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Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering,
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We investigate the structure of the exact wave function as a solution of the Schro¨dinger equation,
aiming the singles and doubles description of the exact wave function. The basis is that the
Hamiltonian involves only one and two body operators. We first present two theorems that indicate
a possibility of the singles and doubles description of the exact wave function. We then examine the
exponential ansatz, as this theorem implies it to be a possible structure of the exact wave function.
Variational CCS~singles! wave function is shown to be certainly exact for one particle Hamiltonian.
Thouless transformation plays an important role in the formulation. The conventional CCSD
~singles and doubles! function is restrictive, even if it is solved variationally. A wider coupled
cluster function with general singles and doubles substitution operators~CCGSD! is also not exact
for the existence of noncommuting operators. We then analyze some formal properties of the full CI
wave function, and finally, we propose an ansatz of the exact wave function and describe the method
of solution. It involves successive solutions of the secular equations of the order of singles and
doubles. It is variational and we can calculate both ground and excited states. ©2000 American
Institute of Physics.@S0021-9606~00!30832-7#
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I. INTRODUCTION

Solving the Schro¨dinger equation is not only a dream o
a scientist but also has much practical utility. Exact pred
tions of chemical and physical properties and phenomena
our ultimate goal. Nowadays, only the full CI method
available for solving the exact wave function within a giv
basis set, but this method is too demanding computation
and therefore impractical even for a small system. The p
pose of this paper is to search for the possibility of an ea
way of solving the Schro¨dinger equation within singles an
doubles. The basis is that the Hamiltonian involves only o
and two particle operators.

We call a wave functionc to be ‘‘exact’’ when it satis-
fies the Schro¨dinger equation,

~H2E! c50, ~1.1!

whereH is the Hamiltonian of the system under consid
ation,

H5(
pr

vp
r ar

1ap1 (
pqrs

wpq
rs ar

1as
1aqap5Hone1H two ,

~1.2!

andE is the energy of the system defined by

^cu~H2E!uc&50. ~1.3!

The creation and annihilation operators,ar
1 andap , respec-

tively, satisfy the anticommutation relation given by1
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15@ap
1 ,aq#15dpq ,

@ap
1 ,aq

1#150, ~1.4!

@ap ,aq#150.

The reference one-particle functions used for definingar
1

and ap are the Hartree–Fock~HF! orbitals in the HF wave
function,

u0&5i . . . ..w i . . . ..w j . . . ..i . ~1.5!

We use the indicesi , j ,k,l for occupied orbitals,a,b,c,d for
unoccupied orbitals, andp,q,r ,s for general orbitals. There
fore,

ai
1u0&50,

~1.6!
aau0&50.

A point quite important to be mentioned here is that t
Hamiltonian is composed of only one and two particle o
erators. There are no elementary physical operators tha
volve more-than-three body interactions. Because of
simplicity, we may imagine that the exact wave functio
should have some simple structure, even though it is
known now, because it is an eigenfunction of such a sim
operator, Hamiltonian. This is a motivation of this resear
In the formulation given below, we utilize only this fact, an
therefore, the argument of this paper is valid to any kind
physical systems.

It is well known that the second order density matr
G (2)(1828u12) is enough to calculate all the elementa
9 © 2000 American Institute of Physics
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physical properties.2–4 We have the variational method fo
the direct determination ofG (2).5,6 We also have the densit
equation, including only density matrices as variables, tha
equivalent to the Schro¨dinger equation.7,8 These methods ar
based on the possibility of the singles and doubles desc
tion of quantum mechanics. The obstacle there is
N-representability,9 but much progress has been made
cently along the density equation theory~DET!.7–14A review
of the DET in chemical physics has recently been summ
rized by the present author.14

We now define ‘‘necessity’’ and ‘‘sufficiency’’ relations
to the Schro¨dinger equation. If the ‘‘exact’’ wave functionc,
which is a solution of the Schro¨dinger equation, satisfie
some equation, then that equation is called a necessary
dition. On the other hand, if ac satisfying some equation
should always satisfy the Schro¨dinger equation, then this
equation is called a sufficient condition of the Schro¨dinger
equation. When some equation is not only necessary but
sufficient, then that equation is called to be ‘‘equivalent’’
the Schro¨dinger equation. As such equivalent formula, w
have variational principle, density equation,7,8 etc. The
equivalent equation has the same determinative power a
Schrödinger equation has, when it is solved appropriate
There are many necessary~but not sufficient! conditions of
the Schro¨dinger equation, for example, Hellmann–Feynm
theorem, virial theorem, etc., but generally speaking, the
terminative power of such an equation is limited.15

