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1. INTRODUCTION 

     Although urban location of firms is better analyzed by two-dimensional space , it is 

usually examined by one-dimensional space in the literature on spatial competition a la 

Hotelling (1929) due to mathematical tractability. However, observing urban areas in the 

real world, we hardly find long narrow (one-dimensional) cities. Similarly in differentiated 

product space, we seldom find commodities which can be depicted only by single 

characteristic. The one-dimensional approximation may not be accepted unless we obtain 

equivalent results. To investigate the validity is one of the purposes of this paper . 

     In studying spatial competition of oligopolistic firms, we must be faced with a 

troublesome obstacle of the nonexistence of Nash price equilibrium . That is to say, as 

shown by d'Aspremont, Gabszewitz and Thisse (1979), there exists no price equilibrium in 

one-dimensional space under a linear transportation cost when duopolists locate close . 

Later, Champsaur and Rochet (1988) revealed that so as to guarantee the existence of a 

price equilibrium in pure strategies, we have to limit a family of transportation cost 

function substantially.' Without existence of price equilibrium for all locational pairs
, 

payoff functions of the firms are not defined globally, which prevents us from knowing the 

overall locational behavior of the firms. 

     A similar argument applies for the Nash location game under a fixed price . It is 

well known that there exists no location equilibrium in pure strategies when the market is 

a line segment or a disc, and the number of firms is three (Shaked, 1975) although they 

tend to locate around the center. 

     These findings imply that unless firms are allowed to take mixed strategies , both 

price equilibrium and location equilibrium exist under a very limited set of the number of 

firms, transportation cost functions, and consumer distribution functions. Needless to say , 

in analyzing multistage games, existence of these equilibria is necessary . In this paper, 

therefore, we will presuppose duopolistic firms, a quadratic transportation cost , and 

uniform rectangular distributions of consumers. The first two are frequently appeared in 
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the literature as they together ensure the existence of price equilibrium in one-dimensional 

space. The last one is uncommon and is an extension of one-dimensional to 

two-dimensional distribution of consumers. A conversion method we developed here will 

enable us to explore the two-dimensional world maintaining the existence of price 

equilibrium. The method is applied to any convex set of uniform consumer distributions 

given a quadratic transportation cost and two firms. 

     We deal with subgame perfect Nash equilibrium. That is, we consider a situation 

that two firms compete in location in the first stage anticipating the subsequent price 

competition in the second stage. The locations cannot be altered in the second stage. In 

the context of spatial competition, such a change in location is seldom done due to 

irreversible nature of urban building capital. In characteristics competition, such a change 

in model type is usually very costly because of existence of scale economies in production. 

     We also analyze sequential entry of firms with simultaneous price competition. 

Specifically, one firm enters the spatial market in the first stage, the other firm enters the 

market in the second stage, and then they compete in price in the final stage. In other 

words, the former two stages are a Stackelberg location game while the latter stage is a 

Nash price game. A comparison is made between this sequential location model with the 

simultaneous location model. 

     Our emphasis is placed upon the difference between one-dimensional and 

two-dimensional problems. According to d'Aspremont et al. (1979), the principle of 

maximal differentiation holds in one-dimensional space. However, we shall demonstrate 

that this is not true in two-dimensional space. If the space is rectangular, then firms do 

not locate at opposite corners, but at midpoints of opposite sides, implying that 

differentiation is maximal in one dimension whereas it is minimal in the other dimension. 

Neven and Thisse (1990) obtained a similar result by assuming horizontal differentiation on 

one dimension and vertical differentiation in the other dimension. Here, we assume two 

dimensions of horizontal differentiation, where no a priori difference exists between the
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two. 

     The paper is organized as follows. The two-stage location price game is briefly 

depicted in Section 2, and a conversion method between one-dimensional non-uniform 

distributions' of consumers and two-dimensional uniform distributions of consumers is 

stated in Section 3. 

     After solving the second-stage Nash price game, we concentrate on the first-stage 

Nash location game for rectangular distributions of consumers in Section 4. In Section 5, 

we modify the Nash location game to a Stackelberg location game in the first stage while 

the second stage of the Nash price game remains the same. Section 6 makes a welfare 

comparison between the Nash location equilibrium in Section 4 and the Stackelberg 

location equilibrium in Section 5. Section 7 then concludes the paper. 

2. THE MODEL SETTING 

     Consumers who purchase a unit of good are uniformly distributed over a convex set 

c on U 2, where j dxdy=l. Anticipating consequences of the second-stage competition, 
firm 1 locates at '(xl,yl)EC and firm 2' locates at (x2,y2)EC, in the first stage. They are not 

allowed to locate outside C due to, say a zoning regulation or a geographic constraint . In 

the second stage, they choose their own mill price pl and p2 respectively holding the 

locations fixed. The transportation cost which a consumer has to incur is assumed to be a 

quadratic function of distance between the consumer and the nearer firm. 

     Suppose the unit transportation cost is unity without loss of generality , a marginal 

consumer at (x,y) is indifferent between firms 1 and 2, where 

       p1 + (x1x)2 + (y1,Y)2 = p2 + (x2x)2 + (Y2Y)2~ 1                                   () 
which is always a straight line. 

     Assuming zero production cost again without loss of generality, each firm maximizes 

its profit: 

         IIl = p1 Dl, 11 2 = p2(1-Dl) (2) 
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with respect to location and then price, where D1=J 
1 dxdy, and 

C1={(x,y.)EC I p1+(x1 x)2+(y1 y)2 < p2+(x2 x)2+(y2y)2}. Note that the measure of 

the boundary is nil, and so ignored. 

