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Structure of the exact wave function. Ill. Exponential ansatz
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We continue to study exponential ansatz as a candidate of the structure of the exact wave function.
We divide the Hamiltonian intdNp (number of divisions parts and extend the concept of the
coupled clustefCC) theory such that the cluster operator is made of the divided Hamiltonian. This

is called extended coupled clust@&CQO) including Np variables(ECCND). It is shown that the
S(simplesjECC, including only one variableNp= 1), is exact in the sense that it gives an explicit
solution of the Schidinger equation when its single variable is optimized by the variational or
H-nijou method. This fact further implies that the ECCND wave function Wg®=2 should also

have a freedom of the exact wave function. Therefore, by applying either the variational equation or
the H-nijou equation, ECCND would give the exact wave function. Though these two methods give
different expressions, the difference between them should vanish for the exact wave function. This
fact solves the noncommuting problem raised in Pafdéf. INakatsuji, J. Chem. Phy413 2949
(2000]. Further, ECCND may give more rapidly converging solution than SECC because of its
non-linear character, ECCND may give the exact wave function at the sets of variables different
from SECC. Thus, ECCND is exact not only fii,= 1, but also forNp=2. The operator of the

ECC, exp§), is an explicit expression of the wave operator that transforms a reference function into
the exact wave function. The coupled cluster including general singles and dq@&sSD
proposed in Paper | is an important special case of the ECCND. We have summarized the method
of solution for the SECC and ECCND truncated at ondeThe performance of SECC and ECC2

is examined for a simple example of harmonic oscillator and the convergence to the exact wave
function is confirmed for both cases. Quite a rapid convergence of ECC2 encourages an application
of the ECCND to more general realistic cases. 2@01 American Institute of Physics.

[DOI: 10.1063/1.1385371

I. INTRODUCTION in a coordinate representation, or

A purpose of this series of studiesis to clarify the - e+ 4
structure of the exact wave function. Since the Hamiltonian H:; Updy ap+pqzrs Wpa@r 8s 8qap (1.2
in the Schrdinger equation is simple, involving the opera-
tors only up to two-particle interaction terms, the exact waven a second-quantized representation. The most straightfor-
function, its eigenfunction, should also have some simplevard method of solving the Schdimger equation within a
structure, reflecting this simplicity of the Hamiltonian opera- given basis set is the full CI method, but the number of the
tor. We have already shown in the previous two papetisat  variables,My,.¢, involved in this method
certainly the exact wave function can be described with a
smaller number of variables than ever thought. After clarify-
ing the structure of the exact wave function, we study the Mfu”_c,=m EN }N+1 , 1.3
efficient method to calculate it. The Schinger equation 2 2
governs essentially most of physics and all of chemisy,
that if we can solve this equation with a realistic cost, we carfasily runs into astronomical figures even for small mol-
make very precise predictions and its scientific and practicagcules. In Eq(1.3) mis the number of active orbital§ the

m+1 m+1

merits are huge. number of electrons, and denotes binomial coefficient.
The Schidinger equation is given by In the first paper of this seridshereafter caIIed.Paper I,
we have shown that it is possible to solve the Sdhrger
(H—E)y=0, (1.1 equation withM ggp variables
where the Hamiltonian involves only one- and two-particle m 2
operators as M gsp=m?+ E(m— 1) . 1.4
N N
H=2 v(i)+>, w(ij), (1.2a8  This is the number of the general singles and doutB3D)
: = substitution operators and is much smaller thég,.c, . We
have proposed the iterative configuration interact{t@I)
dElectronic mail: hiroshi@sbchem.kyoto-u.ac.jp method involving GSD number of variabl€kCIGSD) as a
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method to calculate the exact wave function. In the second <¢|(H_E)2|¢>:o 2.3
paper of this seriescalled Paper I, we have shown that an . . . .
even smaller number of variables is possible to solve thiS eqqlvalent to the_ Schinger equation, and each of the
Schralinger equation. The number of variables depends o ollowing two equations,

how we divide the Hamiltonian operator into pieces. This  (y|(H—E)H|¢)=0, (2.9
number of divisionNp is, for example, from unity t&/ ggp:
unity is for no division andM ggp for dividing H into all the
terms in Eq.(1.20). This generalized ICl method was called  (|H?—E2?|4)=0, (2.5

the ICIND method. Further, we have described how to cal- . . . -
culate the excited states from the ICIND method. ;oqguegzg:ﬁwnh Eq(2.2) is also equivalent to the Schiinger

In Paper |, we have obtained the theorem that suggests Based on these equations, we have given the following

tk;e pfss'b”f'tilhthat thet exponefntlalt.anzatﬁ ma}%/ _represipt tgﬁﬁeorem in Paper Il. Namely, when we divide the Hamil-
structure of the exact wave function when it is combined, .- "o theNp parts as

with the variational principle. The coupled cluster singles
(CCS is certainly exact when the Hamiltonian involves only No

a single particle operator. However, the conventional CCSD H:|2=:1 Hi, (2.6
was shown to be not exact because it is not variational and ' o

because the operators involved are only excitation-operatdhen, the wave functiog that satisfies

type (“t type) and do not include other substitution operators (H—E)H =0 (I=1,.Np) 2.7

(*t type).! We then proposed the CCGSD method that was (vl i 2 _ P -

the CC including general singles and doublE€SD) substi- ar_1d_ Eq.(2.2) is exact in a necessary _and sufficient sense.
tution operators, but the problem was that it included theSimilarly, the wave function that satisfies

noncommuting operators. Nooiferrecently considered a (J(H=E)(H,—E)|)=0 (1=1,.Np), (2.9

combination of CCGSD with the density equation. ) ) -
In this paper, we will extend the exponential ansatz inis also exact in the necessary and sufficient sense. In Eq.

