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Structure of the exact wave function. III. Exponential ansatz
Hiroshi Nakatsujia)
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We continue to study exponential ansatz as a candidate of the structure of the exact wave function.
We divide the Hamiltonian intoND ~number of divisions! parts and extend the concept of the
coupled cluster~CC! theory such that the cluster operator is made of the divided Hamiltonian. This
is called extended coupled cluster~ECC! including ND variables~ECCND!. It is shown that the
S~simplest!ECC, including only one variable (ND51), is exact in the sense that it gives an explicit
solution of the Schro¨dinger equation when its single variable is optimized by the variational or
H-nijou method. This fact further implies that the ECCND wave function withND>2 should also
have a freedom of the exact wave function. Therefore, by applying either the variational equation or
the H-nijou equation, ECCND would give the exact wave function. Though these two methods give
different expressions, the difference between them should vanish for the exact wave function. This
fact solves the noncommuting problem raised in Paper I@H. Nakatsuji, J. Chem. Phys.113, 2949
~2000!#. Further, ECCND may give more rapidly converging solution than SECC because of its
non-linear character, ECCND may give the exact wave function at the sets of variables different
from SECC. Thus, ECCND is exact not only forND51, but also forND>2. The operator of the
ECC, exp(S), is an explicit expression of the wave operator that transforms a reference function into
the exact wave function. The coupled cluster including general singles and doubles~CCGSD!
proposed in Paper I is an important special case of the ECCND. We have summarized the method
of solution for the SECC and ECCND truncated at ordern. The performance of SECC and ECC2
is examined for a simple example of harmonic oscillator and the convergence to the exact wave
function is confirmed for both cases. Quite a rapid convergence of ECC2 encourages an application
of the ECCND to more general realistic cases. ©2001 American Institute of Physics.
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I. INTRODUCTION

A purpose of this series of studies1,2 is to clarify the
structure of the exact wave function. Since the Hamilton
in the Schro¨dinger equation is simple, involving the oper
tors only up to two-particle interaction terms, the exact wa
function, its eigenfunction, should also have some sim
structure, reflecting this simplicity of the Hamiltonian oper
tor. We have already shown in the previous two papers1,2 that
certainly the exact wave function can be described wit
smaller number of variables than ever thought. After clari
ing the structure of the exact wave function, we study
efficient method to calculate it. The Schro¨dinger equation
governs essentially most of physics and all of chemistry,3 so
that if we can solve this equation with a realistic cost, we c
make very precise predictions and its scientific and pract
merits are huge.

The Schro¨dinger equation is given by

~H2E!c50, ~1.1!

where the Hamiltonian involves only one- and two-partic
operators as

H5(
i

N

v~ i !1(
i . j

N

w~ i , j !, ~1.2a!

a!Electronic mail: hiroshi@sbchem.kyoto-u.ac.jp
2460021-9606/2001/115(6)/2465/11/$18.00
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in a coordinate representation, or

H5(
pr

vp
r ar

1ap1 (
pqrs

wpq
rs ar

1as
1aqap , ~1.2b!

in a second-quantized representation. The most straigh
ward method of solving the Schro¨dinger equation within a
given basis set is the full CI method, but the number of
variables,M full-CI involved in this method

M full-Cl5
1

m11 S m11

1

2
N D S m11

1

2
N11D , ~1.3!

easily runs into astronomical figures even for small m
ecules. In Eq.~1.3! m is the number of active orbitals,N the
number of electrons, and~ ! denotes binomial coefficient.

In the first paper of this series,1 hereafter called Paper I
we have shown that it is possible to solve the Schro¨dinger
equation withMGSD variables

MGSD5m21Fm

2
~m21!G2

. ~1.4!

This is the number of the general singles and doubles~GSD!
substitution operators and is much smaller thanM full-CI . We
have proposed the iterative configuration interaction~ICI!
method involving GSD number of variables~ICIGSD! as a
5 © 2001 American Institute of Physics
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method to calculate the exact wave function. In the sec
paper of this series,2 called Paper II, we have shown that a
even smaller number of variables is possible to solve
Schrödinger equation. The number of variables depends
how we divide the Hamiltonian operator into pieces. Th
number of division,ND is, for example, from unity toMGSD:
unity is for no division andMGSD for dividing H into all the
terms in Eq.~1.2b!. This generalized ICI method was calle
the ICIND method. Further, we have described how to c
culate the excited states from the ICIND method.

In Paper I, we have obtained the theorem that sugg
the possibility that the exponential anzatz may represent
structure of the exact wave function when it is combin
with the variational principle. The coupled cluster singl
~CCS! is certainly exact when the Hamiltonian involves on
a single particle operator. However, the conventional CC
was shown to be not exact because it is not variational
because the operators involved are only excitation-oper
type (At type! and do not include other substitution operato
(Xt type!.1 We then proposed the CCGSD method that w
the CC including general singles and doubles~GSD! substi-
tution operators, but the problem was that it included
noncommuting operators. Nooijen8 recently considered a
combination of CCGSD with the density equation.5

In this paper, we will extend the exponential ansatz
the light of the general theorem given in Paper II and pres
extended coupled cluster~ECC! theory. We will show that
the ECC in its simplest form~SECC: simplest extende
coupled cluster! certainly represents the structure of the ex
wave function as expected originally in Paper I. This fa
further sheds light on the structure of the ECC theory
general. We analyze the structure of the ECC wave funct
A method of solving the ECC is described and some sim
application is given.

The wave operatorW is an operator that transforms a
appropriate approximate wave functionc0 into the exact
wave functionc that is a solution of the Schro¨dinger equa-
tion

c5Wc0. ~1.5!

When c0 is Hartree–Fock,W includes all the correlation
effects. We will give in this paper a simple explicit expre
sion of the wave operator based on the exponential ansa

II. BACKGROUND

We first summarize several equations that are equiva
to the Schro¨dinger equation in the necessary and suffici
sense. They provide valuable information for the study of
structure of the exact wave function, because they have
same determinative power as the Schro¨dinger equation when
they are solved appropriately.

