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This is the second progress report on the study of the structure of the exact wave function. First,
Theorem Il of Paper [H. Nakatsuji, J. Chem. Phy413 2949 (2000) is generalized: when we
divide the Hamiltonian of our system inbdy (number of division parts, we correspondingly have

a set ofNp equations that is equivalent to the Satirmer equation in the necessary and sufficient
sense. Based on this theorem, the iterative configuration intergé@bnmethod is generalized so

that it gives the exact wave function with thigy number of variables in each iteration step. We call

this the ICIND method. The ICIGSIgeneral singles and doubjawmethod is an important special

case in which the GSD number of variables is involved. The ICI methods involving only one
variable[ICION(one or S(simples}ICl] and only general singlé&S) number of variablefCIGS)

are also interesting. ICIGS may be related to the basis of the density functional theory. The
convergence rate of the ICI calculations would be faster vNigiis larger and when the quality of

the initial guess function is better. We then study the structure of the ICI method by expanding its
variable space. We also consider how to calculate the excited state by the ICIGSD method. One
method is an ICI method aiming at only one exact excited state. The other is to use the higher
solutions of the ICIGSD eigenvalues and vectors to compute approximate excited states. The latter
method can be improved by extending the variable space outside of GSD. The underlying concept
is similar to that of the symmetry-adapted-cluster configuration-intera¢8zC-Cl) theory. A

similar method of calculating the excited state is also described based on the ICIND method.
© 2001 American Institute of Physic§DOI: 10.1063/1.1383032

I. INTRODUCTION second-order density matrixX?)(1'2'|12) is enough to cal-

The Schrdinger nonrelativistic equation describes muchCUI".’lte these properUés_@\mong other operat.ors,_the Ham'.l'
tonian, a key operator in quantum mechanics, is written in a

of the world of chemistry. If we can solve this equation with . f 2,

a realistic cost, we can make very precise predictions and itgecond-quantlzed orm-as

scientific and practical merits are huge. The full ClI method

gives the exact wave function within a given basis set, but H=> via a,+ >, wha alaza,, (1.2

the number of variables involved in this methdd,.c; , P pars

easily runs into astronomical figures for basis sets capable @fhere the first term is a one-particle operator and the second
giving accurate results. For singlet molecules with evenerm is a two-particle operator. In atomic and molecular sys-

number of electrons, it is given by tems, the electronic Hamiltonian is written in a coordinate
ma 1 mt 1 representation as
Moo=t | 1 1 (1.2) 1
U T M| N || gNFL [ ' H=2 —5A,-2 X Zplrp,+ 2 Uy, (13
v 2 v A m>v

wherem is the number of active orbital$y the number of Where the first kinetic and second nuclear attraction terms are
electrons, and() denotes a binomial coefficient. Table | one-electron operators and the third electron repulsion term
showsM ¢, for some typical small molecules assuming aiS @ two-electron operator. We therefore expect that the exact
double-zeta basis set. Even for such small molecules, thigave functiony that satisfies the Schidinger equation
number is truly astronomical, yet the energy from a double- _
o . o (H=E) =0, (1.9

zeta basis is not accurate enough for chemical predictions.

All the basic physical operators may be written usingi.e., an eigenfunction of such a simple operator, should also
only one- and two-particle operators. For this reason, théave a simple structure: for example, it may be written with
a number of variables that is substantially smaller than

dAuthor to whom correspondence should be addressed. Electronic maiMfuII—Cl_- In this paper, we mainly use the Hamiltoniéh?2)
hiroshi@sbchem.kyoto-u.ac.jp given in a second-quantized form.
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TABLE I. Number of variables for double-zeta basis set. whereE is given by Eq.(1.7) and the indices,q,r,s run

through all occupied and unoccupied orbitals, is equivalent

to the Schrdinger equation. This theorem has given a basis

Water 14 1002001 8477 for constructing a method of calculating the exact wave func-

Ethylene 28 88385227 425 143668 tion with the M gsp NUMber of variableé.Note thata’ and

Benzene 72 ~3.8x10% 6538 320 . . . roo
a, in the above equations are the creation and annihilation
operators, respectively, defined by using some appropriate
orthonormal set of orbitals like Hartree—Fock.