the light of the general theorem given in Paper Il and presen?-8): the partial energf, corresponding téi, is defined by

extended coupled clustéECC) theory. We will show that (Y|(H,—E)|¢)=0, (2.9
the ECC in its simplest form(SECC: simplest extended -
coupled clustercertainly represents the structure of the exactand satisfies
wave function as expected originally in Paper |. This fact
further sheds light on the structure of the ECC theory in EZEI E,. (2.10
general. We analyze the structure of the ECC wave function.
A method of solving the ECC is described and some simpldt is convenient to call this group of equations H-square or
application is given. H-nijou equations(“Nijou” is Japanese meaning squaye.

The wave Operatow is an Operator that transforms an Based on the above theorem, we have introduced in Pa-
appropriate approximate wave functio, into the exact Per Il the iterative Cl method includindNp variables

wave functiony that is a solution of the Schdinger equa- (ICIND) as a method that gives the exact wave function.
tion Actually, we can obtain the exact wave function, correspond-

ing to any division of the Hamiltonian. For example, we can

=W (1.9 obtain the exact wave function using only one variable. We

When i, is Hartree—FockW includes all the correlation can define the exact wave function including only the singles
effects. We will give in this paper a simple explicit expres- number(number of singles substitution operatocf vari-

sion of the wave operator based on the exponential ansatzables: this is an interesting special case that may give a basis
of the density functional theor§DFT).® When we divide the

Il. BACKGROUND Hamiltonian into the GSD parts, as in the expression of Eq.
(1.2b, we have the ICIGSD method proposed in Paper I.

We first summarize several equations that are equivalensince each iteration process of the ICI method is variational,

to the Schrdinger equation in the necessary and sufficienthe solution converges from above to the exact wave func-
sense. They provide valuable information for the study of th&jon. We have explained further in Paper Il how to calculate

structure of the exact wave function, because they have th@e excited states within the framework of the ICI method.
same determinative power as the Sclinger equation when

they are solved appropriately.
The most well-known and useful one is the variational|;| EXTENDED COUPLED CLUSTER

principle
In Paper |, we have examined the exponential ansatz as a
(YIH—E[oy)=0, (2.3) promising candidate of the structure of the exact wave func-
where the energy of the systei, is defined by tion. This expectation was based on Theorem II-2 of Paper |
(WIH—E|g)=0 2.2 that suggested that the exponential ansatz might represent the
' ' structure of the exact wave function. We study this problem
Second, the equation here in the light of the theorem given in Paper II.

and
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We describe here an extension of the coupled cluster

(CO) theory. Corresponding to the division of the Hamil- E=> Ep+ > Epg (3.10
tonian - Pars
Np and the density matrices to
H=2 Hi. 3.1 N=Tr{n%}, N(N-1)=Tr{n%}, (3.1
we define the variable operator whereN is the number of electrons. Using these quantities,
Np we can define the CCGSD in the form of
S=2, CH. 32 y=exp(T) o, (312
which includesNp, variables{C,}. Using this variable opera- _, Fa oty S
tor, we define the coupled cluster expansion by T _% Dp(1-np)a, aﬁ-%s Dpg(1=Npg)ar a5 3qap
b=exp(S) o (3:3a (3133
=|1+S+ lS.2+ iS3+--- Yo (3.3b =2 divp—Epaay+ 2 di(wi-ER)a; agagay,
27 3l ' pr pars (3.13h

wherey, is some reference function that is usually Hartree—

r rs r rs H
Fock, |0). This is a small extension of the coupled cluster WN€réDyp.Dpq andd,, dyg represent the variables.
method, so we call it extended coupled clust&iCO) We study below the ECCND, classifying it into the two

method. Following the conventional notation, we call theCaSes, namely the simplest ECSECQ with Np=1 and the
ECC given by Eq(3.3 ECCND (ECC with Np variableg ~ 9eneral ECCND witiNp=2.
method. Another variation of ECCND is introduced by de-
fining the variable operatds by
A. SECC

Np
S= 2’1 ci(H—E), 3.9 We first consider the simplest extended coupled cluster
B (SECQ, whereNp=1 in Eq.(3.1); namely, we do not divide
whereE, is given by Eq.(2.9) and satisfies Eq2.10. The the Hamiltonian operator. Then, SECC may also be referred

wave function is commonly written by E§3.3). to as ECC1 as an extreme of the ECCND. Bweperator of
Note that the coupled cluster general singles and doubleifie type of Eq.(3.2) is written asS=CH, and the SECC
(CCGSD defined by wave function is written as
y=exp(T) o, (3.9 y=exp(CH) (3.14a
with