The most well-known and useful one is the variation
principle

^cuH2Eudc&50, ~2.1!

where the energy of the system,E, is defined by

^cuH2Euc&50. ~2.2!

Second, the equation
Downloaded 31 May 2007 to 130.54.110.22. Redistribution subject to AI
d

e
n

l-

ts
e

D
d
or

s

e

nt

t
t

n.
le

z.

nt
t
e
he

l

^cu~H2E!2uc&50 ~2.3!

is equivalent to the Schro¨dinger equation, and each of th
following two equations,

^cu~H2E!Huc&50, ~2.4!

and

^cuH22E2uc&50, ~2.5!

together with Eq.~2.2! is also equivalent to the Schro¨dinger
equation.5

Based on these equations, we have given the follow
theorem in Paper II. Namely, when we divide the Ham
tonian into theND parts as

H5(
I 51

ND

HI , ~2.6!

then, the wave functionc that satisfies

^cu~H2E!HI uc&50 ~ I 51,...,ND!, ~2.7!

and Eq.~2.2! is exact in a necessary and sufficient sen
Similarly, the wave functionc that satisfies

^cu~H2E!~HI2EI !uc&50 ~ I 51,..,ND!, ~2.8!

is also exact in the necessary and sufficient sense. In
~2.8!, the partial energyEI corresponding toHI is defined by

^cu~HI2EI !uc&50, ~2.9!

and satisfies

E5(
I

EI . ~2.10!

It is convenient to call this group of equations H-square
H-nijou equations.~‘‘Nijou’’ is Japanese meaning square.!

Based on the above theorem, we have introduced in
per II the iterative CI method includingND variables
~ICIND! as a method that gives the exact wave functio
Actually, we can obtain the exact wave function, correspo
ing to any division of the Hamiltonian. For example, we c
obtain the exact wave function using only one variable.
can define the exact wave function including only the sing
number ~number of singles substitution operators! of vari-
ables: this is an interesting special case that may give a b
of the density functional theory~DFT!.6 When we divide the
Hamiltonian into the GSD parts, as in the expression of
~1.2b!, we have the ICIGSD method proposed in Pape
Since each iteration process of the ICI method is variation
the solution converges from above to the exact wave fu
tion. We have explained further in Paper II how to calcula
the excited states within the framework of the ICI method

III. EXTENDED COUPLED CLUSTER

In Paper I, we have examined the exponential ansatz
promising candidate of the structure of the exact wave fu
tion. This expectation was based on Theorem II-2 of Pap
that suggested that the exponential ansatz might represen
structure of the exact wave function. We study this probl
here in the light of the theorem given in Paper II.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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We describe here an extension of the coupled clu
~CC! theory. Corresponding to the division of the Ham
tonian

H5(
I 51

ND

HI , ~3.1!

we define the variable operator

S5(
I 51

ND

CIHI , ~3.2!

which includesND variables$CI%. Using this variable opera
tor, we define the coupled cluster expansion by

c5exp~S!c0 ~3.3a!

5F11S1
1

2
S21

1

3!
S31¯Gc0 , ~3.3b!

wherec0 is some reference function that is usually Hartre
Fock, u0&. This is a small extension of the coupled clus
method, so we call it extended coupled cluster~ECC!
method. Following the conventional notation, we call t
ECC given by Eq.~3.3! ECCND ~ECC with ND variables!
method. Another variation of ECCND is introduced by d
fining the variable operatorS by

S5(
I 51

ND

cI~HI2EI !, ~3.4!

whereEI is given by Eq.~2.9! and satisfies Eq.~2.10!. The
wave function is commonly written by Eq.~3.3!.

Note that the coupled cluster general singles and dou
~CCGSD! defined by1

c5exp~T!c0 , ~3.5!

with

T5(
pr

Cp
r ar

1ap1 (
pqrs

Cpq
rs ar

1as
1aqap

5(
pr

cp
r vp

r ar
1ap1 (

pqrs
cpq

rs wpq
rs ar

1as
1aqap , ~3.6!

is a special case of the ECCND: we use the Hamilton
~1.2b! in defining theS operator~here,T operator! having
GSD number of variables.

The CCGSD in the form of Eq.~3.4! is written as fol-
lows. We define the partial energiesEp

r andEpq
rs by

^cuvp
r ar

1ap2Ep
r uc&50,

~3.7!
^cuwpq

rs ar
1as

1aqap2Epq
rs uc&50,

and the density matricesnp
r andnpq

rs by

^cuar
1ap2np

r uc&50, ^cuar
1as

1aqap2npq
rs uc&50,

~3.8!

where

Ep
r 5vp

r np
r , Epq

rs 5wpq
rs npq

rs . ~3.9!

The partial energies sum up toE as
Downloaded 31 May 2007 to 130.54.110.22. Redistribution subject to AI
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E5(
p,r

Ep
r 1 (

pq,rs
Epq

rs , ~3.10!

and the density matrices to

N5Tr$np
r %, N~N21!5Tr$npq

rs %, ~3.11!

whereN is the number of electrons. Using these quantiti
we can define the CCGSD in the form of

c5exp~T8!c0, ~3.12!

T85(
p,r

Dp
r ~12np

r !ar
1ap1 (

pqrs
Dpq

rs ~12npq
rs !ar

1as
1aqap

~3.13a!

5(
pr

dp
r ~vp

r 2Ep
r !ar

1ap1 (
pqrs

dpq
rs ~wpq

rs 2Erq
rs !ar

1as
1aqap ,

~3.13b!

whereDp
r ,Dpq

rs anddp
r , dpq

rs represent the variables.
We study below the ECCND, classifying it into the tw

cases, namely the simplest ECC~SECC! with ND51 and the
general ECCND withND>2.