Molecule m Meuir-ci Masp

In a previous paper of this seriésyhich is called Paper Il. THEOREM
| hereafter, one of the authors examined the structure of the
exact wave function and showed that it is actually possible to It is shown in this section that Theorem II-1 of Paper | is
calculate the exact wave function with the number of vari-a special case of a more general theorem given below.
ables that is equal to the number of general singles and theorem I1-1

doubles(GSD) substitution operatordVl gsp,

5 We define a division of the Hamiltonian inddy parts as

. (1.5

M GSD— m2 +

m
g(m— 1) Np
H=> H,. (2.1

We proposed the iterative configuration interactidel) =t
method includingM ggp variables in each iteration step to Then, the wave functiog that satisfies
calculate the exact wave function: it is called the ICIGSD (Y[(H=E)H [$)=0 (1=1,..Np), 2.2
method. The total number of variables in ICIGSDhil g5p,
wheren is an iteration number until convergence. Table IWith E given by Eq.(1.7) is exact in a necessary and suffi-
shows the numbeM g5 for the same moleculeMggp is  ClE€Nt sense.
certainly much smaller thaM ., . In this paper, we con-  p.,f
tinue to study the structure of the exact wave function. We o - ,
generalize the ICI method from a more general point of view The ”ec‘?ss'ty, is trivial becau;ed;fsatsﬂes the S_Ch_FO
and study the structure of the ICI wave function. dinger equation given by Ecq1.4), |t.automat|cally §at|sf|es

To investigate the structure of the exact wave function,Eq' (2.2). The sufficiency is also simple. i §at|sf|es Eq.
we need the equations that are equivalent to the ‘Slahger (2.2 for .aII |, we sum them up for al, and usmg Eq2.1)
equation in a necessary and sufficient sér8ach equations & ©btain Eq.(1.9), which implies together with Eq(1.7)
have the same determinative power as the Qtihger when &t ¥ is exact(QED). _
they are solved appropriately. First, the variational principleby We define the partial enerdy, , corresponding td,,

(Y|H—E[6y)=0, (1.6)

is equivalent to the Schdinger equation. The energy of the
systemE is defined by

(¢/H—E|[$)=0. 2.3
Then, summing up Eg2.3 for all I, we obtain

(yIH—Elyp)=0, (1.7 (yH=2 Elly)=0, (2.4
throughout this paper. Second, the equation which implies, comparing to Eq1.7)

(Yl(H=E)?[y)=0, (1.8
is equivalent to the Schdinger equation, and the following EZE, B (2.5
equation:

Using the partial energ¥, defined by Eq(2.3), we obtain
(YI(H=E)H|y)=0, (1.9 the following theorem.

together with Eq(1.7), is also equivalent to the Schtimger
equation. Though we believe that the equivalence of thesB- Theorem II-2

equations to the Schdinger equation is well known, proof The wave functiony that satisfies Eq42.3), (2.5), and
is given in the Appendix. The density equatibhwhich is
equivalent to the Schdinger equation in the necessary and (YI(H=E)(H,—E)|y)=0, (2.6

sufficient sense in the space of the density matrix, was defor all | (1=1,...Np), is exact in a necessary and sufficient
rived based on this theorem. In Papérd,theorem is given sense.

stating that the following set of equations:

Proof
(l(H- E)araPW):O’ (1.10 The proof is very similar to that for Theorem IlI-1. The
and necessity is trivial. The sufficiency is also simple. When we
sum up Eq(2.6) for all I, we obtain Eq(1.8), which implies
(l(H-BE)a, ag aqay| ) =0, (1.1 y is exact(QED).
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The two theorems given above have significant anccorresponding to the division of the Hamiltonian given by
broad utility depending on how we divide the Hamiltonian. Eq. (2.1). C, (I=1,...Np) in Eq. (3.8 are variables to be
We may divide the Hamiltonian into one- and two-electroncalculated. We now assume a recurrence
parts and the one-electron part further into kinetic and differ-
ent nuclear attraction terms, using the definition of the Yn=(1+S) Yn-1, 3.9
Hamiltonian given by Eq(1.3. We may divideH into the  and determine the variabld€, variationally at each step.
Hartree—Fock part and the correlation part. We may ditlde The labeln on "C, and S, denotes the iteration number.

into all p,r andp,q,r,s parts, namely intdl gsp parts, using  Applying the variational principle ta@,, we get the secular
the definition of the Hamiltonian given by E¢L.2). In the  equation

last case, Eq(2.2 of Theorem II-1 gives Eqgs(1.10 and
(1.12. Then, Theorem II-1 of Paper | is a special case of  (¥nlH—=En|#n-1)=0, (3.10
Theorem II-1 of this section. We note here that how to divide
the Hamiltonian is dependent on what expression of the (gnl(H=EHil¢n-1)=0 (I=1....Np). 319
Hamiltonian we use. In this paper, we mainly use the Hamil-Note that the energy of theth iterationE, satisfies
tonian (1.2 written in a second quantized form.