1 1
= 1+CH+§C2H2+§C3H3+--- Yo. (3.14b

_ "ot IS ot At
T=2> Cla/a,+ > Cha’ajaga,
pr

pars We calculate the enerdy by (|H—E|4)=0 and the vari-
- e able C by the variational principle. Differentiatings with
= %:4 Cpvpd; apt %S CpqWpq@r 8s aqap, (3.6 respect toC, we obtain
is a special case of the ECCND: we use the Hamiltonian ‘?—‘J’sz. (3.15
(1.2b in defining theS operator(here, T operatoy having aC
GSD number of variables. | fing this relation into th iational i h
The CCGSD in the form of Eq3.4) is written as fol-  MSerting this relation into the variational equation, we have
lows. We define the partial energi&s andE ., by (|(H—E)H|y)=0, (3.16
+ —
(dlvparap—Epl¢)=0, - which is Eq.(2.4). Therefore, the SECC given by E@.14
3. i t when it is solved variationall
rs a+a+a a.— Ers _ 0' IS exac y.
<¢|qu r ds dqp q|¢> Using the S operator of the type of Eq(3.4) as S
and the density matrices, andn, by =c(H—E), the SECC can be written in a different form
(vlaa,=nply)=0, (vla‘as aqap—nésql¢>=0,(3 g VTONIHoE (3173
1 1
where = 1+C(H—E)+ECZ(H—E)2+EC3(H—E)3+~~ o,
Ep=vpNp,  Epg=WpgNpy- (3.9 (3.17b
The partial energies sum up EBas which satisfies
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Y from an initial function ¢{0). Expanding the initial wave
Zc - (H-B)y. (3.18  function (0) in terms of the eigenfunctiongs¥;} of H (the
ordering of the states i§,<E;<E,<...), we obtaiff

Therefore, from the variational principle, we have

w(r>=exrx—Hr>Ei diwi(0>=2i d; exg —E;7)¥;(0).

(l(H=E)*[y)=0, (3.19
(3.2)
which is Eq.(2.3). Therefore, the variational SECC in the . ) ) ) )
form of Eq.(3.17) is also exact. After a timer, the eigenfunctionV’; is reduced relative t&
Thus, we have the theorem. by the ratio, exp—(E;—Eg) 7], so that after the time larger
Theorem I1I: Variational SECC is an explicit expression thanmin 10/(E,—Eo), ¢{r) approachesl, in m digits of
of the solution of the Schitinger equation. accuracy. Atr infinity, y(7) becomes equal t&,. As {V¥;}

Theorem Ill is rather surprising. It means that the varia-are all linearly independent, this is a unique way of getting
tional SECC is exact, though it has only one variable. It alsghe €xact solution from E¢3.21). _ _
means that the operator of the SECC, &xpl) or exgc(H This argument means that the varialleor c in the
—E)], is an explicit expression of the wave operator defined>ECC is a large negativénfinite) value to represent the

by Eq.(1.5). It transforms an approximate wave functigp exact wave function. Of course, the wave function itself is
into the exact oney. Since the operator, expH) or finite when it is divided by the normalization factor. The

exdc(H—E)], is totally symmetric, the wave function of actual optimal value is dependent on the quality of the ref-

SECC reflects the symmetry of the reference funcijign ~ €'€nce wave functiogy,. We will see in the applications of

This implies that the SECC is applicable to the ground stateECC that the actual optimal value of the variable is not so
of each spin—space symmetry. large negative, as far as we solve it approximately.

The convergence of SECC, when it is written in an ex- The most important conclusion of this section is that the
pansion form as in Eq3.14h or (3.17h, is clear, since a simplest ECC, SECC, has a structure of the exact wave func-

merit of the exponential ansatz is that it always convergest,ion and can certainly become exact with its structure of the
though this does not necessarily mean that the convergen&Ponential ansatz.

is fast. The convergence rate is dependent on the quality of

the reference functiows,. It is very much desirable to cal-

culate the SECC wave function, exj{l)y, or exgc(H B. ECCND

—E) ]y, directly as it is in Eq(3.143 or (3.174 rather than )
expanding it as in Eq3.14H or (3.17h. We next consider the general case of the ECCND where

There is no iteration in the structure of the SECC, dif-No# 1. Now, we know that even the simplest form of the

ferent from the ICI method. In comparison with the simplesteXponemia! ansatz, SECC, has the structure of the exact
ICI (SICI) given by Eq.(3.18 or (3.19 of Paper Il, the wave function, so that we can assume that a more general
SECC has uniquely only one variable, while in tﬁe sic) exponential ansatz, ECCND, does have freedom to represent

fhe structure of the exact wave function. Therefore, when we
calculate the variablefC,} in Eq. (3.2) either by the varia-
The SECC given by Eq3.17) is somewhat more trans- tional methpd or by the H-nijou method, both giye the exact
parent than that of Eq3.14. When ¢, is an eigenfunction wave f_unctlon, bepau§e both methods are equ_l\{alent to the
of H, then expc(H—E)]=1, and therefore=y; as it Schra:lmger equation in th_e necessary gnd sufficient sense.
should be. Whenyy is close toy, (H—E) should be small We first apply the variational principle to the ECCND

and therefore the convergence should be fast. Actually, howY@ve function given by Eq3.3). Since the operatoiig, } in
ever, the operators, expH) and expc(H—E)], are essen- Eq. (3.2 do not generally commute with each other
tially the same: the difference lies only in the norm of the
wave function.

Solution of the Schrdinger equation in the form of . ) o
SECC has long been considered in the field of quantum mdh€ variation ofy with respect tcC, is written as
lecular dynamics dealing with the time-dependent Schro

method, the single variable is reoptimized in each iteratio
step.