A. SECC

We first consider the simplest extended coupled clus
~SECC!, whereND51 in Eq.~3.1!; namely, we do not divide
the Hamiltonian operator. Then, SECC may also be refer
to as ECC1 as an extreme of the ECCND. TheSoperator of
the type of Eq.~3.2! is written asS5CH, and the SECC
wave function is written as

c5exp~CH!c0 ~3.14a!

5S 11CH1
1

2
C2H21

1

3!
C3H31¯ Dc0 . ~3.14b!

We calculate the energyE by ^cuH2Euc&50 and the vari-
able C by the variational principle. Differentiatingc with
respect toC, we obtain

]c

]C
5Hc. ~3.15!

Inserting this relation into the variational equation, we ha

^cu~H2E!Huc&50, ~3.16!

which is Eq.~2.4!. Therefore, the SECC given by Eq.~3.14!
is exact when it is solved variationally.

Using the S operator of the type of Eq.~3.4! as S
5c(H2E), the SECC can be written in a different form

c5exp@c~H2E!#c0 ~3.17a!

5F11c~H2E!1
1

2
c2~H2E!21

1

3!
c3~H2E!31¯Gc0 ,

~3.17b!

which satisfies
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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]c

]c
5~H2E!c. ~3.18!

Therefore, from the variational principle, we have

^cu~H2E!2uc&50, ~3.19!

which is Eq. ~2.3!. Therefore, the variational SECC in th
form of Eq. ~3.17! is also exact.

Thus, we have the theorem.
Theorem III: Variational SECC is an explicit expressio

of the solution of the Schro¨dinger equation.
Theorem III is rather surprising. It means that the var

tional SECC is exact, though it has only one variable. It a
means that the operator of the SECC, exp(CH) or exp@c(H
2E)#, is an explicit expression of the wave operator defin
by Eq. ~1.5!. It transforms an approximate wave functionc0

into the exact onec. Since the operator, exp(CH) or
exp@c(H2E)#, is totally symmetric, the wave function o
SECC reflects the symmetry of the reference functionc0 .
This implies that the SECC is applicable to the ground s
of each spin–space symmetry.

The convergence of SECC, when it is written in an e
pansion form as in Eq.~3.14b! or ~3.17b!, is clear, since a
merit of the exponential ansatz is that it always converg
though this does not necessarily mean that the converg
is fast. The convergence rate is dependent on the qualit
the reference functionc0 . It is very much desirable to cal
culate the SECC wave function, exp(CH)c0 or exp@c(H
2E)#c0, directly as it is in Eq.~3.14a! or ~3.17a! rather than
expanding it as in Eq.~3.14b! or ~3.17b!.

There is no iteration in the structure of the SECC, d
ferent from the ICI method. In comparison with the simple
ICI ~SICI! given by Eq. ~3.18! or ~3.19! of Paper II, the
SECC has uniquely only one variable, while in the SI
method, the single variable is reoptimized in each iterat
step.

The SECC given by Eq.~3.17! is somewhat more trans
parent than that of Eq.~3.14!. Whenc0 is an eigenfunction
of H, then exp@c(H2E)#51, and therefore,c5c0 as it
should be. Whenc0 is close toc, (H2E) should be small
and therefore the convergence should be fast. Actually, h
ever, the operators, exp(CH) and exp@c(H2E)#, are essen-
tially the same: the difference lies only in the norm of t
wave function.

Solution of the Schro¨dinger equation in the form o
SECC has long been considered in the field of quantum
lecular dynamics dealing with the time-dependent Sch¨-
dinger equation.7,8 Kozloff and Tal-Ezer,8 for example, con-
sidered the solution of the time-dependent Schro¨dinger
equation on the imaginary time axis. Then, the solution
the time-dependent Schro¨dinger equation becomes

c~t!5exp~2Ht!c~0!, ~3.20!

wheret5 i t with t being~real! time. In comparison with Eq
~3.14a!, the correspondence isC52t, c5c(t), and c0

5c(0). This c~t! approaches the exact wave function of t
ground state ofH after sufficiently long time interval starting
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from an initial function c~0!. Expanding the initial wave
function c~0! in terms of the eigenfunctions$C i% of H ~the
ordering of the states isE0,E1,E2,...!, we obtain8

c~t!5exp~2Ht!(
i

diC i~0!5(
i

di exp~2Eit!C i~0!.

~3.21!

After a timet, the eigenfunctionC i is reduced relative toC0

by the ratio, exp@2(Ei2E0)t#, so that after the timet larger
than m ln 10/(E12E0), c~t! approachesC0 in m digits of
accuracy. Att infinity, c~t! becomes equal toC0 . As $C i%
are all linearly independent, this is a unique way of getti
the exact solution from Eq.~3.21!.

This argument means that the variableC or c in the
SECC is a large negative~infinite! value to represent the
exact wave function. Of course, the wave function itself
finite when it is divided by the normalization factor. Th
actual optimal value is dependent on the quality of the r
erence wave functionc0 . We will see in the applications o
SECC that the actual optimal value of the variable is not
large negative, as far as we solve it approximately.

The most important conclusion of this section is that t
simplest ECC, SECC, has a structure of the exact wave fu
tion and can certainly become exact with its structure of
exponential ansatz.

B. ECCND

We next consider the general case of the ECCND wh
NDÞ1. Now, we know that even the simplest form of th
exponential ansatz, SECC, has the structure of the e
wave function, so that we can assume that a more gen
exponential ansatz, ECCND, does have freedom to repre
the structure of the exact wave function. Therefore, when
calculate the variables$CI% in Eq. ~3.2! either by the varia-
tional method or by the H-nijou method, both give the exa
wave function, because both methods are equivalent to
Schrödinger equation in the necessary and sufficient sen

We first apply the variational principle to the ECCN
wave function given by Eq.~3.3!. Since the operators$HI% in
Eq. ~3.2! do not generally commute with each other

@HI ,HJ#Þ0 ~ IÞJ!, ~3.22!

the variation ofc with respect toCI is written as

]c

]CI
5FHI1

1

2
~HIS1SHI !1

1

3!
~HIS

21SHI S1S2HI !