<¢n|H - En|‘/’n>=01 (3.12

as well as Eq(3.10. It is easily derived from Eqs.3.8)—

(3.11). When convergedy,= ¢,,_,=¢ andE,=E,_,=E,
It is shown in this section that the ICIGSD method givenand we have Eq1.7) and

in Paper | is a special case from a group of variational meth-

lIl. ICI METHOD—GENERALIZATION

ods that gives the exact wave function with a number of (YIH-BEH [¢)=0. (313
variables from 1 taViggp in each iteration step. Summing up Eq(3.13 for all I, we obtain

We start from a brief explanation of the ICIGSD
method? We define the iterative Cl method by the recurrence ($l(H=B)H[$)=0, (3.14

o= (1+T ) b1, (3.1  Wwhich combined with Eq(1.7) shows that the converged

) ) solution is exact. We note that this procedure is valid not
whereT, is defined by only to the ground state, but also to the excited state, as
N L discussed in more detail later in this paper.
Tn:; "Cpa, ap+pqrs "Chyar as aqap, (3.2 We can formulate the above iterative method in a

slightly different way. We define the variable opera®as
using the general singles and doubles substitution operators.

N
The variables ifl,, "Cy,, and"Cj,, are determined by the < B
secular equations S= 2‘1 ¢(Hi =), (3.15
(¢n|H—Eql¢n-1)=0, (33 usingE, defined by Eq(2.3). The ICI recurrence formula for
(bl (H—Epalay|¢h_1)=0 (3.4) this variable operatoBis also given by Eq(3.9), and apply-
" ST SRS ' ing the variational principle, we get after convergence
- + Aot _
<l//n|(H En)ar as aqap|'r/’n—l> 0, (35) <¢|(H—E)(H|—E|)|lﬂ>=0, (3.1@

which are obtained by applying the variational principle .
Eq. (1.6) to ¢, given by Eq.(3.1). This procedure is iterated InStead of Eq«(3.14. Summing up Eq(3.16 for all I, we
until convergence. When converged, becomes identical obtain

with 1 (YI(H=E)?yp)=0, (3.17
Y=Yn=¥n-1, (3.6 which again shows that the converged solution is exact.
and the energy is Since the ICI method defined by the recurrence given by Eq.

(3.9 with the Soperator given by E(3.8) or (3.15 includes
E=E,=En-1, (37 N, variables in each iteration step, we call this the ICIND
and therefore, Eq$3.3), (3.4), and(3.5 become identical to method and it is summarized as follows.
Egs. (1.7), (1.10, and(1.11), respectively. This means that ICIND method: when the Hamiltonian is divided into
the converged solutiog is exact. The number of variables Np parts as Eq(2.1), we define the variable operatSrby
in each iteration step i ggp, as seen from Eq3.2). Since  Eq. (3.9) or (3.15. Then, we can formulate the ICl method
each iteration process is variational, the solution convergeBy Eq.(3.9), where the number of variables in each iteration
from above to the exact solution. step isNp, and when converged, this method gives the exact
The above ICI method can be generalized based on theave function. In the converging process, the ICI solution
theorem given in the preceding section. First, we define th@pproaches from above the exact solution, since each itera-

variable operato6 tion step is variational.
Np We discuss two extreme cases of the ICl method. First,
S= E C/H,, (3.9 when we do not divide the Hamiltonian, the ICI recurrence
=1 formula Eq.(3.9) is written as
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Ua=(1+"CH) ¢,_4, (3.18 method and the Lanczos method in the eigenvalue
problem?? It converges to largest absolute eigenvalue, but by
or modification, it is made to converge to the ground state.
Yn=[1+"c(H=En) ] ¢n-1, (319  Since
depending on whether we take E@.8) or (3.15 as aS (¢nlHlgm) _ B
i i i T = (YnlH=Enl ), (3.26
operator. The number of variables of this method in each (| )