[Hi,H]#0 (1#J), (3.22

dinger equatiorf: Kozloff and Tal-Ezef, for example, con- WY _ H + E(HISJFSHlH i,(H|SZ+SH| S+SPH,)
sidered the solution of the time-dependent Sdhrger JC, 2 3!
equation on the imaginary time axis. Then, the solution of
the time-dependent Schtimger equation becomes +- o, (3.23
=exp(—H 0), 3.2 L

v(7) " n¥0) (3.20 where theS operator is given by E(3.2), and we have used
wherer=it with t being(real) time. In comparison with Eq. the relation
(3.143, the correspondence 8= —r7, =(7), and iy S
=¢(0). This y{7) approaches the exact wave function of the 9> H, . (3.24)
ground state oH after sufficiently long time interval starting aC,
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Equation(3.23 means that/dC,;#H,¢ in general. Com-

bining Eq.(3.23 with the variational principle given by Eq.
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Conversely, whem\'({C,})=0 together withG'({C,})=0
or F'({C,})=0 for all |, the variational equatiof8.25 be-

(2.1), we obtain the variational working equation for the EC- comes equal to the H-nijou equatidB.28 for all I, and

CND method as

1
G'{CH=(yl(H-E) H|+§(H|S+SH|)

1
+§(H,SZ+SH|S+SZH,)+--- | ) =0,

(3.29

therefore, thisyy must be exact from the theorem given in
Paper II.

A'({C}))=0, Eq.(3.30, is a highly nonlinear equation
for the variables{C,}, likewise the variational equation
(3.295 and the H-nijou equatiofB3.28, and may be satisfied
in two ways. Case A is when alH, and S commute,
[H,,S]=0. Equation(3.3]) is satisfied ifH andS commute,
[H,S]=0. For Eq.(2.4) being held, onlyfH,S]=0 suffices.

for all I. Note that this equation is highly nonlinear for the However, we feel that the commutation relatidt,S]=0 is

variable{C,}. Multiplying C, in Eq. (3.25 and summing up
for 1, we obtain

(YI(H=E)S[4)=0. (3.26
A simple sum of Eq(3.25 for all I gives
(¢p|(H=E) H+%(HS+SH)
1
+§(HSZ+SHS+SZH)+--- |40y =0. (3.27

a rather too strong condition in the caseNy=2. A milder
condition is case B, in which E¢3.30 is satisfied as it is as
an integral relation, even though the above commutation re-
lation does not hold.

It is true that the relatiofiH,S]=0 holds if allC,=C:
then, this ECCND reduces to the SECC and therefore its
variational solution should be exactH is truly a part ofH,
not like d;H with d, being a proportionality constant, then
H, never commutes withid, and thereford H,S]=0 holds
only when allC,=C. Thus, the solution in case A is identi-
cal with that of SECC. On the other hand, case B may be

Next, we apply the H-nijou method to the ECCND wave satisfied even iH andSdo not commute, and therefore even

function. The H-nijou method is defined by Eq2.7) or
(2.8). Inserting the ECCND wave function into E@.7), we
have the working equation of the H-nijou method as

FCH=(¢l(H-E)H|¥)
=(¢l(H=E)[H,+H,S+ 3H,S+--]|o) =0,
(3.28

for all I, whereE is defined by Eq(2.2). Equation(3.28) is
again nonlinear for the variableC,}.

if all C, are not equal. Since th¢ at case B satisfied'
=0 together withG'=0 or F'=0, this ¢ must be exact.
When case A and case B occur simultaneously at different
sets of{C,}, giving the same energy, the solution of ECCND
is not unique. Sinc&'=0 is a nonlinear equation fdiC,},
this is possible. Note, however, that since the exact wave
function is unique, the solutions corresponding to case A and
B must be identical except for a normalization factor.

Since case A is identical to SECC, it is realized only
when all terms in the expansion of E&.3b are included: it

We see that Eq3.29 of the variational method and EQ. myst be strictly exi® as the argument of Kosloff and
(3.28 of the H-nijou method are different. But, since the 15,.Ez4p given below Eq/(3.21) implies. A merit of case B

exact wave function should satisfy both variational and

H-nijou equations, it must also satisfy the equation

1 1
Al{CH=(¢l(H-E) E(H|S—5Hu)+§(2|‘h32

—SHS—S?H,)+ ||¢h) =0, (3.29

which is derived by subtracting E¢3.25 from Eq. (3.28.
This equation can also be written as

1 1
A'({C|})=<¢|(H—E)[§[H| SI+ 37(2[H,,S]S

+S[H,SD+-+]1o) =0, (3.30
and a simple sum of this equation for &lgives
1 1
A{CH=(yl(H-E)| 5[H,S]+ 57 (2[H.S]S
+9[H,S])+- | ) =0. (3.31

over case A is that case B can be realized within shorter
terms of expansion of the exponential operator, the contribu-
tion of the latter’s rest of terms being smaller than a given
threshold of accuracy: this is realized since ECCND has a
larger number of variables than SECC, which has only one
variable. For example, let us image CCGSD. There, the vari-
ables associated with thét type operators can become
smaller than those of thét-type ones as a result of the
variational principle (Within GSD operatorsit type opera-
tors are ordinary excitation operators that appear in CCSD,
while the*t type operators are the rest of the GSD operators
including de-excitation operators, éicThis is natural since
we know that CCSD is already a good approximation of the
exact wave function. However, in the SECC only one vari-
able exists, so that such a fine tuning is impossible and a
large number of terms, i.e., true exponential operator, is nec-
essary to represent the exact wave function.

