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ABSTRACT 

     This paper analyzes commuting congestion when there is a mass transit 

and a road with a bottleneck between a residential area and a workplace . We 

investigate the optimality and efficiency of several road pricing regimes -

and obtain simple and practical rules to attain the social optimum . We then 

make a welfare comparison between these road toll regimes, and show that the 

road tolls are effective especially in case of heavy bottleneck congestion .



1. Introduction 

     It is often experienced in large cities that driving into a CBD by car 

takes much more time than driving out of a CBD during the rush hour even 

when the number of auto drivers into a CBD is less than that out of a CBD. 

This is due to the radial structure of the road network, i.e., the number of 

roads and lanes decreases as one approaches to a CBD. Roughly speaking, 

such a road network is compared to a road with a bottleneck like a 

sandglass, and cars are compared to the sands. 

     In a sandglass example, the speed of the falling sands is much faster 

than that of the accumulated sands although each speed is fixed and 

independent of the amount of the sands. In case of urban traffic, the speed 

on an uncongested road is much faster than that at the congested bottleneck 

though each speed is constant and almost independent of the number of cars. 

Consequently, the commuting time is determined solely by the length of the 

queue, and hence the number of cars during the rush hour. If a commuter 

wants to avoid such a long queue to reduce the time to commute, she has to 

arrive at the CBD much earlier or later than the start time of work. This 

is also considered to be a cost incurred by the commuter. 

     Vickrey (1969) first developed a model of such an endogenous departure 

time with bottleneck congestion, which is fully investigated by Arnott, de 

Palma and Lindsey, hereafter ADL, (1990) and Braid (1989), among others. 

This paper extends the ADL model of bottleneck congestion by introducing an 

alternative commuting mode of a mass transit which has no congestion but a 

higher fixed cost of commuting. In brief, we consider the situation that 

commuters can not only choose the departure time from home, but also select 

the transport mode between the road with a bottleneck and the mass transit. 

Using a road toll, we derive a demand function for the road service. We 

1



then investigate the optimality and efficiency of several road pricing 

regimes and obtain simple rules to attain the social optimum that minimizes 

the total commuting cost, which consists of the travel time cost, the fixed 

travel cost, and the schedule delay cost. 

     In section 2, after depicting the general setting of the model, we 

examine three kinds of equilibria in each subsection: the no-toll 

equilibrium in subsection 2.1, the uniform toll equilibrium in subsection 

2.2, and the fine toll equilibrium in subsection 2.3. We make a welfare 

comparison in section 3. Section 4 concludes the paper. 

2. The Model 

2.1 No-Toll Equilibrium 

     Between a residential area and a central business district, there are 

two commuting routes: (a) a road with a bottleneck and (b) a railway. 

Automobiles are used in the road while a mass transit is utilized on the 

railway. The number of users is denoted by Na and Nb respectively. Since 

the mass transit arrives on time (t*), its users do not have to pay the 

schedule delay costs while automobile commuters if congested have to incur 

the costs. Due to the physical constraint of the bottleneck capacity, some 

of automobile commuters necessarily arrive earlier or later than t* unless 

Na is less than the capacity. 

     When the road is free from congestion (i.e., the rate of arrival to the 

bottleneck is less than its capacity), the commuting time is assumed to be a 

constant value To. If the arrival rate exceeds the capacity, a queue 

develops. The commuting time is then written by 

                       T(t) = To + Q(t)/s, (1) 

where t is the departure time, Q(t) is the queue length measured by the 
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number of automobiles, and s is the bottleneck capacity. Let r(t) be the 

rate of departure from home, then the queue length is given by 

t 
            Q(t) _ J r(u)du - s(t-to) for Q(t) > 0, (2) 

                   to 

where to is the most recent time at which there was no queue. 

     In addition to the travel time costs, the auto commuters have to incur 

the costs of schedule delay as mentioned above. Following Vickrey (1969) 

and ADL (1990a), we assume that the cost is proportional to the travel time 

and to the schedule delay. The total cost of auto commute is then expressed 

as 

  Ca = a(travel time) + 13 max(time early,0) + 7 max(time late,0) + toll, 

where the Greek letters are shadow prices of time, which are considered to 

take different values.' Specifically, the total cost is given by 

N 

         Ca = aT(t) + /3[t*-t-T(t)] for tE[to,t), (3) 

N 

           = aT(t) + 1[t-t*+T(t)] for te(t,ti], 

N where ti is the time at which the queue ends, and t is the departure time at 

                                                                           N N 

which an individual arrives at work on time t*, i.e., t + T(t) = t*. 