iteration step is only one, so this is referred to as the ICION,hen (il

=1, Eq.(3.19 is equivalent to a variational
(one method or simplest ICI(SICI) method. A similar ) a. (319 d

step along the gradient to the average energy. The conver-
method has been frequently advocated and the convergenggn e rate would be accelerated when we use larger number
property has been d'SCU_S_Sébd' o of variational parameters, and this is realized by using the
Second, when we divide the Hamiltonian into each | c|ND and the ICIGSD method, where the number of vari-
one-electron part and eaghq,r,s two-electron partNp IS gpjes isN, and M sp, respectively. Thus, since SICI con-
equal toMgsp and the operatoBis equivalent to the opera- erges. in principle, the ICIND and ICIGSD methods should
torT as also converge, in principle.
In actual calculations, the convergence property is de-
s=> CLU[oaraﬁ > CLSqWLZaﬁaQaqap pendent on other technical matters. Since the convergence
pa pars rate would be faster whel is larger, it is desirable to use
the largest possibldly for realizing fast convergence. Note
- % Cpa, ap+ pqzrs Choar as 8gap=T. (320 further that the number of the divisiorp, is not necessar-
ily kept constant during the iteration process. By changing
Therefore, this is the ICIGSD method proposed in Paper | of\,, we can adjust the labor necessary for diagonalizing the
this serie. matrices. Allowing such a flexibility in the computational
Another interesting division of the Hamiltonian is the glgorithm would be useful in applications of the ICIND
singles division that gives the ICIG$general singlés method and some discussions are given in Sec. IV.

method. For example, we may divid€ into M number of Another factor affecting the convergence rate is the qual-
“singles” operatorsH|, as ity of the initial function . An appropriate choice afy in
symmetry and in the nature is an important prerequisite: the
sz HY, (3.21 better the quality of the initial function),, the faster the
pr convergence. Note that if we start from a single determinant
where initial function, the coefficients for excitations higher than
C 2n-fold will be kept zero until iteratiom. The energy may
Hy=a; hyap, (3.22 converge rapidly, but the convergence rate may be dependent
on the size of the molecule. It would be useful to prepare the
hL:UHE agw[fqaq. (3.23 initial function by the method of a high-performance algo-
as rithm along the line of the ICIND method, or by the method
Then, correspondingly, we have the opersas now available. For example, we may adopt a nonvariational
procedure for preparing the initial guess, or we may adopt,
S= 2 C'H' . (3.24) for example, the conventional CCSPoupled cluster singles
o P and doublesfor . In the latter case, all levels of excita-

tions are included in), from the beginning in an approxi-
‘mate way, so that the convergence rate would be faster than
using the Hartree—Fock initial function.
(YnlH—E,| ¥n-1)=0, (329 IV. EXPANSION OF THE VARIABLE SPACE OF THE
3.2 ICI METHOD
<'//n|(H_En)HL|¢n—1>:Ov E,=E, . . . . . .

We consider in this section an expansion of the variable
whereE is the exact energy. Since the wave function of thisspace of the ICI method and see what happens by such an
method given by Eq(3.9 with S defined by Eq(3.24) in-  expansion. We consider two different expansions: one is the
cludes onlyM van_ables_, we may regard E(B.25 as being  expansion from the ICIGSD methdtp=M gsp) to include
related to the baS'CG existence theorenf the density func- triple and higher operators, and the other is from the inter-
tional theory (DFT),® like Hohenberg—Kohn theoréhand  mediate cas€éICIND) whereNp, is between 1 anil ggp.
others!™® Since there are many different ways of dividing  First, we consider the expansion from the ICIGSD

the Hamiltonian intdVl operators, it is interesting to specu- method. We define the general opera®by
late whether such a singles method could be rewritten using GoH+L @.1)

electron density or the first-order density matrix alone.