In an approximate method of ECCND in which we ter-
minate the expansion of the exponential operator at some
order, case B would be realized within some accuracy and
give a lower solution than case A. When we have a larger
number of variables in ECCND, the convergence rate would
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be faster. This would be especially so when we perform  The working equation for the SECC given by Eq.
CCGSD, a special case of ECC given in Pap&iwe will (3.149 or (3.173 is written as
see in Sec. V that in a simple example of application, the
ECCND gives much faster convergence than SECC because 9(C)=(¢l(H=E)H[y)=0, (4.2)
of the realization of case B. In SECC, only case A exists.
Now, it would be interesting if we can introduce the
exponential ansatz including only commutable operators. f(C)=(y|(H—E)2|4)=0, 4.2

Such formulation is certainly possible if we introduce a _ _
equivalent when the enerdy is defined by Eq(2.2). C in

P={exp(T)} o, (3.32  Egs.(4.1) and (4.2 stands for eithe€ or ¢ in Eq. (3.14a or
(3.173, respectively. For SECC, the variational and H-nijou

where the brac¢ } means that we include only the normal- 7 :
ae_quatlons are the same. If we define

ordered products in the expansion of the exponential oper
tor. T is the GSD operator given by E(B.6). This expansion A=(H—E)exp(CH) o, (4.3
does not include the noncommuting operators by its defini-

tion. This formulation has been considered first by Lindgrenor

to circumvent noncommuting problems in the formulation of
open-shell coupled cluster thedfy.Mukherjee also gave
some interesting formulatiots.When we apply the varia-
tional principle to they given by Eq.(3.32, we obtain

A=(H—E)exdc(H—E)]¢y, (4.9

then Eq.(4.2) is written as

(U(H-E)a; apexpT)} ) =0, @ay  (@70M=0 (49
Note that alwayd$(C)=0 and the solution is at the extreme,
and f(C)=0. It is very useful if we can calculate the integral
(Yl(H—E){a; aJ aqa, exp(T)} o) =0, (3.39  f(C) directly from Eq.(3.143 or (3.173 without expanding
the exponential operator as in E8.14b or (3.17h.
but these equations are different from E@s1) and(2.2) of Another method of calculating the SECC may be per-

P.aper l. Thereforg, the normal-ordered eXponential anza%rmed asymptotica”y by increasing term by term a|ong the
given by Eq.(3.32 is not guaranteed to represent the struc-expansion of the exponential operator as in E3j14h or
ture of the exact wave function. (3.17bH. We truncate the expansion of the exponential opera-

Finally, it may be useful to give the formulas for the tor at the term (1!) C"H" or (1h!)c"(H—E,)": such trun-
nonvariational solution of the ECCND. They are given by cated wave function is denoted gs

(olH—E[y)=0, (3.39

and

(ol HF (H=E)[¢)=0 (1=1,...Np). (3.36

When i is Hartree—FockH, ¢, includes only up to two
particle excitations, so that the calculations of E8;36 is _
easier than that of Eq3.25. Note that wherH, includes Yn=
only *t-type operators, most of their coefficien® may
vanish identically as a result of Tables Ill and IV of Paper I. i N _pE \n
| ar . . + - C"(H—Ep) }l/fm 4.7
n contrast to the variational method, this method of solution n!
does not guarantee the solution to be exact. This nonvaria- . ,
tional formulation is also valid to the SECC withy =1. whereEy, is defined by
~ The formulations given here is based on Beperator (halH—Ep| ih) =0. (4.9
given by Eq.(3.2). Those based on th®operator given by
Eq. (3.4) are easy, therefore, we do not give them for theThe optimal value of the variablé or c is calculated for the
sake of brevity. The arguments about the ECCND are validruncatedy,, and the energy and other properties are calcu-
also for this case. lated. Then, we increase repeat the calculation, and check
the convergence. Though the expansion should always con-
verge, the convergence rate would be dependent on the qual-
ity of the reference function.

The optimum value ofC or c is calculated by the fol-
A. Solving SECC lowing methods. We defing,(C) from the truncated wave
functions given by Eq(4.6) or (4.7) as

2 3! n! Can)‘/’O’

(4.9

1 1 1
¢n=(1+CH+—CZH2+—C3H3+-~+—

or

1 1
1+c(H—En)+ECZ(H—En)2+§c3(H—En)3+---

IV. SOLVING ECC

We now formulate the basic equations for solving the

ECC. Again, we describe the case of SECC first and then the ¢ (C)=(u|(H—E )2|¢ ) (4.9
case of ECCND wittNp=2. The main difference lies in the " " " w
commutation relation. and impose the condition
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d

Min[fo(C)], or ==fa(C)=0. (410 G ({Ci})= (sl (H—En)| Hi+ 5 (H/S+SH)
For the truncatedy,,, f,(C) is positive nonzero. By adding 1
term by term, the functionf,(C) approaches zero from +§(H|32+SH| S+SH))+ -
above and when it becomes zero, i.e., at the convergence, the
corresponding ¢, is exact. This method is called the 10
f(C)-minimization method and is different from the varia- + mmz_:l 5m1H|5nm}|l//o>=0, (4.16
tional method described below.

We also calculate the truncated wave functiahsby  with E,, defined by
applying the variational principle. Differentiating,, by the

variableC or ¢, we obtain (¥n|lH—Eq|pn)=0. (4.17)
di, The energyE,, becomes minimum for the solution of the
ac =~ Hn-1, (41D ground state.

The working equation for the H-nijou method is given
or by
de Fr{ChH=(¢|(H—EH
dcn:(H_En)’//n—lv (4.12 n({ I}) <¢n|( n) ||‘/’n>

for the truncated SECC given by E.6) or (4.7), respec- =(Ynl(H—Ep)

1
Hi+H S+ 5 H S+
tively. Inserting these expressions into the variational prin-

ciple given by Eq{(2.1), we obtain N %H|Sn)|¢o>=0, 418
<¢n|(H_En)H|¢n—1>:O! (4.13 '
or whereE,, is defined by Eq(4.17).
The difference between the variational and H-nijou
(Ul (H=Ep)?¢hn-1)=0, (4.14  equations is given by,

for the truncated SECCE,, is defined by Eq.(4.8). The 1 1
optimal value ofC or c is calculated from Eq(4.13 or AL({Cl})ZWnKH—En){E(H|S—SH|)+ 5(2H|52
(4.14).