In this paper, the following equation plays an importa
role for judging a wave functionc to be exact, namely,

^cu~H2E!2uc&50, ~1.7!

where the energyE is defined by Eq.~1.3!. This equation is
equivalent to the Schro¨dinger equation16 in the necessary an
sufficient sense and valid to both ground and excited sta

In Sec. II, we show the basic theorems that imply
possibility of the singles and doubles description of the ex
wave function. As the theorem implies the exponential
satz combined with the variational principle as a possi
structure of the exact wave function, we devote Secs. III,
and V to the examinations of the exponential ansatz incl
ing singles and doubles excitation operators as a candida
the exact wave function. Sec. VI gives an examination of
full CI wave function in a light of the present consideratio
and in Sec. VII we give a proposal of the singles and doub
description of the exact wave function. Conclusions
given in Sec. VIII.

II. BASIC THEOREM

The theorem given below is very simple but its implic
tion is important.

Theorem II-1. The wave functionc that satisfies the fol-
lowing two equations:

^cu~H2E!ar
1apuc&50 ~2.1!

and

^cu~H2E!ar
1as

1aqapuc&50, ~2.2!

for all the indicesp,q,r ,s is sufficiently exact. These equa
tions are also a necessary condition for thec to be exact.
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Proof. The necessity is trivial because the solution of t
Schrödinger equation automatically satisfies Eqs.~2.1! and
~2.2!. The sufficiency is also easily shown. We calculate
following quantity using the definition of the Hamiltonia
@Eq. ~1.2!# and Eqs.~2.1! and ~2.2!, and show it to vanish
identically

^cu~H2E!Huc&5(
pr

vp
r ^cu~H2E!ar

1apuc&

1 (
pqrs

wpq
rs ^cu~H2E!ar

1as
1aqapuc&50.

~2.3!

This equation combined with Eq.~1.3! gives Eq.~1.7!, so
that c is exact. Thus, the necessary and sufficient theo
II-1 is proved.~QED!

The indicesp,q,r ,s run both occupied and unoccupie
orbitals, so that the single and double substitution opera
appearing in Eqs.~2.1! and ~2.2! are grouped as shown i
Tables I and II. These operators are classified into two typ
At andXt. The At operators are the ones in the~18,1! blocks
of Tables I and II and involve only the excitation operato
from occupied to unoccupied orbitals. The other operat
are calledXt operators and have at least one creation or
nihilation operator of the typeai

1 or aa . The number of Eqs.
~2.1! and ~2.2! is

M5m21Fm

2
~m21!G2

~2.4!

with m being the number of the active orbitals. It is larg
than the number of the so-called singles and doubles, wh
is the number of theAt type operators, but it is essentially i
the same order. The equivalence of this set of equations
the Schro¨dinger equation implies an existence of the sing
and doubles description of the exact wave function.

We note that even if we have the relation

^cu~H2E!as
1at

1au
1araqapuc&50 ~2.5!

TABLE I. Single substitution operators.a

1 2

18 aa
1ai ab

1aa

28 aj
1ai ai

1aa

aThe operators in the~18,1! block is denoted asAt, and those in the other
blocks asXt.

TABLE II. Double substitution operators.a

1 2 3 4

18 aa
1ac

1akai aa
1ak

1alai aa
1ad

1acai aa
1ak

1acai

28 aj
1ac

1akai aj
1ak

1alai aj
1ad

1acai aj
1ak

1acai

38 ab
1ac

1akaa ab
1ak

1alaa ab
1ad

1acaa ab
1ak

1acaa

48 ai
1ac

1akaa ai
1ak

1alaa ai
1ad

1acaa ai
1ak

1acaa

aThe operators in the~1’,1! block is denoted asAt, and those in the other
blocks asXt.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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for the triple substitution operators and similar ones
higher operators, they have nothing to do with the derivat
of Eq. ~2.3!, namely, with the proof of Theorem II-1. Thi
again supports the existence of the singles and doubles
scription of the exact wave function. In a separate pape17

we examined the roles of the higher excitations in the c
ventional configuration interaction~CI! and coupled cluste
~CC! wave functions.