     In equilibrium, every auto commuter is unable to find a departure time 

which reduces her total cost. In other words, Ca in (3) should be constant 

for all t. Hence, using (1) and (3), r(t) in (2) is solved as: 

N 

              r(t) =- s for tE[to,t), (4) 

                     a N                      - 
a+y s for tE(t,tl], 

Substituting (4) into (2), the queue length is given by 

N 

            Q(t) _ _(t-to) for tE[to,t), (5) 
                                    N N N 

                   _ Ps (t-to) - Is (t-t) for te(t,tt], 
                                                 a+~r 

Equation (4) indicates that the arrival rate is piecewise constant and 

equation (5) shows that a queue develops linearly and dissipates linearly. 
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     Now, since 
                                           N N 

                            t + T(t) = t*, 

                               Q(t1) = 0, and 

             f ti                                r(u)du = Na, 
                          to 

we can determine the three unknowns as follows: 

N 

   to = t* - To - SNa 15
s t1 = t ' * - To + SNa , t = t* - To - &Na (6 )                                                      Its as , 

where &-=/31/(/3+T). Thus, the total cost per capita is obtained as 

                                Ca = SNa + aTo. (7) 

The constancy of Ca implies that no individual is able to decrease her total 

cost by changing her departure time t. 

     Let us next consider the mass transit commute. For the sake of 

simplicity, we assume that the total cost by mass transit Cb is constant. 

against the number of its users Nb. That is, we are assuming that increased 

passengers of the mass transit would be accommodated by increasing the 

number of vehicles without further cost.2 

     Since no individual can decrease her total cost by altering her trip 

mode, 

                                 Ca < Cb, (8) 

should always hold in equilibrium. From (7) and (8), it is straightforward 

that the equilibrium numbers of users are: 

                     (Na,Na) = (N,0) for N:Oa, (9) 

                                  = (Na,N-Na) for N>Na, 

where N[=Na+Nb] is the total number of commuters in the city, and the 

critical value Na[=s(Cb-aTo)/S] is the value that makes the equality in (8) 

hold. For future reference, we define that the city size is: 

          small if N < Na/2; 
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        medium if N E (Na/2,Na); 

         large i f N ? Na . 

     Without little loss of generality, we assume Na>0 or equivalently 

Cb>aTo so as to guarantee the need for the road. Otherwise, everyone uses 

the mass transit under any nonnegative road toll. Finally, we define the 

total social cost in this city under the no-toll equilibrium as 

                              TCe = CaNa + CbNb. (10) 

     In the next two subsections, we will introduce two kinds of road toll 

regimes: a uniform toll and a time-varying fine toll. Feasibility of these 

tolls rests on social consensus in addition to their technical conditions. 

2.2 Second Best by the Uniform Toll 

     Suppose the public authority is able to levy a uniform toll Tu from 

road users. This regime would be very common to most countries under the 

current level of technology. The total cost per road user (7) is then 

modified to 

                          Ca = Ssa + aTo + Tu (11) 
while that of a mass transit user Cb remains invariable with respect to its 

number of users Nb. Equations (8) and (11) establish an equilibrium given a 

level of the uniform toll. 

     Since commuting is a must, the trip for commute itself is perfectly 

inelastic. However, the introduction of the mass transit lets the road 

commute elastic with respect to the road toll Tu. It should be noticed that 

whereas ADL (1987) and Braid (1989) assume an elastic ,demand a priori, the 

demand function in this model is endogenously determined because a shift to 

the mass transit commute takes place here by the toll Tu. 

     Using (8) and (11), the demand for the road service Na is expressed as 
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a function of its price Tu: 

                    Na(T') = 0 for Tu ? Cb, 

                           = max{N, Na(1-Tu/Cb)) for Tu < Cb . 

Obviously, the demand function is'piecewise linear and weakly monotone 

decreasing in the road toll Tu. 

     Suppose the toll revenue is assumed to be equally redistributed to both 

users, then the total social cost in this city is redefined by 

                           TCU = CaNa + CbNb - T°Na. (12) 

The public authority minimizes (12) with respect to Tu subject to (8) and 

(11), which also determines the optimum number of users of the road and the 

mass transit. After some simple calculations, we obtain the optimal pricing 

of the uniform toll as follows: 

                   Tu = 0 for N<Na/2, 

                       = Cb - aTo for N>Na/2. (13) 2 

Put it in another way,

Proposition 1 

     In small size of 

cities, a fixed amount

ci ties, 

of the

no toll 

uniform

should be levied. In medium or large 

toll (13) should be imposed.

     From the uniform toll pricing (13), the corresponding distribution of 

users of the road and mass transit is shown to be: 

                 (Na,Nb) = (N,0) for NeNa/2, (14) 

                          = (Na/2,N-Na/2) for N>Na/2. 

    Comparing the second-best distribution (14) with the no-toll 

equilibrium distribution (9), we can draw the following two propositions.
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Proposition 2 

     In medium size of cities, the public authority should construct the 

mass transit if the cost of construction is low enough. 

