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In a previous paper of this serifBaper Ill: Nakatsuji, J. Chem. Phys. 105, 248801 ], the author
showed a high potentiality of the extended coupled clugEC) method to calculate the exact
wave function of the ground state. In this paper, we propose ECC-configuration interg€tjon
method, which is an accurate useful method to calculate the excited states from the ECC wave
function of the ground state. In contrast to the ECC method, the standard ECC-CI method is
approximate, but we can make it exact by generalizing its excitation op€EE@-CIl general The

ECC-CI method is applicable not only to the excited states having the same spin-space symmetry as
the ground state, but also to those having different spin-space symmetries and to the ionized and
electron-attached states. The theoretical framework of the ECC-CI method is similar to that of the
symmetry-adapted-clustéEAC)-Cl method proposed in 1978 by the present author. Next in this
paper, we examine the performance of the methods proposed in this series of papers for a simple
one-dimensional harmonic oscillator. The iterative configuration intera@i@in and ECC methods

are examined for the ground state and the ICI-Cl and ECC-CI methods for the excited states. The
ICI method converges well to the exact ground state and the excited states are calculated nicely by
the ICI-CI method in both the standard and general active spaces. In contrast to the SiBRIESt
examined in Paper lll, the ECC2 method shows quite a rapid convergence to the exact ground state,
which enables us to calculate the true exact wave function in the ECC form. The ECC-CI methods
in both the standard and general active spaces also work well to calculate the excited states. Thus,
we conclude that the IClI and ECC approaches have a potentiality to provide useful method to
calculate accurate wave functions of the ground and excited states. A merit of ECC is that it provides
the exact wave function in a simple explicit form. 2002 American Institute of Physics.

[DOI: 10.1063/1.1430741

I. INTRODUCTION

N N

Toward precise predictions and gigantic-scale systems H:Z v(|)+§j w(i ),
are the two ways modern quantum chemistry must expand in
this decade. The first aim is essentially realized if we can ) .
solve the Schidinger equation with a realistic cost. The in @ coordinate representation, or
full-Cl method, only one general method of solving the
Schralinger equation within a given basis set, is however
very time consuming and highly demanding computationally ~ H=2, vha’a,+ > wina' alaza,, 1.3
and therefore cannot be applied to chemically interesting or pars
systems. Since the Hamiltonian operator has a very simple
structure, involving only one and two particle operators, itsin a second-quantized form. In E¢L.3) the indicesp,q,r,s
eigenfunctions must also have some simple structure, reflectun over allm reference orbital¢both occupied and unoccu-
ing the simplicity of the Hamiltonian. Though modern algo- pied. The number of terms in Eq1.3) is
rithms of the full-Cl method? utilize this fact in the evalu-
ation of the matrix elements, it does not presume such a
simplicity in the structure of the wave function. M ggp=m2+

The Schrdinger equation is given by

(H-E)y=0, (1.9

1.2

m 2
E(m—l)} , 1.9

S . where we did not assume the Hermiticity of the operators
where the Hamiltonian involves only one- and two-particle ;nqw and GSD stands for general singles and doubles.

operators as We have studied in this series of studiesthe structure

of the exact wave function using the equations that are
dElectronic mail: hiroshi@sbchem.kyoto-u.ac.jp equivalent to the Schdinger equation in a necessary and
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sufficient sense. This equivalence is important, since thesillowing criterion. When we apply the variational principle
equations have the same determinative power as the -Schrtw some candidate functiop, and if the variational equation
dinger equation. The variational principle, actually gives one set of the H-nijou equations, then that
has the structure of the exact wave function. This is realized,

(yIH—E[6y)=0, (.5 for example, when

is well-known to be equivalent to the Schklinger equation.