Now, let us recall the variational principle of the form

^cu~H2E!udc&50, ~2.6!

which is equivalent to the Schro¨dinger equation in the nec
essary and sufficient sense. Comparing Eq.~2.6! with the
equations in Theorem II-1, we can imagine the structure
the exact wave function as expressed by the following th
rem.

Theorem II-2. Let us assume a wave functionc that has
variables of the order of only singles and doubles,

c5c~Cp
r ar

1ap , Cpq
rs ar

1as
1aqap ,FK!, ~2.7!

whereFK are the given reference functions, and further
sume thatc satisfies

]c

]Cp
r 5ar

1apc ~2.8!

and

]c

]Cpq
rs 5ar

1as
1aqapc ~2.9!

for the variations in the coefficientsCp
r and Cpq

rs , respec-
tively, thenc is exact.

Proof. Applying the variational principle, Eq.~2.6! un-
der the assumption that the variation is done only for
unknown variablesCp

r andCpq
rs , then we get Eqs.~2.1! and

~2.2! of Theorem II-1 from Eqs.~2.8! and~2.9!, respectively.
Therefore,c is exact.~QED!

The numbers of Eqs.~2.8! and~2.9! are just the same a
those of the unknown variablesCp

r and Cpq
rs , respectively,

included in the wave function of Eq.~2.7!, so that we can
determine all these unknown variables.

Theorem II-2 states that a sufficient condition for thec
to be exact is that it has the structure defined by Eqs.~2.8!
and ~2.9!. The number of the variables isM given by Eq.
~2.4!. M is independent of the number of the electrons,N, of
the system and is much smaller than that of the full CI,
which the number of variables is given by~for singlet!

M full - CI5
1

m11 S m11

1
2 N

D S m11

1
2 N11

D , ~2.10!

where () denotes binomial coefficient. This number depe
not only onm but also onN and soon becomes intractab
large even for relatively small systems.

Theorem II-2 is a sufficiency theorem and it does n
claim the necessity. This means that the space ofc defined
by Theorem II-2 may be smaller than the real space of
exact wave function. As expected from the argument on
Downloaded 31 May 2007 to 130.54.110.22. Redistribution subject to AI
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~2.5!, we note that even if we include triple, quadruple, et
substitutions in our wave function and determine the ass
ated variables by, e.g.,

]c

]Cpqr
stu 5as

1at
1au

1araqapc, ~2.11!

they have nothing to do with the proof of the above theore
Since the wave function defined by the above theorem

exact, it should automatically satisfy several important pro
erties, e.g., size-consistency and size-extesivity,18 upper-
bound nature for the ground state, the bound-from-below
ture for the excited states, and a correct behavior in
homolytic bond fission process~multireference type nature
of the wave function19!.

From Eqs.~2.8! and ~2.9!, one may expect that the ex
ponential ansatz of the wave function combined with t
variational principle may represent the structure of the ex
wave function. We therefore examine this possibility in t
following three sections. We note that the variational deriv
tion of the cluster expansion was given by the present au
in the formulation of the symmetry adapted cluster~SAC!
expansion.20 The SAC theory not only gives an accura
ground-state wave function, but also generates a set of
cited functions that span the excited states.21 The SAC-CI
theory utilizes such functions for describing excited stat
ionized states, and electron-attached states.21–23 Kutzelnigg
examined several different CC theories.24

III. VARIATIONAL CCS FOR THE ONE-PARTICLE
HAMILTONIAN

As a simple prototype system, we consider here the s
tem that has only one-particle term in the Hamiltonian,

H5(
pr

vp
r ar

1ap . ~3.1!

The HF model Hamiltonian is an example of this system. F
such system, we have the following theorem:

Theorem III. For the one-particle Hamiltonian, the varia
tional CCS wave function is exact.

Proof. The CCS wave function is defined by

c5exp~T!u0&,

T5(
i ,a

Ci
aaa

1ai . ~3.2!

Since this wave function involves only commutable ope
tors, we get

]c

]Ci
a 5aa

1aic. ~3.3!