     The analysis is confined to the case of pure strategies. In order to get the subgame 

perfect equilibrium, we first solve the second-stage problem of profit maximization with 

respect to price given the locations. As we assume that the transportation cost is a 

quadratic function of distance and C is a convex set, we can employ the following 

proposition. 

Proposition 1 (Caplin and Nalebuff, 1991) 

     For any given locations of firms and for any log-concave density function of 

consumers in ERn, a unique Nash price equilibrium exists. 

     From this, it follows that any convex set. of C in IR2 guarantees the existence of a 

unique price equilibrium. It should be noted that Proposition 1 is not applicable when the 

transportation cost is linear. Although the demand becomes continuous in two dimensions 

under the linear transportation cost, the profit function is not necessarily quasi-concave, 
which may not guarantee the existence of a unique price equilibrium (Economides, 1986). 

We will focus only on this set in the reminder of the paper. 

3. CONVERSION FROM TWO DIMENSIONNAL TO ONE-DIMENSIONAL SPACE 

     The quadratic transportation cost not only ensures the existence of price 

equilibrium, but also generates a straight line division of the market. This enables us to 

convert a two-dimensional uniform distribution of consumers into a one-dimensional 

non-uniform distribution of consumers, which greatly eases analysis. Notice that so as to 

obtain the best locational reply in the first stage, we must consider any pair of firm
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locations, for which the log-concavity should be satisfied after projecting the 

two-dimensional distribution onto one-dimensional one. We show below that the uniform 

distribution over a convex set on R2 is a sufficient condition for the concave distribution in 

ER. In other words, if we project the uniform distribution of consumers over a convex set on 

[R2 at any angle (i.e., for any pair of firm locations), the distribution always becomes 

concave in IR guaranteeing a unique price equilibrium. 

     Specifically, under the assumptions in the previous section, let us set the new axis, 

called X axis, parallel to the line passing through the two firms' locations, (xl,yl) and 

(x2,y2) as drawn in Figure 1. Then, the market split line segment $M, which is equation 

(1), becomes perpendicular to the X axis. Due to the nature of the quadratic distance cost, 

all consumers at the same X are considered identical to the firms. That is, we can project 

the two-dimensional convex set of the uniform distribution of consumers onto the X axis, 

so that it becomes a one-dimensional non uniform concave distribution of consumers.

[Figure 1 about here]

     Mathematically, define a convex set of two-dimensional uniform distribution of 

consumers as (={(X,Y)EIR2 1 g(X,Y)<O} in the X-Y coordinates. The demand is measured 

by the one-dimensional function as D1=f 
1 hl(X) h2(X) dX, where Y=h1(X) and 

Y=h2(X) [hl(X)>h2(X)] are two implicit functions derived from the boundary g(X,Y)=O. 

In Figure 1, Y=hl(X) is the arc ABC, Y=h2(X) is the arc ADC, and Dl is the shaded 

area. Since ( is convex, hl(X) is concave and h2(X) is convex, and hence hl(X)h2(X) is 

concave. We can therefore work with the model of one-dimensional concave distribution 

of consumers, where Proposition 1 applies. 

     Now, let f(X) denote the concave density function of consumers in one-dimensional 

space and F(X) be the cumulative distribution function of consumers, where
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X 

F(X)=j X f(Z)dZ and F(X)=1. Notice that D1=F(X1). 
     By use of (1) and (2), the first-order conditions for profit maximization with 

respect to its own price are given by 
                                                    A A 

       8111 A p1f(X) 8112 A P2f(X) 
            FX = -                           0, = 1-F(X) 0. (3) 

      8p1 2(X2 X1) 8p2 2(X2 X1) 

Solving these two equations with (1), we have 
                 A A A X +X2] A 

              G(X) = 2F(X) - 1 + X - 1 f(X) = 0. (4) 
2 

A From Proposition 1, equation (4) determines a unique market boundary X in Nash price 

equilibrium for any concave distribution of consumers, given locations of X1 and X2 . 

4: NASH LOCATION GAME 

     We will prove in this section that two firms never locate at the interior region in 

any rectangular distribution, where consumers are uniformly distributed. We shall fully 

identify Nash location equilibria for any rectangular distribution of consumers , and analyze 

Stackelberg location equilibrium in the next section. A welfare comparison of these 

equilibria are made in Section 6. 

     We know from Proposition 1 that since rectangles are convex, for any location pair 

there always exists a unique price equilibrium in the second-stage competition . We shall 

therefore focus our analysis only upon the first-stage location equilibrium hereafter . Firm i 

maximizes Il i (xi)yi, x
,,yj) with respect to xi,yi for i# j, knowing the subsequent price 

competition with perfect foresight. It should be noted that although each profit function is 

quasi-concave with respect to its price for any concave density (Proposition 1), it is not 

necessarily quasi-concave with respect to its location. This forces us to examine only a 

limited family of consumer distributions since we cannot investigate the subgame perfect 

equilibrium without existence of price equilibrium and location equilibrium.
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     In the beginning, consider a uniform distribution of consumers over a rectangle 

whose lengths of sides are c by 1/c: C1={(x,y)EIR2 ( 0<x<c, 0<y<1/c}. Without loss of 

generality, assume 0<x1<x2<c and 0<yl<y2<1/c. Define xa such that (X WO) is on the 

market split line of equation (1); xb such that (xb,1/c) is on (1); ya such that (0,ya) is on 

(1); and yb such that (c,yb) is on (1). Notice that the line of (1) is at right angles to the 

line passing through (xi,yi) and (x2,y2), whose slope is (y2 yl)/(x2 x1)-a. In Figure 2, 

this is shown by the dotted line while the market boundary is the solid line. Depending 

upon the values of xa, xb, ya and yb, divisions of the rectangular market are classified into 

four cases as in Figure 2(i), 2(ii)7 2(iii) and 2(iv).