In actual calculations, the convergence property of thevhere H is the Hamiltonian of the system ardis some
ICIND method is very important. We believe that in prin- operator defined later. Here, note that we are interested in the
ciple, this method should converge. As easily seen from Eqsigenfunction o, not of G. So,L is not a perturbation. We
(3.18 and(3.19, the SICI method is related to the power rewrite the Hamiltonian operator given by EHg.2) as

The secular equation for this method is written from Eqgs
(3.10 and(3.11) as
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Mgsp
H=2> via a,+ > wha'alaa,= > xt, (4.2
pr pqrs 1

wherex; represents the integrals, andwyy,, andt; repre-

- . + + . .
sents the subsutu‘uqn operatoas,a, anda, ag a,a,. Simi-
larly, the operatoL is also expressed as

LZ}J_: Yilfis

(4.3

wherey; is some number and; the substitution operator.
Corresponding téd of Eq. (4.2), we define the GSD operator

T as

MGsp

T:; Cil;a:—ap‘f‘ pqzrs C:)sqar‘"a;'aqap: 2 Citi! (44)

and similarly, corresponding tb we define the variable op-

eratorR as

Rzgjmq, (4.5)

H. Nakatsuji and E. R. Davidson

given by Eq.(4.4). Then, in this case the addition of the
and R operators has no effect at all on either the iteration
process or the final result.

On the other hand, wheR includes the operators from
triple to N-ple excitation or substitution operators, it enlarges
the variable space to be larger thilhssp and certainly af-
fects the variational process, though it does not affect the
converged solution. Actually, wheR includes all triple to
N-ple excitation operators, the above method gives full Cl
and the iteration converges at orfce.

We next consider the expansion of the variable space
from the intermediate ICIND method in which the number of
variables isNp which is between 1 ant s5p. In this case
the definition of the operatd®s is the same, but that df is

different from Eq.(4.6) and is given by
U=S+R, (4.19

using theS operator given by Eq(3.8). Correspondingly,
Egs.(4.9 and(4.12 are rewritten as

(¢l (H=Ep)Hi[¢hq-1)=0, (4.19

wherec; andd; represent unknown variables. Thus, corre-and

sponding toG we have defined the variable operator

U=T+R. (4.6)
We now consider the recurrence
'r//n:(1+un)1//n—l- (47)

Applying the variational principle given by E@1.6) to ¢, ,
we get

<¢n|H_En|¢n—l>:01 (4.8
<'/’n|(H_En)ti|‘//nfl>:O= 4.9
<¢n|(H_En)rj|'ﬁn—1>:01 (4.10

and when converged},= #, 1= andE,=E,_1=E, we
obtain

(¢|H-E[¢)=0, (4.1
(¢l(H=E)t;|y)=0. (4.12
(Yl(H=B)rjly)=0, (4.13

for all i (1<isMggp) andj. Equations(4.11) and (4.12
guarantee that the solutiogi is exact, but Eq(4.13 has

(YI(H=E)H[4)=0, (4.16

respectively. Since the operator spadde,} is incomplete
within the GSD space, the operatotthat is physical or that
belongs to the GSD space cannot generally be expanded by
{H,}. Therefore, the addition of thR operator may expand
the variable space and may affect the iteration process,
though of course, the final converged solution is unaffected.
Similarly, when theR operator includes the operators from
triple to N-ple excitation and substitution operators, it would
also affect the variational process, though again, it does not
affect the final solution. When th® operator affects the
variational process.

In summary, as only the Hamiltonia# defines the sys-
tem, the additional operatdr has nothing to do with the
solution of the ICI method. Only its variable counterpBrt
plays a role for controlling the convergence of the iteration
process. Furthermore, by expanding the variable operator
space byR, we can calculate higher excited states by the
method described below.

V. EXCITED STATES BY THE ICIGSD AND ICIND
ETHODS

nothing to do with the proof that guarantees the exactness o

. Namely, the operators and R do not affect the final
solution.

