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This is the second progress report on the study of the structure of the exact wave function. First,
Theorem II of Paper I~H. Nakatsuji, J. Chem. Phys.113, 2949 ~2000!! is generalized: when we
divide the Hamiltonian of our system intoND ~number of division! parts, we correspondingly have
a set ofND equations that is equivalent to the Schro¨dinger equation in the necessary and sufficient
sense. Based on this theorem, the iterative configuration interaction~ICI! method is generalized so
that it gives the exact wave function with theND number of variables in each iteration step. We call
this the ICIND method. The ICIGSD~general singles and doubles! method is an important special
case in which the GSD number of variables is involved. The ICI methods involving only one
variable@ICION~one! or S~simplest!ICI# and only general singles~GS! number of variables~ICIGS!
are also interesting. ICIGS may be related to the basis of the density functional theory. The
convergence rate of the ICI calculations would be faster whenND is larger and when the quality of
the initial guess function is better. We then study the structure of the ICI method by expanding its
variable space. We also consider how to calculate the excited state by the ICIGSD method. One
method is an ICI method aiming at only one exact excited state. The other is to use the higher
solutions of the ICIGSD eigenvalues and vectors to compute approximate excited states. The latter
method can be improved by extending the variable space outside of GSD. The underlying concept
is similar to that of the symmetry-adapted-cluster configuration-interaction~SAC-CI! theory. A
similar method of calculating the excited state is also described based on the ICIND method.
© 2001 American Institute of Physics.@DOI: 10.1063/1.1383032#
ch
th
d
o
bu

le
e

I
a
th
le
s

ng
th

l-
n a

ond
ys-
te

are
erm
xact

lso
ith
an

ma
I. INTRODUCTION

The Schro¨dinger nonrelativistic equation describes mu
of the world of chemistry. If we can solve this equation wi
a realistic cost, we can make very precise predictions an
scientific and practical merits are huge. The full CI meth
gives the exact wave function within a given basis set,
the number of variables involved in this method,M full-CI ,
easily runs into astronomical figures for basis sets capab
giving accurate results. For singlet molecules with ev
number of electrons, it is given by

M full-CI5
1

m11 S m11

1

2
N D S m11

1

2
N11D , ~1.1!

wherem is the number of active orbitals,N the number of
electrons, and~ ! denotes a binomial coefficient. Table
showsM full-CI for some typical small molecules assuming
double-zeta basis set. Even for such small molecules,
number is truly astronomical, yet the energy from a doub
zeta basis is not accurate enough for chemical prediction

All the basic physical operators may be written usi
only one- and two-particle operators. For this reason,

a!Author to whom correspondence should be addressed. Electronic
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second-order density matrixG (2)(1828u12) is enough to cal-
culate these properties.1 Among other operators, the Hami
tonian, a key operator in quantum mechanics, is written i
second-quantized form as2

H5(
pr

vp
r ar

1ap1 (
pqrs

wpq
rs ar

1as
1aqap , ~1.2!

where the first term is a one-particle operator and the sec
term is a two-particle operator. In atomic and molecular s
tems, the electronic Hamiltonian is written in a coordina
representation as

H5(
v

2
1

2
Dv2(

v
(
A

ZA /r Av1 (
m.v

1/r mv , ~1.3!

where the first kinetic and second nuclear attraction terms
one-electron operators and the third electron repulsion t
is a two-electron operator. We therefore expect that the e
wave functionc that satisfies the Schro¨dinger equation

~H2E! c50, ~1.4!

i.e., an eigenfunction of such a simple operator, should a
have a simple structure: for example, it may be written w
a number of variables that is substantially smaller th
M full-CI . In this paper, we mainly use the Hamiltonian~1.2!
given in a second-quantized form.
il:
0 © 2001 American Institute of Physics
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In a previous paper of this series,2 which is called Paper
I hereafter, one of the authors examined the structure of
exact wave function and showed that it is actually possible
calculate the exact wave function with the number of va
ables that is equal to the number of general singles
doubles~GSD! substitution operators,MGSD,

MGSD5m21Fm

2
~m21!G2

. ~1.5!