[Figure 2 about here]

     So as to obtain the Nash equilibrium, we start from the set of Lemmas. All proofs 

are relegated to^ the Appendix.

Lemma 1 

     Given firm j's location of (x.,yj)EC1, firm i(# j) locates either at a corner 

midpoint of one side.

or at a

     Lemma 1 implies that at least one of the duopolist does not choose the interior 

region of C1. Since there are four corners and four sides on a rectangle, there exist eight 

possible locations for one duopolist in this game. Due to symmetry of rectangles, however, 

it suffices to analyze only two possible locations of firm 1: (0,0) and (0,1/2c), where 

CE(0,m). The best locational reply of firm 2 against firm l's location (0,0) is analyzed in 

Lemma 2, and that against firm l's location (0,1/2c) is examined in Lemma 3 below.

Lemma 2
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     If one firm locates at a corner, then the other firm locates at a midpoint of one side 

which is farthest from the corner. 

Lemma 3 

     If one firm locates at a midpoint of one side, then the other firm locates at one of 

three other midpoint. More precisely, given the firm 1's location of (0,1/2c), firm 2 locates 

at (c/2,0) or (c/2,1/c) if c < co, and locates at (c,1/2c) if c>co, where co= 3/-,13 = 0.798. 

     We thus showed in Lemmas 2 and 3 that the best locational reply to a corner or a 

midpoint is a midpoint. These results will lead to Proposition 2 demonstrating the location 

of midpoints of opposite sides. Before moving to Proposition 2, let us examine economic 

implications of Lemma 3. 

     Suppose c lies within the interval of ((1/3)1/4)c
o)N(0.76,0.80). Given the firm 1's 

location of (0,1/2c), firm 2 chooses to locate at (c/2,0) or (c/2,1/c) rather than the 

opposite midpoint (c,1/2c) from Lemma 3. The distance between the two firms in the 

former two cases (1+c /2c) is smaller than that in the latter case (c/2) , and the firm 2's 

share in the former two cases ((5+c4)/12) is smaller than that in the latter case (1/2) . 

Apparently, such a closer location may intensify price competition and reduces the share, it 
seems irrational locational behavior under one-dimensional uniform distributions of 

consumers. 

     However, such behavior does take place in two-dimensional (or one-dimensional 

non uniform) distributions as a rational locational reply. The reason is intuitively 

understood if we compare the number of marginal consumers in the above example . The 

number of marginal consumers in the former two cases turns out to be less than that in the 

latter case because the ratio of the former to the latter . c 1+c is less than unity for all 

cE((1/3)1/4,c0). When the number of marginal consumers becomes smaller, firms would 
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not lower prices to acquire additional marginal consumers. 

to increase the revenue from non-marginal consumers. 

obtain the following.

 They would rather raise prices 

Examining such possibility, we

Remark 1 

     Relaxing price competition 

consumers becomes smaller.

is possible by locating closer if the number o f marginal

     Now, we are ready to prove Proposition 2 

location equilibrium in two-dimensional space.

which fully characterizes the Nash

Proposition 2 

     If C is a rectangle close to a square, then firms locate at the opposite midpoints o f 

short or long sides. Otherwise, firms locate at the opposite midpoints o f the short sides. 

     More precisely, the two-stage Nash equilibrium locations are given by 

      (x1,yl,x2,y2) _ (c/2,0,c/2,1/c) for c<co, 

               = (c/2,0,c/2,1/c) or (0,1/2c,c,1/2c) for c
o<c<1, 

where c0L-0.798. 

     In brief, Proposition 2 implies in a context of product characteristics space that 

firms tend to maximize product differentiation in one characteristic (location of each side) 

while they minimize it in the other characteristic (location at a center of each side). Note 

that product differentiation is not maximal. Moreover, when the rectangle is close or equal 

to a square, there exist two location equilibria; and when the rectangle is long and slender , 

there exists a unique location equilibrium.2 Firms succeed in relaxing price competition by-

locating apart each other in the latter case, but not necessarily in the former case . 

Nonetheless, we will show in the next section that if firms enter the market sequentially 
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rather than simultaneously, they always succeed to locate apart. 

     Proposition 2 also implies that neither firm locates at the interior region in Nash 

equilibrium. Needless to say, the non interior equilibrium location is a necessary 

consequence of dominance of the price competition over the location one.3 Rational firms 

move apart each other to avoid cutthroat competition.

5. STACKELBERG LOCATION GAME 

     While the model in Section 4 is simultaneous choice of location, here it is modified 

to sequential choice o f location, i.e., the first stage is a Stackelberg leader follower location 

game while the second stage is a Nash price subgame. 

    Mathematically, firm 1 (the leader) maximizes its profit of B1(x1,y1,x2,y2) with 

respect to x1 and y1, replacing x2 and y2 with firm 2's (the follower's) reply functions 

x2=Rx(x1,y1) and y2=Ry(x1,y1), which are derived from the maximization of 

112(x1,y1,x2,y2) with respect to x2 and y2. 

     In seeking the Stackelberg - location and Nash price equilibrium, we take the 

following logical steps. In general, there are three kinds of firm locations: the midpoint, 

corner or inside. However, we know from Lemma 1 that firm 2, the follower, locates either 

at the midpoint or the corner. In Lemma 5 below, we prove that firm 2 always locates only 

at the midpoint. Based upon this, we examine the behavior of firm 1, the leader, and show 

that it necessarily locates at the midpoint of the short side. Let us begin with Lemma 4 as 

preliminary arrangements for subsequent analysis.