The energy of the systerk, is defined by S y=H ¢, (116
(¢|H-E|y)=0. (1.5 Of

The variational principle is used to search for the best pos- 6, ¢=(H,—E)) ¢, (1.1

sible wave function within the functional form of the given

s o oo™ P associaied o, nluden, Sice hen e e 1.1
Another useful set of equations that is equivalent to the™” (L12asa re'sult of the varla'qopal equatlt'th). In other
Schralinger equation is H-square or H-nijotinijou” is Word_s, when this holds, the variational best is the exact wave
Japanese meaning squaeguations. The equation function: th_atw has a freedom to be able to _b_ecome the exact
' wave function. Note however that the condition given by Eq.
(Y|(H=E)?y)=0, (1.7 (1.16 or (1.17) is a bit too strong: it is enough if we could
obtain Eq.(1.11) or (1.12 from Eg. (1.5), as we argued in
Paper IIl. In other words, Eq1.16) or (1.17) is a sufficient

where §, represents a variation with respect to the variable

and each of the following equations

(Yl(H=E)H|4)=0, (1.8)  condition fory to have an exact structure, but not necessary.
and Theorem 1I-2 of Paperlis a special case of the above theo-
rem.
(y|H?—E?|y)=0, (1.9 This fact further implies that the exact wave function can

together with Eq.(1.6) are equivalent to the Schaimger be described with onl\Ny variables,Np being defined by

equation. Further, based on these equations, we have shol: (1-.10. The equivalence of a set of thép equations
in Paper Il a useful set of equations that is equivalent to thél-1D or (1.12 to the Schrdinger equation means that we
Schrainger equation. We define a division of the Hamil- &0 describe the exact wave function with oNly variables,

tonian operator intdNp, parts by because thg;e equation; have f[he same d_eterminative power
\ as the Schrdinger equation. This actually implies that the
2 exact wave function can be described with the number of
H= ;1 H,. (1.10 variables from unity to, sayyl ggp. The latter corresponds to
) o the division of the Hamiltonian defined by E(.3). These
Then, the wave functiog that satisfies numbers are much smaller than the number of variables in
(Y[(H=E)H |y)=0, (1=1,... Np), (1.1  full-CI, so that this line of research may lead us to a new
) ) o simpler method of solving the Schiimger equation.
and_Eq.(l.G) iIs exact in 'Fhe necessa_ry_and sufficient sense. |, Paper | of this seriedwe have investigated the pos-
Similarly, the wave function that satisfies sibility of the general singles and doublg&SD) description
(Y|(H-E)(H,—E)|¢)=0, (1=1,...Np), (1.12 of t_he exact wave function.pased on_Theorem II-1 of Paper I,
. } - which is also a kind of H-nijou equation, and proposed itera-
is also exact In the necessary and s_uﬁ|C|ent_sens¢. In Egve ci (ICI) method including GSD number of variables. In
(1.12, the partial energy, corresponding tdH, is defined  paner |14 we have presented the H-nijou equations, Egs.
by (1.11) and (1.12, and shown that the number of variables
(y|H,—E||¢)=0, (1.13 necessary to_ s_o!ve the Sétiinge_r quation is defined by the
number of division of the Hamiltonian operator, and there-
fore ranges from unity to the GSD number. Based on this
Np finding, we have extended the concept of the ICI method and
E=> E. (1.14  proposed the ICIND method, which is the ICI includihig,
=1 variables. We have also considered the methods of calculat-
We refer to Eqgs.(1.1) and (1.12 also as H-square or ing the excited states from the ICI theory. The simplest
H-nijou equations. Equatioil.8) is a special case of Eq. (S)ICI method that includes only one variable is similar to
(1.1D for Np=1. Likewise, Eq(1.7) is a special case of Eq. the surplus function approach proposed recently by Huang
(1.12. It is easily seen from Eq1.7) that the H-nijou equa- et al® It is also related to the Lanczos metfiad eigenvalue
tion is validonly to the exact wave function: when we define problems® In Paper 11I° we have examined the exponential
B 2 ansatz and shown that it can also be exact if the operator is
F)=(H-E)l4), (119 defined using the divided Hamiltonian. We have proposed
this quantity is always positive or zero, ah@/) =0 is real- extended coupled clust@ECC) method, and two interesting
ized only whenys is exact. cases were considered: one is thgiBplesjECC that in-
An underlying principle in this series of pap&rsis that  cludes only one variable and the other is the general ECCND
we can find the structure of the exact wave function by thgNp=2). SECC is exact in spite of its simple structure, but is

and satisfies

Downloaded 31 May 2007 to 130.54.110.22. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



