performed for 
the cases where the zonal wind was set to zero and 
where the vertical structure of the global mean tem-
perature field was given as the temperature field for 
comparison. The eigenfrequencies of the eigenmodes 
obtained by eigenvalue analysis for the zonal mean 
wind and temperature field were in good agreement 
with those obtained by spectral analysis in Sakazaki 
and Hamilton (2020), indicating that the deviations of 
the eigenfrequencies obtained by the spectral analysis 
from those obtained by LTE at the equivalent depth of 
10 km, which is thought to be the typical equivalent 
depth of the Lamb mode for the real atmosphere, 
are mainly due to the zonal wind and temperature 
variations in the latitudinal and vertical directions. 
The effect of the zonal wind on the eigenfrequencies 
of the obtained modes was larger than that of the 
latitudinal variation of the temperature field for most 
eigenmodes, but this was not the case for the Rossby 
mode with zonal wavenumber 1, and for this mode, 
the effect of the latitudinal temperature variation was 
dominant. This result was in agreement with that of 
the spectral analysis of Sakazaki and Hamilton (2020) 
and the linear eigenvalue analysis of the shallow water 
equations of Kasahara (1980). The eigenvalue analysis 
also showed that the effect of the zonal wind on the 
eigenfrequencies includes not only the Doppler shift 
effect, but also the effect of the latitudinal derivative 
of the zonal wind, i.e., the vorticity.

The vertical structures of the geopotential distur-
bances of the eigenmodes obtained by the eigenvalue 
analysis were also in good agreement with those 
obtained in Sakazaki and Hamilton (2020), especially 
in the sense that two types of differences from the  

theoretical vertical structure of the Lamb mode for 
a stationary isothermal atmosphere were observed. 
One of these differences was that for most of the 
eigenmodes obtained, the amplitude amplification rate 
with increasing altitude was smaller than that of the 
theoretical Lamb mode solution below 100 hPa. This 
is due to the negative vertical temperature gradient 
in the troposphere. The other difference was that for 
the Rossby and westward Rossby-gravity modes with 
large zonal wavenumbers, the phase was strongly 
tilted to the west above 100 hPa and the amplitude 
decay was also observed over a wide range of alti-
tudes. This phase tilt was qualitatively explained using 
the dispersion relation of the corresponding equatorial 
wave modes with assuming that the phase speed of 
each eigenmode should be independent of the altitude. 
That is, these modes with slow phase speeds must 
have a wavy vertical structure in the presence of a cer-
tain strength of the background easterly wind, while 
they must have more evanescent vertical structures in 
the westerly wind regions than that for the theoretical 
Lamb mode solution for a stationary isothermal atmo-
sphere. The effect of the background wind direction  
on the vertical structure of the eigenmodes was 
similarly explained by Salby (1981a, b) using the re-
fractive index of the waves, and the explanation here 
is not necessarily brand new, but it is unique in that 
the phase structure was specifically calculated using 
dispersion relations and compared with the results of 
the eigenvalue analysis.

The latitudinal structures of the surface pressure 
fields of the eigenmodes obtained by the eigenvalue 
analysis in the present study were almost identical to 
the structures of the corresponding Hough functions 
for Kelvin modes, gravity modes and eastward propa-
gating Rossby-gravity modes assuming an isothermal 
stationary atmosphere. However, for the westward 
Rossby-gravity modes and Rossby modes with slow 
phase speeds, i.e., large zonal wave numbers, obtained 
in the present study, the latitudinal distribution of their 
amplitudes deviated from the theoretical Hough func-
tion structure, the equatorial symmetry was broken, 
and the peaks were shifted more equatorward than in 
the Hough function case. In Sakazaki and Hamilton 
(2020), the latitudinal structure of the amplitudes of 
the eigenmodes extracted from the spectral analysis 
of the ERA5 data also showed differences from the 
theoretically obtained structure of the Hough modes. 
The fact that the differences were large for the west-
ward Rossby-gravity and the Rossby modes with large 
zonal wavenumbers was consistent with the results of 
the present study, but the differences from the Hough 
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modes in Sakazaki and Hamilton (2020) were much 
larger than those obtained in the present study. More-
over, the tendency for the amplitudes in the equatorial 
regions to be larger than those of the corresponding 
Hough modes was observed for several gravity modes 
in Sakazaki and Hamilton (2020), but no such differ-
ence was observed for the gravity modes obtained in 
the present study, and in this respect, too, the results 
of the present study were inconsistent with those of 
the spectral analysis of Sakazaki and Hamilton (2020). 
This discrepancy may be due to the limited duration of 
the time window analyzed by Sakazaki and Hamilton 
(2020), or to contamination from other eigenmodes 
when the latitudinal structure of each mode was deter-
mined by regression in Sakazaki and Hamilton (2020), 
as well as to the influence of the topography and sea-
land distribution in the real atmosphere.