We proposed the iterative configuration interaction~ICI!
method includingMGSD variables in each iteration step t
calculate the exact wave function: it is called the ICIGS
method. The total number of variables in ICIGSD isnMGSD,
where n is an iteration number until convergence. Table
shows the numberMGSD for the same molecules.MGSD is
certainly much smaller thanM full-CI . In this paper, we con-
tinue to study the structure of the exact wave function.
generalize the ICI method from a more general point of vi
and study the structure of the ICI wave function.

To investigate the structure of the exact wave functi
we need the equations that are equivalent to the Schro¨dinger
equation in a necessary and sufficient sense.2 Such equations
have the same determinative power as the Schro¨dinger when
they are solved appropriately. First, the variational princi

^cuH2Eudc&50, ~1.6!

is equivalent to the Schro¨dinger equation. The energy of th
systemE is defined by

^cuH2Euc&50, ~1.7!

throughout this paper. Second, the equation

^cu~H2E!2uc&50, ~1.8!

is equivalent to the Schro¨dinger equation, and the following
equation:

^cu~H2E!Huc&50, ~1.9!

together with Eq.~1.7!, is also equivalent to the Schro¨dinger
equation. Though we believe that the equivalence of th
equations to the Schro¨dinger equation is well known, proo
is given in the Appendix. The density equation,1,3 which is
equivalent to the Schro¨dinger equation in the necessary a
sufficient sense in the space of the density matrix, was
rived based on this theorem. In Paper I,2 a theorem is given
stating that the following set of equations:

^cu~H2E!ar
1apuc&50, ~1.10!

and

^cu~H2E!ar
1as

1aqapuc&50, ~1.11!

TABLE I. Number of variables for double-zeta basis set.

Molecule m Mfull-CI MGSD

Water 14 1 002 001 8 477
Ethylene 28 88 385 227 425 143 668
Benzene 72 ;3.831034 6 538 320
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whereE is given by Eq.~1.7! and the indicesp,q,r ,s run
through all occupied and unoccupied orbitals, is equival
to the Schro¨dinger equation. This theorem has given a ba
for constructing a method of calculating the exact wave fu
tion with theMGSD number of variables.2 Note thatar

1 and
ap in the above equations are the creation and annihila
operators, respectively, defined by using some appropr
orthonormal set of orbitals like Hartree–Fock.

II. THEOREM

It is shown in this section that Theorem II-1 of Paper I
a special case of a more general theorem given below.

A. Theorem II-I

We define a division of the Hamiltonian intoND parts as

H5(
I 51

ND

HI . ~2.1!

Then, the wave functionc that satisfies

^cu~H2E!HI uc&50 ~I51,...,ND!, ~2.2!

with E given by Eq.~1.7! is exact in a necessary and suf
cient sense.

Proof

The necessity is trivial because ifc satisfies the Schro¨-
dinger equation given by Eq.~1.4!, it automatically satisfies
Eq. ~2.2!. The sufficiency is also simple. Ifc satisfies Eq.
~2.2! for all I, we sum them up for allI, and using Eq.~2.1!
we obtain Eq.~1.9!, which implies together with Eq.~1.7!
that c is exact~QED!.

We define the partial energyEI , corresponding toHI ,
by

^cuHI2EI uc&50. ~2.3!

Then, summing up Eq.~2.3! for all I, we obtain

^cuH2(
I

EI uc&50, ~2.4!

which implies, comparing to Eq.~1.7!

E5(
I

EI . ~2.5!

Using the partial energyEI defined by Eq.~2.3!, we obtain
the following theorem.

B. Theorem II-2

The wave functionc that satisfies Eqs.~2.3!, ~2.5!, and

^cu~H2E!~HI2EI !uc&50, ~2.6!

for all I (I 51,...,ND), is exact in a necessary and sufficie
sense.