Lemma 4 

    For x1<x2 and y1<y2, the following inequalities hold: 

              arI*ii aII*ii                 1 
>0, 1 0 for y2> 1 ' 

               ax2 ay2 2c
(5)
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                    arI*iv aII*iv                      1 >0
, 1 >0, (6) 

                   ax2 ay2 

where the Roman numerals at the superscripts correspond to those in the proof of Lemma 1. 

     Lemma 4 means that for firm 2, the follower, the midpoint is the best locational 

reply in case (ii), and the corner is the best locational reply in case (iv). On the other 

hand, firm 1, the leader, may locate at the midpoint, the corner or inside. For example, it 

might be possible for firm 1 to locate inside C1 anticipating that firm 2 would locate at the 

most distant corner [case (i) in Figure 2]. In Lemma 5, however, we are able to exclude 

such possibility since the corner location is shown to be a suboptimal locational reply for 

firm 2.

Lemma 5 

     The second entrant chooses to locate at the midpoint of one side. 

     The outline of the proof is as follows. From Lemma 1, the midpoint and the corner 

are the only two candidates for firm 2's location. Knowing this, firm 1 necessarily locates 

at the midpoint in the former case, where case (ii) applies. In the latter case, firm 1 may 

locate inside, where case (iv) applies with permutation of firm indices. Computing the 

maximum profit of firm 1 in each case, the former profit is shown to be larger, which leads 

to the midpoint location of firm 2. 

     By use of Lemma 5, we are now ready to establish Proposition 5 below: 

Proposition 3 

     Each firm locates at a point of the short side in two-stage Stackelberg location and 

Nash price equilibrium.

12



     Thus, with the exception that C1 is a square, we observe that the Stackelberg 

location equilibrium is always unique whereas the Nash location equilibrium is not when 

cE[co,1/co]. In other words, the sequential location eliminates one of the multiple 

equilibria, where the firm's profit is lower. This is because firm 1 is able to relax the price 

competition by choosing the midpoint of the short side. Such behavior cannot be possible 

in the Nash simultaneous location game since there is no leader follower distribution 

between the firms. 

     The profit of each firm in Stackelberg location equilibrium is then greater than or 

equal to that in Nash location equilibrium. Consequently, we conclude that firms may be 

worse off if they choose to locate simultaneously rather than sequentially. It should be 

noticed that such difference does not arise in one-dimensional uniform distribution of 

consumers.

6. WELFARE COMPARISON 

     Let us finally conduct a welfare comparison of the above subgame perfect 

equilibrium locations and the social optimal locations. In the absence of the production 

costs and the price elasticity, we can evaluate the social welfare solely by the sum of the 

total transportation costs incurred by consumers who are uniformly distributed on a 

rectangle of c by 1/c. 

     The welfare loss, defined by the sum of quadratic distance costs between consumers 

and their nearest firms,4 is expressed as 

2 
                   E f f (xi X)2+(Yi Y)2dxdy, (7)' 

                      i=1 Ci 

where Ci={(x,y)E[0,c]x[0,1/c] (xi x)2+(yiY)2<(x.-x)2+(y.-y)2, i#j}. As obtained 

earlier, Nash and Stackelberg equilibrium locations are given by 

[(x1'yl),(x2'y2)]=[(0,1/2c),(c,1/2c)] or [(c/2,0),(c/2,c)]. The welfare loss in either pair of 

locations is the same and calculated as L=(c2+1/c2)/12.5 Obviously, this value increases
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as c(>1) gets large implying the greater loss in longer and more slender city. 

     On the other hand, the social optimum locations are easily calculated by 

differentiating (7) with respect to xi and yi respectively, and are given by 

[(xl'yl)'(x2'y2)]=[(c/4,1/2c),(3c/4,1/2c)] for c>1. The welfare loss is given by 

,C=(c2/4+1/c2)/12. As before, this is also an increasing function of c. Comparing these 

two values of C, we can say that the welfare loss of Nash or Stackelberg equilibrium 

locations is 1.6 to 4 times as large as that of the social optimum locations, and that the loss 

ratio increases as the rectangle becomes long and slender. The welfare loss is 1.6 times in 

the square case, and 4 times with c infinite. The latter value becomes identical to that in 

the one-dimensional model, where the consumer distribution is uniform over a line 

segment. 

     The reason for the smaller gap between the optimum and equilibrium in the 

two-dimensional model would be understood in the following manner. Since the 

transportation cost is a square of the Euclidian distance, it can be decomposed into a 

square of the horizontal distance (xi x)2 and a square of the vertical distance (yl y)2. 

Integrating the former over C1E(R2 is equivalent to that over ClE[R. However, there exists 

the other component of the distance cost (yi=y)2 in the two-dimensional model. Since 

y1=y2 =1/2c are common in case of optimum and equilibrium, integration (y1• y)2 over 

C1EER2 in each case yields the same value. That is, whereas the loss ratio in the horizontal 

direction is 4 times, that in the vertical direction is one time. Putting the two components 

together, the loss ratio in the two-dimensional model becomes less than 4 times, which is 

the case for one-dimensional model. This opens the general question of applicability of the 

one-dimensional models to two-dimensional problems. 

     Finally, we note that the price competition in duopoly is so fierce that firms have to 

locate far apart in Nash or Stackelberg equilibrium, resulting in greater loss of welfare than 

the social optimum configuration. This is common to both dimensional cases.
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7. CONCLUSIONS 

     Throughout this paper, we have assumed that in two-dimensional plane there are 

two firms competing in location first and then in mill price under the quadratic 

transportation cost function of distance. Applying Caplin and Nalebuff (1991), we showed 

first that a unique Nash price equilibrium exists on a two-dimensional space for any pair of 

firm locations if the consumer distribution is uniform and is a convex set. 

