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Abstract
Quantum computational advantage refers to an existence of com-
putational tasks that are easy for quantum computing but hard
classically. Unconditionally showing quantum advantage is beyond
our current understanding of complexity theory, and therefore
some computational assumptions are needed. Which complexity
assumption is necessary and sufficient for quantum advantage? In
this paper, we show that inefficient-verifier proofs of quantumness
(IV-PoQ) exist if and only if classically-secure one-way puzzles
(OWPuzzs) exist. As far as we know, this is the first time that a
complete cryptographic characterization of quantum advantage is
obtained. IV-PoQ are a generalization of proofs of quantumness
(PoQ) where the verifier is efficient during the interaction but may
use unbounded time afterward. IV-PoQ capture various types of
quantum advantage previously studied, such as sampling and search
based quantum advantage. Previous work [Morimae and Yamakawa,
Crypto 2024] showed that IV-PoQ can be constructed from OWFs,
but a construction of IV-PoQ from weaker assumptions was left
open. Our result solves the open problem, because OWPuzzs are
believed to be weaker than OWFs. OWPuzzs are one of the most
fundamental quantum cryptographic primitives implied by many
quantum cryptographic primitives weaker than one-way functions
(OWFs), such as pseudorandom unitaries (PRUs), pseudorandom
state generators (PRSGs), and one-way state generators (OWSGs).
The equivalence between IV-PoQ and classically-secure OWPuzzs
therefore highlights that if there is no quantum advantage, then
these fundamental cryptographic primitives do not exist. The equiv-
alence also means that quantum advantage is an example of the
applications of OWPuzzs. Except for commitments, no application
of OWPuzzs was known before. Our result shows that quantum
advantage is another application of OWPuzzs, which solves the
open question of [Chung, Goldin, and Gray, Crypto 2024]. More-
over, it is the first quantum-computation-classical-communication
(QCCC) application of OWPuzzs. To show the main result, we in-
troduce several new concepts and show some results that will be
of independent interest. In particular, we introduce an interactive
(and average-case) version of sampling problems where the task is
to sample the transcript obtained by a classical interaction between
two quantum polynomial-time algorithms. We show that quantum
advantage in interactive sampling problems is equivalent to the
existence of IV-PoQ, which is considered as an interactive (and
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1 Introduction
Quantum computational advantage refers to the existence of com-
putational tasks that are easy for quantum computing but hard
classically. Unconditionally showing quantum advantage is ex-
tremely hard, and is beyond our current understanding of com-
plexity theory.1 Some computational assumptions are therefore
required. Which complexity assumption is necessary and sufficient
for quantum advantage? As far as we know, no complete character-
ization of quantum advantage has been achieved before.

In this paper, we identify a cryptographic assumption that is
necessary and sufficient for quantum advantage. Our main result is
the following one:23

Theorem 1.1. Inefficient-verifier proofs of quantumness (IV-PoQ)
exist if and only if classically-secure one-way puzzles (OWPuzzs)
exist.

As far as we know, this is the first time that a complete crypto-
graphic characterization of quantum advantage is obtained.

1There are several interesting results (such as [17]) that show unconditional quantum
advantage by restricting classical computing. In this paper, we consider any polynomial-
time classical computing.
2In this paper, all classically-secure OWPuzzs are ones with (1−negl(𝜆) )-correctness
and (1 − 1/poly(𝜆) )-security. Unlike quantumly-secure OWPuzzs, we do not know
how to amplify the gap for classically-secure OWPuzzs.
3In this paper, we consider the uniform adversarial model (i.e., adversaries are modeled
as Turing machines), and some steps of the proofs of Theorem 1.1 crucially rely on the
uniformity of the adversary. We leave it open to prove (or disprove) the non-uniform
variant of Theorem 1.1.
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What are IV-PoQ?. IV-PoQ are a generalization of proofs of quan-
tumness (PoQ) [16]. A PoQ is an interactive protocol between a
prover and a classical probabilistic polynomial-time (PPT) verifier
over a classical channel. There exists a quantum polynomial-time
(QPT) prover such that the verifier accepts with high probability
(completeness), but for any PPT prover the verifier rejects with
high probability (soundness). PoQ can be constructed from sev-
eral cryptographic assumptions, such as (noisy) trapdoor claw-free
functions with the adaptive-hardcore-bit property [16], trapdoor
2-to-1 collision-resistant hash functions [31], (full-domain) trap-
door permutations [43], quantum homomorphic encryptions [32],
or knowledge assumptions [8]. Non-interactive PoQ are possible
based on the hardness of factoring [47] or random oracles [50].

IV-PoQ [44] are the same as PoQ except that the verifier’s final
computation to make the decision can be unbounded. IV-PoQ are a
generalization of PoQ, and as we will explain later, IV-PoQ capture
various types of quantum advantage studied so far, such as sampling
and search based quantum advantage.

Identifying a necessary and sufficient assumption for the exis-
tence of (IV-)PoQ remained open. In particular, in [44], IV-PoQ
were constructed from classically-secure OWFs, but the problem
of constructing IV-PoQ from weaker assumptions was left open
in that paper. Our main result Theorem 1.1 solves the open prob-
lem, because as we will explain later, OWPuzzs are believed to
be weaker than OWFs [33, 35, 42]. Moreover, a known necessary
condition for the existence of IV-PoQ was only the almost trivial
one: BPP ≠ PP4 [44]. Our main result Theorem 1.1 improves this
to a highly non-trivial necessary condition, namely, the existence
of classically-secure OWPuzzs.5

What are OWPuzzs? In classical cryptography, the existence
of OWFs is the minimum assumption [29], because many primi-
tives exist if and only if OWFs exist, such as pseudorandom gen-
erators (PRGs), pseudorandom functions (PRFs), zero-knowledge,
commitments, digital signatures, and secret-key encryptions (SKE),
and almost all primitives imply OWFs. On the other hand, re-
cent active studies have revealed that in quantum cryptography
OWFs are not necessarily the minimum assumption. Many funda-
mental primitives have been introduced, such as pseudorandom
unitaries (PRUs) [30], pseudorandom function-like state genera-
tors (PRFSGs) [7], unpredictable state generators (UPSGs) [41],
pseudorandom state generators (PRSGs) [30], one-way state gen-
erators (OWSGs) [42], EFI pairs [15], and one-way puzzles (OW-
Puzzs) [33]. These could exist even if OWFs do not exist [35, 36, 38],
but still imply several useful applications such as message au-
thentication codes [7], commitments [7, 42], multi-party computa-
tions [7, 11, 25, 42], secret-key encryptions [7], private-key quantum
money [30], digital signatures [42], etc.

In particular, one-way puzzles (OWPuzzs) are one of the most
fundamental primitives in this “cryptographic world below OWFs”.
A OWPuzz is a pair (Samp,Ver) of two algorithms. Samp is a
QPT algorithm that takes 1𝜆 as input and outputs two classical
bit strings puzz and ans. Ver is an unbounded algorithm that takes

4The output probability distribution of any QPT algorithm can be computed by a
classical polynomial-time deterministic algorithm that queries the PP oracle [22].
Therefore, if BPP = PP, a PPT prover can cheat the verifier.
5This is an improvement, because if classically-secure OWPuzzs exist then BPP ≠ PP.

puzz and ans′ as input, and outputs ⊤ or ⊥. We require two proper-
ties, correctness and security. Correctness requires that Ver accepts
(puzz, ans) sampled by Samp with large probability. Security re-
quires that for any QPT algorithm A that takes puzz as input and
outputs ans′, Ver accepts (puzz, ans′) with only small probability.
In particular, when the security is required only for all PPT adver-
saries, we say that a OWPuzz is classically-secure. (Note that the
Samp algorithm of classically-secure OWPuzzs is QPT, not PPT,
even when we consider classical security.)

OWPuzzs (and therefore classically-secure OWPuzzs) are im-
plied by many primitives such as

• PRUs, PRFSGs, UPSGs, PRSGs, (pure) OWSGs,
• (pure) private-key quantum money, secret-key encryption
schemes, digital signatures,
• many quantum-computation-classical-communication
(QCCC) primitives6 [21, 24, 33],
• quantum EFID pairs [21].

Our Theorem 1.1 therefore highlights that if there is no quantum
advantage, then all of these quantum cryptographic primitives do
not exist.