From the variational principle~Eq. ~2.5!!, we have

^cu~H2E!aa
1ai uc&50, ~3.4!

and the energyE is defined by

^cu~H2E!uc&50. ~3.5!
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Since Eq.~3.4! is only for the At type operators, we have t
formulate similar equations for theXt type operators. For this
purpose, we examine the effect ofak

1 andaa applied toc.
First, we obtain

ak
1exp~T!5exp~T!ak

12S (
a

Ck
aaa

1Dexp~T! ~3.6!

and

aaexp~T!5exp~T!aa1S (
i

Ci
aai Dexp~T!, ~3.7!

from the commutation rule given by Eq.~1.4! ~see also the
Appendix!. Applying these equations tou0&, we have

S ak
11(

a
Ck

aaa
1Dc50 ~3.8!

and

S aa2(
i

Ci
aai Dc50, ~3.9!

and then we have

ab
1aac5(

i
Ci

aab
1aic, ~3.10!

aj
1aic5S d i j 2(

a
Cj

aaa
1ai Dc, ~3.11!

and

ak
1abc5(

i
Ci

bS d ik2(
a

Ck
aaa

1ai Dc. ~3.12!

Now we calculate the following quantity, which is re
written using Table I:

^cu~H2E!Huc&5(
i ,a

v i
a^cu~H2E!aa

1ai uc&

1(
a,b

vb
a^cu~H2E!aa

1abuc&

1(
i , j

v i
j^cu~H2E!aj

1ai uc&

1(
a,i

va
i ^cu~H2E!ai

1aauc&. ~3.13!

The first term on the right-hand side vanishes identically
Eq. ~3.4!. The following three terms are also shown to van
by using first Eqs.~3.10!–~3.12! and then Eqs.~3.4! and
~3.5!. Thus, we have shown that Eq.~1.7! holds for the CCS
wave function; the CCS wave function is exact for the on
particle Hamiltonian.~QED!

It is remarkable that in the CCS case, the substitut
operators including theXt type operators are all transforme
to the terms including only theAt type operators, and there
fore, the last three terms of Eq.~3.13! become zero. This
remarkable relation is derived from Eqs.~3.8! and ~3.9!,
which are essentially equivalent to the Thouless theore25

for the single-determinantal wave function.
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Let us suppose the orbital transformations given by

x i5w i1(
a

Ci
awa ~3.14!

and

xa5wa2(
i

Ci
aw i , ~3.15!

then, the new set of creation and annihilation operators~de-
noted with prime! associated with the orbitals$xp% are given
by

ai 8
1

5ai
11(

a
Ci

aaa
1 ~3.16!

and

aa85aa2(
i

Ci
aai . ~3.17!

The CCS wave function given by Eq.~3.2! is nothing else
but the Thouless transformation of the single determin
from u0&5i . . . ..w i . . . ..i to uc&5i . . . ..x i . . . ..i , except
for a normalization factor, and Eqs.~3.8! and~3.9! are noth-
ing else but

ai 8
1i . . . ..x i . . . ..i50 ~3.18!

and

aa8i . . . ..x i . . . ..i50, ~3.19!

respectively. The corresponding equation for the original
bitals $wp% is given by Eq.~1.6!.

IV. VARIATIONAL CCSD

Now, we come back to the general Hamiltonian given
Eq. ~1.2! and consider how good is the CCSD wave functio

c5exp~T!u0&,

T5(
i ,a

Ci
aaa

1ai1 (
i j ,ab

Ci j
abaa

1ab
1ajai . ~4.1!

Applying the variational principle to the CCSD wave fun
tion, we get

^cu~H2E!aa
1ai uc&50 ~4.2!

and

^cu~H2E!aa
1ab

1ajai uc&50. ~4.3!

We here want to examine the quantity,

^cu~H2E!Huc&5(
pr

vp
r ^cu~H2E!ar

1apuc&

1 (
pqrs

wpq
rs ^cu~H2E!ar

1as
1aqapuc&,

~4.4!

as in the previous section. The one and two electron op
tors of Eq. ~4.4! run over all the elements (At and Xt) of
Tables I and II, respectively, while the operators in Eqs.~4.2!
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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and ~4.3! run only within the~18,1! blocks (At alone!. The
operatorsXt are characterized by the inclusion of at lea
oneai

1 or aa operators.
We show in the Appendix the following relations:

S ai
11(

a
Ci

aaa
122(

jab
Cji

abaa
1ab

1aj Dc50 ~4.5!

and

S aa2(
i

Ci
aai12(

i jb
Ci j

baab
1ajai Dc50. ~4.6!