Proof

The proof is very similar to that for Theorem II-1. Th
necessity is trivial. The sufficiency is also simple. When
sum up Eq.~2.6! for all I, we obtain Eq.~1.8!, which implies
c is exact~QED!.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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The two theorems given above have significant a
broad utility depending on how we divide the Hamiltonia
We may divide the Hamiltonian into one- and two-electr
parts and the one-electron part further into kinetic and diff
ent nuclear attraction terms, using the definition of t
Hamiltonian given by Eq.~1.3!. We may divideH into the
Hartree–Fock part and the correlation part. We may divideH
into all p,r andp,q,r ,s parts, namely intoMGSD parts, using
the definition of the Hamiltonian given by Eq.~1.2!. In the
last case, Eq.~2.2! of Theorem II-1 gives Eqs.~1.10! and
~1.11!. Then, Theorem II-1 of Paper I is a special case
Theorem II-1 of this section. We note here that how to div
the Hamiltonian is dependent on what expression of
Hamiltonian we use. In this paper, we mainly use the Ham
tonian ~1.2! written in a second quantized form.

III. ICI METHOD—GENERALIZATION

It is shown in this section that the ICIGSD method giv
in Paper I is a special case from a group of variational me
ods that gives the exact wave function with a number
variables from 1 toMGSD in each iteration step.

We start from a brief explanation of the ICIGS
method.2 We define the iterative CI method by the recurren

cn5~11Tn!cn21 , ~3.1!

whereTn is defined by

Tn5(
pr

nCp
r ar

1ap1 (
pqrs

nCpq
rs ar

1as
1aqap , ~3.2!

using the general singles and doubles substitution opera
The variables inTn , nCp

r , andnCpq
rs , are determined by the

secular equations

^cnuH2Enucn21&50, ~3.3!

^cnu~H2En!ar
1apucn21&50, ~3.4!

^cnu~H2En!ar
1as

1aqapucn21&50, ~3.5!

which are obtained by applying the variational princip
Eq. ~1.6! to cn given by Eq.~3.1!. This procedure is iterated
until convergence. When converged,cn becomes identica
with cn21

c5cn5cn21 , ~3.6!

and the energy is

E5En5En21 , ~3.7!

and therefore, Eqs.~3.3!, ~3.4!, and~3.5! become identical to
Eqs. ~1.7!, ~1.10!, and ~1.11!, respectively. This means tha
the converged solutionc is exact. The number of variable
in each iteration step isMGSD, as seen from Eq.~3.2!. Since
each iteration process is variational, the solution conver
from above to the exact solution.

The above ICI method can be generalized based on
theorem given in the preceding section. First, we define
variable operatorS

S5(
I 51

ND

CIHI , ~3.8!
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corresponding to the division of the Hamiltonian given
Eq. ~2.1!. CI (I 51,...,ND) in Eq. ~3.8! are variables to be
calculated. We now assume a recurrence

cn5~11Sn! cn21 , ~3.9!

and determine the variablesnCI variationally at each step
The label n on nCI and Sn denotes the iteration numbe
Applying the variational principle tocn , we get the secular
equation

^cnuH2Enucn21&50, ~3.10!

^cnu~H2En!HI ucn21&50 ~ I 51,...,ND!. ~3.11!

Note that the energy of thenth iterationEn satisfies

^cnuH2Enucn&50, ~3.12!

as well as Eq.~3.10!. It is easily derived from Eqs.~3.8!–
~3.11!. When converged,cn5cn215c and En5En215E,
and we have Eq.~1.7! and

^cu~H2E!HI uc&50. ~3.13!

Summing up Eq.~3.13! for all I , we obtain

^cu~H2E!Huc&50, ~3.14!

which combined with Eq.~1.7! shows that the converge
solution is exact. We note that this procedure is valid n
only to the ground state, but also to the excited state,
discussed in more detail later in this paper.