J. Chem. Phys., Vol. 116, No. 5, 1 February 2002 Structure of the exact wave function. IV 1813

rather inflexible. ECCND is also able to describe the exact -

wave function rather efficiently through its flexible nonlinear ~ Te= 22 C?a;—ai+.2b Ciaq ap aja, (2.7
structure. Test calculations were given for harmonic oscilla- @ ua

tor, showing different behaviors of the SECC and ECCND

methods: when truncated, the SECC was rather slowly Conv_vhere the indices j run over occupied orbitals are bover
verging, but the ECCND éonverged quite nicely unoccupied orbitals. Since the operafy does not corre-

One purpose of this paper is to formulate a method tospond to a division of the Hamiltonian operator, the conven-

calculate the excited states from the ECCND method. W |ona! CCS[_) dqes not have a freedom of the exact wave
refer to the proposed method as the ECC-CI method, sinc n(.)tI.OI.’L while since thg EC,CGSD operaﬁbcorresponds to
the theoretical framework of the theory is similar to that of& division _Of the Hamiltonian as defined by Bd.3), the .
the SAQsymmetry adapted cluste€l theory®® Though ECC_GSD is cgpable of repre§enténg the exact wave function,
the ECC method is exact, the ECC-CI method is not, but i®> discussed in Paper flINoouenl also p_ropose_d indepen-
can be improved up to the exact limit by expanding the Op_dently that the genergllzed CCSD that is equwalept to the
erator space. Another purpose of this paper is to examine th%bove ECCGSD might be exact. Van Voorhis and

ICl and ECC methods in the calculations of the ground and—|ead-GordoH3 recently confirmed numerically that the

excited states of harmonic oscillator. We examine the con=CCGSD certainly gives the exact wave function for neon

vergence behaviors of both methods and the qualities of thﬁnd No. ) ) )

calculated ground and excited states. The harmonic oscillator It was al§o shown in Paper IIl that the SECC including

is probably the simplest possible system, but the analytica(?nly one variable,

application of the ICI and ECC methods may clarify their

behaviors, some of which would be common to those for ~ ¥=exp(CH)yo, (2.9

more general many-electron systems, which is a goal of the

present theory. is exact in the necessary and sufficient sense: the variational
determination of the variabl€ gives the H-nijou equation,

1. ECC Eq. (1.8). As shown by Kozloff and Tal-EzéY, this SECC

becomes exact with a large negative valnegative infinitg

€6f C. Therefore, a truncation of the expansion of the expo-

nential operator at some order is not a good approximation: it

is desirable to treat it in the exponential form, not in its

We summarize here briefly the extended coupled clust
(ECO) theory? We first define the division of the Hamil-
tonian intoNp parts

Np approximate finite-order truncated form. This implies that the
H=> H,, (2.))  convergence of the SECC may not be fast, though actually
=1 its rate is dependent on the quality of the reference function
and correspondingly, we define the variable operator, o- A simple example was given in Paper lll. The SECC is
Np also related to thé expansion of Horn and Weinstéfhand
S= E CH,, (2.2) conngcted-moments e>_<pansion of Cioslovx}é_’ki.
=1 Since even the simplest ECCSECQ is exact, the

ECCND should also be exact: it includes SECC as a special
case. Therefore, we impose variational and H-nijou equa-
tions to the ECCND and obtain,

which includesNp variables{C,}. Using this variable opera-
tor, we define the coupled cluster expansion by

=exp(S) ¢o (2.39

1 1,
Hi+ 5 (HiS+SH)+ 3 (H,S

=[1+S+ %s2+%s3+ | o, 23p G'ACH=(4(H-E)
where ¢, is some reference function, which may be
Hartree—Fockl0), or some other function. Since this is a
small extension of the coupled cluster thethy*3we called
it extended coupled clustédECC) theory** since this ECC  gpq
involves N variables, we refer to the ECC given by Eq.
(2.3) as ECCND method.