1¯Gc0 , ~3.23!

where theSoperator is given by Eq.~3.2!, and we have used
the relation

]S

]CI
5HI . ~3.24!
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Equation~3.23! means that]c/]CIÞHIc in general. Com-
bining Eq.~3.23! with the variational principle given by Eq
~2.1!, we obtain the variational working equation for the E
CND method as

GI~$CI%!5^cu~H2E!FHI1
1

2
~HIS1SHI !

1
1

3!
~HIS

21SHIS1S2HI !1¯G uc0&50,

~3.25!

for all I. Note that this equation is highly nonlinear for th
variable$CI%. Multiplying CI in Eq. ~3.25! and summing up
for I, we obtain

^cu~H2E!Suc&50. ~3.26!

A simple sum of Eq.~3.25! for all I gives

^cu~H2E!FH1
1

2
~HS1SH!

1
1

3!
~HS21SHS1S2H !1¯G uc0&50. ~3.27!

Next, we apply the H-nijou method to the ECCND wa
function. The H-nijou method is defined by Eqs.~2.7! or
~2.8!. Inserting the ECCND wave function into Eq.~2.7!, we
have the working equation of the H-nijou method as

FI~$CI%!5^cu~H2E!HI uc&

5^cu~H2E!@HI1HIS1 1
2 HIS

21¯#uc0&50,

~3.28!

for all I, whereE is defined by Eq.~2.2!. Equation~3.28! is
again nonlinear for the variable$CI%.

We see that Eq.~3.25! of the variational method and Eq
~3.28! of the H-nijou method are different. But, since th
exact wave function should satisfy both variational a
H-nijou equations, it must also satisfy the equation

D I~$CI%!5^cu~H2E!F1

2
~HIS2SHI !1

1

3!
~2HIS

2

2SHIS2S2HI !1¯G uc0&50, ~3.29!

which is derived by subtracting Eq.~3.25! from Eq. ~3.28!.
This equation can also be written as

D I~$CI%!5^cu~H2E!H 1

2
@HI ,S#1

1

3!
~2@HI ,S#S

1S@HI ,S# !1¯J uc0&50, ~3.30!

and a simple sum of this equation for allI gives

D~$CI%!5^cu~H2E!H 1

2
@H,S#1

1

3!
~2@H,S#S

1S@H,S# !1¯J uc0&50. ~3.31!
Downloaded 31 May 2007 to 130.54.110.22. Redistribution subject to AI
Conversely, whenD I($CI%)50 together withGI($CI%)50
or FI($CI%)50 for all I, the variational equation~3.25! be-
comes equal to the H-nijou equation~3.28! for all I, and
therefore, thisc must be exact from the theorem given
Paper II.

D I($CI%)50, Eq. ~3.30!, is a highly nonlinear equation
for the variables$CI%, likewise the variational equation
~3.25! and the H-nijou equation~3.28!, and may be satisfied
in two ways. Case A is when allHI and S commute,
@HI ,S#50. Equation~3.31! is satisfied ifH andScommute,
@H,S#50. For Eq.~2.4! being held, only@H,S#50 suffices.
However, we feel that the commutation relation@H,S#50 is
a rather too strong condition in the case ofND>2. A milder
condition is case B, in which Eq.~3.30! is satisfied as it is as
an integral relation, even though the above commutation
lation does not hold.

It is true that the relation@H,S#50 holds if all CI5C:
then, this ECCND reduces to the SECC and therefore
variational solution should be exact. IfHI is truly a part ofH,
not like dIH with dI being a proportionality constant, the
HI never commutes withH, and therefore@H,S#50 holds
only when allCI5C. Thus, the solution in case A is ident
cal with that of SECC. On the other hand, case B may
satisfied even ifH andSdo not commute, and therefore eve
if all CI are not equal. Since thec at case B satisfiesD I

50 together withGI50 or FI50, this c must be exact.
When case A and case B occur simultaneously at differ
sets of$CI%, giving the same energy, the solution of ECCN
is not unique. SinceD I50 is a nonlinear equation for$CI%,
this is possible. Note, however, that since the exact w
function is unique, the solutions corresponding to case A
B must be identical except for a normalization factor.

Since case A is identical to SECC, it is realized on
when all terms in the expansion of Eq.~3.3b! are included: it
must be strictly exp(S) as the argument of Kosloff and
Tal-Ezar8 given below Eq.~3.21! implies. A merit of case B
over case A is that case B can be realized within sho
terms of expansion of the exponential operator, the contri
tion of the latter’s rest of terms being smaller than a giv
threshold of accuracy: this is realized since ECCND ha
larger number of variables than SECC, which has only o
variable. For example, let us image CCGSD. There, the v
ables associated with theXt type operators can becom
smaller than those of theAt-type ones as a result of th
variational principle.~Within GSD operators,At type opera-
tors are ordinary excitation operators that appear in CC
while theXt type operators are the rest of the GSD operat
including de-excitation operators, etc.1! This is natural since
we know that CCSD is already a good approximation of
exact wave function. However, in the SECC only one va
able exists, so that such a fine tuning is impossible an
large number of terms, i.e., true exponential operator, is n
essary to represent the exact wave function.