We can formulate the above iterative method in
slightly different way. We define the variable operatorS as

S5(
I 51

ND

cI~HI2EI !, ~3.15!

usingEI defined by Eq.~2.3!. The ICI recurrence formula for
this variable operatorS is also given by Eq.~3.9!, and apply-
ing the variational principle, we get after convergence

^cu~H2E!~HI2EI !uc&50, ~3.16!

instead of Eq.~3.14!. Summing up Eq.~3.16! for all I, we
obtain

^cu~H2E!2uc&50, ~3.17!

which again shows that the converged solution is exa
Since the ICI method defined by the recurrence given by
~3.9! with theSoperator given by Eq.~3.8! or ~3.15! includes
ND variables in each iteration step, we call this the ICIN
method and it is summarized as follows.

ICIND method: when the Hamiltonian is divided into
ND parts as Eq.~2.1!, we define the variable operatorS by
Eq. ~3.8! or ~3.15!. Then, we can formulate the ICI metho
by Eq. ~3.9!, where the number of variables in each iterati
step isND , and when converged, this method gives the ex
wave function. In the converging process, the ICI soluti
approaches from above the exact solution, since each it
tion step is variational.

We discuss two extreme cases of the ICI method. Fi
when we do not divide the Hamiltonian, the ICI recurren
formula Eq.~3.9! is written as
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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cn5~11nCH! cn21 , ~3.18!

or

cn5@11nc~H2En! # cn21 , ~3.19!

depending on whether we take Eq.~3.8! or ~3.15! as aS
operator. The number of variables of this method in ea
iteration step is only one, so this is referred to as the ICIO
~one! method or simplest ICI~SICI! method. A similar
method has been frequently advocated and the converg
property has been discussed.4

Second, when we divide the Hamiltonian into eachp,r
one-electron part and eachp,q,r ,s two-electron part,ND is
equal toMGSD and the operatorS is equivalent to the opera
tor T as

S5(
pq

cp
r vp

r ar
1ap1 (

pqrs
cpq

rs wpq
rs ar

1as
1aqap

5(
pq

Cp
r ar

1ap1 (
pqrs

Cpq
rs ar

1as
1aqap5T. ~3.20!

Therefore, this is the ICIGSD method proposed in Paper
this series.2

Another interesting division of the Hamiltonian is th
singles division that gives the ICIGS~general singles!
method. For example, we may divideH into Ms number of
‘‘singles’’ operatorsHp

r as

H5(
pr

Hp
r , ~3.21!

where

Hp
r 5ar

1hp
r ap , ~3.22!

hp
r 5vp

r 1(
qs

as
1wpq

rs aq . ~3.23!

Then, correspondingly, we have the operatorS as

S5(
pr

Cp
r Hp

r . ~3.24!

The secular equation for this method is written from E
~3.10! and ~3.11! as

^cnuH2Enucn21&50,
~3.25!

^cnu~H2En!Hp
r ucn21&50, En>E,

whereE is the exact energy. Since the wave function of t
method given by Eq.~3.9! with S defined by Eq.~3.24! in-
cludes onlyMs variables, we may regard Eq.~3.25! as being
related to the basic existence theorem5 of the density func-
tional theory ~DFT!,6 like Hohenberg–Kohn theorem4 and
others.7–9 Since there are many different ways of dividin
the Hamiltonian intoMs operators, it is interesting to specu
late whether such a singles method could be rewritten u
electron density or the first-order density matrix alone.

In actual calculations, the convergence property of
ICIND method is very important. We believe that in prin
ciple, this method should converge. As easily seen from E
~3.18! and ~3.19!, the SICI method is related to the pow
Downloaded 31 May 2007 to 130.54.110.22. Redistribution subject to AI
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method and the Lanczos method in the eigenva
problem.10 It converges to largest absolute eigenvalue, but
modification, it is made to converge to the ground sta
Since

d
^cnuHucn&

^cnucn&
5^cnuH2Enucn&, ~3.26!

when ^cnucn&51, Eq. ~3.19! is equivalent to a variationa
step along the gradient to the average energy. The con
gence rate would be accelerated when we use larger num
of variational parameters, and this is realized by using
ICIND and the ICIGSD method, where the number of va
ables isND and MGSD, respectively. Thus, since SICI con
verges, in principle, the ICIND and ICIGSD methods shou
also converge, in principle.