      Second, we proved that if the convex set is given by any rectangle, then neither 

firm locates at the interior region in Nash two-stage (location then price) games. That is, 

the price competition which keeps their locations apart dominates the location competition 

which brings them near. This would explicate actual locational behavior of retail firms 

such as supermarkets which sell mostly identical commodities. Furthermore, we showed in 

the rectangular case that each firm locates at the midpoint of one side opposite to each 

other in Nash location equilibrium, and that multiple location equilibria exist when the 

rectangle is close to a square while a unique location equilibrium exists when the rectangle 

is long and slender (Proposition 2). It should be emphasized that although the price 

competition is so fierce that firms do not locate in the interior region, they do not 

necessarily locate to maximize the distance between the two. A similar result is obtained 

by Neven and Thisse (1990) although they consider horizontal and vertical differentiation 

instead of two dimensions of horizontal differentiation. We may interpret the result in a 

context of product characteristics space that firms maximize product differentiation in one 

characteristic while they minimize it in the other characteristic. 

    Third, we identified three factors in firms' location choice: (a) farther location to 

relax (Bertrand) price competition; (b) closer location to acquire customers; and (c) 

location which reduces the number of marginal customers. Factors a and b are frequently 

stated in the literature and hence need no explanation here. Factor c, on the other hand, 

never appears in one-dimensional models, but should be taken into account in analyzing 

two-dimensional models. This is because the number of marginal consumers, which is
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related to intensity of the price competition, varies according to their locations in a 

two-dimensional case, but not in a one-dimensional case. To put it plainly, firms can 

raise prices and hence profits when there are few marginal customers that firms want to 

acquire further (Remark 1). 

     Fourth, we modified the game of Nash location and Nash price to that of 

Stackelberg location and Nash price in Section 5. We obtained a unique Stackelberg 

location equilibrium for any rectangular (except square) uniform distribution of consumers 

(Proposition 3). Comparing it with the Nash one, we showed that the sequential choice of 

location is more desirable for the duopolistic firms than the simultaneous choice of location . 

     Finally, we computed the welfare loss defined by the sum of the transportation costs 

in the cases of Nash location equilibrium, Stackelberg location equilibrium and the social 

optimum for both one-dimensional space and two-dimensional space. We showed that the 

welfare loss of equilibrium locations in two-dimensional space is less than that in 

one-dimensional space. This casts some doubts on the use of one-dimensional models in 

evaluating the welfare loss of two-dimensional problems.

APPENDIX 

Proof of Lemma 1 

     There are four cases below corresponding to Figure 2 (i)-(iv). 

Case (i) [c<xa, O<xb<c, 1/c<ya, 0<yb<1/c] 

     The profits are respectively given by 

          ri1 = pl[1-(c-xb)2/2a] and II2 = p2(c-xb)2/2a. 

Calculating the first-order conditions of 8111/apt=0 and a112/0p2=0, we have 

  pi =2a(x2xl)[1/(c-xb)_(c-xb)/2a] and p2=(x2 x1l)(c-xb). 

Using (Al), H2 is rewritten as

(Al)
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b 

                               * x2 xl 
                        112 = (c-xb)3. 

                          2a 

Differentiating this with respect to x2, 

* 

            81I2 
- (c-xb)3 x2 x1(cx3 - 3                                    aa x2 x1 (c-x2 axb                    -~b) b) (A2) 

           8x2 2a 2a ax2 2a ax2 

The partial derivatives of the RHS in (A2) are given by 

                as _a °~xb 1 x 2 +c-2xb                  - and - 
ax2 x2x1 ° 2 x2 x1 2+a/ (c xb) 

The latter is obtained by substituting the prices of (Al) and the values of (x,y)=(xb,l/c) 

into equation (1), and applying the implicit theorem to it. (A2) is then rewritten as 

        an2 (c-xb)2 3 (x2 +c-2x) (c-xb ) [ a-(c x b ] 
               - - )2                    2(c-xb) > 

        ax2 20 2+a/ (c-xb) a[2+a/(c-xb) ] 

            > (c -x b) 2xb             _ > 0 for all x2<c. 
           a[2+a/ (c-xb) 2 ] 

The first inequality is implied by x2<c, and the second is followed from 

a=(c-xb)/(1/c-yb)>c(c-xb). Note that if a-f+oo, then x1-'x2, which leads to xb<0, i.e., 

a-'oo does not correspond to case (i). 

* 

     Similarly, we can show alI2/ay2>0 for all Y2< 1/c. Hence, firm 2 does not locate 

inside the rectangle, but rather locates at the corner (c,l/c) in this market division case. 

Case (ii) [0<xb<xa<c, 1/c<ya, yb<0] 

     Each profit is given by 

         III = pl(x a+xb)/2c and II2 = p2[1-(xa+xb)/2c]. 
Calculating ar11/apt=0 and 0112/apt=0, we get 

                                 * 2 
                      II2 = 2 1(2c-x09 xb) . 
                         2c 

Differentiating this with respect to x2) we have 

* 

               09112 2c-x
09 xb 

                     [4c/3+x 1/3x2+a(y1+Y2-1 /c)/3] 
             ax2 2c 
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                    2c-xa xb 
                > [c-a/c] > 0 for all x2<c. 

                  6c 
The first inequality is followed from x2<c and x1,y1,y2 > 0; and the second is due to the 

fact that the absolute value of the slope of equation (1) is greater than or equal to that of 

the diagonal of the rectangle, i.e., I-1/al >1/c2. 

* 

     Next, differentiating 112 with respect to y2, we get 

* 

                      an2 2c-xa xb 
                             (1/c-2y2) = 0. 

                  0y2 3c 

Therefore, the optimal location of firm 2 is the mid point of one side (c,1/2c) in case (ii). 