In contrast to Eqs.~3.8! and~3.9! for the CCS wave function
for the one-particle Hamiltonian, the above equations
volve the products of three operators in the last terms; t
originate from the double excitation terms inT and compli-
cate the Thouless transformation.

Equations~4.5! and ~4.6! are utilized to transform the
termsai

1c andaac, respectively, involved in the termXt c
into the terms involving only the commutable operators ofai

and aa
1 types. The~18,2! and ~28,1! elements of the single

substitution operators of Table I applied toc are transformed
as

ac
1aac5S (

i
Ci

aac
1ai22(

i jb
Ci j

baac
1ab

1ajai Dc, ~4.7!

and

ai
1akc5S d ik2(

a
Ci

aaa
1ak12(

jab
Cji

abaa
1ab

1ajakDc.

~4.8!

Therefore, from the variational condition given by Eqs.~4.2!
and ~4.3!, we have

^cu~H2E!ac
1aauc&50, ~4.9!

and

^cu~H2E!ai
1akuc&50, ~4.10!

for the ~18,2! and ~28,1! elements of the single excitatio
operators. Eqs.~4.9! and ~4.10! are very special among
the Xt type operators of Tables I and II. For example, t
~28,2! element of the single substitution operator,ai

1aa ,
does not satisfy such a relation because the transforma
based on Eqs.~4.5! and ~4.6! leads to the terms involving
three-particle excitations.

TheXt type double substitution operators shown in Ta
II applied toc are similarly transformed into the terms th
involve the excitations higher than triples. For example,
~38,1! element of Table II applied toc is transformed as

ac
1ad

1akaac

5S (
i

Ci
aac

1ad
1akai12(

i jb
Ci j

baac
1ad

1ab
1akajai Dc

~4.11!

that involves not only doubles but also triples, and the la
ones do not vanish by the variational conditions given
Eqs. ~4.2! and ~4.3!. It is easy to show that the termXt c
with Xt given by Table II is transformed into the terms i
Downloaded 31 May 2007 to 130.54.110.22. Redistribution subject to AI
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volving up to six-particle excitations. Actually, whenXt in-
volves ai

1 or aa operatorsn times (1<n<4), the highest
excitation terms inXt c are (n12)-particle ones. Therefore
for such Xt operators, we can not have the relations like E
~4.9! and ~4.10!, so that the integral given by Eq.~4.4! does
not vanish for the CCSD wave function. Thus, the conve
tional CCSD wave function is too restrictive to be an exa
wave function, even if it is solved variationally. In othe
words, it does not have the freedom associated with the s
stitution operators expressed byXt.

V. COUPLED CLUSTER WITH THE GENERAL
T-OPERATOR

Based on the result of the preceding section, a nat
next step is to examine the coupled cluster with more gen
T-operator. From the preceding argument, no restriction w
there on the reference function, so that the simplest choic
the HF reference functionu0&. Then, we consider the cluste
expansion with generalT-operator as given by

c5exp~T!u0&, ~5.1!

T5(
pr

Cp
r ar

1ap1 (
pqrs

Cpq
rs ar

1as
1aqap

1 (
pqrstu

Cpqr
stu as

1at
1au

1araqap1•••. ~5.2!

In particular, we are interested in the followingT-operator of
singles and doubles:

T5(
pr

Cp
r ar

1ap1 (
pqrs

Cpq
rs ar

1as
1aqap. ~5.3!

We refer to the coupled cluster with this general singles a
doubles operators as CCGSD, where G stands for gen
This function includes all kinds of substitution operators, i.
both At and Xt given in Tables I and II, so that it is wide
than the conventional CCSD wave function discussed in
preceding section. The number of the variables isM given by
Eq. ~2.4!, which is larger than that of CCSD, but it is still o
the order of singles and doubles.

TABLE III. Single substitution operators of Table I applied tou0&.

1 2

18 aa
1ai u0& 0

28 d i j u0& 0

TABLE IV. Double substitution operators of Table II applied tou0&.