On the other hand, although many primitives imply OWPuzzs,
no application of OWPuzzs is known except for commitments [33].
Finding more applications of OWPuzzs is one of the most important
goals in this field. Our result Theorem 1.1 shows that OWPuzzs im-
ply quantum advantage, which demonstrates that quantum advan-
tage is another application of OWPuzzs. Moreover, we emphasize
that this is the first application of OWPuzzs in the QCCC setting:
IV-PoQ are a QCCC primitive because the communication between
the verifier and the prover is classical, while commitments [33]
constructed from OWPuzzs are those over quantum channels. The
question of the existence of QCCC applications of OWPuzzs was
raised in [21]. We solve the open problem.

Why IV-PoQ?. In addition to (IV-)PoQ, there are mainly two other
approaches to demonstrate quantum advantage, namely sampling
and search based quantum advantage. Here we argue that IV-PoQ
capture both of them, and therefore identifying a necessary and
sufficient assumption for the existence of IV-PoQ is significant.

A sampling problem is a task of sampling from some distribu-
tion. There are several distributions that are easy to sample with
QPT algorithms but hard with PPT algorithms, such as output
distributions of random quantum circuits [14], Boson Sampling
circuits [3], constant-depth circuits [48], IQP circuits [18, 19], and
one-clean-qubit circuits [23, 39]. Several assumptions are known
to be sufficient for quantum advantage in sampling problems, but
these assumptions are newly-introduced assumptions that were
not studied before such as an average-case #P-hardness of approxi-
mating some functions. Moreover, quantum advantage in sampling
problems is in general not known to be verifiable (even inefficiently).
On the other hand, one advantage of sampling-based quantum ad-
vantage (and others relying on newly-introduced assumptions) is
that experimental realizations with NISQ machines seem to be

6Here, QCCC primitives are primitives with local quantum computation and classical
communication. For example, in QCCC commitments, sender and receiver are QPT,
while the message exchanged between them are classical.

1864



Cryptographic Characterization of Quantum Advantage STOC ’25, June 23–27, 2025, Prague, Czechia

easier.7 As we will explain later, we introduce an average-case ver-
sion of SampBQP ≠ SampBPP8, and show that it is equivalent to
the existence of non-interactive IV-PoQ. IV-PoQ therefore capture
sampling-based quantum advantage.

A search problem is a task of finding an element 𝑧 that satisfies
a relation 𝑅(𝑧) = 1. Several search problems have been shown to
be easy for QPT algorithms but hard for PPT algorithms. Their clas-
sical hardness, however, relies on newly-introduced assumptions
that were not studied before, such as QUATH [5] and XQUATH [6],
or relies on random oracles [1, 9]. One advantage of searching-
based quantum advantage over sampling-based one is that quan-
tum advantage can be verified at least inefficiently when 𝑅 is com-
putable. (We can check𝑅(𝑧) = 1 or not by computing𝑅(𝑧).) Because
such inefficiently-verifiable searching-based quantum advantage
is equivalent to the existence of non-interactive IV-PoQ, IV-PoQ
capture inefficiently-verifiable searching-based quantum advantage.
There are some search problems that are efficiently verifiable such
as Factoring [47] and the Yamakawa-Zhandry problem [50] but
the former is based on the hardness of a specific problem, and the
latter relies on the random oracle model. Quantum advantage in
efficiently-verifiable search problems is captured by non-interactive
PoQ, and therefore by IV-PoQ.

Summary. In summary, we have shown that IV-PoQ are existen-
tially equivalent to classically-secure OWPuzzs.We believe that this
result is significant mainly because of the following five reasons.

(1) As far as we know, this is the first time that a complete crypto-
graphic characterization of quantum advantage is achieved.

(2) IV-PoQ capture various types of quantum advantage stud-
ied so far including sampling and search based quantum
advantage.

(3) The previous result [44] constructed IV-PoQ from classically-
secure OWFs, but the problem of constructing IV-PoQ from
weaker assumptions was left open. We solve the open prob-
lem.

(4) OWPuzzs are implied by many important primitives, such as
PRUs, PRSGs, and OWSGs. Therefore, our main result shows
that if there is no quantum advantage, then these quantum
cryptographic primitives do not exist.

(5) No application of OWPuzzs was known before except for
commitments (and therefore multiparty computations). We
show that quantum advantage is another application of OW-
Puzzs. Moreover, it is the first QCCC application of OWPuzzs.
This solves the open problem of [21].

1.1 Additional Results
In addition to the main result, Theorem 1.1, we obtain several
important results. In the following, we explain them.

Relations to the sampling complexity. In the field of quantum ad-
vantage, one of the more studied notion of sampling-based quantum

7Although NISQ experimental realizations of quantum advantage are very important
goals, in this paper, we focus on theoretical upper and lower bounds by assuming that
any polynomial-time quantum computing is possible.
8For the definitions of SampBQP and SampBPP, see Definitions 2.17 and 2.18.

advantage is SampBQP ≠ SampBPP. We can show the following
relation between IV-PoQ and SampBQP ≠ SampBPP:9

Theorem 1.2. If IV-PoQ exist, then quantumly-secure OWFs exist
or SampBPP ≠ SampBQP.

Because the existence of quantumly-secure OWFs implies NP ⊈
BQP, Theorem 1.2 also means that if IV-PoQ exist, then NP ⊈ BQP
or SampBPP ≠ SampBQP. This characterizes a lower bound of IV-
PoQ in terms of worst-case complexity class assumptions. Note that
this lower bound improves the previous known bound, BPP ≠ PP,
of [44].10

Quantum advantage samplers (QASs). To show the main re-
sult, we introduce a new concept, which we call quantum advantage
samplers (QASs). The existence of QASs is an average-case version
of SampBQP ≠ SampBPP.

Let A be a QPT algorithm that takes 1𝜆 as input and outputs
classical bit strings. A is a quantum advantage sampler (QAS) if
there exists a polynomial 𝑝 such that for any PPT algorithm B,

SD(A(1𝜆),B(1𝜆)) > 1
𝑝 (𝜆) (1)

holds for all sufficiently large 𝜆 ∈ N, where SD is the statistical
distance, and A(1𝜆) (resp. B(1𝜆)) is the output probability distri-
bution of A (resp. B) on input 1𝜆 .

Intuitively, Equation (1) means that the output distribution of
the QPT algorithm A cannot be classically efficiently sampled.
How is this different from the more studied notion, SampBPP ≠

SampBQP? The existence of QASs can be considered as an average-
case version of SampBPP ≠ SampBQP.11 In fact, the existence
of QASs implies SampBPP ≠ SampBQP (Lemma 3.4), but the in-
verse does not seem to hold. In order to show our main result, the
worst-case notion of SampBPP ≠ SampBQP is not enough for our
cryptographic (and therefore average-case) argument, and therefore
we introduce QASs. We believe that the new concept, QASs, will
be useful for other future studies of quantum sampling advantage
in the context of quantum cryptography.

We show the following result.

Theorem 1.3. QASs exist if and only if non-interactive IV-PoQ
exist.

Because the existence of QASs is an average-case version of
SampBQP ≠ SampBPP while the existence of non-interactive IV-
PoQ is an average-case version of FBQP ≠ FBPP, Theorem 1.3 can

9Note that “quantumly-secure” in the theorem is not a typo. The reason why we can get
quantumly-secure OWFs from classically-secure OWPuzzs is, roughly speaking, that
if SampBPP = SampBQP, then classically-secure OWFs means quantumly-secure
OWFs.
10First, NP ⊈ BQP implies BPP ≠ PP, because if BPP = PP, then NP ⊆ PP =

BPP ⊆ BQP. Second, SampBPP ≠ SampBQP implies BPP ≠ PP, because a classical
deterministic polynomial-time algorithm that queries the PP oracle can compute the
output distribution of any QPT algorithm [22].
11SampBPP and SampBQP are worst-case complexity classes, and therefore
{A(1𝜆 ) }𝜆 ∉ SampBPP means that there is at least one 𝜆 ∈ N such that A(1𝜆 )
cannot be classically efficiently sampled, while the definition of QASs requires that
{A(1𝜆 ) }𝜆 cannot be classically efficiently sampled for all sufficiently large 𝜆 ∈ N.
In addition, there is a subtle technical difference: {A𝜆 }𝜆 ∉ SampBPP means that
A(1𝜆 ) cannot be classically efficiently sampled for a precision 𝜖 , but this 𝜖 could be
negl(𝜆) , while QASs requires that the precision is 1/poly(𝜆) . For more details, see
Section 3.
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be considered as an average-case version of [2]’s result SampBPP ≠

SampBQP⇔ FBPP ≠ FBQP.
In previous works on sampling-based quantum advantage [3,

14, 19, 39], SampBQP ≠ SampBPP was derived based on three as-
sumptions. First is the complexity assumption of P#P ⊈ BPPNP,
which especially means that the polynomial-time hierarchy will not
collapse to the third level. Second is the assumption that comput-
ing some functions (such as matrix permanents and Ising partition
functions) within a certain multiplicative error is #P-hard on aver-
age. The third is called the anti-concentration assumption, which
roughlymeans that the output probability of the quantum algorithm
is not so concentrating.12 For simplicity, we call the combination of
the last two assumptions just the quantum advantage assumption.