Case (iii) [c<xa, xb<0, 0<yb<ya<1/c] 

     Similar computation as in case (ii), we obtain that 
         * * 

    ant all2 

    ax = c(2/c-ya yb)(c-2x2)/3 = 0 and a > 0 for all y2<1/c. 
      2 y2 

That is, the optimal location of firm 2 is the midpoint of one side (c/2,1/c). 

Case (iv) [O<xa<c, xb<O, 0<yb<1/c, yb<0] 
                                              * * 

   Similar calculations as in case (i) yield x111/a1< 0 for all x1>0, and a1ll/ay1<0 

for all yl>0.. Thus, the optimal location of firm 1 is the corner (0,0). 

• Proof of Lemma 2 

     Let (xl,yl)=(0,0) and c>1 without loss of generality. We will compute the 

equilibrium profits of firm 2 corresponding to the four cases appeared in Lemma 1. 

Case (i) 
                                   * * 

     From Lemma 1(i), we have (x2,y2)=(c,1/c) iff c=1. (If c#1, case(i) does not occur.) 

The corresponding profit is II2 =1/2. 

Case (ii) 
                                      * * 

     From Lemma 1(ii), we have (x2,y2) _ (c,1/2c). The corresponding profit is

18



11 =(12c+1/c3)2/288>169/288 since c>1. 

Case (iii) 

    From Lemma 1(iii), we have (x2,y2)=(c/2,1/c) and II2iii=(12/c+c3)2/288< 
169/288 since c>1. 

Case (iv) 

  Calculating 8H2/8x2=0 and 81I2/o0y2=0, and substituting x1=y1=0, we get 

                 2(xa x2)(2+a/xa) + x2 - 2xa = 0, (A3) 
               (xa/a-2ax2)(2+a/xa) + 1/xa + ax2 = 0. (A4) 

Subtracting (A4) from (A3) multiplied by a, we have 

                  (a2-1)(1/a+l/xa) = 0. 
Thus, a should be unity in equilibrium in case (iv), and so x2=y2' 

     Moreover, using 8II1/ep1=0, 8II2/8p2=0 and the definition of xa) we obtain 

                           x2 = 2xa -1/xa. (A5) 

From (A3) and (A5), we finally get x2=y2=( 33-3)/ 33+2 and II2iv= (207-33N33)/323 
for c<+2/( 33-3). For c> 33+2/( 33-3), we have x*                                             2=1/c, which does not satisfy 

the first-order condition. This implies that II2iv for c> 33+2/(33-3) is smaller than 
II2iv for c< 33+2/( 33-3). 

     Comparing the above four values of H2, we conclude that II*ii is the largest. 

• Proof of Lemma 3 

    Let (x1,y1)=(0,1/2c), where cE(O,co) without loss of generality. Similar to the 

previous lemma, we compute the equilibrium profits of firm 2 for the four cases. 

Case (i) 

    If this is the case, firm 2 locates at (c,1/c) from Lemma 1(i). The condition of Yb>0 
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is satisfied if c<(7/12)1/4, and the condition of xb>0 is satisfied if c>(5/12)1/4. That is, 

1121=[c2+1/4c2+ /(c2+1/4c2)2+16]3/512 iff cE((5/12)1/4,(7/12)1/4). Otherwise, case (i) 
is not applied. This result is valid too when firm 2 locates at (c,0). 

Case (ii) 

    From Lemma 1(ii), firm 2 locates at (c,1/2c), and earns the profit of 112ii=c2/2. Of 
course, the conditions of 0<xa,xb<c are satisfied for all c>O since xa=xb=c/2. 

Case (iii) 

    From Lemma 1(iii), firm 2 locates at (c/2,1/c). Its profit is given by 

H*iii=(c3+5/c)2/144 iff c<1. This result also applies when firm 2 locates at (c/2,0). 

Case (iv) 

     This case does not occur because of the following reason. xb<c holds for 

c>(7/12)1/4, and yb<1/c holds for c<(5/12)1/4. This means that both xb<c and yb<1/c are 

not simultaneously satisfied when locations of the two firms are (0,1/2c) and (c,l/c). 

    Consider first the comparison between 1121 and 11211 for all cE((5/12)1/4,(7/12)1/4) 

since 1121 is defined only within this interval. As 1121 and 112ii are increasing for all 
cE((5/12)1/4,(7/12)1/4), and as 1121 at c=(7/12) 1/4 is strictly less than 11211 at 
c=(5/12)1/4, we conclude 112ii>112i for all cE((5/12)1/4,(7/12)1/4). That is, we can drop 
case (i) as a candidate for firm 2's best locational reply, which gives a proof of the former 

part of Lemma 3. 

    The latter part of Lemma 3 can be shown by comparing 112ii with 112iii for c<1. 
Taking the root and subtracting, we have fi-fi'= 2 (c4-6,tj 2c2+5)/(12c), which is 

zero at c0N0.798(<1). Consequently, we obtain 11 -H for cjco, which gives a proof of 
the latter part.

Proof of Proposition 2
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     From Lemmas 1 and 2, we know that one firm should locate at a midpoint of one 

side. 

(a) c<co 

     Suppose firm 1 locates at (0,1/2c). Then, firm 2 will locate at (c/2,1/c) from 

Lemma 3. Conversely, however, (0,1/2c) of firm 1's location is not the best reply against 

(c/2,1/c) of firm 2's location due to the following reason. If-we rotate. therectangle by 7r/2, 

the side lengths become 1/c by c, and, co is replaced with 1/co, which. is of course greater 

than co. Hence, the best reply of firm 1 is. not (0,1/2c), but (c/2,0) from Lemma 3. On the 

other hand, if firm 1 locates at (c/2,0), then firm 2 locates at (c/2,1/c) due to symmetry. 