As briefly described in Paper I, the ICIGSD method is
applicable not only to the ground state but also to the excited

We classify the operatd® into two cases: one is the case state. We describe in this section how to calculate the excited
where the operatdR is expressed within singles and doubles states by the ICIND method. Since the ICIGSD method is an

and the other is the case where the operRtbelongs to the

important extreme, we first discuss the excited-state calcula-

outside of the singles and doubles, namely to triples andions based on the ICIGSD method. We give three methods

higher operators.
When we add some physical operatoto the Hamil-

called method A, B, and C.
First, since the ICIGSD method is a one-state theory, as

tonian as in Eq(4.1), the correspondin® operator belongs would be clear from the Appendix, we calculate the excited
to the general singles and doubles space, since any physicsthte iteratively as follows. We refer to this method as
operators can be expanded by the GSD operatormethod A. Suppose that we are interested in the second state
{a,"a,,a, a5 aga,}. This means that the addition of the vari- (first excited state Then, we take the second state in the
able operatoR as Eq.(4.6) is redundant to the already ex- initial guess, and then continue to choose only the “second”

isting GSD variable space represented by Theperator

state in the iteration process. This would lead to convergence
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to the second state, which should be exact from the theorenculate higher multiple excitations which were rather poor or
Note, however, that second in this procedure is only thevere not calculated in method B. We refer to this method as
number in the initial guess and does not mean that the statmethod C.
is the true second state. The “third” state in the initial The methods of calculating the excited state described in
guess may become lower than the second state as often dtis section have some similarity to already existing
curs in an ordinary iterative diagonalization process likemethods-? The iterative method A is similar to the symmetry
Davidson's'* adapted  cluster (SAC) method®* and the

In method B, we utilize the higher-energy solutions si- MR(multireferenceSAC method®® for excited and open-
multaneously obtained in the ICIGSD calculation of theshell electronic states. Method B is similar to the SAC-CI
ground state as the excited states. At the convergence of t1&#D-R method'?!” and method C to the SAC-CI genefRl-
ICI calculation, we obtain the exact ground stateand at  method'® In the SAC-CI SDR method, the SAC-CI excita-
the same time, the higher-energy solutioffS of the same tion operatorsR, which are similar to the operator in Eq.

secular equation that are written as (5.2), are limited within singles and doubles, while in the
Mesp generalR method, they are taken not only from the SD space

YK = 2 CiKti|¢g>, (5.1) but also from triple to higher excitation space. The SAC-CI

i=1 SD-R method is accurate for describing ordinary single-

electron excitation processes, but insufficient for describing
Phe multiple-electron excitation proces$@dor which the
SAC-CI generaR method is accurat¥.
It is very interesting which of the three methods given in
(X9 =0, (YX|H|y%=0 (5.2 this section is most efficiently accurate for the study of ex-
cited states of atoms and molecules. Probably method B,
which is easiest among the three, would be most useful for
PRy = 8k (WNH] Y =E Sk - (5.3  ordinary egcitation processes. Needless to say, the expression
) ) - of the excited state by Eq$5.1) and (5.7) represents the
Since Egs(5.2) and(5.3) are important necessary conditions ansferability of electron correlations between ground- and
of the excited states, we may tak€ as representing the eycited states. Further, by including the operators belonging
excited states of°. _ _ to different symmetries and the ionization and electron at-
Now, what is the qugllty of thg excited states calculatedgchment operators in the operatéfsand u;, we can also
by method B? The excited functiong® of method B are  gescribe different excited statés.g., triplet excited states
generated by applying the GSD operators to the exact groungh jonized and electron attached states as well as the excited

statey? as expressed by E@5.1). It is also interesting to  giates having the same symmetry as the ground state, just as
consider a set of functiong; defined by in the SAC-CI method217

wheret; represents the singles and doubles substitution o
erators as defined by E4.4). SinceyX are the solutions of
the same secular equation as fi#, they satisfy

and

It is also possible to calculate the excited states in the
o= djiu;l¥9), (5.4 ICIND formalism. Method A is essentially the same as in the
' ICIGSD case. We use an initial guess functighnhaving the

where{u;} represents the operators from tripleNeple ex- ~ symmetry and the electronic structure desired for the excited
citation operators. Sincg? is exact, it satisfies state to be calculated, and choose to keep only such functions
until convergence. Again, the converged solution should be

(@ilH-E[y9)=0. (5.5 exact. In the case of method B, the quality of the excited
However,{ ¢y} obtained simultaneously wit9 do not nec-  states obtained simultaneously with the ground state would
essarily satisfy the similar relation to E.5), namely be worse than that for the ICIGSD method, when the varia-