The quantum advantage assumption has been traditionally stud-
ied in the field of quantum advantage to show sampling-based
quantum advantage (in terms of SampBQP ≠ SampBPP) of several
“non-universal” models such as random quantum circuits [14], Bo-
son Sampling circuits [3], IQP circuits [19], and one-clean-qubit
circuits [39]. We can show that the quantum advantage assumption
also implies the existence of QASs.13

Theorem 1.4. If the quantum advantage assumption holds and
P#P ⊈ ioBPPNP, then QASs exist.

As we have explained above, QASs are cryptographically a more
natural notion of sampling-based quantum advantage, and the ex-
istence of QASs seems to be stronger than SampBQP ≠ SampBPP.
Therefore this theorem reveals that the quantum advantage assump-
tion traditionally studied in the field actually implies a stronger
form of quantum advantage (modulo the difference between BPP
and ioBPP).

Interactive quantum advantage samplers (Int-QASs). We
also introduce an interactive version of QASs, which we call inter-
active QASs (Int-QASs). Int-QASs are a generalization of QASs to
interactive settings. An Int-QAS is a pair (A, C) of two interactive
QPT algorithms A and C that communicate over a classical chan-
nel. Its security roughly says that no PPT algorithm B that interacts
with C can sample the transcript of (A, C). (Here, the transcript is
the sequence of all classical messages exchanged between A and
C.) More precisely, (A, C) is an Int-QAS if there exists a polynomial
𝑝 such that for any PPT algorithm B that interacts with C,

SD(⟨A, C⟩(1𝜆), ⟨B, C⟩(1𝜆)) > 1
𝑝 (𝜆) (2)

holds for all sufficiently large 𝜆 ∈ N, where SD is the statistical
distance, and ⟨A, C⟩(1𝜆) (resp. ⟨B, C⟩(1𝜆)) is the probability dis-
tribution over the transcript of the interaction betweenA (resp. B)
and C on input 1𝜆 .

It is easy to see that IV-PoQ imply Int-QASs: for any IV-PoQ
(P,V1,V2), where P is the prover,V1 is the efficient verifier, and
V2 is the inefficient verifier, we have only to take (A, C) = (P,V1).
However, the opposite direction is not immediately clear. We show
that the opposite direction can be also shown. We hence have the
following result.
12For several models, such as the IQP model [19] and the one-clean-qubit model [39],
the anti-concentration property can be shown.
13This result was not included in the previous version of this manuscript. We obtained
this result after reading [34].

Theorem 1.5. Int-QASs exist if and only if IV-PoQ exist.

This theorem is considered as an interactive (and average-case)
version of SampBPP ≠ SampBQP⇔ FBPP ≠ FBQP, because the
existence of Int-QASs is an interactive (and average-case) version
of SampBQP ≠ SampBPP while the existence of IV-PoQ is an
interactive (and average-case) version of FBQP ≠ FBPP.

QAS/OWF condition. In addition to QASs and Int-QASs, we
also introduce another new concept, the QAS/OWF condition,
which is inspired by the SZK/OWF condition [49]. As we will ex-
plain later, the QAS/OWF condition plays a pivotal role to show our
main result. Roughly speaking, the QAS/OWF condition is satisfied
if there is a pair of candidates of a QAS and a classically-secure
OWF such that for all sufficiently large security parameters, either
of them is secure.14 If a QAS exists or a classically-secure OWF
exists, then the QAS/OWF is satisfied, but the converse is unlikely.
For example, if there are (candidates of) a QAS that is secure for
all odd security parameters and a OWF that is secure for all even
security parameters, then the QAS/OWF is satisfied, but it does not
necessarily imply either of a QAS or a OWF.

We show that the QAS/OWF condition is equivalent to both
the existence of IV-PoQ and the existence of classically-secure
OWPuzzs:

Theorem 1.6. IV-PoQ exist if and only if the QAS/OWF condition
holds.

Theorem 1.7. Classically-secure OWPuzzs exist if and only if the
QAS/OWF condition holds.

By combining these two results, we obtain our main result, The-
orem 1.1.

Variants of IV-PoQ.. Recall that the verifier of IV-PoQ must be
PPT during the interaction. We consider the following two variants
of IV-PoQ, public-coin IV-PoQ, where all the verifier’s messages
must be uniformly random strings, and quantum-verifier IV-PoQ,
where the verifier is allowed to be QPT instead of PPT during
the interaction. Clearly, public-coin IV-PoQ is a special case of IV-
PoQ (since uniformly random strings can be sampled in PPT), and
IV-PoQ is a special case of quantum-verifier IV-PoQ (since PPT
computations can be simulated in QPT). We show implications in
the other direction, making them equivalent in terms of existence.

Theorem 1.8. The existence of public-coin IV-PoQ, IV-PoQ, and
quantum-verifier IV-PoQ are equivalent.

This theorem suggests that the power of IV-PoQ is robust to
the choice of the computational power of the verifier during the
interaction.

Zero-knowledge IV-PoQ.. We define the zero-knowledge property
for IV-PoQ, which roughly requires that the verifier’s view can
be simulated by a PPT simulator. Intuitively, this ensures that the
verifier learns nothing from the prover beyond what could have
been computed in PPT. We say that an IV-PoQ satisfies statisti-
cal (resp. computational) zero-knowledge if for any PPT malicious
verifier, there is a PPT simulator that statistically (resp. compu-
tationally) simulates the verifier’s view. We say that an IV-PoQ
14See Definition 4.1 for the precise definition.
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satisfies honest-verifier statistical zero-knowledge if there is a PPT
simulator that statistically simulates the honest verifier’s view. We
prove the following results.

Theorem 1.9. If honest-verifier statistical zero-knowledge IV-PoQ
exist, then classically-secure OWFs exist.

Theorem 1.10. If classically-secure OWFs exist, then computa-
tional zero-knowledge IV-PoQ exist.

The above theorems establish a loose equivalence between zero-
knowledge IV-PoQ and classically-secure OWFs. However, there is
still a gap between them, and filling it is left as an open problem.

1.2 Technical Overview
Our main result is Theorem 1.1, which shows that IV-PoQ exist
if and only if classically-secure OWPuzzs exist. In this technical
overview, we provide intuitive explanations for the result. To show
it, the QAS/OWF condition plays a pivotal role. For ease of presenta-
tion, we think of the QAS/OWF condition as just the condition that
“a QAS exists or a classically-secure OWF exists” in this overview.
Though this is stronger than the actual definition, this rough de-
scription is enough for understanding our ideas.

We first show IV-PoQ⇔ QAS/OWF condition. We next show
classically-secure OWPuzzs⇔ QAS/OWF condition. By combining
them, we finally obtain the main result. In the following, we explain
each step.

Step 1: IV-PoQ ⇒ QAS/OWF condition. Our proof is inspired
by [45]. However, we emphasize that our proof is not a trivial
application of [45]. As we will explain later, the same proof of [45]
does not work in our setting, and therefore we had to overcome
several technical challenges to show the result.

Let (P,V1,V2) be an ℓ-round IV-PoQ, where P is the prover,V1
is the efficient verifier, andV2 is the inefficient verifier. (We count
two messages as a single round.) Without loss of generality, we
can assume thatV1 first sends a message. Let (𝑐1, 𝑎1, ..., 𝑐ℓ , 𝑎ℓ ) be
the transcript (i.e., the sequence of all messages exchanged) of the
interaction between P andV1, where 𝑐𝑖 isV1’s 𝑖-th message and
𝑎𝑖 is P’s 𝑖-th message. Our goal is, by assuming that the QAS/OWF
condition is not satisfied, to construct a classical PPT adversary P∗
that breaks the soundness of the IV-PoQ.

If the QAS/OWF condition is not satisfied, then, roughly speak-
ing, both of the following two conditions are satisfied:

(a) QASs do not exist. In other words, the output probability
distribution of any QPT algorithm can be approximately
sampled with a PPT algorithm.

