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True atomic resolution of frequency-modulation atomic force microscopy in liquid is demonstrated.
Hexagonal lattice of a cleaved �001� surface of muscovite mica is resolved in water. Nonperiodic
structures such as defects and adsorbates are simultaneously imaged with the atomic-scale features
of mica surface. The use of small oscillation amplitude �0.16–0.33 nm� of a force sensing cantilever
allows us to obtain vertical and lateral resolutions of 2–6 and 300 pm, respectively, even with a low
Q factor in water �Q=20–30�. © 2005 American Institute of Physics. �DOI: 10.1063/1.1999856�

Frequency-modulation atomic force microscopy
�FM-AFM�1 has a distinctive advantage over other scanning
probe techniques such as scanning tunneling microscopy2

and contact-mode atomic force microscopy �CM-AFM�:3 the
imaging ability of insulating surfaces with true atomic �i.e.,
subnanometer-scale� resolution.4 This ability is essential for
the applications in organic molecular science and nanobiol-
ogy where molecular-scale investigations on nonconductive
and soft organic materials are required. Although a large
number of subnanometer-scale FM-AFM images have been
presented so far,4–9 such high-resolution imaging has been
successful only in ultrahigh vacuum �UHV� environment.
This limitation has prevented a wide range of its applications
in air and liquid. In particular, high-resolution imaging in
liquid is indispensable for investigating biological samples in
their physiological environments.

The major difficulty in high-resolution FM-AFM imag-
ing in liquid is the low force sensitivity due to the low Q
factor of the cantilever resonance.10,11 Recently, the authors
have overcome the difficulty and succeeded in obtaining true
molecular resolution in air12 and liquid13 with a newly devel-
oped multienvironment FM-AFM.14 We used a home-built
cantilever deflection sensor14 having a deflection noise den-
sity of 17 fm/�Hz for obtaining a maximum force sensitivity
limited by the cantilever thermal Brownian motion. The re-
markable noise characteristic of the deflection sensor also
allows us to maintain the cantilever oscillation amplitude �A�
at as small as 0.2–0.3 nm in liquid. This small amplitude
operation is extremely effective for enhancing the sensitivity
to the short-range interaction forces15 and thereby obtaining
a high spatial resolution.16 In this letter, we present the first
result showing true atomic resolution of FM-AFM in liquid.
A cleaved �001� surface of muscovite mica is imaged in wa-
ter using the above mentioned technique and instruments.

Figure 1�a� shows a-axis projection of the crystal struc-
ture of muscovite mica �KAl2�Si3Al�O10�OH�2�. The crystal

consists of complicated aluminosilicate layers separated by
K+ ions. In the bulk crystal, one-fourth of Si4+ ions are re-
placed with Al3+ ions so that the layer is negatively charged.
This negative charge is compensated by the K+ ion layer
which electrostatically bounds the adjacent two aluminosili-
cate layers. The crystal is easily cleaved at the K+ ion layer,
presenting an atomically flat surface as shown in Fig. 1�b�.
The surface is composed of Si �partially Al� and O atoms
forming an array of hexagons with a unit cell length of 0.52
nm.

Figure 2 shows an FM-AFM image of the cleaved �001�
surface of muscovite mica taken in water. Atomic-scale fea-
tures having a period of 0.52 nm are clearly imaged with
large-scale corrugations and some adsorbates. Although a
number of atomic-scale images of mica have been presented
by CM-AFM,17,18 simultaneous imaging of atomic-scale fea-
tures with such surface corrugations and adsorbates have not
been successful. This is because the average load force is
relatively large and the tip motion produces a high lateral
force in CM-AFM. In FM-AFM, the vertical oscillation of
the cantilever reduces both vertical load and lateral frictional
force, which allows us to image atomic-sale details even
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FIG. 1. �Color online� The crystal structure of muscovite mica; �a� a-axis
projection; �b� cleaved surface �K+ ions are not shown�.
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with randomly distributed adsorbates weakly bound to the
surface. This capability is essential for the applications in
nanobiology where subnanometer-scale investigations on
weakly bound biological materials are required.

The FM-AFM images of mica taken in water show two
different contrast patterns depending on the frequency shifts
��f� used for the tip-sample distance regulation:
honeycomb-like pattern �Fig. 3�a�� and dot-like pattern �Fig.
3�b��. The honeycomb-like pattern consists of a number of
hexagons repeating with a period of 0.52 nm. This contrast
pattern is found in the FM-AFM images taken with relatively
small frequency shifts �less than +200 Hz when A
=0.20 nm�, namely relatively weak tip-sample interaction
force. This contrast pattern agrees well with the atomic-scale
structure of mica surface shown in Fig. 1�b�. The FM-AFM
image shown in Fig. 3�c� presents more detailed structure of
the honeycomb-like pattern. The image shows some bright
spots on the hexagons. The structural model shown in Fig.
1�b� suggests that the bright spots found in the image are
located on the Si atom sites in the hexagons. These bright
spots may correspond to the Al3+ ions because Al3+ ions are
probably imaged as relatively large protrusions due to their
negative charges offered from the surrounding O2− ions. The
distance between the adjacent bright spots is about 300 pm,
showing a good agreement with the distance between the two
adjacent Si atom sites �Fig. 1�b��. Such nonperiodic atomic-
scale contrasts in FM-AFM images demonstrate that true
atomic-resolution imaging by FM-AFM is possible even
with a Q factor of as low as 30 in water.