Equations(4.9) and (4.14 show the difference between 1
the f(C)-minimization method and the variational method, —SHS—SH))+: -+ o
but we note that they become closeraacreases and finally '
become identical. Before then, the energy calculated by the n
variational method is lower than that obtained by the -> Sm1H|S”m}
f(C)-minimization method. m=2

The SECC has some similarity to the solution of the

(n—1)H, 8" *

| o)

time-dependent Schdinger equation on the imaginary time = (| (H—E,) E[H, ,S]+ i(Z[H, SIS
axis. Therefore, the method developed for solving the time- 2 3!
dependent Schdinger equatioh® might also be useful for Ll
the SECC. +S[H|!S])+'”+n_|2 (n_m)sm—l
s m=1
B. Solving ECCND X[Hy,SIS"™ ™ 1 ). (4.19

For ECCND withNp=2, the variational equation and . _ L . _
the H-nijou equation are different. The method of solutionSince ¢, is approximateA,, is not necessarily zero, but it
for the exact case is presented in the previous section. Wehould be small for goog, : It gives a measure how good is

consider here the method of solution for the ECCND trun-the quality of the calculategr, . The smallness of;, would
cated at orden be due to case B of the previous section: BandH, would

not commute and alC, would not be equal. WheA'n=O,

1 1 1 i ! |
go=| 145+ 582+ §S3+-~+ n_|Sn Vo 4.19 the difference betweeR, andG,, becomes
! ! .
| I

Since thisy, is an approximation to the ECCND, the varia-  Fn~ Gn= (¥l o7 HiS"|tho). (4.20
tional and the H-nijou methods give different solutions in
general, but the difference should be small for gagd The energy calculated by the variational method is always

The variational working equation is written as lower than that calculated by the H-nijou method.
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TABLE I. Ground state of the harmonic oscillator by the variational method
for the truncated SECC.

V. PERFORMANCE OF SECC AND ECC2
FOR HARMONIC OSCILLATOR

We examine here the performance of the SECC by ap- @=0.55 «=0.60
plying it to a simple example, one-dimensional harmonic os- n Copt Eopt Copt Eopt
cillator.
. . . 0 1.004 545 1.016 667
The harmomc osglllator with the force constakrgnd the 1 ~0.1989 1000015 01961 1.000 203
reduced masg is defined by the Schdinger equation 2 —0.1790 1.001 664 ~0.1760 1.006 160
W2 g2 3 —0.3091 1.000077  —0.2887 1.000 840
_ T2 4 —-0.2941 1.000639  —0.2781 1.002 515
g2 dy? 2KV |V=EY 6.2 5 -0.3808 1000175  -03344 1001197
) 6 -0.3810 1.000288  —0.3427 1.001 334
Replacing the constants by 7 ~0.4232 1.000173  —0.3681 1.001 007
h2 > 2 8 —0.4378 1.000167  —0.3817 1.000 920
e _ 87w B uE 52 9 ~0.4607 1.000133  —0.3965 1.000 801
CAmiku’ h? ! ) 10 —0.4763 1.000 118 —0.4082 1.000 726
' 15 —0.5383 1.000069  —0.4513 1.000 497
and the variable by 20 -0.5771 1.000050  —0.4779 1.000 394
30 —0.6237 1.000033  —0.5093 1.000 300
y=BX, (5.3
the Hamiltonian is written as
d2 which has the minimum value 1.0 at=0.5, a consequence
H=-%2 +%2, (5.4  of the variational principle.
and the Schidinger equation(5.1) is rewritten as A. SECC
B d_2 2| e 5.5 We now apply SECC first to the ground state. We use the
dx? y=s¢. : SECC given by Eq(3.14. A single variableC is included in
. . . the S operator as
The two lowest solutions of this equation are ,
d
pg=m Yexp—3x?), e4=1, (5.6) S=C(—d—xz+x2 . (5.10
and : -
We have applied the variational method and the
Ye=V2m Yxexp—ix?), e.,=3. (5.7  f(C)-minimization method to the truncated, for n
We take =1-30. The calculations have been performed usingLE
6'2 and the results are given in Tables | and Il. The absolute
Yo=exp— ax?), (5.8)  value ofC, Cy Of 4, increases, as expected, as the number

of terms,n increases, and the corresponding enegy ap-
C%roaches the exact value 1.0. The magnitud€ gfis, how-
ever, far from the negative infinity. Initially for smati, the
results oscillate to some extent, but become monotonic for
n>6. The convergence rate is faster f@r=0.55 than for

with «=0.55 and 0.60 as our reference functioas: 0.5 is
exact solution. The energy expectation value of the referen
function ¢ is

eo=(1+4a?)/4a, (5.9

TABLE Il. Ground state of the harmonic oscillator by th€C)-minimization method for the truncated SECC.