K tional space for the excited states of the ICIND method is

(¢ilH—E[4")+0, (5.6 smaller than that of the ICIGSD method. The quality of the
becausep;, which is linearly independent from, are not excited states can be improved and the range of the excita-
included in the secular equation which giw¢% This means tions calculated are expanded by extending the variable

that the excited-state functiodg/} of method B obtained space from ND to GSD or even to include triple to N-ple
simultaneously withy? are not exact, though they satisfy excitation operators. This method corresponds to method C

Egs.(5.2) and(5.3). of the above paragraphs. We believe from the experiences of
The quality of the excited states by method B is therethe SAC/SAC-CI calculations that the ICIGSD method, fol-
fore improved by extending the variable space as lowed by method B in particular, is a useful method for
calculating the ground- and excited states of molecules and
Y= E C:_ti+z_ djLuj | 49) (5,77 ~ molecular systems.
! J

where{t;} represents GSD operators and; } the operators VI. CONCLUSION

from triple to N-ple excitation operators. By further diago- The Schrdinger equation itself should be correct even if
nalizing (only once the secular equation corresponding to the basic operator involves up keparticle interaction terms,
Eq. (5.7), we can improve the quality of the excited state, upbut in reality, the Hamiltonian operator involves only up to
to the exact limit. Furthermore, by this method, we can caldtwo-particle interaction terms. Since the exact wave function
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is an eigenfunction of the Hamiltonian that has such a simpl&PPENDIX
structure, the exact wave function itself should also have a We here prove that each of Eq4.8) and (1.9 with E

simple structure. This is a basic philosophy underlying thedefined by Eq(L.7) is equivalent to the Schdinger equa-
present series of studies. We study the structure of the exaglin a necessary and sufficient sense

wave function under the expectation that it should be simple The necessity is trivial: ifs satisfies Eq(1.4), it satisfies

andlholgefullylzbeautiful. ted a th that imoli Egs. (1.8 and (1.9). We prove the sufficiency. We assume
_nraperi, we presented a tneorem thatl IMplies an €X-, 4 \ve have the solutions of the Sctimger equation as
istence of the general singles and doubles description of the

exact wave function. Namely, the number of variables nec- HWY,=E,W¥,. (A1)

essary to Qescribe the exapt wave function w_ould be reducegince{q,n} forms a complete set of eigenfunctions of the
to Mggp given by Eq.(1.5 instead ofMy,.c; given by Eq. Hamiltonian, we can expand our as
(1.1). We examined both exponential and linear expansion

ansaz and proposed the ICIGSD method as a method of
calculating the exact wave function with the GSD number of
variables.

In this paper, we have generalized Theorem IlI-1 of Pape
I: when we divide the Hamiltonian inthly parts, we have a
set of Np equations that is equivalent to the Safirger ) . 5
equation in the necessary and sufficient sense. Based on this 0=(y|{(H—-E) |l//>=§1 ChCu(¥ol(H-E)?|¥ )
theorem, the ICI method was generalized to calculate the '
exact wave function wittNp number of variables wherd
ranges from 1 toMggp Where Mggp is the case of the
ICIGSD method. The simplest case wilh=1 (ICION or ) _ )
SICI) is very interesting, and the general singles case Wherl§Ince all terms in the last sum are non-negative, @‘3.‘)
Np is the number of general single substitution operatorsStands, only when alC, are zero except for one casel, |
(ICIGS) is also interesting. In actual ICI calculations, thef,Or which E=E; andC;#0. From the normalization condi-
convergence rate would be faster whig is larger and  1O™ Ci=1, and therefore, from EqA2), y="¥;. Namely,
when the quality of the initial function is better. FurthBig

¥ is an eigenfunction of the Schdimger equation. It can be
is not necessarily kept constant throughout the ICI calcula—elther ground state or excited state. Witgns degeneratey
tions.

becomes a linear combination of one set of the degenerate
We studied the structure of the ICI method by first ex-

Y= E Ch¥,y. (A2)

IFlnserting Eq(A2) into our expression given by E¢L.8), we
ave

=§ |Co|2(E,—E)2. (A3)

eigenfunctions of; of the Schrdinger equation. Thus, the

panding its variable space. GSD is a good special case béyfﬁgiency of Eq.(1.8) is pr(_)ved. Equation(1.9) is easily
cause the GSD operator space is complete in the sense thapﬁtamed from Eq(1.8) by using Eq.(1.7) (QED).

can expand any physical operators. If we extend the variable ) | 4 Reduced
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