<table>
<thead>
<tr>
<th>Title</th>
<th>True molecular resolution in liquid by frequency-modulation atomic force microscopy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Fukuma, T; Kobayashi, K; Matsushige, K; Yamada, H</td>
</tr>
<tr>
<td>Citation</td>
<td>APPLIED PHYSICS LETTERS (2005), 86(19)</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2005-05-09</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/39672</td>
</tr>
<tr>
<td>Rights</td>
<td>Copyright 2005 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.</td>
</tr>
<tr>
<td>Type</td>
<td>Journal Article</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
True molecular resolution in liquid by frequency-modulation atomic force microscopy

Takeshi Fukuma
Department of Electronic Science and Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510, Japan

Kei Kobayashi
International Innovation Center, Kyoto University, Yoshida-Hommachi, Sakyo, Kyoto 606-8501, Japan

Kazumi Matsushige and Hirofumi Yamada
Department of Electronic Science and Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510, Japan

(Received 13 December 2004; accepted 25 March 2005; published online 4 May 2005)

The increasing attention directed towards nanobiological science requires high-resolution imaging tools for the liquid environment. We have been successful in recording molecular-resolution images of polydiacetylene in water with the frequency-modulation atomic force microscopy (FM-AFM). With the oscillation amplitude of a force-sensing cantilever reduced to 0.20 nm, we were able to overcome the large frequency noise due to the low Q-factor of cantilever resonance in water. We have obtained vertical and lateral resolutions of 10 pm and 250 pm, respectively. This method enables nondestructive imaging of soft biological samples with a load force on the order of 1 pN.

Submolecular-scale imaging in liquid is essential for understanding three-dimensional structures of biological materials, such as deoxyribonucleic acid and proteins in their physiological environments. Atomic force microscopy (AFM) (Ref. 1) has been the most promising candidate for this goal because with the ability to image a wide range of samples in various liquids and with subnanometer-scale resolution. However, molecular-resolution imaging in liquid by contact-mode AFM (CM-AFM) is possible only if the sample has a crystal-like structure or is firmly fixed on a substrate.2–4 Otherwise, the sample is damaged due to the large friction force acting between the tip and the sample. In dynamic-mode AFM (DM-AFM),5 vertical motion of the cantilever significantly reduces the lateral friction force,6 and this allows us to image a weakly bound biological samples in liquid.7,8 However, the spatial resolution of DM-AFM in liquid has no better than a few nanometers because of the extremely low Q factor of the cantilever resonance.5,9 Here we present the result showing true molecular scale (i.e., subnanometer-scale) resolution of DM-AFM in liquid using frequency modulation (FM) detection method.10

In DM-AFM using FM detection method (FM-AFM: frequency-modulation AFM),10 a cantilever is used as a mechanical resonator in a self-oscillation circuit such that the cantilever vibrates at its resonance frequency with a constant oscillation amplitude (A). The frequency shift (∆f) of the cantilever resonance induced by the tip-sample interaction force is detected and used for the tip-sample distance regulation. Although a large number of molecular-scale images were acquired by FM-AFM, those images were taken only in ultrahigh-vacuum environments. The frequency noise in liquid is much larger than that in a vacuum due to the low Q factor of the cantilever resonance. This leads to a low force sensitivity and a low spatial resolution in FM-AFM. In this study, we enhanced the sensitivity of the frequency signal to the short-range interaction forces by reducing the cantilever oscillation amplitude to the scale of the chemical bond length, namely, 0.2–0.3 nm.11,12 In vacuum environments, small-amplitude operation requires high cantilever stiffness to avoid tip adhesion,13 which partially reduces the benefit of sensitivity enhancement. In contrast, due to the small long-range attractive interaction forces in liquid,13 small-amplitude FM-AFM without the tip adhesion is realized even with a relatively soft cantilever.

The FM-AFM apparatus used in this experiment was developed by modifying a commercially available AFM (JEOL: JSPM-4200). The AFM control electronics was replaced with other electronic circuits.15 The original cantilever deflection sensor was replaced with our homebuilt optical beam deflection sensor where the deflection noise density in liquid was about 40fm/√Hz. A highly doped n-Si cantilever (Nanosensors: NCH) was used as the force sensor. The sample used here was a single crystal of polydiacetylene, 2,4-hexadine-1,6-diol bis(p-toluenesulfonate), which is hereafter referred to as “poly-PTS”. A clean surface of the bc plane of poly-PTS was prepared by cleaving it in air. Figures 1(a) and 1(b) show the crystal structures of the bc plane and

FIG. 1. (Color) Crystal structures of (a) bc plane and (b) ac plane of poly-PTS. The lattice constants of the crystal are a=1.493 nm, b=0.4910 nm, and c=1.4936 nm. In the bc plane, one side of the PTS side groups is located under the other side. Thus, they are omitted in (a) for clarity. Hydrogen atoms are also omitted to avoid complexity.
ac plane of poly-PTS. In the bc plane, one side of the p-toluene sulfonate (PTS) side groups attached to the polydiacetylene main chain protrudes from the molecular bc plane, while the other side of the PTS side groups and the main chains are located under the upper PTS side groups. Thus, the topmost carbon atoms indicated by the green circles should appear as bright protrusions in AFM images of the bc plane.