In actual calculations, the convergence property is
pendent on other technical matters. Since the converge
rate would be faster whenND is larger, it is desirable to use
the largest possibleND for realizing fast convergence. Not
further that the number of the divisions,ND , is not necessar-
ily kept constant during the iteration process. By chang
ND , we can adjust the labor necessary for diagonalizing
matrices. Allowing such a flexibility in the computationa
algorithm would be useful in applications of the ICIN
method and some discussions are given in Sec. IV.

Another factor affecting the convergence rate is the qu
ity of the initial functionc0 . An appropriate choice ofc0 in
symmetry and in the nature is an important prerequisite:
better the quality of the initial functionc0 , the faster the
convergence. Note that if we start from a single determin
initial function, the coefficients for excitations higher tha
2n-fold will be kept zero until iterationn. The energy may
converge rapidly, but the convergence rate may be depen
on the size of the molecule. It would be useful to prepare
initial function by the method of a high-performance alg
rithm along the line of the ICIND method, or by the metho
now available. For example, we may adopt a nonvariatio
procedure for preparing the initial guess, or we may ado
for example, the conventional CCSD~coupled cluster singles
and doubles! for c0 . In the latter case, all levels of excita
tions are included inc0 from the beginning in an approxi
mate way, so that the convergence rate would be faster
using the Hartree–Fock initial function.

IV. EXPANSION OF THE VARIABLE SPACE OF THE
ICI METHOD

We consider in this section an expansion of the varia
space of the ICI method and see what happens by suc
expansion. We consider two different expansions: one is
expansion from the ICIGSD method~ND5MGSD) to include
triple and higher operators, and the other is from the in
mediate case~ICIND! whereND is between 1 andMGSD.

First, we consider the expansion from the ICIGS
method. We define the general operatorG by

G5H1L ~4.1!

where H is the Hamiltonian of the system andL is some
operator defined later. Here, note that we are interested in
eigenfunction ofH, not of G. So,L is not a perturbation. We
rewrite the Hamiltonian operator given by Eq.~1.2! as
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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H5(
pr

vp
r ar

1ap1 (
pqrs

wpq
rs ar

1as
1aqap5 (

i

MGSD

xi t i , ~4.2!

wherexi represents the integrals,vp
r andwpq

rs , and t i repre-
sents the substitution operators,ar

1ap andar
1as

1aqap . Simi-
larly, the operatorL is also expressed as

L5(
j

y j r j , ~4.3!

where yj is some number andr j the substitution operator
Corresponding toH of Eq. ~4.2!, we define the GSD operato
T as

T5(
pr

Cp
r ar

1ap1 (
pqrs

Cpq
rs ar

1as
1aqap5 (

i

MGSD

ci t i , ~4.4!

and similarly, corresponding toL we define the variable op
eratorR as

R5(
j

dj r j , ~4.5!

whereci and dj represent unknown variables. Thus, cor
sponding toG we have defined the variable operator

U5T1R. ~4.6!

We now consider the recurrence

cn5~11Un!cn21 . ~4.7!

Applying the variational principle given by Eq.~1.6! to cn ,
we get

^cnuH2Enucn21&50, ~4.8!

^cnu~H2En!t i ucn21&50, ~4.9!

^cnu~H2En!r j ucn21&50, ~4.10!

and when converged,cn5cn215c andEn5En215E, we
obtain

^cuH2Euc&50, ~4.11!

^cu~H2E!t i uc&50. ~4.12!

^cu~H2E!r j uc&50, ~4.13!

for all i (1< i<MGSD) and j . Equations~4.11! and ~4.12!
guarantee that the solutionc is exact, but Eq.~4.13! has
nothing to do with the proof that guarantees the exactnes
c. Namely, the operatorsL and R do not affect the final
solution.