1 2 3 4

18 aa
1ac

1akai u0& dklaa
1ai u0& 0 0

2d ikaa
1al u0&

28 d i j ac
1aku0& d i j dklu0& 0 0

2d jkac
1ai u0& 2d ikd j l u0&

38 0 0 0 0
48 0 0 0 0
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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The CCGSD wave function has some complex struct
not in common with the ordinary CCSD. First, it include
noncommuting operators, which make CCGSD somew
complicated. Second, the linked part of theXt operator is
zero, u0&, or single excitations, as seen from Tables III a
IV that summarize the GSD operators applied tou0&. There-
fore, most of theXt part works in the form of the unlinked
terms XtAtu0&, which has the form of the multireferenc
coupled cluster.19

We now solve the variablesCp
r andCpq

rs in CCGSD by
the variational method. The CC expansion is given by

c5exp~T!u0&5F11T1
1

2
T21

1

3!
T31•••G u0&. ~5.4!

SinceT includes the noncommuting operators, the derivat
of c with respect toCp

r andCpq
rs is written as

]c

]C
5F ]T

]C
1

1

2 S ]T

]C
T1T

]T

]CD
1

1

3! S ]T

]C
T21T

]T

]C
T1T2

]T

]CD1•••G u0&, ~5.5!

where]T/]C actually stands for

]T

]Cp
r 5ar

1ap ~5.6!

and

]T

]Cpq
rs 5ar

1as
1aqap . ~5.7!

Since T and ]T/]Cp
r do not commute, we have from Eq

~5.5!

]c

]Cp
r Þar

1apc ~5.8!

and similarly,

]c

]Cpq
rs Þar

1as
1aqapc. ~5.9!

Actually, ]c/]C has some complex extra terms in additi
to the right-hand sides of Eqs.~5.8! and ~5.9!. This means
that the variational CCGSD does not satisfy the suffici
condition of the exact wave function given by Eqs.~2.8! and
~2.9!. Further, the variational condition@Eq. ~2.6!# combined
with Eqs. ~5.8! and ~5.9! shows that we do not have Eq
~2.1! and~2.2!. Therefore, the variational CCGSD is not e
act.

Nevertheless, the CCGSD has some interesting pro
ties as described above, so that it is worth to be studie
more detail in various situations.

VI. FULL CI WAVE FUNCTION

Full CI wave function is exact within a limited space
reference functions, but the number of the variables,Mfull-CI

given by Eq.~2.10! is tremendously large, so that a practic
application is limited only to a small system. However, fu
CI is practically only one method to calculate the exact wa
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function and offers some useful ideas for the present stu
We summarize here only some aspects of the full CI that
pertinent to the present study.

The full CI wave function is written as

c fci5C0u0&1(
ia

Ci
aF i

a1(
i jab

Ci j
abF i j

ab1 (
i jkabc

Ci jk
abcF i jk

abc

1•••5(
I

CIF I , ~6.1!

whereF i
a , F i j

ab , etc., denote singles, doubles, etc., excitat
configurations, and the secular equation is written as

^c fciu~H2E!uF I&50. ~6.2!

The number of the variables$CI% and the configurations
$F I% is M full - CI given by Eq.~2.10!.

Since the full CI space spanned by the configuratio
$F I% is complete, any functions likear

1apF I , etc., and lin-
ear combinations thereof also belong to this space. If
write such function asCK , the full CI wave function satis-
fies

^c fciu~H2E!uCK&50, ~6.3!

since CK is a linear combination ofF I that satisfies Eq.
~6.2!. Similarly, the full CI wave function satisfies

^c fciu~H2E!ar
1apuCK&50, ~6.4!

^c fciu~H2E!ar
1as

1aqapuCK&50, ~6.5!

^c fciu~H2E!as
1at

1au
1araqapuCK&50, ~6.6!

etc. As an extreme of the above case, full CI also satisfi

^c fciu~H2E!ar
1apuc fci&50, ~6.7!

^c fciu~H2E!ar
1as

1aqapuc fci&50, ~6.8!