     This corresponds to the case of NE(Na/2,Na), where Nb=O (i.e., the mass 

transit is not demanded under no-toll equilibrium), but Nb>O (i.e., the mass 

transit is needed under the uniform toll pricing). It should be noted that 

without exercising the road toll, the mass transit is not voluntarily built 

by a private sector since no one uses the mass transit when N is less than 

Na. Needless to say, such a government intervention is justified because 

the bottleneck congestion creates the negative externality. 

    Suppose the city is in the growing stage, then it is optimal to 

construct a mass transit when N becomes Na/2 and impose the uniform toll. 

This transit may be run by a private sector only after N exceeds Na. 

     The next proposition deals with the case of large city size, where 

Na=Na/2 always holds. 

Proposition 3 

     If there are some mass transit users under no-toll equilibrium, then a 

uniform toll should be levied such that the number of road users is reduced 

to half. 

     Since mass transits are utilized in almost every large cities, the road 

toll (or a subsidy for mass transits) is necessary in those cities. The 

level of the toll should be adjusted so as to halve the number of road 

users. We would like to emphasize that the rule of Proposition 3 is so 

simple that it can be easily applied without estimating the set of 
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parameters, a, /3, 1, s, To and Cb when the uniform toll is the only possible 

policy means. 

     In conclusion, by employing the above mentioned three propositions , we 

can sum up the uniform toll pricing scheme in the following way: 

  1. Suppose there exists no-toll pricing in every city . Observe first that 

     the number of automobile commuters Na. in large cities (N>Na), where the 

     mass transit pays. 

  2. Determine the level of the uniform toll To which reduces Na by half in 

     the large cities by trial and error. 

  3. Using the value of Na, identify medium cities Ne(Na/2 ,Na). Construct a 

     mass transit there if its cost is small enough. 

  4. Apply the same level of the uniform toll To to all of medium and large 

    cities (N>Na/2). 

It seems obvious that this pricing scheme is not a mere theory . It is a 

feasible and practical scheme under limited data on urban transportation. 

Notice that the scheme is applicable to every city. 

2.3 Social Optimum by the Fine Toll 

     So far, the road toll has been assumed to be constant. However, if 

pricing technology allows the public authority to exercise a time-dependent 

fine toll, then the total social cost will be reduced further. 

Specifically, a time-varying road toll can eliminate any queue although it 

does not reduce the schedule delay costs. Employing the result by ADL 

(1990), the optimal fine toll for the road with a bottleneck is expressed 

as: 
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             T(x,t) = 0 for t5to, 

N 

                       = x - /3(t*-t-To) for tE(to,t), 

                                                    N (15) 
                      = x - 1(t+To-t*) for tE[t,tl) , 

                     = 0 for t?tl, 

where x<SNa/s. This condition assures that commuting by automobile occurs 

only at the period [to,tl]. 

    Equation (15) implies that the fine toll is piecewise linear, and 

should be collected in proportion to the queue length (5) of no-toll 

equilibrium. If the set of the parameters is difficult to estimate in 

practice, the fine toll should be adjusted such that the arrival rate r(t) 

equals the capacity s, where the queue is about to vanish. 

     Similar to the previous subsections, the total social cost under the 

fine toll is rewritten by 

                      TCf = CbN - x2a = CbN 2                                             - 
28 , (16) 

which should be minimized with respect to x by the public authority. Note 

that the second equality is due to T(x,to)=0, or x<SNa/s. The binding 

constraint is (8), which is Ca:SCb, or x<SNa/s. 

    Clearly, the minimizer of (16) is obtained as x=max{SNa/s,SN/s). As a 

result, the optimal distribution of users of the road and mass transit is 

                (Naf,Nbf) = (N,0) for N<Na, (17) 

                             = (Na,N-Na) for N?Na. 

Note that in (17), N<Na corresponds to x=6N/s and Ca<Cb (only the road is 

used), and N__>Na corresponds to x=SNa/s and Ca=Cb (both modes are used). 

    Comparing (17) with (9), we immediately witness that this social 

optimum distribution of the road and mass transit users coincides with the 

equilibrium distribution. In other words, 
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Proposition 4 

    If a fine toll (15) 

to the queue length, but 

     The distributions of 

above three kinds of toll

is feasible, 

it should not 

between the 

regimes are

then it should be levied in 

 change the number of road 

road and mass transit users 

summarized in Table 1.

proportion 

users. 

under the

Pricing 

Regime

Small 

NSNa./2

City Medium City 

Na/2<NSNa

Large City 

Na<N

No Toll 

Uniform Toll 

Fine Toll

(N,0) 

(N,0) 

(N,0)

(N,0) 

(Na/2,N-Na/2) 

(N,0)

(Na,N-Na) 

(Na/2,N-Na/2) 

(Na,N-Na)

    Table 1 The Number of Road Users and The Number of Mass Transit 

             Users Under Three Pricing Regimes [Na=(Cb-aTo)s/b] 

    Road tolls are often criticized in that the right to use roads by 

everyone is infringed. If the above fine toll is technologically feasible, 

such criticism is misdirected. The fine toll does replace the commuting 

time cost at a queue by the toll which is to be equally redistributed to all 

commuters. 