We classify the operatorR into two cases: one is the cas
where the operatorR is expressed within singles and doubl
and the other is the case where the operatorR belongs to the
outside of the singles and doubles, namely to triples
higher operators.

When we add some physical operatorL to the Hamil-
tonian as in Eq.~4.1!, the correspondingR operator belongs
to the general singles and doubles space, since any phy
operators can be expanded by the GSD opera
$ar

1ap ,ar
1as

1aqap%. This means that the addition of the var
able operatorR as Eq.~4.6! is redundant to the already ex
isting GSD variable space represented by theT operator
Downloaded 31 May 2007 to 130.54.110.22. Redistribution subject to AI
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given by Eq.~4.4!. Then, in this case the addition of theL
and R operators has no effect at all on either the iterat
process or the final result.

On the other hand, whenR includes the operators from
triple to N-ple excitation or substitution operators, it enlarg
the variable space to be larger thanMGSD and certainly af-
fects the variational process, though it does not affect
converged solution. Actually, whenR includes all triple to
N-ple excitation operators, the above method gives full
and the iteration converges at once.2

We next consider the expansion of the variable sp
from the intermediate ICIND method in which the number
variables isND which is between 1 andMGSD. In this case
the definition of the operatorG is the same, but that ofU is
different from Eq.~4.6! and is given by

U5S1R, ~4.14!

using theS operator given by Eq.~3.8!. Correspondingly,
Eqs.~4.9! and ~4.12! are rewritten as

^cnu~H2En!HI ucn21&50, ~4.15!

and

^cu~H2E!HI uc&50, ~4.16!

respectively. Since the operator space$HI% is incomplete
within the GSD space, the operatorL that is physical or that
belongs to the GSD space cannot generally be expande
$HI%. Therefore, the addition of theR operator may expand
the variable space and may affect the iteration proce
though of course, the final converged solution is unaffect
Similarly, when theR operator includes the operators fro
triple to N-ple excitation and substitution operators, it wou
also affect the variational process, though again, it does
affect the final solution. When theR operator affects the
variational process.

In summary, as only the HamiltonianH defines the sys-
tem, the additional operatorL has nothing to do with the
solution of the ICI method. Only its variable counterpartR
plays a role for controlling the convergence of the iterati
process. Furthermore, by expanding the variable oper
space byR, we can calculate higher excited states by t
method described below.

V. EXCITED STATES BY THE ICIGSD AND ICIND
METHODS

As briefly described in Paper I, the ICIGSD method
applicable not only to the ground state but also to the exc
state. We describe in this section how to calculate the exc
states by the ICIND method. Since the ICIGSD method is
important extreme, we first discuss the excited-state calc
tions based on the ICIGSD method. We give three meth
called method A, B, and C.

First, since the ICIGSD method is a one-state theory
would be clear from the Appendix, we calculate the excit
state iteratively as follows. We refer to this method
method A. Suppose that we are interested in the second
~first excited state!. Then, we take the second state in t
initial guess, and then continue to choose only the ‘‘secon
state in the iteration process. This would lead to converge
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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to the second state, which should be exact from the theo
Note, however, that second in this procedure is only
number in the initial guess and does not mean that the s
is the true second state. The ‘‘third’’ state in the initi
guess may become lower than the second state as ofte
curs in an ordinary iterative diagonalization process l
Davidson’s.11

In method B, we utilize the higher-energy solutions
multaneously obtained in the ICIGSD calculation of t
ground state as the excited states. At the convergence o
ICI calculation, we obtain the exact ground statecg and at
the same time, the higher-energy solutionscK of the same
secular equation that are written as

cK5 (
i 51

MGSD

ci
Kt i ucg&, ~5.1!

where t i represents the singles and doubles substitution
erators as defined by Eq.~4.4!. SincecK are the solutions of
the same secular equation as forcg, they satisfy

^cKucg&50, ^cKuHucg&50 ~5.2!

and

^cKucK8&5dKK8 , ^cKuHucK8&5EKdKK8 . ~5.3!