(b) Classically-secure OWFs do not exist.
From (a), the distribution of the transcript generated by the inter-
action between P and V1 can be approximately sampled with a
PPT algorithm S. One might think that if a malicious PPT prover
of the IV-PoQ just runs S, the soundness of the IV-PoQ is broken.
However, this is not correct: The ability to classically efficiently
sample from the distribution ⟨P,V1⟩(1𝜆) is not enough to break
the soundness of the IV-PoQ, because what the PPT adversary P∗
has to do is not to sample (𝑐1, 𝑎1, ..., 𝑐ℓ , 𝑎ℓ ) but to sample “correct”
𝑎𝑘 given the transcript (𝑐1, 𝑎1, ..., 𝑐𝑘−1, 𝑎𝑘−1, 𝑐𝑘 ) obtained so far for
every 𝑘 ∈ [ℓ].

We use (b) to solve it. From S, we define a function 𝑓 as follows.
(1) Get an input (𝑘, 𝑟 ).
(2) Run (𝑐1, 𝑎1, ..., 𝑐ℓ , 𝑎ℓ ) = S(1𝜆 ; 𝑟 ).15
(3) Output (𝑘, 𝑐1, 𝑎1, ..., 𝑐𝑘−1, 𝑎𝑘−1, 𝑐𝑘 ).

From (b), OWFs do not exist. Then, distributional OWFs do not
exist as well [29].16 This means that there exists a PPT algo-
rithm R such that the statistical distance between (𝑥, 𝑓 (𝑥)) and
(R(𝑓 (𝑥)), 𝑓 (𝑥)) is small for random 𝑥 . Therefore, for each 𝑘 ∈ [ℓ],
the following PPT adversary P∗ can return “correct” 𝑎𝑘 given
(𝑐1, 𝑎1, ..., 𝑐𝑘−1, 𝑎𝑘−1, 𝑐𝑘 ).

(1) Take (𝑐1, 𝑎1, ..., 𝑐𝑘−1, 𝑎𝑘−1, 𝑐𝑘 ) as input.
(2) Run (𝑘′, 𝑟 ′) ← R(𝑘, 𝑐1, 𝑎1, ..., 𝑐𝑘−1, 𝑎𝑘−1, 𝑐𝑘 ).
(3) Run (𝑐′1, 𝑎

′
1, ..., 𝑐

′
ℓ
, 𝑎′
ℓ
) = S(1𝜆 ; 𝑟 ′).

(4) Output 𝑎′
𝑘 ′
.

In this way, we can break the soundness of the IV-PoQ. Hence we
have shown that IV-PoQ⇒ the QAS/OWF condition.

The idea underlying this proof is similar to that of [45]. In [45], it
was shown that if SZK is average hard then OWFs exist. To show it,
[45] used the zero-knowledge property to guarantee the existence of
a PPT simulator that can sample the transcript between the verifier
and the prover. From that simulator, [45] constructed a OWF. Very
roughly speaking, our S that comes from (a) corresponds to the
zero-knowledge simulator of [45]: the transcript of [45] can be
PPT sampled because of the zero-knowledge property while our
transcript can be PPT sampled because QASs do not exist. However,
there are several crucial differences between our setting and [45]’s.
In particular, in the setting of [45] the constructed OWF can depend
on the simulator. On the other hand, in our setting, we finally want
to construct a OWF that is independent of S.17 In order to solve
the issue, we use the universal construction of OWFs [27, 37]. We
first construct a OWF 𝑓S from each S as we have explained above,
and next construct a OWF 𝑔 that is independent of S by using the
universal construction. In addition to this issue, there are several
other points where the direct application of [45] does not work, but
for details, see the full version of this paper [40].

Note that in the actual proof, we do not directly show IV-PoQ
⇒ the QAS/OWF condition. We first show IV-PoQ⇒ Int-QAS, and
then show Int-QAS⇒ the QAS/OWF condition in order to obtain
stronger results and to avoid repeating similar proofs twice. How-
ever, the proof of Int-QAS⇒ the QAS/OWF condition is essentially
the same as that explained above.

Step 2: Classically-secure OWPuzzs⇒ QAS/OWF condition. Its
proof is similar to that of step 1. Let (Samp,Ver) be a classically-
secure OWPuzz. Assume that the QAS/OWF condition is not satis-
fied. This roughly means that both of the following two conditions
are satisfied.

(a) QASs do not exist.
(b) Classically-secure OWFs do not exist.

15For a PPT algorithm A, 𝑦 = A(𝑥 ; 𝑟 ) means that A’s output is 𝑦 when the input is
𝑥 and the random seed is 𝑟 .
16An efficiently-computable function 𝑓 : {0, 1}∗ → {0, 1}∗ is called a classically-
secure (resp. quantumly-secure) distributional OWF if for any PPT (resp. QPT) adver-
sary A, the statistical distance between (𝑥, 𝑓 (𝑥 ) ) and (A(𝑓 (𝑥 ) ), 𝑓 (𝑥 ) ) is large for
random 𝑥 .
17In the precise definition of QAS/OWF condition, the OWFs should be independent of
S. Otherwise, we do not know how to show the other direction, namely, the QAS/OWF
condition⇒ IV-PoQ.
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From (a), there exists a PPT algorithm S such that the output prob-
ability distribution of S(1𝜆) is close to that of Samp(1𝜆) in the
statistical distance. From such S, we construct a function 𝑓 as
follows.

(1) Get a bit string 𝑟 as input.
(2) Compute (puzz, ans) = S(1𝜆 ; 𝑟 ).
(3) Output puzz.

From (b), OWFs do not exist. This means that distributional OWFs
do not exist as well. Therefore, there exists a PPT algorithm R such
that the statistical distance between (𝑥, 𝑓 (𝑥)) and (R(𝑓 (𝑥)), 𝑓 (𝑥))
is small for random 𝑥 . From S and R, we can construct a PPT
adversary A that breaks the security of the OWPuzz as follows:

(1) Take puzz as input.
(2) Run 𝑟 ← R(puzz).
(3) Run (puzz′, ans′) ← S(1𝜆 ; 𝑟 ).
(4) Output ans′.

As in step 1, we actually need a OWF that is independent of S, and
therefore we have to use the universal construction [27, 37].

Step 3: QAS/OWF condition ⇒ IV-PoQ.. Assume that the
QAS/OWF condition is satisfied. Then, roughly speaking, a QAS
Q exists or a classically-secure OWF 𝑓 exists. From 𝑓 , we can con-
struct an IV-PoQ by using the result of [44]. The non-trivial part
is to construct an IV-PoQ from Q. For that goal, we use the idea
of [2]. However, as we will explain later, a direct application of [2]
does not work for our goal, and some new technical contributions
were needed.

We construct a non-interactive IV-PoQ from Q as follows:
(1) The QPT prover runs Q(1𝜆) 𝑁 times, where 𝑁 is a certain

polynomial, and sends the result (𝑦1, ..., 𝑦𝑁 ) to the verifier,
where 𝑦𝑖 is the output of the 𝑖-th run of Q(1𝜆).

(2) The unbounded verifier computes the Kolmogorov complex-
ity 𝐾 (𝑦1, ..., 𝑦𝑁 )18, and accepts if it is larger than

log
1

Pr[(𝑦1, ..., 𝑦𝑁 ) ← Q(1𝜆)⊗𝑁 ]
.

We can show that thus constructed non-interactive IV-PoQ satisfies
completeness and soundness. For completeness, we use Markov’s
inequality to show that 𝐾 (𝑦1, ..., 𝑦𝑁 ), where 𝑦𝑖 ← Q(1𝜆) for
each 𝑖 ∈ [𝑁 ], is large with high probability and therefore the
verifier accepts. To evaluate the bound of Markov’s inequality,
we use Kraft’s inequality for the prefix Kolmogorov complexity,
which says that

∑
𝑥 2−𝐾 (𝑥 ) ≤ 1. For soundness, assume that

there exists a PPT adversary P∗ that outputs (𝑦′1, ..., 𝑦
′
𝑁
) that is

accepted by the verifier with high probability, which means that
log 1

Pr[ (𝑦′1,...,𝑦′𝑁 )←Q(1𝜆 )⊗𝑁 ]
≲ 𝐾 (𝑦′1, ..., 𝑦

′
𝑁
). Because of the prop-

erty of 𝐾 , we have 𝐾 (𝑦′1, ..., 𝑦
′
𝑁
) ≲ log 1

Pr[ (𝑦′1,...,𝑦′𝑁 )←P∗ (1𝜆 ) ]
. By

combining them, we have

log
Pr[(𝑦′1 .., 𝑦

′
𝑁
) ← P∗ (1𝜆)]

Pr[(𝑦′1, ..., 𝑦
′
𝑁
) ← Q(1𝜆)⊗𝑁 ]

≈ 0,

which roughly means that the output probability distribution of
Q(1𝜆)⊗𝑁 is close to that of P∗ (1𝜆).
18More precisely, this is time-bounded prefix Kolmogorov complexity𝐾𝑇

𝑈
(𝑦1, ..., 𝑦𝑁 )

with time bound𝑇 (𝑛) = 22𝑛 and the universal self-delimiting machine𝑈 .