Finally, let us describe the advantages and points to 
note of the method of the eigenvalue analysis of the 
free oscillation modes in the present study in compari-
son with previous studies. In a sense, the method of the  
present study is an extension of the two-dimensional 
eigenvalue analysis for the barotropic atmospheric 
model of Kasahara (1980) to the three-dimensional 
primitive equations. Compared to methods such as 
Geisler and Dickinson (1976), Schoeberl and Clark 
(1980), and Salby (1981a, b), which searched for 
resonant solutions by determining the frequency of 
the forcing, the present method has the advantage that 
individual eigenmodes can be obtained directly at 
once, and even if there are several modes with close 
eigenfrequencies, they can be extracted separately. On 
the other hand, a point to note of the eigenvalue anal-
ysis performed in the present study is that the model 
used in the present study is based on the formulation 
of the three-dimensional spectral method of Ishioka et 
al. (2022), which results in a coarse grid spacing in the 
upper layers. It is therefore not suitable for investigat-
ing the structure of free oscillations in the upper layers 
of the atmosphere. In addition, a weak dissipation was 
introduced in the present study to suppress spurious 
modes due to the finite model top, but this is only 
for convenience and does not properly correspond to 
the dissipation in the real atmosphere. Therefore, our 
future task will be to perform the eigenvalue analysis 
in a revised three-dimensional model with narrow 
grid spacing also up to the mesosphere with realistic 
dissipation and to investigate the frequencies and lati-
tudinal/vertical structures of the Lamb modes affected 
by a background field. Such an eigenvalue analysis 
using the model capable of adequately resolving the 
higher atmospheric regions would allow the analysis 

of the eigenmodes corresponding to the Pekeris modes 
detected in Watanabe et al. (2022). Furthermore, in 
the present study the 10-year averaged zonal wind 
and temperature fields were used as the basic fields, 
but more complex latitudinal/vertical structures of the 
Lamb modes are expected, especially at the solstice 
condition as shown by Salby (1981b), when the north-
south asymmetry of the basic fields is significant. 
Given such a background field, where a strong east-
erly wind appears in the mesosphere, critical layers 
for Rossby and westward Rossby-gravity modes 
will appear. In such cases, the eigenmode extraction 
method as proposed in the present study may not work 
well. Therefore, as our future work, we should per-
form an eigenvalue analysis with taking into account 
the seasonal dependence of the background field and, 
if necessary, modify the eigenmode extraction method 
to investigate the seasonal characteristics of the Lamb 
modes and compare them with those obtained in ob-
servational studies. (e.g., Sekido et al. 2024).

Data Availability Statement

For the ERA5, pressure-level data (Hersbach et al.  
2023) were downloaded from https://cds.climate.
copernicus.eu/cdsapp#!/dataset/reanalysis-era5- 
pressure-levels?tab=overview, while model-level data 
(Hersbach et al. 2017) were obtained through the Me-
teorological Archival and Retrieval System (MARS). 
The datasets generated and analyzed in the present 
study are available from the corresponding author on 
reasonable request.
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