Since Eqs.~5.2! and~5.3! are important necessary condition
of the excited states, we may takecK as representing the
excited states ofcg.

Now, what is the quality of the excited states calcula
by method B? The excited functionscK of method B are
generated by applying the GSD operators to the exact gro
statecg as expressed by Eq.~5.1!. It is also interesting to
consider a set of functionsw i defined by

w i5(
j

dj i uj ucg&, ~5.4!

where$uj% represents the operators from triple toN-ple ex-
citation operators. Sincecg is exact, it satisfies

^w i uH2Eucg&50. ~5.5!

However,$cK% obtained simultaneously withcg do not nec-
essarily satisfy the similar relation to Eq.~5.5!, namely

^w i uH2EucK&Þ0, ~5.6!

becausew i , which is linearly independent fromcK, are not
included in the secular equation which givescg. This means
that the excited-state functions$cK% of method B obtained
simultaneously withcg are not exact, though they satis
Eqs.~5.2! and ~5.3!.

The quality of the excited states by method B is the
fore improved by extending the variable space as

cL5S (
i

ci
Lt i1(

j
dj

Luj D ucg& ~5.7!

where$t i% represents GSD operators and$ uj % the operators
from triple to N-ple excitation operators. By further diago
nalizing ~only once! the secular equation corresponding
Eq. ~5.7!, we can improve the quality of the excited state,
to the exact limit. Furthermore, by this method, we can c
Downloaded 31 May 2007 to 130.54.110.22. Redistribution subject to AI
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culate higher multiple excitations which were rather poor
were not calculated in method B. We refer to this method
method C.

The methods of calculating the excited state describe
this section have some similarity to already existi
methods.12 The iterative method A is similar to the symmet
adapted cluster ~SAC! method13,14 and the
MR~multireference!-SAC method15,16 for excited and open-
shell electronic states. Method B is similar to the SAC-
SD-R method,12,17 and method C to the SAC-CI general-R
method.18 In the SAC-CI SD-R method, the SAC-CI excita-
tion operatorsR, which are similar to the operatort i in Eq.
~5.1!, are limited within singles and doubles, while in th
general-R method, they are taken not only from the SD spa
but also from triple to higher excitation space. The SAC-
SD-R method is accurate for describing ordinary sing
electron excitation processes, but insufficient for describ
the multiple-electron excitation processes,18 for which the
SAC-CI general-R method is accurate.19

It is very interesting which of the three methods given
this section is most efficiently accurate for the study of e
cited states of atoms and molecules. Probably method
which is easiest among the three, would be most useful
ordinary excitation processes. Needless to say, the expres
of the excited state by Eqs.~5.1! and ~5.7! represents the
transferability of electron correlations between ground- a
excited states. Further, by including the operators belong
to different symmetries and the ionization and electron
tachment operators in the operatorst i and uj , we can also
describe different excited states~e.g., triplet excited states!
and ionized and electron attached states as well as the ex
states having the same symmetry as the ground state, ju
in the SAC-CI method.12,17

It is also possible to calculate the excited states in
ICIND formalism. Method A is essentially the same as in t
ICIGSD case. We use an initial guess functionc0 having the
symmetry and the electronic structure desired for the exc
state to be calculated, and choose to keep only such funct
until convergence. Again, the converged solution should
exact. In the case of method B, the quality of the exci
states obtained simultaneously with the ground state wo
be worse than that for the ICIGSD method, when the va
tional space for the excited states of the ICIND method
smaller than that of the ICIGSD method. The quality of t
excited states can be improved and the range of the ex
tions calculated are expanded by extending the varia
space from ND to GSD or even to include triple to N-p
excitation operators. This method corresponds to metho
of the above paragraphs. We believe from the experience
the SAC/SAC-CI calculations that the ICIGSD method, fo
lowed by method B in particular, is a useful method f
calculating the ground- and excited states of molecules
molecular systems.