From such P∗, we can construct a PPT algorithm whose output
probability distribution is close to that of Q(1𝜆) in the statistical
distance as follows:

(1) Run (𝑦′1, ..., 𝑦
′
𝑁
) ← P∗ (1𝜆).

(2) Choose a random 𝑖 ∈ [𝑁 ], and output 𝑦′
𝑖
.

However, this means that Q is not a QAS, which contradicts the
assumption. In this way, we can show the QAS/OWF condition⇒
IV-PoQ.

The idea underlying this proof is similar to that of [2]. In fact, the
completeness part is exactly the same. However, for the soundness
part, the direct application of [2] does not work, because of several
reasons. Here we explain main two issues. First, the search problem
constructed in [2] was not necessarily verifiable even in unbounded
time since Kolmogorov complexity is uncomputable in general. This
is problematic for our goal, because what we want to construct is
a non-interactive IV-PoQ where the prover’s message should be
verified at least inefficiently. [2] slightly mentioned an extension of
the result to the time-bounded case, but there was no proof. Second,
[2] constructed a search advantage from SampBQP ≠ SampBPP,
which is a worst-case notion. However, what we need is a search
advantage from the existence of QASs, namely, the average-case
version of sampling advantage. Hence the proof of [2] cannot be
directly used in our setting.

Step 4: QAS/OWF condition⇒ classically-secure OWPuzzs. The
proof uses a similar technique as used in step 3. If the QAS/OWF
condition is satisfied, then, roughly speaking, a classically-secure
OWF 𝑓 exists or a QAS Q exists. From the OWF 𝑓 , we can construct
a classically-secure OWPuzz easily as follows:

• Samp(1𝜆) → (puzz, ans) : Choose 𝑥 ← {0, 1}𝜆 , and output
puzz := 𝑓 (𝑥) and ans := 𝑥 .
• Ver(puzz, ans′) → ⊤/⊥ : Accept if and only if 𝑓 (ans′) =
puzz.

From Q, we can construct a non-interactive IV-PoQ as in step
3. From such a non-interactive IV-PoQ, we can easily construct a
classically-secure OWPuzz as follows.

• Samp(1𝜆) → (puzz, ans) : Run 𝜏 ← P(1𝜆), and output
puzz := 1𝜆 and ans := 𝜏 .
• Ver(puzz, ans′) → ⊤/⊥ : Accept if and only if ⊤ ←
V2 (1𝜆, ans′).

Full paper. We omit complete proofs of our results due to space
constraints but all proofs can be found in the full version of this
paper [40].

1.3 Related Work
Khurana and Tomer [34] have recently shown that quantumly-
secure OWPuzzs can be constructed from some assumptions that
imply sampling-based quantum advantage (if a mild complexity
assumption, P♯P ⊈ (𝑖𝑜)BQP/qpoly, is additionally introduced).
There is no technical overlap between their paper and the present
paper. However, we here clarify relations and differences, because
in a broad perspective, their paper and the present paper share
several important motivations, including the goal of connecting
quantum advantage and “Microcrypt” primitives.
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Firstly, what they actually show is not that quantum advantage
implies OWPuzzs, but that some assumptions that imply quantum
advantage also imply OWPuzzs if the additional assumption, P♯P ⊈
(𝑖𝑜)BQP/qpoly, is introduced. On the other hand, we show that
quantum advantage (in the sense of the existence of IV-PoQ) implies
OWPuzzs. Secondly, they construct quantumly-secure OWPuzzs,
while we construct only classically-secure ones.

These differences comes from the difference of main goals. Their
goal is to construct quantum cryptographic primitives from some
well-founded assumptions that will not imply OWFs. Therefore,
the constructed primitives should be quantumly-secure. However,
in that case, as they also mention in their paper, some additional as-
sumptions that limit quantum power should be introduced, because
quantum advantage limits only classical power. On the other hand,
the goal of the present paper is to characterize quantum advantage
from cryptographic assumptions, and therefore we have to consider
quantum advantage itself, not assumptions that imply quantum
advantage. Moreover, we want to avoid introducing any additional
assumptions that are not related to quantum advantage. In that
case, it is likely that we have to be satisfied with classically-secure
OWPuzzs.

It is an interesting open problem whether several notions of
quantum advantage studied in this paper imply quantumly-secure
OWPuzzs (possibly introducing some additional assumptions that
limit quantum power).

2 Preliminaries
2.1 Basic Notations
log𝑥 means log2 𝑥 and ln𝑥 means log𝑒 𝑥 . We use standard notations
of quantum computing and cryptography. For a bit string 𝑥 , |𝑥 | is
its length. N is the set of natural numbers. We use 𝜆 as the security
parameter. [𝑛] means the set {1, 2, ..., 𝑛}. For a finite set 𝑆 , 𝑥 ← 𝑆

means that an element 𝑥 is sampled uniformly at random from the
set 𝑆 . negl is a negligible function, and poly is a polynomial. All
polynomials appear in this paper are positive, but for simplicity we
do not explicitly mention it. PPT stands for (classical) probabilistic
polynomial-time and QPT stands for quantum polynomial-time. For
an algorithm A, 𝑦 ← A(𝑥) means that the algorithm A outputs 𝑦
on input 𝑥 . If A is a classical probabilistic or quantum algorithm
that takes 𝑥 as input and outputs bit strings, we often mean A(𝑥)
by the output probability distribution ofA on input 𝑥 . WhenA is a
classical probabilistic algorithm, 𝑦 = A(𝑥 ; 𝑟 ) means that the output
of A is 𝑦 if it runs on input 𝑥 and with the random seed 𝑟 . For
two interactive algorithms A and B that interact over a classical
channel, 𝜏 ← ⟨A(𝑥),B(𝑦)⟩ means that the transcript 𝜏 (i.e., the
sequence of all messages exchanged) is generated by the interactive
protocol between A and B where A takes 𝑥 as input and B takes
𝑦 as input. If both A and B take the same input 𝑥 , we also write
it as 𝜏 ← ⟨A,B⟩(𝑥). For two quantum states 𝜌 and 𝜎 , TD(𝜌, 𝜎) :=
1
2 ∥𝜌 − 𝜎 ∥1 means their trace distance, where ∥𝑋 ∥1 := Tr

√
𝑋 †𝑋 is

the trace norm. For two probability distributions 𝑃 := {𝑝𝑖 }𝑖 and
𝑄 := {𝑞𝑖 }𝑖 , SD(𝑄, 𝑃) := 1

2
∑
𝑖 |𝑝𝑖 − 𝑞𝑖 | is their statistical distance.

If 𝜌 =
∑
𝑖 𝑝𝑖 |𝜙𝑖 ⟩⟨𝜙𝑖 | and 𝜎 =

∑
𝑖 𝑞𝑖 |𝜙𝑖 ⟩⟨𝜙𝑖 | for some orthonormal

basis {|𝜙𝑖 ⟩}𝑖 , we have TD(𝜌, 𝜎) = SD({𝑝𝑖 }𝑖 , {𝑞𝑖 }𝑖 ).

2.2 One-Way Functions
We first review the definition of one-way functions (OWFs).

Definition 2.1 (One-Way Functions (OWFs)). A function 𝑓 :
{0, 1}∗ → {0, 1}∗ that is computable in classical deterministic
polynomial-time is a classically-secure (resp. quantumly-secure)
one-way function (OWF) if for any PPT (resp. QPT) adversary A
and any polynomial 𝑝 ,

Pr[𝑓 (𝑥 ′) = 𝑓 (𝑥) : 𝑥 ← {0, 1}𝜆, 𝑥 ′ ← A(1𝜆, 𝑓 (𝑥))] ≤ 1
𝑝 (𝜆) (3)

holds for all sufficiently large 𝜆 ∈ N.

We define a variant of OWFs, which we call OWFs on a subset
Σ ⊆ N. The difference from the standard OWFs is that security
holds only when the security parameter belongs to the subset Σ of
N.