The FM-AFM images taken with a relatively large fre-
quency shifts �larger than +200 Hz when A=0.20 nm�,
namely relatively large tip–sample interaction force, show
the dotlike pattern as shown in Fig. 3�b�. The dotlike pattern
consists of hexagonally arranged bright dots separated by

0.52 nm. Under this condition, some of the bright dots show
asymmetric contrast in the fast scanning direction �Fig. 3�d��,
indicating the influence of the tip–sample frictional interac-
tion. The dot-like pattern is similar to those of “lattice im-
ages” obtained by CM-AFM17,18 where only periodic struc-
tures are imaged through the frictional interaction averaged
over a relatively large tip–sample contact area. However,
FM-AFM images obtained in this experiment also show
subnanometer-scale structural defects as shown in Fig. 3�d�.
This clear difference from the lattice images reveals that the
image was formed through the frictional interactions acting
in the subnanometer-scale tip-sample contact area.

The precise control of the vertical tip position near the
tip-sample contact point makes it possible to probe a wide
range of interactions from atom-to-atom interactions for true
atomic resolution �Fig. 3�c�� to frictional interactions in the
subnanometer-scale contact area �Fig. 3�d��. This ability also
allows us to obtain a high spatial resolution with sufficiently
small load forces. We have quantitatively investigated the
vertical resolution of FM-AFM in water from the frequency
shift-distance curve measured on mica �Fig. 4�. The curve
shows a force oscillation with a period of about 0.16 nm
probably due to the layering of the water molecules confined
in the tip-sample separation.19,20 True atomic resolution was
stably obtained with frequency shifts in the range from
+250 Hz to +500 Hz �gray shadow in Fig. 4�. From the
curve shown in Fig. 4, the frequency shift gradient in this
frequency shift range is ����f� /�z�=3–9�1013 Hz/m. On
the other hand, the frequency noise density measured with a
fast Fourier transform analyzer shows a nearly constant value
of 0.58 Hz/�Hz at frequencies less than the FM bandwidth
of 1 kHz. Thus, the frequency noise is �f =18.4 Hz with an
FM bandwidth of 1 kHz. Accordingly, the vertical resolution
of FM-AFM is �z= ��f / ����f� /�z��=2–6 pm in this fre-
quency shift range. Since the vertical corrugation of the
atomic surface is typically 20–100 pm,21 vertical resolution

FIG. 2. �Color online� FM-AFM image of the cleaved �001� surface of
muscovite mica taken in water �30 nm�30 nm, �f = +364 Hz, A
=0.33 nm, scanning speed: 561 nm/s�. The tip-sample distance regulation
was made in constant frequency shift mode. The cantilever used was an n-Si
cantilever �Nanosensors: NCVH� with a spring constant of 37 N/m and a
resonance frequency of 176 kHz in water. The Q factor measured in water
was 23.

FIG. 3. �Color online� FM-AFM images of the cleaved �001� surface of
muscovite mica taken in water. �a� 8 nm�8 nm, �f = +54 Hz, A
=0.24 nm, scanning speed: 671 nm/s; �b� 8 nm�8 nm, �f = +240 Hz, A
=0.20 nm, scanning speed: 1120 nm/s; �c� 4 nm�2.5 nm, �f = +157 Hz,
A=0.16 nm, scanning speed: 934 nm/s; �d� 4 nm�2.5 nm, �f = +682 Hz,
A=0.20 nm, scanning speed: 671 nm/s. The images were taken in constant
height mode. The cantilever used was an n-Si cantilever �Nanosensors:
NCH� with a spring constant of 42 N/m and a resonance frequency of 136
kHz in water. The Q factor measured in water was 30.
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of 2–6 pm is sufficiently small to achieve true atomic reso-
lution. The result indicates that the signal enhancement ow-
ing to the small-amplitude operation overcomes the large fre-
quency noise due to the low Q factor in water.

The success of true atomic resolution imaging by FM-
AFM in water opens a wide variety of new applications that
cannot be performed by CM-AFM. The small tip-sample
friction force in FM-AFM allows us to investigate atomic-
scale phenomena taking place at the liquid/solid interface
through weak interaction forces. For example, molecular-
scale investigations on the water layers on hydrophilic sur-
faces such as mica is one of the promising future subjects.
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FIG. 4. Frequency shift–distance curve measured on a cleaved �001� surface
of muscovite mica in water �A=0.33 nm, Q=19, f0=155 kHz, k=42 N/m�.
The curve was taken with a tip velocity of 0.7 nm/s and approximately
1000 data points. The tip-sample contact point is not identified.
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