VI. CONCLUSION

The Schro¨dinger equation itself should be correct even
the basic operator involves up toN-particle interaction terms
but in reality, the Hamiltonian operator involves only up
two-particle interaction terms. Since the exact wave funct
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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is an eigenfunction of the Hamiltonian that has such a sim
structure, the exact wave function itself should also hav
simple structure. This is a basic philosophy underlying
present series of studies. We study the structure of the e
wave function under the expectation that it should be sim
and hopefully beautiful.

In Paper I,2 we presented a theorem that implies an e
istence of the general singles and doubles description of
exact wave function. Namely, the number of variables n
essary to describe the exact wave function would be redu
to MGSD given by Eq.~1.5! instead ofM full-CI given by Eq.
~1.1!. We examined both exponential and linear expans
ansätz and proposed the ICIGSD method as a method
calculating the exact wave function with the GSD number
variables.

In this paper, we have generalized Theorem II-1 of Pa
I: when we divide the Hamiltonian intoND parts, we have a
set of ND equations that is equivalent to the Schro¨dinger
equation in the necessary and sufficient sense. Based on
theorem, the ICI method was generalized to calculate
exact wave function withND number of variables whereND

ranges from 1 toMGSD where MGSD is the case of the
ICIGSD method. The simplest case withND51 ~ICION or
SICI! is very interesting, and the general singles case wh
ND is the number of general single substitution operat
~ICIGS! is also interesting. In actual ICI calculations, th
convergence rate would be faster whenND is larger and
when the quality of the initial function is better. Further,ND

is not necessarily kept constant throughout the ICI calcu
tions.

We studied the structure of the ICI method by first e
panding its variable space. GSD is a good special case
cause the GSD operator space is complete in the sense t
can expand any physical operators. If we extend the varia
space outside of GSD by including some triple toN-ple ex-
citation operators, the variational process would be acce
ated though the final solution should be the same.

We considered how to calculate the excited state by
ICIGSD method. We proposed three methods. One is an
erative method aiming at only one excited state, and
other is the method utilizing the higher-energy solutions
tained simultaneously with the ground state. The first met
gives the exact solution, but the second one is not ex
though the solutions satisfy the orthogonality and Ham
tonian orthogonality with the calculated exact ground sta
The latter method has some similarity to the SAC-CI SDR
method. By extending the variable space after obtaining
exact ground state, we can improve the excited state:
method is similar to the SAC-CI general-R method for cal-
culating the excited states, in particular, the multiple-elect
excited states. Similar methods are also described base
the ICIND method.
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APPENDIX

We here prove that each of Eqs.~1.8! and ~1.9! with E
defined by Eq.~1.7! is equivalent to the Schro¨dinger equa-
tion in a necessary and sufficient sense.

The necessity is trivial: ifc satisfies Eq.~1.4!, it satisfies
Eqs. ~1.8! and ~1.9!. We prove the sufficiency. We assum
that we have the solutions of the Schro¨dinger equation as

HCn5EnCn . ~A1!

Since $Cn% forms a complete set of eigenfunctions of th
Hamiltonian, we can expand ourc as

c5(
n

CnCn . ~A2!

Inserting Eq.~A2! into our expression given by Eq.~1.8!, we
have

05^cu~H2E!2uc&5(
n,m

Cn* Cm^Cnu~H2E!2uCm&

5(
n

uCnu2~En2E!2. ~A3!

Since all terms in the last sum are non-negative, Eq.~A3!
stands only when allCn are zero except for one casen5 i ,
for which E5Ei andCiÞ0. From the normalization condi
tion, Ci51, and therefore, from Eq.~A2!, c5C i . Namely,
c is an eigenfunction of the Schro¨dinger equation. It can be
either ground state or excited state. WhenEi is degenerate,c
becomes a linear combination of one set of the degene
eigenfunctions ofEi of the Schro¨dinger equation. Thus, the
sufficiency of Eq.~1.8! is proved. Equation~1.9! is easily
obtained from Eq.~1.8! by using Eq.~1.7! ~QED!.
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