In an approximate method of ECCND in which we te
minate the expansion of the exponential operator at so
order, case B would be realized within some accuracy
give a lower solution than case A. When we have a lar
number of variables in ECCND, the convergence rate wo
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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be faster. This would be especially so when we perfo
CCGSD, a special case of ECC given in Paper I.9 We will
see in Sec. V that in a simple example of application,
ECCND gives much faster convergence than SECC bec
of the realization of case B. In SECC, only case A exists

Now, it would be interesting if we can introduce th
exponential ansatz including only commutable operato
Such formulation is certainly possible if we introduce
normal-ordered exponential ansatz10,11

c5$exp~T!%c0 , ~3.32!

where the brace$ % means that we include only the norma
ordered products in the expansion of the exponential op
tor. T is the GSD operator given by Eq.~3.6!. This expansion
does not include the noncommuting operators by its defi
tion. This formulation has been considered first by Lindgr
to circumvent noncommuting problems in the formulation
open-shell coupled cluster theory.10 Mukherjee also gave
some interesting formulations.11 When we apply the varia
tional principle to thec given by Eq.~3.32!, we obtain

^cu~H2E!$ar
1ap exp~T!%uc0&50, ~3.33!

and

^cu~H2E!$ar
1as

1aqap exp~T!%uc0&50, ~3.34!

but these equations are different from Eqs.~2.1! and~2.2! of
Paper I. Therefore, the normal-ordered exponential an
given by Eq.~3.32! is not guaranteed to represent the stru
ture of the exact wave function.

Finally, it may be useful to give the formulas for th
nonvariational solution of the ECCND. They are given by

^c0uH2Euc&50, ~3.35!

and

^c0uHI* ~H2E!uc&50 ~ I 51,...,ND!. ~3.36!

When c0 is Hartree–Fock,HIc0 includes only up to two
particle excitations, so that the calculations of Eq.~3.36! is
easier than that of Eq.~3.25!. Note that whenHI includes
only Xt-type operators, most of their coefficientsCI may
vanish identically as a result of Tables III and IV of Paper
In contrast to the variational method, this method of solut
does not guarantee the solution to be exact. This nonva
tional formulation is also valid to the SECC withND51.

The formulations given here is based on theS operator
given by Eq.~3.2!. Those based on theS operator given by
Eq. ~3.4! are easy, therefore, we do not give them for t
sake of brevity. The arguments about the ECCND are v
also for this case.

IV. SOLVING ECC

A. Solving SECC

We now formulate the basic equations for solving t
ECC. Again, we describe the case of SECC first and then
case of ECCND withND>2. The main difference lies in the
commutation relation.
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The working equation for the SECC given by E
~3.14a! or ~3.17a! is written as

g~C!5^cu~H2E!Huc&50, ~4.1!

or

f ~C!5^cu~H2E!2uc&50, ~4.2!

with E defined by Eq.~2.2!. Equations~4.1! and ~4.2! are
equivalent when the energyE is defined by Eq.~2.2!. C in
Eqs.~4.1! and~4.2! stands for eitherC or c in Eq. ~3.14a! or
~3.17a!, respectively. For SECC, the variational and H-nijo
equations are the same. If we define

l5~H2E!exp~CH!c0 , ~4.3!

or

l5~H2E!exp@c~H2E!#c0 , ~4.4!

then Eq.~4.2! is written as

f ~C!5^lul&50. ~4.5!

Note that alwaysf (C)>0 and the solution is at the extrem
f (C)50. It is very useful if we can calculate the integr
f (C) directly from Eq.~3.14a! or ~3.17a! without expanding
the exponential operator as in Eq.~3.14b! or ~3.17b!.

Another method of calculating the SECC may be p
formed asymptotically by increasing term by term along t
expansion of the exponential operator as in Eq.~3.14b! or
~3.17b!. We truncate the expansion of the exponential ope
tor at the term (1/n!)CnHn or (1/n!)cn(H2En)n: such trun-
cated wave function is denoted ascn

cn5S 11CH1
1

2
C2H21

1

3!
C3H31¯1

1

n!
CnHnDc0 ,

~4.6!

or

cn5F11c~H2En!1
1

2
c2~H2En!21

1

3!
c3~H2En!31¯

1
1

n!
cn~H2En!nGc0 , ~4.7!

whereEn is defined by

^cnuH2Enucn&50. ~4.8!

The optimal value of the variableC or c is calculated for the
truncatedcn and the energy and other properties are cal
lated. Then, we increasen, repeat the calculation, and chec
the convergence. Though the expansion should always
verge, the convergence rate would be dependent on the q
ity of the reference function.

The optimum value ofC or c is calculated by the fol-
lowing methods. We definef n(C) from the truncated wave
functions given by Eq.~4.6! or ~4.7! as

f n~C!5^cnu~H2En!2ucn&, ~4.9!

and impose the condition
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Min@ f n~C!#, or
d

dC
f n~C!50. ~4.10!

For the truncatedcn , f n(C) is positive nonzero. By adding
term by term, the functionf n(C) approaches zero from
above and when it becomes zero, i.e., at the convergence
correspondingcn is exact. This method is called th
f (C)-minimization method and is different from the vari
tional method described below.

We also calculate the truncated wave functionscn by
applying the variational principle. Differentiatingcn by the
variableC or c, we obtain

dcn

dC
5Hcn21 , ~4.11!

or

dcn

dc
5~H2En!cn21 , ~4.12!

for the truncated SECC given by Eq.~4.6! or ~4.7!, respec-
tively. Inserting these expressions into the variational pr
ciple given by Eq.~2.1!, we obtain

^cnu~H2En!Hucn21&50, ~4.13!

or

^cnu~H2En!2ucn21&50, ~4.14!

for the truncated SECC.En is defined by Eq.~4.8!. The
optimal value ofC or c is calculated from Eq.~4.13! or
~4.14!.

Equations~4.9! and ~4.14! show the difference betwee
the f (C)-minimization method and the variational metho
but we note that they become close asn increases and finally
become identical. Before then, the energy calculated by
variational method is lower than that obtained by t
f (C)-minimization method.