a=0.55 a=0.60
n Copt Eopt f(C) Copt Eopt f(C)
0 . 1.004 545 . . 1.016 667 .
1 -0.1981 1.000 016 18104 —-0.1931 1.000 209 17103
2 —0.1969 1.001 691 781072 —0.1896 1.006 221 2:810 2
3 —-0.3021 1.000 081 541074 —0.2737 1.000 921 501073
4 —0.3007 1.000 641 25103 —0.2749 1.002 517 191072
5 —0.3638 1.000 188 791074 —0.3155 1.001 270 52103
6 —0.3736 1.000 290 10102 —-0.3281 1.001 370 5210 3
7 —0.4062 1.000 180 6381074 —0.3490 1.001 062 391072
8 —0.4228 1.000 172 5%1074 —0.3627 1.000 968 3%10°3
9 —0.4427 1.000 139 4%10°* —0.3764 1.000 851 29103
10 —0.4580 1.000 124 3:81074 —-0.3878 1.000 774 261073
15 —-0.5178 1.000 074 201074 —0.4305 1.000 539 16103
20 —0.5566 1.000 054 1810 * —0.4579 1.000 429 121073
30 —0.6046 1.000 036 8:010°° —-0.4915 1.000 326 841074
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TABLE Ill. First excited state of the harmonic oscillator by the variational mapPLE 6 and the results are shown in Table Ill. The conver-
method for the truncated SECC. gence behavior of the excited state is similar to that of the

=055 =060 ground state. It initially oscillates but becomes monotonic for
n>8. The value ofC,, increases a® increases and
n Copt Eopt Copt Eopt approaches the exact value 3.0, though the convergence rate
0 : 3.013636 3.05 is slow.
1 —0.1419 3.000077  —0.1396 3.001 000 In Tables | to Ill, the result foky; is remarkably good. It
2 —0.1130 3.007207  —0.1115 3.026552 g essentially the result of the first iteration of the SICI
i :82?332 g:ggg 222 :g:i;gé 2:822 igg metho_dz. Since every step is variational in the ICI method
5 —0.2885 3.000703  —0.2584 3.005 412 and since the variable is reoptimized in each iteration step,
6 -0.2754 3.001915  -0.2573 3.007 716 the convergence of the SICl is expected to be faster than that
7 -0.3321 3.000904  —0.2914 3.005 168 of the SECC, if the SECC is solved in the expansion method
8 —0.3365 3.001109  —0.3020 3.005 098 as given here.
9 -0.3676 3.000783  —0.3209 3.004 223
10 —0.3808 3.000742  —0.3333 3.003 860
15 —0.4528 3.000402  —0.3854 3.002 481 B. ECC2
20 —0.4998 3.000272  —0.4193 3.001 865
30 —0.5594 3.000166  —0.4615 3.001 307 We next apply ECC2 to the ground state of the harmonic
oscillator. Two variable<Cx and Cp are associated to the
kinetic and potential operators as
a=0.60, because the quality of the reference function is bet- d?
ter for a=0.55. The variational results given in Table  and ~ S=—Ck g2+ Cpx?. (5.13

the f(C)-minimization results given in Table Il show similar

behaviors. The energy of the former is always lower than thablote thatSandH do not commute as far &y is not equal

of the |at'[er, but the difference becomes smallernas- to Cp. The variational method and the H-nijou method are
creases. The value 6{C), which must be positive, gradu- different in ECC2.

ally approaches zero from above. The convergence rate is We first apply the variational method. We calculate the
slow in both methods: we do not yet reach the convergencECC2 wave function truncated at=2 and 3 and summarize
especially fora=0.60. But, we can conclude that the SECC the results in Table IVCy andCp in Table IV are accurate
converges to the exact value for both the results given inly to five decimal figures. The result for=1 is rather
Tables | and II. special. Atn=1, the ECC2 is identical with the first iteration

The SECC has also been applied to the first excited statef ICI2, and in this example of harmonic oscillator, the first
of the harmonic oscillator for which the exact solution is iteration of ICI2 is also just identical with the first iteration
given by Eq.(5.7). Similarly to the ground state, we use the of SICI or ICI1 becausely, —(d*/dx®) g, andx®yy, are

SECC given by Eq(3.14) and we take the reference function not linearly independent. Thus, the ECC2 resulhatl is
identical with the SECC result at=1 given in Table I.

o=X exp( — ax?), (5.1 From Table IV, we are surprised at the good conver-
with «=0.55 and 0.60. This reference function is ungeradegence of the ECC2 wave function. Evennat 2, the energy
for the inversion symmetry as the exact wave function: theconverges very nicely to 1.0, and at=3, the results are
first excited state is the ground state of the ungerade symmelready very accurate. This is in sharp contrast to the result
try. The energy of the reference function is of SECC given in Table |, where the convergence is very

slow and the energy is still considerably different from 1.0

s1=3(1+4a’)/4a, (512 even ain= 30 for «=0.60. The optimaCy andC, of ECC2
which has a minimum again at=0.5. We have applied the are not equal but differ even in sign. Therefore, this ECC2
variational method to the truncatef}, of the SECC using solution is different from the SECC solution. Further, the

TABLE IV. Truncated ECC2 for harmonic oscillator calculated by the variational method=At, Cx=Cp
=—0.1989 andE;=1.000 015 fora=0.55, andCx =Cp= —0.1961 andE,=1.000 203 fora=0.60.

n=2 n=3
a=0.55 a=0.60 a=0.55 a=0.60

Optimal ~ Cy —0.020 10 —0.036 41 —0.020 10 —0.036 62

Cp +0.027 92 +0.056 50 +0.027 85 +0.055 80
E, 1.000 000 044 0 1.000 002 106 4 1.000 000 000 21 1.000 000 031 27
G 1=K 0.2270<10°°  —1.1605<10°° 1.2298<10°° 1.2517x10°°

I=P 0.264 7x10°° 0.3959x10°° —1.1166x10°° 1.038 1x10°°
Al 1=K 0.0427x10°°  —0.2290<10°°  —0.0648<10°° 0.1253x10°°

I=P 0.030 7x10°° —0.1475<10°° —0.0594x10°° 0.209 4x 10 °
JE,19C, I=K —0.267 2x10°° 1.417 9x10°° 1.447 4x10°° 1.5306x10°°