^c fciu~H2E!as
1at

1au
1araqapuc fci&50, ~6.9!

etc.
Comparing Eqs.~6.7! and~6.8! with Eqs.~2.1! and~2.2!

of Theorem II-1, we understand that the full CI must
exact, as it is. However, here, we have further Eq.~6.9! and
the higher ones, and without them we cannot determine
the coefficients involved in the full CI. This may be consi
ered to contradict with the statement of Theorem II-1 that
set of Eqs.~2.1! and ~2.2! is equivalent~in necessary and
sufficient sense! to the Schro¨dinger equation. Actually, when
the wave function involves only the variables correspond
to singles and doubles, the equations corresponding to tri
and highers like Eq.~6.9!, etc., are unnecessary. Thus, th
contradiction originates from the ansatz of the wave fu
tion. Since the ansatz of the full CI wave function includ
not only singles and doubles but also triples and higher on
we need all the equations like Eqs.~6.4!–~6.6!.

VII. A PROPOSAL OF THE EXACT WAVE FUNCTION

As Theorem II-1 and II-2 imply that the singles an
doubles description of the exact wave function should
possible, we consider in this section such a possibility.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Based on Theorem II-1 and the discussion in the pre
ous section, we understand that whenc andF, satisfying the
following two equations:

^cu~H2E!ar
1apuF&50 ~7.1!

and

^cu~H2E!ar
1as

1aqapuF&50, ~7.2!

become identical, i.e.,c5F, thenc is exact, and whenc
includes only singles and doubles, Eqs.~7.1! and ~7.2! are
suffice to determine all the unknown variables.

We propose here a method of obtaining the exact w
function by a successive diagonalization of the matrices
the order of only singles and doubles. The first step is the
with the general singles and doubles~CIGSD! defined by

c15~11T1!c0, ~7.3!

T15(
pr

1Cp
r ar

1ap1 (
pqrs

1Cpq
rs ar

1as
1aqap , ~7.4!

where the coefficients are calculated by Eqs.~7.1! and ~7.2!
with c5c1 andF5c0. Whenc050, ordinary CIGSD, the
Xt type operators mostly drop out because of the relati
given in Tables III and IV. The second step is

c25~11T2!c1, ~7.5!

T25(
pr

2Cp
r ar

1ap1 (
pqrs

2Cpq
rs ar

1as
1aqap , ~7.6!

takingc1 as a reference function, and the unknown variab
are determined by Eqs.~7.1! and ~7.2! with c5c2 and F
5c1. This procedure is iterated until convergence as follo
with cn being given by

cn5~11Tn!cn21, ~7.7!

whereTn is

Tn5(
pr

nCp
r ar

1ap1 (
pqrs

nCpq
rs ar

1as
1aqap, ~7.8!

and the variables inTn are determined by

^cnu~H2E!ar
1apucn21&50 ~7.9!

and

^cnu~H2E!ar
1as

1aqapucn21&50. ~7.10!

We note that the linear expansion coefficients,nCp
r

and nCpq
rs , are complex in general to guarantee full freedo

When converged,cn becomes identical withcn21

c5cn5cn21 , ~7.11!

and the energy is

E5En5En21 . ~7.12!

Therefore, Eqs.~7.9! and ~7.10! are written as

^cu~H2E!ar
1apuc&50 ~7.13!

and

^cu~H2E!ar
1as

1aqapuc&50, ~7.14!
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respectively, and from Theorem II-1, the solutionc is the
exact wave function. We note that our wave functionc also
satisfies Eqs.~2.8! and ~2.9! of Theorem II-2. Since the
above method is variational, the energy satisfies the up
bound nature. We call this method iterative CI~ICI! method,
or more explicitly, ICIGSD method.

The wave functioncn is written in a closed form as

cn5)
i 51

n

~11Ti !c0, ~7.15!

where eachTi is different from others and has the form o
Eq. ~7.8!. The coefficientsiCp

r and iCpq
rs are determined in

each step by solving the secular equation of the size of
singles and doubles

(
K51

M

iCK* ^FKu~H2E!uFL&50 ~L51,...,M !, ~7.16!

where the asterisk implies complex conjugate andM
is given by Eq. ~2.4!. The coefficientsiCK run singles
and doubles coefficients $ iCp

r , iCpq
rs % and FK run

$ar
1apc i 21 ,ar

1as
1aqapc i 21%, which are singles and double

with respect toc i 21. The matrices involved in this secula
equation are Hermite and its dimension isM, which is much
smaller thanMfull-CI . Equation~7.16! is just the same as Eqs
~7.9! and ~7.10!, replacing the indexn to i. Namely, in this
method, the secular equation of the size ofM is successively
diagonalized until convergence, instead of solving onc
giant secular equation of the size ofMfull-CI .