(b) o<c<1 

     If firm 1 locates at (0,1/2c), then firm 2 locates at (c,1/2c) from Lemma 3. By 

symmetry, the reverse is also true. Similarly, if firm 1 locates at.. (c/2,0), then firm 2 

locates at (c/2,1/c), and the reverse is true too. 

Proof of Lemma 4 

     Without losing generality, assume c>1. 

Case (ii) 

* 

     Differentiating 11,11 with respect to x2, we have 
             *ii 

           aII 1 
- xa+xb. 3 - x + -y2_Y1 + 2c - Y2 Y1                                          y1y2) 

          ax 6 c 1 c(x x) x x 
           2 2 1 2 1 

                           Y Y 
                 >_ xa+xb 3x2 Lx x + + - 2' 1 c 2x--c 

                6 c 2 1 c .x -x ( Y1 Y2)                        (2 1) 

since (y2 y1)/(x2 x1)<c2. As y ,y <1/c, the last term in the brackets is nonnegative, and 
                     1 2 

hence 8II1 /oAx2>0. If the equality were to hold, then x1=x2=0, which does not occur in 

case (ii). Thus, we conclude aR1 /r3x2>0. 

     Next, differentiating II*1ii with respect to y2, we obtain
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                       ar1111 xa+xb 

a                       Y2 3 

This means that anlOy2~0 for y2<1/2c. 
Case (iii) 

     The same operation as above yields all/O >=0 for x ~c/2, and ai*y >0                                1 2< 2< 1111/0 

2 Case (iv) 

     Differentiating H 11v with respect to x2 and manipulating, we have 
            ari1iv (x2 x1)2xa[3x2+2(1 xaya)/Ya] 

                      - 
2 >0              ax2 2 (y2 Y1) [2 (x2-x 1)+(Y2 Y1) /xa] 

since xaya<1 and x2>x1. [x1=x2 does not occur in case(iv)]. 

    all liv/ay2>0 can be shown by similar calculations. 

Proof of Lemma 5 

     As the midpoint and the corner are the only possibilities for firm 2, it suffices to 

prove that the former is preferred to the latter for all c. So, consider case (i), where firm 2 

necessarily locates at a corner 0(0,0).6 

     Then, the maximum profit that firm 1 could obtain is (207-330/32 from Lemma 

2(iv) (with permutation of firm indices). On the other hand, if firm 1 located at the 

midpoint of the short side, then firm 2 would locate at the opposite midpoint of the short 

side, and hence firm 1 earns the profit that is max{c2/2,1/2c2} from Lemma 3(ii). 

Comparing these profits, it might be possible for firm 2 to locate at a corner only when 

cE(c11,c1), where c1 (207-33 33)/16-1.05. 

     Now, if firm 2 locates at 0 in Figure 3, then 

            ya = 1 [x1 + y1 + (x1+y1)2+32x1y1] ~ c 
                     8x1 

is necessary to hold so that case (iv) applies. That is, the location of firm 1 is in C2, where 

    C2 = {(x1,Y1) I (x1+c)2+(y1-2/c)2<c2+4/c2, c/2<x1<c, 1/2c<y1<1/c, y1<x1}. 
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The last inequality does not lose generality due to the symmetric nature of rectangles. In 

other words, the case of y1>x1 can be similarly shown by interchanging c with c-1 in the 

proof below. Thus, confining firm 1's location to C2 (which is the shaded area in Figure 3), 

and limiting the range of one side to (c11,c1), we will prove that for any firm 1's location 

within the shaded area, firm 2 is sure to locate at A(0,1/2c), but not at 0(0,0). 

                        [Figure 3 about here] 

(2) For c>1 

     As x1>1 does not satisfy the first inequality in C1 for c>1, we can limit the range of 

x1 to [c/2,1]. From (5) in Lemma 4, firm 2's profit at A is smaller if firm 1 is at 

R(x1,1/2c) rather than at P(xl,yl), i.e., for yl>1/2c, 

         112 2 ii(x1,y1,0,1/2c) > 112 211(x1 ,1/2c,0,1/2c) = xl(x +2c)2. (A6) 
                                        18c 1 

On the other hand, from (6) in Lemma 4, firm 2's profit at 0 is larger if firm 1 is at 

Q(xl,xl) rather than at P(xl,yl), i.e., for yl<xl, 

             11*lv(x ,y )0,0) < II*iv(x ,x .,0,0) = x1(x + x2+8)3. (A7) 
            2 1 1 2 1 1 128 1 1 

     By comparing (A6) with (A7), we can say that A is preferred to 0 by firm 2, [i.e., 

II 211(xl,y1,0,1/2c)> 1121v(xl,y1,0,0)] if b(xl)>0 for all x1EC1 and cE[l,cl), where 

                0(xl) = x1 + 2c - 3%(x1+3)3/2/8. 

Since a simple calculation yields that b"(xl)<0, 0'(1/2)<0 and b(1)>0, we have O(xl)>0, 

which means that A is preferred to 0 by firm 2. 

(2) For c<1 

     We divide the range of xl into the following two intervals. 

[2a] 1/2c<x1(1/2c+1/4 

    As 0"(x1)<0, b'(1/2)<0 and ii(1/2c+1/4)>0 VcE(c11,1), we have O(xl)>0, 

implying that A is preferred to 0 by firm 2 for x1E[1/2c,1/2c+1/4]. 
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[2b] 1/2c+1/4<xl<c 

     Consider the line y=x-1/4, which is shown to be outside C1 for x>1/2c+1/4. 