The SECC has some similarity to the solution of t
time-dependent Schro¨dinger equation on the imaginary tim
axis. Therefore, the method developed for solving the tim
dependent Schro¨dinger equation7,8 might also be useful for
the SECC.

B. Solving ECCND

For ECCND with ND>2, the variational equation an
the H-nijou equation are different. The method of soluti
for the exact case is presented in the previous section.
consider here the method of solution for the ECCND tru
cated at ordern

cn5S 11S1
1

2
S21

1

3!
S31¯1

1

n!
SnDc0 . ~4.15!

Since thiscn is an approximation to the ECCND, the vari
tional and the H-nijou methods give different solutions
general, but the difference should be small for goodcn .

The variational working equation is written as
Downloaded 31 May 2007 to 130.54.110.22. Redistribution subject to AI
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Gn
I ~$CI%!5^cnu~H2En!FHI1

1

2
~HIS1SHI !

1
1

3!
~HIS

21SHI S1S2HI !1¯

1
1

n! (
m51

n

Sm21HIS
n2mG uc0&50, ~4.16!

with En defined by

^cnuH2Enucn&50. ~4.17!

The energyEn becomes minimum for the solution of th
ground state.

The working equation for the H-nijou method is give
by

Fn
I ~$CI%!5^cnu~H2En!HI ucn&

5^cnu~H2En!S HI1HIS1
1

2
HIS

21¯

1
1

n!
HIS

nD uc0&50, ~4.18!

whereEn is defined by Eq.~4.17!.
The difference between the variational and H-nij

equations is given byDn

Dn
I ~$CI%!5^cnu~H2En!H 1

2
~HIS2SHI !1

1

3!
~2HIS

2

2SHIS2S2HI !1¯1
1

n! F ~n21!HIS
n21

2 (
m52

n

Sm21HIS
n2mG J uc0&

5^cnu~H2En!H 1

2
@HI ,S#1

1

3!
~2@HI ,S#S

1S@HI ,S# !1¯1
1

n! (
m51

n21

~n2m!Sm21

3@HI ,S#Sn2m21J uc0&. ~4.19!

Sincecn is approximate,Dn
I is not necessarily zero, but i

should be small for goodcn : It gives a measure how good i
the quality of the calculatedcn . The smallness ofDn

I would
be due to case B of the previous section: TheSandHI would
not commute and allCI would not be equal. WhenDn

I 50,
the difference betweenFn

I andGn
I becomes

Fn
I 2Gn

I 5^cnu
1

n!
HIS

nuc0&. ~4.20!

The energy calculated by the variational method is alw
lower than that calculated by the H-nijou method.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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V. PERFORMANCE OF SECC AND ECC2
FOR HARMONIC OSCILLATOR

We examine here the performance of the SECC by
plying it to a simple example, one-dimensional harmonic
cillator.

The harmonic oscillator with the force constantk and the
reduced massm is defined by the Schro¨dinger equation

S 2
h2

8p2m

d2

dy2 1
1

2
ky2Dc5Ec. ~5.1!

Replacing the constants by

b45
h2

4p2km
, «5

8p2b2mE

h2 , ~5.2!

and the variable by

y5bx, ~5.3!

the Hamiltonian is written as

H52
d2

dx2 1x2, ~5.4!

and the Schro¨dinger equation~5.1! is rewritten as

S 2
d2

dx2 1x2Dc5«c. ~5.5!

The two lowest solutions of this equation are

cg5p21/4exp~2 1
2 x2!, «g51, ~5.6!

and

ce5&p21/4x exp~2 1
2 x2!, «e53. ~5.7!

We take

c05exp~2ax2!, ~5.8!

with a50.55 and 0.60 as our reference functions.a50.5 is
exact solution. The energy expectation value of the refere
function c0 is

«05~114a2!/4a, ~5.9!
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which has the minimum value 1.0 ata50.5, a consequenc
of the variational principle.

A. SECC

We now apply SECC first to the ground state. We use
SECC given by Eq.~3.14!. A single variableC is included in
the S operator as

S5CS 2
d2

dx2 1x2D . ~5.10!

We have applied the variational method and t
f (C)-minimization method to the truncatedcn for n
51 – 30. The calculations have been performed usingMAPLE

612 and the results are given in Tables I and II. The absol
value ofC, Copt of cn increases, as expected, as the num
of terms,n increases, and the corresponding energyEopt ap-
proaches the exact value 1.0. The magnitude ofCopt is, how-
ever, far from the negative infinity. Initially for smalln, the
results oscillate to some extent, but become monotonic
n.6. The convergence rate is faster fora50.55 than for

TABLE I. Ground state of the harmonic oscillator by the variational meth
for the truncated SECC.

n

a50.55 a50.60

Copt Eopt Copt Eopt

0 ¯ 1.004 545 ¯ 1.016 667
1 20.1989 1.000 015 20.1961 1.000 203
2 20.1790 1.001 664 20.1760 1.006 160
3 20.3091 1.000 077 20.2887 1.000 840
4 20.2941 1.000 639 20.2781 1.002 515
5 20.3808 1.000 175 20.3344 1.001 197
6 20.3810 1.000 288 20.3427 1.001 334
7 20.4232 1.000 173 20.3681 1.001 007
8 20.4378 1.000 167 20.3817 1.000 920
9 20.4607 1.000 133 20.3965 1.000 801

10 20.4763 1.000 118 20.4082 1.000 726
15 20.5383 1.000 069 20.4513 1.000 497
20 20.5771 1.000 050 20.4779 1.000 394
30 20.6237 1.000 033 20.5093 1.000 300
.
TABLE II. Ground state of the harmonic oscillator by thef (C)-minimization method for the truncated SECC

n

a50.55 a50.60

Copt Eopt f (C) Copt Eopt f (C)