Figure 2(a) shows an FM-AFM image of the bc plane of the poly-PTS single crystal taken in water. The image shows that the surface is composed of striped structures with a period of about 0.75 nm, which agrees well with half the lattice constant along the c axis. Each line consists of a series of small dots with a spacing of about 0.5 nm, which corresponds to the unit cell length along the b axis. Thus, individual PTS side groups are clearly resolved in the image. In addition, several dark spots corresponding to a number of structural defects in the polymer crystal are imaged with the molecular-scale features, demonstrating true molecular resolution of FM-AFM in water. The large bright areas are covered with contamination adsorbed on the surface.

By further reducing the oscillation amplitude to 0.20 nm, we obtained FM-AFM images with improved spatial resolution. In Fig. 2(b), the large bright spots indicated by the green circles correspond to the topmost carbon atoms indicated by green circles in Fig. 1. In addition, some small bright spots are seen in Fig. 2(b). According to the molecular structure of the side chain, the small spots represent the sulfonate groups in the PTS side groups. With a better tip condition, the large bright spots are resolved into the two peaks, as shown in Fig. 2(c). The cross-sectional plot measured along the black line PQ [Fig. 2(d)] shows that the distance between the two peaks is about 0.24 nm. As indicated in Fig. 1(a), the distance agrees with the distance between adjacent carbon atoms in the toluene group, about 0.25 nm. The result demonstrates that FM-AFM in water can achieve a lateral resolution of 0.25 nm.

Figure 3(a) shows the frequency shift-distance curve measured on the bc plane of the poly-PTS single crystal in water. Figure 3(b) shows the force-distance curve derived from the results in Fig. 3(a) with the method proposed by Giessibl.

FIG. 3. (Color) Frequency shift-distance curve measured on the bc plane of the poly-PTS single crystal in water ($A=0.26$ nm, $Q=27$, $f_0=140$ kHz, $k=42$ N/m). (a) Scan parameters: EPM, $A=0.26$ nm, $Q=27$, $f_0=140$ kHz, $k=42$ N/m. The frequency shifts used for the imaging were $c=+80$ Hz, (d) $+230$ Hz, (e) $+385$ Hz, and (f) $+580$ Hz. Scanning speed was 839 nm/s. The images were obtained immediately before taking the curves shown in (a).
environments. The minimum detectable force (δF) estimated by the small-amplitude approximation 10 is given by $\delta F = 2kA \delta f/f_0 = 9.0$ pN at an FM bandwidth of 1 kHz. This load force is much smaller than the force used for the imaging of proteins in liquid by CM-AFM (~ 100 pN).4 This indicates the ability of FM-AFM to image soft biological samples.

Since Figs. 3(c)–3(f) were obtained at Branch (i), the tip might be on one of the water layers at the closest tip position during the imaging. There is also a possibility that the tip might be covered with some water layers. A detailed understanding of the behavior of the water molecules during the high-resolution imaging and its contribution to the image contrast require further experiments and theoretical studies.

The use of true molecular-resolution imaging by small-amplitude FM-AFM in liquid opens a variety of applications in nanobiology and organic molecular science. These applications include not only structural imaging but also measurements of local electrical and magnetic properties.20,21 Force spectroscopy with small-amplitude FM-AFM in liquid provides quantitative information on the behavior of molecules in a liquid phase, as shown in Fig. 3(b). The spatial resolution and force sensitivity of this technique should be enhanced in the near future by using a smaller cantilever having a higher resonance frequency and a higher Q factor in liquid.

The authors thank C. F. Quate for valuable comments and S. Okada and H. Nakanishi for providing poly-PTS single crystals. This work was supported by a Grant-in-Aid from the Ministry of Education, Culture, Sports, Science, and Technology of Japan, and a Leading Project on Nanotechnology and Materials from the Ministry of Education, Culture, Sports, Science, and Technology of Japan, and the 21st Century Center of Excellence Program, Kyoto University.