Therefore, again from (5) in Lemma 4, firm 2's profit at A is smaller if firm 1 is at 

S(xl,xl-1/4) rather than at P(xl,yl), i.e., 

      B2ii(x1,y1,0j/2c) > B2ii(xl)x1-1/4,0,1/2c) 
                 = 1 [2x1+(2c-1/2-1/c)x1+(1/16+1/4c+1/4c2)]2. (A8) 

                       18cx1 

By comparing (A7) with (A8), we can say that A is preferred to 0 by firm 2, [i.e., 

B211(xl'y1,0,1/2c)> II21V(xl,y1,0,0)] if t~(xl)>0 for all x1EC1 and cE(c 1,1), where 

1 

      0(xl) = 2x1+(2c-1/2-1/c)x1+1/16+1/4c+1/4c2-3~x1(x1+3)3/2/8. 
After some computations, we get q5"'(xl)<0, q5"(1)>0, 5'(1)<0 and 0(1)>0 for all 

cE(c11,1). Hence, g5(xl)>O, which means that A is preferred to 0 by firm 2 for 

x1E[1/2c+1/4,c]. 

Proof of Proposition 5 

     According to Lemma 5, firm 2 (the follower) necessarily chooses to locate at the 

midpoint. Knowing this and from Lemma 1, firm 1 would locate at a midpoint or a corner. 

     Assume c> 1 without losing generality. If firm 1 chooses to locate at (0 , 0) , then 

firm 2 chooses (c,1/2c) from Lemma 2, and B1=(3c-1/4c3)2/18. On the other hand, if 

firm 1 locates at (0,1/2c), which is the midpoint of the short side, then firm 2 chooses 

(0/2c) from Lemma 3, and so 111=c2/2. Obviously, the latter profit is greater than the 

former. Moreover, if firm 1 were to locate at the midpoint of the long side, it is definitely 

inferior than that of the short side. 
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i For example , suppose the transportation cost is proportional to a power of distance. 

Then, the nonexistence of price equilibrium occurs for any power except 2 when firms 

locate sufficiently close. 

2 This is also true for the case of uniform ellipse distributions of consumers. 

According to our numerical analysis, the two-stage Nash equilibrium locations are 

computed as: 

              * *-* 

      (xl,y1,x2,y2) _ (a,0,-a,0) for 1<a/b<1.36, 

                 _ (a,0,-a,0) or (O,b,O, b) for a/b>1.36, 

where the ellipse is given by x2/a2+y2/b2=1. 

3 We also proved that the exclusion of interior location holds under any uniform 

ellipse distribution of consumers. In case of a disc, the two-stage Nash equilibrium 

locations are shown to be opposite points on the circumference. Proofs of these results are 

omitted here to save space, but are contained in Tabuchi (1990). 

4 Since both Nash and Stackelberg equilibrium locations are found to be symmetric, 

the prices are same, and hence consumers necessarily go to their nearest firm. 

5 Although there is no difference between Nash and Stackelberg equilibrium locations 

in terms of the welfare loss, the producer's surplus (i.e., the profit) differs between the two 
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as is seen in Section 5.

6 To simplify mathematical 

(c,l/c) in this proof.

computations, firm 2's location is set to (0,0) instead of

REFERENCES 

Caplin, Andrew and Barry Nalebuff, 1991, Aggregation and imperfect competition: On the 

     existence of equilibrium, Econometrica 59, 25-59. 

Champsaur, Paul and Jean-Charles Rochet, 1988, Existence of a price equilibrium in a 

     differentiated industry, Discussion Paper No.8801, INSEE. 

d'Aspremont, Claude, J. Jaskold Gabszewicz and Jacques-Francois Thisse, 1979, On 

     Hotelling's "Stability in Competition," Econometrica 47, 1145-1150. 

Economides, Nicholas, 1986, Nash equilibrium in duopoly with products defined by two 

     characteristics, Rand Journal of Economics, 17, 431-439. 

Hotelling, Harold, 1929, Stability in competition, Economic Journal 39, 41-57. 

Neven, Damien and Jacques-Francois Thisse, 1990, On quality and variety competition, 

     in: J.J. Gabszewicz, J.-F. Richard and L.A. Wolsey eds., Economic Decision 

     Making: Games, Econometrics and Optimisation: Contributions in Honour of J. 

     Dreze (North-Holland, Amsterdam). 

Shaked, Avner, 1975, Non-existence of equilibrium for the two-dimensional three-firms 

     location problem, Review of Economic Studies 42, 51-56. 

Tabuchi, Takatoshi, 1990, Two-stage two-dimensional spatial competition between two 

     firms, Discussion Paper No.424, Institute of Socio-Economic Planning, University 

     of Tsukuba.

26



0

V

N

(z2,112)

V

I

X

,

O)A
,

14
I

x

. Figure 1 Conversion of two-dimensional -uniform distribution over a convex 

set into one-dimensional concave distribution



Y Y

1 

C

xb

    (x2, jyl 2) 

(x 1,Y1) Yb

x

1 

C

C

xb

(x1,Y1)

0

Case (i)

(x2,Y2)

0

Case (ii)

Xa C
x

1 

C 

ya

Y

1 

C 

ya

y

   (x2,y2 

. (x„ Y, )
Yb

x

   (x 2,Y2) 

(x1,Yl)

0 C

x

0

Case ( iii

C

Case (iv)

x
a

Figure 2 Four cases of market division under a rectangular 

distribution of consumers



Y

1 

c

1 

2c

0

A

l

Q

P(xl yl

A / k--, ~

i
R

i
it/4 ;

1 c
X

L

(1) c>_1

Y

I 
c

1 

2c

0

A

Q

x1,Y1)

A
a

s

Tr/4

1 1 1 c
2c 2c4

Figure 3

X

(2) c<1 

Possible location of firm 1 (the leader) if firm 2 

(the follower) were to locate at the corner 0