0 ¯ 1.004 545 ¯ ¯ 1.016 667 ¯

1 20.1981 1.000 016 1.331024 20.1931 1.000 209 1.731023

2 20.1969 1.001 691 7.831023 20.1896 1.006 221 2.831022

3 20.3021 1.000 081 5.131024 20.2737 1.000 921 5.031023

4 20.3007 1.000 641 2.531023 20.2749 1.002 517 1.031022

5 20.3638 1.000 188 7.931024 20.3155 1.001 270 5.231023

6 20.3736 1.000 290 1.031023 20.3281 1.001 370 5.231023

7 20.4062 1.000 180 6.331024 20.3490 1.001 062 3.931023

8 20.4228 1.000 172 5.731024 20.3627 1.000 968 3.531023

9 20.4427 1.000 139 4.531024 20.3764 1.000 851 2.931023

10 20.4580 1.000 124 3.831024 20.3878 1.000 774 2.631023

15 20.5178 1.000 074 2.031024 20.4305 1.000 539 1.631023

20 20.5566 1.000 054 1.331024 20.4579 1.000 429 1.231023

30 20.6046 1.000 036 8.031025 20.4915 1.000 326 8.431024
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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a50.60, because the quality of the reference function is b
ter for a50.55. The variational results given in Table I an
the f (C)-minimization results given in Table II show simila
behaviors. The energy of the former is always lower than t
of the latter, but the difference becomes smaller asn in-
creases. The value off (C), which must be positive, gradu
ally approaches zero from above. The convergence rat
slow in both methods: we do not yet reach the converge
especially fora50.60. But, we can conclude that the SEC
converges to the exact value for both the results given
Tables I and II.

The SECC has also been applied to the first excited s
of the harmonic oscillator for which the exact solution
given by Eq.~5.7!. Similarly to the ground state, we use th
SECC given by Eq.~3.14! and we take the reference functio

c05x exp~2ax2!, ~5.11!

with a50.55 and 0.60. This reference function is ungera
for the inversion symmetry as the exact wave function:
first excited state is the ground state of the ungerade sym
try. The energy of the reference function is

«153~114a2!/4a, ~5.12!

which has a minimum again ata50.5. We have applied the
variational method to the truncatedcn of the SECC using

TABLE III. First excited state of the harmonic oscillator by the variation
method for the truncated SECC.

n

a50.55 a50.60

Copt Eopt Copt Eopt

0 ¯ 3.013 636 ¯ 3.05
1 20.1419 3.000 077 20.1396 3.001 000
2 20.1130 3.007 207 20.1115 3.026 552
3 20.2230 3.000 288 20.2121 3.003 280
4 20.1983 3.003 646 20.1925 3.013 703
5 20.2885 3.000 703 20.2584 3.005 412
6 20.2754 3.001 915 20.2573 3.007 716
7 20.3321 3.000 904 20.2914 3.005 168
8 20.3365 3.001 109 20.3020 3.005 098
9 20.3676 3.000 783 20.3209 3.004 223

10 20.3808 3.000 742 20.3333 3.003 860
15 20.4528 3.000 402 20.3854 3.002 481
20 20.4998 3.000 272 20.4193 3.001 865
30 20.5594 3.000 166 20.4615 3.001 307
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MAPLE 6 and the results are shown in Table III. The conv
gence behavior of the excited state is similar to that of
ground state. It initially oscillates but becomes monotonic
n.8. The value ofCopt increases asn increases andEopt

approaches the exact value 3.0, though the convergence
is slow.

In Tables I to III, the result forc1 is remarkably good. It
is essentially the result of the first iteration of the SI
method.2 Since every step is variational in the ICI metho
and since the variable is reoptimized in each iteration s
the convergence of the SICI is expected to be faster than
of the SECC, if the SECC is solved in the expansion meth
as given here.

B. ECC2

We next apply ECC2 to the ground state of the harmo
oscillator. Two variablesCK and CP are associated to th
kinetic and potential operators as

S52CK

d2

dx2 1CPx2. ~5.13!

Note thatS andH do not commute as far asCK is not equal
to CP . The variational method and the H-nijou method a
different in ECC2.

We first apply the variational method. We calculate t
ECC2 wave function truncated atn52 and 3 and summarize
the results in Table IV.CK andCP in Table IV are accurate
only to five decimal figures. The result forn51 is rather
special. Atn51, the ECC2 is identical with the first iteratio
of ICI2, and in this example of harmonic oscillator, the fir
iteration of ICI2 is also just identical with the first iteratio
of SICI or ICI1 becausec0 , 2(d2/dx2)c0 , and x2c0 are
not linearly independent. Thus, the ECC2 result atn51 is
identical with the SECC result atn51 given in Table I.

From Table IV, we are surprised at the good conv
gence of the ECC2 wave function. Even atn52, the energy
converges very nicely to 1.0, and atn53, the results are
already very accurate. This is in sharp contrast to the re
of SECC given in Table I, where the convergence is ve
slow and the energy is still considerably different from 1
even atn530 for a50.60. The optimalCK andCP of ECC2
are not equal but differ even in sign. Therefore, this EC
solution is different from the SECC solution. Further, t
27
TABLE IV. Truncated ECC2 for harmonic oscillator calculated by the variational method. Atn51, CK5CP

520.1989 andE151.000 015 fora50.55, andCK5CP520.1961 andE151.000 203 fora50.60.

n52 n53

a50.55 a50.60 a50.55 a50.60

Optimal CK 20.020 10 20.036 41 20.020 10 20.036 62
CP 10.027 92 10.056 50 10.027 85 10.055 80

En 1.000 000 044 0 1.000 002 106 4 1.000 000 000 21 1.000 000 031
Gn

I I 5K 0.227 031025 21.160 531025 1.229 831025 1.251 731025

I 5P 0.264 731025 0.395 931025 21.116 631025 1.038 131025

Dn
I I 5K 0.042 731025 20.229 031025 20.064 831025 0.125 331025

I 5P 0.030 731025 20.147 531025 20.059 431025 0.209 431025

]En /]CI I 5K 20.267 231025 1.417 931025 1.447 431025 1.530 631025

I 5P 0.311 531025 0.483 731025 21.314 231025 1.269 431025
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Downloaded 31 Ma
TABLE V. Truncated ECC2 for harmonic oscillator calculated by the H-nijou method. Atn51, CK5CP