Definition 2.2 (OWFs on Σ). Let Σ ⊆ N be a set. A function
𝑓 : {0, 1}∗ → {0, 1}∗ that is computable in classical deterministic
polynomial-time is a classically-secure (resp. quantumly-secure)
OWF on Σ if there exists an efficiently-computable polynomial 𝑛
such that for any PPT (resp. QPT) adversaryA and any polynomial
𝑝 there exists 𝜆∗ ∈ N such that

Pr[𝑓 (𝑥 ′) = 𝑓 (𝑥) : 𝑥 ← {0, 1}𝑛 (𝜆) , 𝑥 ′ ← A(1𝑛 (𝜆) , 𝑓 (𝑥))] ≤ 1
𝑝 (𝜆)

(4)
holds for all 𝜆 ≥ 𝜆∗ in Σ.

Remark 2.3. In the definition of OWFs (Definition 2.1) the input
length is treated as the security parameter, but in OWFs on Σ (Defi-
nition 2.2), we allow the input length to be an arbitrary polynomial
in the security parameter.

Remark 2.4. For any finite Σ, OWFs on Σ always exist because the
definition is trivially satisfied. (We have only to take 𝜆∗ = 𝜆𝑚𝑎𝑥 + 1,
where 𝜆𝑚𝑎𝑥 is the largest element of Σ.) However, we include the
case when Σ is finite in the definition for convenience.

The existence of OWFs on N \ Σ for a finite subset Σ is actually
equivalent to that of the standard OWFs.

Lemma 2.5. Let Σ ⊆ N be a finite set. Classically-secure (resp.
quantumly-secure) OWFs exist if and only if classically-secure (resp.
quantumly-secure) OWFs on N \ Σ exist.

2.3 One-Way Puzzles
We also define one-way puzzles (OWPuzzs) on a subset Σ ⊆ N,
which are a generalization of OWPuzzs defined in [33]. If Σ = N,
the definition becomes the standard one [33], and in that case we
call them just OWPuzzs.

Definition 2.6 (One-Way Puzzles (OWPuzzs) on Σ). Let Σ ⊆ N be
a set. A one-way puzzle (OWPuzz) on Σ is a pair (Samp,Ver) of
algorithms such that
• Samp(1𝜆) → (puzz, ans) : It is a QPT algorithm that, on
input the security parameter 𝜆, outputs a pair (puzz, ans) of
classical strings.
• Ver(puzz, ans′) → ⊤/⊥ : It is an unbounded algorithm that,
on input (puzz, ans′), outputs either ⊤/⊥.
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They satisfy the following properties for some functions 𝑐 and 𝑠
such that 𝑐 (𝜆) − 𝑠 (𝜆) ≥ 1

poly(𝜆) .

• 𝑐-correctness: There exists 𝜆∗ ∈ N such that

Pr[⊤ ← Ver(puzz, ans) : (puzz, ans) ← Samp(1𝜆)] ≥ 𝑐 (𝜆) (5)

holds for all 𝜆 ≥ 𝜆∗.
• 𝑠-security on Σ: For any QPT adversary A there exists
𝜆∗∗ ∈ N such that

Pr[⊤ ← Ver(puzz,A(1𝜆, puzz)) : (puzz, ans) ← Samp(1𝜆)] ≤ 𝑠 (𝜆)
(6)

holds for all 𝜆 ≥ 𝜆∗∗ in Σ.

Definition 2.7 (Classically-Secure OWPuzzs on Σ). A OWPuzz
on Σ is called a classically-secure OWPuzz on Σ if the security is
required against PPT adversaries.

Remark 2.8. Again, if Σ is a finite set, OWPuzzs on Σ trivially ex-
ist, but we include such a case in the definition for the convenience.

Remark 2.9. All classically-secure OWPuzzs appearing in this
paper are ones with (1− negl(𝜆))-correctness and (1− 1/poly(𝜆))-
security.

Remark 2.10. It is known that 𝑐-correct and 𝑠-secure OWPuzzs
with 𝑐 (𝜆) − 𝑠 (𝜆) ≥ 1/poly(𝜆) can be amplified to (1 − negl(𝜆))-
correct and negl(𝜆)-secure OWPuzzs [21]. On the other hand, we
do not know how to amplify the gap of classically-secure OWPuzzs.

OWPuzzs can be constructed from OWFs. We can show that this
is also the case for the variants on Σ.

Lemma 2.11. Let Σ ⊆ N be a subset. If classically-secure OWFs on
Σ exist, then classically-secure OWPuzzs on Σ with 1-correctness and
negl-security exist.

2.4 Inefficient-Verifier Proofs of Quantumness
In this subsection, we define inefficient-verifier proofs of quantum-
ness (IV-PoQ) on a subset Σ ⊆ N. IV-PoQ defined in [44] are special
cases when Σ = N.

Definition 2.12 (Inefficient-Verifier Proofs of Quantumness (IV-PoQ)
on Σ). Let Σ ⊆ N be a set. An IV-PoQ on Σ is a tuple (P,V1,V2) of
interactive algorithms. P (prover) is QPT,V1 (first verifier) is PPT,
andV2 (second verifier) is unbounded. The protocol is divided into
two phases. In the first phase, P andV1 take the security parameter
1𝜆 as input and interact with each other over a classical channel.
Let 𝜏 be the transcript, i.e., the sequence of all classical messages
exchanged between P and V1. In the second phase, V2 takes 1𝜆
and 𝜏 as input and outputs ⊤ (accept) or ⊥ (reject). We require
the following two properties for some functions 𝑐 and 𝑠 such that
𝑐 (𝜆) − 𝑠 (𝜆) ≥ 1/poly(𝜆).
• 𝑐-completeness: There exists 𝜆∗ ∈ N such that

Pr[⊤ ← V2 (1𝜆, 𝜏) : 𝜏 ← ⟨P,V1⟩(1𝜆)] ≥ 𝑐 (𝜆) (7)

holds for all 𝜆 ≥ 𝜆∗.
• 𝑠-soundness on Σ: For any PPT prover P∗ there exists
𝜆∗∗ ∈ N such that

Pr[⊤ ← V2 (1𝜆, 𝜏) : 𝜏 ← ⟨P∗,V1⟩(1𝜆)] ≤ 𝑠 (𝜆) (8)

holds for all 𝜆 ≥ 𝜆∗∗ in Σ.

Moreover, if all the messages sent fromV1 are uniformly random
strings, we say that the IV-PoQ is public-coin.

Remark 2.13. IV-PoQ on Σ always exist for any finite set Σ, but
we include the case in the definition for the convenience.

Remark 2.14. In the previous definition of IV-PoQ [44],V2 does
not take 1𝜆 as input. However, this does not change the definition
for interactive IV-PoQ, because 1𝜆 can be added to the first V1’s
message. We explicitly include 1𝜆 in the input ofV2 since we also
consider non-interactive IV-PoQ in this paper.

[44] showed that classically-secure OWFs imply IV-PoQ by con-
structing IV-PoQ from statistically-hiding and computationally-
binding commitment schemes that are implied by OWFs [26]. By
inspecting its proof, one can see that the proof gives a “security-
parameter-wise” reduction, i.e., for any efficiently computable poly-
nomial 𝑛, we can construct IV-PoQ from classically-secure OWFs
such that that if the base OWF is secure on inputs of length 𝑛(𝜆),
then the resulting IV-PoQ is sound on the security parameter 𝜆.19
Thus, we have the following lemma.

Lemma 2.15 (Based on [26, 44]). Let Σ ⊆ N be a set. If classically-
secure OWFs on Σ exist, then IV-PoQ on Σ exist. Moreover, the con-
structed IV-PoQ is public-coin and satisfies (1 − negl)-completeness
and negl-soundness on Σ.

Remark 2.16. In [44], they do not explicitly state that the pro-
tocol is public-coin. To see that it is indeed public-coin, observe
that the verifier’s messages of the IV-PoQ of [44] consist of the
receiver’s messages of a statistically hiding commitment scheme
of [26], descriptions of pairwise independent hash functions, and
uniformly random strings from the verifier of [31]. As mentioned in
[26, Section 8], their commitment scheme is public-coin. Moreover,
we can assume that a description of a pairwise independent hash
function is public-coin without loss of generality since we can treat
the randomness for choosing the function as its description. Thus,
the IV-PoQ of [44] is public-coin.

2.5 Sampling Complexity
Definition 2.17 (Sampling Problems [2, 4]). A (polynomially-

bounded) sampling problem 𝑆 is a collection of probability distribu-
tions {𝐷𝑥 }𝑥∈{0,1}∗ , where 𝐷𝑥 is a distribution over {0, 1}𝑝 ( |𝑥 | ) , for
some fixed polynomial 𝑝 .