Since the size-consistency18 is a necessary condition o
the exact wave function, it is interesting how the pres
wave function satisfies this property. The origin of the s
consistency is different between full CI and CC. In the fu
CI, it originates from the completeness of the configurat
space and therefore costs expensively, while in the CC
originates from the exponential ansatz, which causes s
additional calculations of the unlinked terms in comparis
with CI, but is not so expensive as far as we solve it by
nonvariational method. In the proposed method, the origin
the size consistency is not like full CI, but should be simi
to that of the CC. From the requirement that the expansio
Eq. ~7.15! has a structure similar to the CC expansion, t
coefficientsiCp

r and iCpq
rs must be able to become comple

numbers.
As the proposed method is variational, the soluti

would approach the exact wave function asymptotically fro
above. Since the choice of the starting functionc0 is arbi-
trary, we may choose the CCSD asc0. Such a choice would
shorten the iteration times more than the choicec05u0&.
@For example, whenc05c full-CI, the calculation converges a
once as seen from Eqs.~6.7!–~6.9!.#

When converged, the aimed~ground! state is exact and
the associated excited states obtained simultaneously sa
the orthogonality and the Hamiltonian-orthogonality with t
ground state, important necessary conditions for the exc
states. This relation between the ground and excited stat
very similar to that between the SAC and SAC-CI wa
functions for the ground and excited states, respectively,
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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mulated originally by the variational method.21 More details
of the ICIGSD method will be published in the near futur

VIII. CONCLUSION

This paper presents a progress report of the author’s
search aiming the exact wave function within singles a
doubles. A conclusion of this paper is that the singles a
doubles description of the exact wave function is possib
This is a consequence of the fact that the Hamiltonian
volves only one and two body operators. Theorem II-1 is
necessary and sufficient theorem and Theorem II-2 descr
a sufficient condition. In the search for the exact wave fu
tion within singles and doubles, it is very important wh
ansatz of the wave function do we take.

We have examined the variational exponential ansatz
cause Theorem II-2 implies it as a candidate of the struc
of the exact wave function within singles and doubles. T
variational CCS for one-particle Hamiltonian is certain
shown to be exact, while the conventional CCSD cannot
exact because first it is not variational and second the op
tor space is too restrictive in the sense that it does
include Xt type substitution operators. When we inclu
both At and Xt type substitution operators in the couple
cluster ansatz, we obtain CCGSD~GSD stands for genera
singles and doubles! wave function. However, the variationa
CCGSD is also not exact because of the noncommuting
ture of the substitution operators involved.

We then analyzed some formal aspects of the full
wave function and summarized the properties pertinent to
present study. In Sec. VII, we have proposed an ansatz o
exact wave function that satisfies Theorems II-1 and II-2, a
described the method of solution. It involves a success
solution of the secular equation of the dimensions of sing
and doubles, instead of solving once a giant matrix of
dimension ofMfull-CI of the full CI method. This method is
called ICIGSD method and we can calculate both ground
excited states.
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APPENDIX

We here derive the commutation relation betweenac ,
ak

1 , and exp(T) with T being the sum of the singles an
doubles of theAt type of Tables I and II,

T5(
i ,a

Ci
aaa

1ai1 (
i j ,ab

Ci j
abaa

1ab
1ajai . ~A1!

First, the commutation relations ofac and ak
1 with T are

derived as

@ac ,T#25ac , ~A2!
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where

ac5(
i

Ci
cai22(

i ja
Ci j

acaa
1ajai ~A3!

and

@ak
1 ,T#25bk , ~A4!

where

bk52(
a

Ck
aaa

112(
iab

Cik
abaa

1ab
1ai . ~A5!

Using Eqs.~A2! and~A4! and the fact thatac ~or bk) andT
commute, we can derive

@ac ,exp~T!#25ac exp~T! ~A6!

and

@ak
1 ,exp~T!#25bk exp~T!. ~A7!

Applying Eqs.~A6! and ~A7! to u0&, we obtain

acc5acc ~A8!

and

ak
1c5bkc, ~A9!

wherec is the CCSD wave function,c5exp(T)u0&.
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