I=P 0.3115x10°° 0.483 7x10°° —1.3142x10°° 1.269 4x10°°
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TABLE V. Truncated ECC2 for harmonic oscillator calculated by the H-nijou methodn#Afl, Cx=Cp
=—0.1989 ande;=1.000 015 fora=0.55, andCy=Cp=—0.1961 ande;=1.000 203 fora=0.60.

n=2 n=3
a=0.55 a=0.60 a=0.55 a=0.60

Optimal  Cy —0.020 10 —0.036 41 —0.020 10 —0.036 62

Cp +0.027 92 +0.056 53 +0.027 85 +0.055 80
E, 1.000 000 044 0 1.000 002 108 1 1.000 000 000 21 1.000 000 031 27
Fl I=K 0.262 4x10°° 3.959 1x10°° 1.166 9<10°° —0.866 1x10°°

=P —0.1738<10°° 0.2046x10°° —1.1665<10°° 0.9328x10°°
nth-order 1=K 0.446 8x10°° 1.4203x10°* 0.2020x10° 7 0.2602x10°°
ternf I=P —0.4692<10°° —0.8852x10°* -0.3100x10° —0.1876x10°°

&This is the term defined by E¢4.20.

values ofAﬁ and AE are remarkably very small, showing motivated in Paper I, we could prove that the simplest ex-
that the variational solution is very close to the H-nijou so-tended coupled clustd SECQ has the structure of the exact
lution. This is confirmed from Table V, in which the results wave function: it becomes exact when solved variationally or
of the H-nijou method are summarized. This smallness!pf by the H-nijou method. This fact sheds light on the possibil-
is attained thougl andH do not commute. This is case B, ity of the ECCND wave function in general. Since even the
explained in the previous section. The optimal character o§implest ECC is exact, the more general ECCND should also
the ECC2 results shown in Table IV is confirmed from thebe exact. Then, both the variational equation and the H-nijou
smallness of the values @&, (1=K,P) anddE,/dC, atthe  equation give the exact wave function when applied to EC-
optimal values ofCx andCp. CND. For the exact solution, the difference between the
Table V shows the result of the H-nijou method appliedyariational equation and the H-nijou equation should vanish
ton=2 and 3 of ECC2. The optimal values 6k andCp  and is satisfied as an integral relation given by E3)29.
are very close to those of the variational method. Actually;Thys  the noncommuting problem pointed out in Paper |
the H-nijou results are the same as the variational resu'@isappearg.Further, ECCND Kp=2) may give a more rap-
except for the case af=0.60 andn=2, where the second- jqjy converging solution than SECC. Because of its non-
order termin the 'I'"”'JOU integrdd, , which is the difference  jinear character, ECCND may give the exact solution at the
betweenF, andG, as seen from Eq4.20, is the little bit a5 of variables different from SECC. We thus conclude that
large so that the variational result and the H-nijou result bey,o EccND is exact for alN, . ECCND gives an explicit
come different. Note that this difference is not due to a Iargeexpression of the wave operatatdefined by Eq(1.5). As a
A} value. It is also small even in this case. The Optimalspecial case, CCGSD is also exact: a statement in Paper |
charactler ofCx and Cp is seen from the smallness of the must be corrected The ECCND and CCGSD must be
valueF,. solved by the variational method or by the H-nijou method.

The results of ECC2 given in this sectlon.vgry much Nooijerf* considered solving the CCGSD using the density
encourage the ECCND approach for more realistic systems

The key is a smallness of thla:1 values that guarantees the Bquatiort, which belongs to the H-njou method: this is a

. . - : clever idea to give the exact solution.
high quality of the c_alculate_d results. This high quality of the We have summarized the method of solving the SECC
calculated results is certainly due to the exactness of the

structure of the ECCND wave function. and ECCND for thenth-order truncated form. The varia-
tional equation and the H-nijou equation are different in this
case, but the difference should be small: it gives a measure of
VI. CONCLUSION the quality of the calculated result.

In this series of papers?we have investigated the struc- 1€ SECC and the ECCND are applied in their truncated
ture of the exact wave function and obtained several expred0rm to the simple example of harmonic oscillator. The
sions of the exact wave function that includes much smalleBECC certainly gave the exact wave function starting from

number of variables thaMy,.c, given by Eq.(1.3. The approximate reference functions for both the ground- and
number of variables is from unity tMgsp, for example, first-excited states, though the convergence rates were rather

depending on the method of division of the Hamiltonian.slow. On the other hand, ECC2, having different variables
Since the exact wave function is unique, these different exfor kinetic and potential operators, gave quite a rapid con-
pressions represent the different aspects of a single realityergence. The variational method and the H-nijou method
the exact wave function. These expressions give the bases fgave essentially the same resulig=0 were essentially sat-

the further studies of the exact wave function from both thedisfied. This good performance of the ECCND method cer-
oretical and numerical aspects. They will also give a hint intainly reflects its exact structure as a wave function. CCGSD
the study of the different frameworks of the quantum me-is also important as a special case of ECCND. Head-Gordon
chanics, like DFT and DMTdensity matrix theory*® and his co-workers recently studied variational coupled clus-

In this paper, we have examined the exponential ansater in some detail and reported several nice restiBased
in the light of the general theorem given in Paper Il. Ason the present result, we believe that the study of ECCND
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would certainly open up a new wave in the study of the exact®R. G. Parr and W. Yangpensity-Functional Theory of Atoms and Mol-

wave function. ecules(Springer, New York, 1989
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