Definition 2.18 (SampBPP and SampBQP [2, 4]). SampBPP
is the class of (polynomially-bounded) sampling problems 𝑆 =

{𝐷𝑥 }𝑥∈{0,1}∗ for which there exists a PPT algorithmB such that for
all 𝑥 and all 𝜖 > 0, SD(B(𝑥, 1⌊1/𝜖 ⌋ ), 𝐷𝑥 ) ≤ 𝜖 , where B(𝑥, 1⌊1/𝜖 ⌋ ) is

19More precisely, for any efficiently computable function 𝑓 : {0, 1}∗ → {0, 1}∗ and
efficiently computable polynomial 𝑛, there is an IV-PoQ (P,V1,V2 ) such that for
any PPT algorithm P∗ and any polynomial 𝑝 , there are a PPT algorithm A and a
polynomial 𝑞 such that for any 𝜆 ∈ N, if

Pr[⊤ ← V2 (1𝜆, 𝜏 ) : 𝜏 ← ⟨P∗,V1 ⟩ (1𝜆 ) ] >
1

𝑝 (𝜆) , (9)

then

Pr[ 𝑓 (𝑥 ′ ) = 𝑓 (𝑥 ) : 𝑥 ← {0, 1}𝑛 (𝜆) , 𝑥 ′ ← A(1𝑛 (𝜆) , 𝑓 (𝑥 ) ) ] > 1
𝑞 (𝜆) . (10)
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the output probability distribution of B on input (𝑥, 1⌊1/𝜖 ⌋ ). Samp-
BQP is defined the same way, except that B is a QPT algorithm
rather than a PPT one.

3 QASs and Int-QASs
In this section, we introduce two new concepts, quantum advantage
samplers (QASs) and interactive quantum advantage samplers (Int-
QASs). We also show some results on them.

3.1 Definitions of QASs and Int-QASs
We first define QASs on a set Σ ⊆ N. If Σ = N, we call them just
QASs.

Definition 3.1 (Quantum Advantage Samplers (QASs) on Σ). Let
Σ ⊆ N be a set. Let A be a QPT algorithm that takes 1𝜆 as input
and outputs a classical string. A is a quantum advantage sampler
(QAS) on Σ if the following is satisfied: There exists a polynomial
𝑝 such that for any PPT algorithm B (that takes 1𝜆 as input and
outputs a classical string) there exists 𝜆∗ ∈ N such that

SD(A(1𝜆),B(1𝜆)) > 1
𝑝 (𝜆) (11)

holds for all 𝜆 ≥ 𝜆∗ in Σ.

Remark 3.2. For any finite set Σ, QASs on Σ always exist, but we
include the case in the definition for the convenience.

We also define interactive versions of QASs, which we call Int-
QASs, as follows.

Definition 3.3 (Interactive Quantum Advantage Samplers (In-
t-QASs)). Let (A, C) be a tuple of two interactive QPT algorithms
A and C that communicate over a classical channel. (A, C) is an
interactive quantum advantage sampler (Int-QAS) if the follow-
ing is satisfied: There exists a polynomial 𝑝 such that for any PPT
algorithm B that interacts with C,

SD(⟨A, C⟩(1𝜆), ⟨B, C⟩(1𝜆)) > 1
𝑝 (𝜆) (12)

holds for all sufficiently large 𝜆 ∈ N. Here, ⟨A, C⟩(1𝜆) (resp.
⟨B, C⟩(1𝜆)) is the probability distribution over the transcript of
the interaction between A (resp. B) and C.

3.2 Relation Between QASs and Sampling
Complexity Classes

We can show that the existence of QASs implies SampBPP ≠

SampBQP.

Lemma 3.4. Let Σ ⊆ N be an infinite subset. If QASs on Σ exist,
then SampBPP ≠ SampBQP.

Remark 3.5. Note that the other direction, namely, SampBPP ≠

SampBQP implies the existence of QASs, does not seem to hold, be-
cause of the following reason: Assume that SampBPP ≠ SampBQP.
Then there exists a sampling problem {𝐷𝑥 }𝑥 that is in SampBQP
but not in SampBPP. The fact that {𝐷𝑥 }𝑥 ∉ SampBPP means that
for any PPT algorithm B, there exist 𝑥 and 𝜖 > 0 such that

SD(𝐷𝑥 ,B(𝑥, 1⌊1/𝜖 ⌋ )) > 𝜖. (13)

This does not necessarily mean that a QPT algorithm A that sam-
ples {𝐷𝑥 }𝑥 is a QAS. For example, 𝜖 in Equation (13) could be
2−|𝑥 | .

3.3 Equivalence of Non-Interactive IV-PoQ and
QASs

We can show the equivalence of non-interactive IV-PoQ and QASs.

Lemma 3.6. Let Σ ⊆ N be an infinite subset. Non-interactive IV-
PoQ on Σ exist if and only if QASs on Σ exist.

3.4 QASs From Quantum Advantage
Assumption

Definition 3.7 (Quantum Advantage Assumption [3, 19, 34]). We
say that quantum advantage assumption holds if the following is
satisfied.

(1) There exists a family C = {C𝜆}𝜆∈N of distributions such that
for each 𝜆 ∈ N,C𝜆 is a (uniform) QPT sampleable distribution
over quantum circuits𝐶 that output 𝜆-bit classical bit strings.

(2) There exist polynomials 𝑝 and 𝛾 such that:
(a) For all sufficiently large 𝜆 ∈ N,

Pr
𝐶←C𝜆

𝑥←{0,1}𝜆

[
Pr[𝑥 ← 𝐶] ≥ 1

𝑝 (𝜆)2𝜆

]
≥ 1
𝛾 (𝜆) . (14)

(b) For any oracle O satisfying that for all sufficiently large
𝜆 ∈ N,

Pr
𝐶←C𝜆

𝑥←{0,1}𝜆

[
|O(𝐶, 𝑥) − Pr[𝑥 ← 𝐶] | ≤ Pr[𝑥 ← 𝐶]

𝑝 (𝜆)

]
≥ 1
𝛾 (𝜆) −

1
𝑝 (𝜆) ,

(15)

we have that P#P ⊆ BPPO .

Remark 3.8. Traditionally, we required P#P ⊆ BPPO , but instead
of it, we could consider P#P ⊆ BQPO , for example, because P#P ⊆
BQPNP is also unlikely.

We show that QASs can be derived from the quantum advantage
assumption (Definition 3.7) plus P#P ⊈ ioBPPNP.

Theorem 3.9. If the quantum advantage assumption (Defini-
tion 3.7) holds and P#P ⊈ ioBPPNP, then QASs exist.

We can directly derive the existence of QASs from the quantum
advantage assumption plus P#P ⊈ ioBPPNP. However, we first
introduce a useful notion, which we call hardness of quantum
probability estimation (QPE), and show the theorem via hardness
of QPE.

Definition 3.10 (Hardness of Quantum Probability Estimation
(QPE)). We say that hardness of quantum probability estimation
(QPE) holds if the following is satisfied.

(1) There exists a family D = {D𝜆}𝜆∈N of distributions such
that for each 𝜆 ∈ N, D𝜆 is a (uniform) QPT sampleable
distribution over classical bit strings.
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(2) There exists a polynomial 𝑝 such that for any oracle PPT
algorithm ANP and for all sufficiently large 𝜆 ∈ N,

Pr
𝑥←D𝜆

[
|ANP (1𝜆, 𝑥) − Pr[𝑥 ← D𝜆] | ≤

Pr[𝑥 ← D𝜆]
𝑝 (𝜆)

]
≤ 1 − 1

𝑝 (𝜆) .

(16)

Remark 3.11. A similar notion was introduced in [20, 28, 34].
The main difference here is that the hardness is for PPT algorithms
with NP oracle.

Theorem 3.9 is shown by combining the following two lemmas.

Lemma 3.12 (Based on [34]). If the quantum advantage assump-
tion holds and P#P ⊈ ioBPPNP, then hardness of QPE holds.

Lemma 3.13. If hardness of QPE holds, then QASs exist.

4 The QAS/OWF Condition
We also introduce another new concept, which we call the
QAS/OWF condition.

Definition 4.1 (The QAS/OWF Condition). The QAS/OWF condi-
tion holds if there exist a polynomial 𝑝 , a QPT algorithm Q that
takes 1𝜆 as input and outputs a classical string, and a function
𝑓 : {0, 1}∗ → {0, 1}∗ that is computable in classical deterministic
polynomial-time such that for any PPT algorithm S, the following
holds: if we define

ΣS :=
{
𝜆 ∈ N

���� SD(Q(1𝜆),S(1𝜆)) ≤ 1
𝑝 (𝜆)

}
, (17)

then 𝑓 is a classically-secure OWF on ΣS .