     Notice that whereas the uniform toll eliminates a part of the queue by 

inducing some road users to convert to the mass transit, the fine toll can 

get rid of the whole queue by compelling road users to wait at home. As is 
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demonstrated in the next section, the latter toll is, of course, superior. 

3. Welfare Comparison 

    The total social costs per capita for three toll regimes are listed in 

Table 2 for comparison. It is observed that the total social cost under the 

fine toll is half the cost under the no-toll or under the uniform toll in 

small cities N(<Na/2), but that the differences in the total social costs 

gradually diminish as city size N gets larger. It is also observed that in 

small cities the uniform toll is immaterial whereas the fine toll is not. 

Remember that the mass transit is not utilized in small cities.

Pricing 

Regime

Small City 

NSNa/2

Medium City 

Na/2<N:SNa

Large City 

Na<N

No Toll 

Uniform Toll 

Fine Toll

Cb - S(Ka-N) 

Cb - S(Na-N) 

S Cb - S(Ra-~!)

Cb 

Cb 

Cb

_ SNa 
 4sN 

- s(Na-)

Cb 

Cb -SNa     4sN 

Cb - SNa     2sN

  Table 2 Total Social Costs Per Capita 

     In general, both the uniform and fine 

commuters want to avoid the schedule delays 

small, and/or the city size (N) is large. 

are useless when commuters do not care the 
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Under Three Pricing Regimes 

toll regimes are effective when 

 (/3, 1), the road capacity (s) is 

On the other hand, the regimes 

schedule delays, there is enough



number of road lanes, and/or the city size is small. Briefly speaking, the 

toll regimes are indispensable in highly congested cities, which is in 

accord with our intuition. 

    Following ADL (1990), let us next evaluate the relative efficiency of 

the uniform toll by the following formula: 

                                e f f': - Tce -TC' 
                                        TCe_TCf 

Substituting the-values in Table 2, we have 

                           eff`: = 0 for NSNa/2, 

                                                       N2 2 _ _                                2[1 - 2N for NE(Na/2,Na), 
                                    1 f

or N?Na. 2 

It follows from this that the relative efficiency of the uniform toll 

increases monotonically from 0 to 1/2 until the city size becomes Na, and 

becomes constant after that. It is also found that the upperbound of the 

relative efficiency of the uniform toll is 50%. It is hoped that the fine 

toll regime becomes technologically feasible. 

4. Concluding Remarks 

     ADL's (1990) model provides a fundamental and operational framework in 

analyzing bottleneck congestion which is widespread in big cities. This 

paper extended the ADL's model by introducing another commuting mode. That 

is, we assumed there is a mass transit in addition to a road with a 

bottleneck both connecting a residential area and a workplace. 

     Reformulating ADL's model, we derived equilibria under the no-toll, the 

uniform toll, and the fine toll regimes respectively, and obtained several 

results. First, a governmental supply of transportation facilities is 

justified in order to reduce the negative externality of bottleneck 
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congestion. It is socially desirable to construct a mass transit and levy a 

uniform road toll by a public authority in some cases even if there were no 

demand for the transit (Proposition 2). 

     Second, suppose both modes are in use and a bottleneck queue is 

generated in no-toll equilibrium. If the uniform toll is the only feasible 

policy instrument, then it should be imposed such that the number of road 

users is reduced by half (Proposition 3). It should be stressed that the 

road pricing policies derived in Proposition 3 can be conducted without 

estimating the parameters of a, 13, 1, s, To and Cb. In practice, it can be 

attained simply by adjusting Na by means of the road tolls through trial and 

error. 

     On the other hand, if the time-varying fine toll is politically and 

technologically possible, then it should be charged in proportion to the 

queue length, but the number of road users should remain unchanged 

(Proposition 4). 

     Finally, we made a welfare comparison between these road toll regimes. 

It was shown that the road tolls are effective in reducing the social cost 

particularly in case of heavy bottleneck congestion. The ability to lessen 

the social cost of the uniform toll increases as the city size gets large 

although it is at most 50% of the ability of the fine toll. 

Footnote 

1 According to Small's (1982) estimates
, they are /3<a<ir. 

2 Even if Cb were associated with Nb
, most of the results obtained in 

this paper remain unchanged. 
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