520.1989 andE151.000 015 fora50.55, andCK5CP520.1961 andE151.000 203 fora50.60.

n52 n53

a50.55 a50.60 a50.55 a50.60

Optimal CK 20.020 10 20.036 41 20.020 10 20.036 62
CP 10.027 92 10.056 53 10.027 85 10.055 80

En 1.000 000 044 0 1.000 002 108 1 1.000 000 000 21 1.000 000 031
Fn

I I 5K 0.262 431025 3.959 131025 1.166 931025 20.866 131025

I 5P 20.173 831025 0.204 631025 21.166 531025 0.932 831025

nth-order I 5K 0.446 831025 1.420 331024 0.202 031027 0.260 231025

terma I 5P 20.469 231025 20.885 231024 20.310 031027 20.187 631025

aThis is the term defined by Eq.~4.20!.
g
o
ts

,
r o
he

ed

lly
u
-

be
rg
a
e

ch
m
e
he
th

-
re
lle

n
e
ali
s

he
i
e

sa
s

ex-
t
or
il-

he
lso

ijou
C-

the
ish

r I

n-
the
hat

er I
e
d.
ity
a

CC
-
his
e of

ted
e

om
nd
ther

les
on-
od

-
er-
SD
don
us-

ND
values ofDn
K and Dn

P are remarkably very small, showin
that the variational solution is very close to the H-nijou s
lution. This is confirmed from Table V, in which the resul
of the H-nijou method are summarized. This smallness ofDn

l

is attained thoughS andH do not commute. This is case B
explained in the previous section. The optimal characte
the ECC2 results shown in Table IV is confirmed from t
smallness of the values ofGn

I (I 5K,P) and]En /]CI at the
optimal values ofCK andCP .

Table V shows the result of the H-nijou method appli
to n52 and 3 of ECC2. The optimal values ofCK andCP

are very close to those of the variational method. Actua
the H-nijou results are the same as the variational res
except for the case ofa50.60 andn52, where the second
order term in the H-nijou integralFn

I , which is the difference
betweenFn

I andGn
I as seen from Eq.~4.20!, is the little bit

large so that the variational result and the H-nijou result
come different. Note that this difference is not due to a la
Dn

I value. It is also small even in this case. The optim
character ofCK and CP is seen from the smallness of th
valueFn

I .
The results of ECC2 given in this section very mu

encourage the ECCND approach for more realistic syste
The key is a smallness of theDn

I values that guarantees th
high quality of the calculated results. This high quality of t
calculated results is certainly due to the exactness of
structure of the ECCND wave function.

VI. CONCLUSION

In this series of papers,1,2 we have investigated the struc
ture of the exact wave function and obtained several exp
sions of the exact wave function that includes much sma
number of variables thanM full-CI given by Eq. ~1.3!. The
number of variables is from unity toMGSD, for example,
depending on the method of division of the Hamiltonia
Since the exact wave function is unique, these different
pressions represent the different aspects of a single re
the exact wave function. These expressions give the base
the further studies of the exact wave function from both t
oretical and numerical aspects. They will also give a hint
the study of the different frameworks of the quantum m
chanics, like DFT and DMT~density matrix theory!.13

In this paper, we have examined the exponential an
in the light of the general theorem given in Paper II. A
y 2007 to 130.54.110.22. Redistribution subject to AI
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motivated in Paper I, we could prove that the simplest
tended coupled cluster~SECC! has the structure of the exac
wave function: it becomes exact when solved variationally
by the H-nijou method. This fact sheds light on the possib
ity of the ECCND wave function in general. Since even t
simplest ECC is exact, the more general ECCND should a
be exact. Then, both the variational equation and the H-n
equation give the exact wave function when applied to E
CND. For the exact solution, the difference between
variational equation and the H-nijou equation should van
and is satisfied as an integral relation given by Eq.~3.29!.
Thus, the noncommuting problem pointed out in Pape
disappears.9 Further, ECCND (ND>2) may give a more rap-
idly converging solution than SECC. Because of its no
linear character, ECCND may give the exact solution at
sets of variables different from SECC. We thus conclude t
the ECCND is exact for allND . ECCND gives an explicit
expression of the wave operatorW defined by Eq.~1.5!. As a
special case, CCGSD is also exact: a statement in Pap
must be corrected.9 The ECCND and CCGSD must b
solved by the variational method or by the H-nijou metho
Nooijen4 considered solving the CCGSD using the dens
equation,5 which belongs to the H-nijou method: this is
clever idea to give the exact solution.

We have summarized the method of solving the SE
and ECCND for thenth-order truncated form. The varia
tional equation and the H-nijou equation are different in t
case, but the difference should be small: it gives a measur
the quality of the calculated result.

The SECC and the ECCND are applied in their trunca
form to the simple example of harmonic oscillator. Th
SECC certainly gave the exact wave function starting fr
approximate reference functions for both the ground- a
first-excited states, though the convergence rates were ra
slow. On the other hand, ECC2, having different variab
for kinetic and potential operators, gave quite a rapid c
vergence. The variational method and the H-nijou meth
gave essentially the same results:Dn

I 50 were essentially sat
isfied. This good performance of the ECCND method c
tainly reflects its exact structure as a wave function. CCG
is also important as a special case of ECCND. Head-Gor
and his co-workers recently studied variational coupled cl
ter in some detail and reported several nice results.14 Based
on the present result, we believe that the study of ECC
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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would certainly open up a new wave in the study of the ex
wave function.
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