We can show the following result:

Theorem 4.2. If the QAS/OWF condition is satisfied, then
quantumly-secure OWFs exist or SampBPP ≠ SampBQP.

Theorem 1.2 is obtained by combining this theorem and the
equivalence of IV-PoQ and the QAS/OWF condition, which will be
shown in Section 5.

5 Equivalence of IV-PoQ and Classically-Secure
OWPuzzs

Our main result, Theorem 1.1, that IV-PoQ exist if and only if
classically-secure OWPuzzs exist is obtained by combining the
following theorems.

Theorem 5.1. If IV-PoQ exist, then Int-QASs exist.

Theorem 5.2. If Int-QASs exist, then the QAS/OWF condition is
satisfied.

Theorem 5.3. If the QAS/OWF condition is satisfied, then IV-PoQ
exist.

Theorem 5.4. If the QAS/OWF condition is satisfied, then
classically-secure OWPuzzs exist.

Theorem 5.5. If classically-secure OWPuzzs exist, then the
QAS/OWF condition is satisfied.

6 Variants of IV-PoQ
In Section 6.1 we show equivalence among variants of IV-PoQ. In
Section 6.2, we introduce zero-knowledge IV-PoQ and show their
relationship with OWFs.

6.1 Equivalence Among Variants of IV-PoQ
We consider the following variant of IV-PoQ.

Definition 6.1 (Quantum-Verifier IV-PoQ). A quantum-verifier IV-
PoQ (P,V1,V2) is defined similarly to IV-PoQ (Definition 2.12)
except thatV1 is QPT instead of PPT but still only sends classical
messages.

We show that the following equivalence theorem.

Theorem 6.2. The following are equivalent:
(1) Public-coin IV-PoQ exist.
(2) IV-PoQ exist.
(3) Quantum-verifier IV-PoQ exist.

6.2 Zero-Knowledge IV-PoQ
We give a definition of zero-knowledge IV-PoQ below.

Definition 6.3 (Zero-Knowledge IV-PoQ). An IV-PoQ (P,V1,V2)
satisfies computational (resp. statistical) zero-knowledge if for any
PPT malicious verifierV∗1 , there exists a PPT simulator S such that
for any PPT (resp. unbounded-time) distinguisher D,���Pr[D(view⟨P,V∗1 ⟩(1𝜆)) = 1] − Pr[D(S(1𝜆)) = 1]

��� ≤ negl(𝜆)
(18)

where view⟨P,V∗1 ⟩(1
𝜆) means the view ofV∗1 which consists of

the transcript and the random coin ofV∗1 .
We say that an IV-PoQ (P,V1,V2) satisfies honest-verifier com-

putational (resp. statistical) zero-knowledge if the above holds for
the case ofV∗1 = V1.

Remark 6.4. Standard definitions of the zero-knowledge prop-
erty in the literature usually consider non-uniform malicious ver-
ifiers and distinguishers. On the other hand, since we treat the
uniform model as a default notion in this paper, we define the zero-
knowledge property in the uniform-style as above. However, we
remark that this choice of model of computation is not essential for
the results of this subsection, and all the results of this subsection
readily extend to the non-uniform setting with essentially the same
proofs.

We show relationships between zero-knowledge IV-PoQ and
OWFs. First, we show that honest-verifier statistical zero-
knowledge IV-PoQ imply classically-secure OWFs.

Theorem 6.5. If honest-verifier statistical zero-knowledge IV-PoQ
exist, then classically-secure OWFs exist.

Proof of Theorem 6.5. Let (P,V1,V2) be an honest-verifier
statistical zero-knowledge IV-PoQ. By the proof of Theorem 5.1,
(P,V1) is an Int-QAS, and thus by the proof of Theorem 5.2, the
QAS/OWF condition holds where Q = ⟨P,V1⟩. That is, there exist
a polynomial 𝑝 , and a function 𝑓 : {0, 1}∗ → {0, 1}∗ that is com-
putable in classical deterministic polynomial-time such that for any
PPT algorithm S, the following holds: if we define

ΣS :=
{
𝜆 ∈ N

���� SD(⟨P,V1⟩(1𝜆),S(1𝜆)) ≤
1

𝑝 (𝜆)

}
, (19)

then 𝑓 is a classically-secure OWF on ΣS . By the honest-verifier
statistical zero-knowledge property of (P,V1,V2), there is a PPT
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simulator S such that SD(⟨P,V1⟩(1𝜆),S(1𝜆)) ≤ negl(𝜆).20 For
thisS, ΣS consists of all but finite elements ofN by the definition of
negligible functions. Since 𝑓 is a classically-secure OWF on ΣS , this
implies the existence of classically secure OWFs by Lemma 2.5. □

Next, we show that OWFs imply computational zero-knowledge
IV-PoQ.

Theorem 6.6. If classically-secure OWFs exist, then computational
zero-knowledge IV-PoQ exist.

Zero-knowledge PoQ.. Though our main focus is on IV-PoQ, we
briefly discuss zero-knowledge (efficiently-verifiable) PoQ. First,
we observe that the conversion in the proof of Theorem 6.6 works
in the efficiently-verifiable setting as well if we introduce an ad-
ditional layer of zero-knowledge proofs where the prover proves
that the committed transcript passes the verification. However, the
conversion requires the base PoQ to be public-coin while most
existing PoQ are not public-coin. Fortunately, we observe that we
can relax the public-coin property to the “transcript-independent”
property which means that the distribution of verifier’s messages
does not depend on the transcript and only depends on the verifier’s
randomness. At first glance, one may think that it is problematic if
the verifier uses its private randomness to make a decision in which
case the statement that “the committed transcript passes the verifi-
cation” is not an NP statement. However, this issue can be resolved
by letting the verifier reveal its randomness after receiving all the
commitments from the prover.21 Since the randomness is revealed
after the commitments are sent, a cheating prover can no longer
change the committed transcript by the binding property of the ex-
tractable commitment, and thus this does not affect the soundness.
In summary, we can generically upgrade any PoQ with transcript-
independent verifiers into a (computational) zero-knowledge PoQ
by additionally assuming the existence of OWFs. To our knowledge,
all existing PoQ [8, 16, 31, 32, 43, 50] have transcript-independent
verifiers.

Toward equivalence between OWFs and zero-knowledge IV-PoQ..
Theorems 6.5 and 6.6 can be regarded as a loose equivalence be-
tween OWFs and zero-knowledge IV-PoQ. However, there is a gap
between them as Theorem 6.5 assumes honest-verifier statistical
zero-knowledge while Theorem 6.6 only gives computational zero-
knowledge. It is an interesting open question if we can fill the
gap.

There are two approaches toward solving that. One is to show
that computational zero-knowledge IV-PoQ imply OWFs and the
other is to show that OWFs imply honest-verifier statistical zero-
knowledge IV-PoQ. For the former approach, the technique of [46,
49], which shows that computational zero-knowledge arguments
for average-case-hard languages imply OWFs, might be useful, but
it is unclear how to adapt their technique to the setting of IV-PoQ.

We also do not have solution for the latter approach either, but we
have the following observation. We observe that we can construct
statistical zero-knowledge IV-PoQ (or even efficiently-verifiable

20Recall that we write ⟨P,V1 ⟩ (1𝜆 ) to mean the machine that outputs a transcript of
interaction between P and V1 . Since the honest-verifier statistical zero-knowledge
requires the simulator to simulate both the transcript and the verifier’s randomness, it
is trivial to simulate only the transcript.
21A similar idea is used in [12].

PoQ) if we additionally assume the existence of an NP search prob-
lem that is easy for QPT algorithms but hard for PPT algorithms
(or equivalently publicly-verifiable one-round PoQ). To see this, we
can consider a protocol where the honest quantum prover solves
the NP search problem and then proves the knowledge of the solu-
tion by using statistical zero-knowledge arguments of knowledge
for NP, which exists if OWFs exist [26]. Examples of classically-
hard and quantumly-easy NP search problems are the factoring
and discrete-logarithm problems (assuming classical hardness of
them) [47]. Another example based on a random oracle was recently
found in [50]. Thus, based on the random oracle heuristic [13], we
have a candidate construction of statistical zero-knowledge PoQ
from hash functions.22 Though this is far from a construction solely
based on OWFs, this can be seen as an evidence that “structured”
assumptions are not necessary for statistical zero-knowledge PoQ,
let alone for statistical zero-knowledge IV-PoQ.23
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