When we divide the Hamiltonian into all singles and
doubles parts as given by E(..3), we have ECCGSD,

Yecceso= eXP(T) ¥o, (2.9

+SHS+S?H))+ - - ||$ho)=0, (2.9

FlCH=(l(H-B)H |4

=(4l(H=E)|H;+HS

|40)=0, (2.10

1
ng C[)ar*ap+pqzrs Claalaga,. (2.5 +5H S

On the other hand, the conventional coupled cluster within . i .
singles and double&CCSD is written as respectively, for alll(1<I=<Np) The exact wave function

should satisfy both of them. Subtracting Eg.9) from Eq.
Yecso=exp(Te) o, (2.6)  (2.10, we obtain
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1 1 Np
A'({Cu})=<¢I(H—E)[E(H|S—SH.)+§(2H|SZ—SH.S R=K§=‘,O dxHg, (3.53

then this operator is a generator of the excited state from the
ground state as

Ye=Riy. (3.6)

Note a similarity of theR operator defined by Ed3.53 to
the S operator defined by Eq2.2). For convenience, we
[h0)=0 (2.11) denote the set of operatofsik} included in Eq.(3.59 as

Rs,
for all I. If all H; and S commute,[H,,S]=0, Eq.(2.1) _ _
holds and Eq(2.9) reduces to Eq2.10), but in general, such Rs={1, H}={Rs}, 3.7
commutation relation can not be assumed. If two of the threavhere the subscrip§ implies “standard,” in contrast to
equations, Eqg2.9—(2.11), hold, thisy satisfies both varia- “general” introduced in the next section. With the use of Eq.
tional and H-nijou equations, and therefore, it is exact. Sincé3.7), the excitation operatdR is written as

~SPH) +---{|vo)

1 1
=<l//|(H—E)|§[H| Sl 37(2[H,,8]S

+9H,,S))+---

Egs. (2.9—(2.1) are all non-linear for the variablgC,}, Np
they can be satisfied not only in the SECC case, whei@,all R= E deRs. (3.5h
are equalCase A, but also in a more general case wh€e $=0

takes different optimal valueCase B.> We have shown in .We refer to this method of calculating the excited states as

Paper lll that a quick convergence of the ECC expansion i$h . . . . :
. . g . e ECC-CI method, since E3.4) is Cl-like. This namin
realized in Case B. This is natural since the standard CCS[?$ also due to the similarityqif )the present theory togthe

an approximation of ECCGSD as explained above, is alreadéAC (symmetry adapted cluste€l theory for excited

a good approximation of the exact wave function for manyg 10810 The SAC theor§® is a kind of coupled cluster
molecular systems. '

1,13 . .
The ECC method describes the ground state of eac heory***far the ground state, like ECC is for the ground

) . ) tate, and the SAC-CI theory is for the excited state and was
symmetry. Since th&operator is totally symmetric, the ECC formulated similarly to Eqs.(3.4—(3.6) using the SAC

ehxponentlal opefra;[]or is ;’;\Islo to;ally symmﬁtrlc,far;]d thefrefore round state,bgAC instead of the ECC ground stafe,. The
the symmetry of the calculated state Is that of the referencg ) pr coupled cluster linear response thedty?*and the
function ¢. In the next section, we consider how to calcu- £ 5\~ (equation-of-motion coupled clustetheor?*~2®
late the excited states from the ECC theory of the groun eveloped later are equivalent to the SAC-CI thédry.

state. The formulation for the ECCGSD case is interesting,
where the division of the Hamiltonian is defined by Ef.3).
Ill. ECC-CI In this case, we start from the H-nijou equations,

We now formulate the theory for the excited states from  (ig|(H—E)a, a,|#4)=0,
the ECC theory of the ground state. Though the ECC theory .
for the ground state is exact, the theory presented in this (gl (H=E)a; agaqap| i) =0,
section for the excited state is not exact. We start from thgyhich were given in Paper | as Theorem II-1. Note, in these
H-nijou equation for the ground state, equations, we have omitted the constant integral factdys,
(gl (H=E)Hy|hg)=0 (K=1,... Np), 3.1  andwp of Eq. (1.3. Now, we define the excited functions

) {®«} of the ECCGSD-CI method by
where the subscrigg on ¢, denotes the ground state. Now,

(3.9

we define thgexcited functions®y by Dy =2, ayg,

Dy =Hy g, (3.2 D g rs=2a; ag agapy, (3.9
then this set of functionfby}, (K=1, ... Np) satisfies the  and approximate our excited state by a linear combination of
Brillouin-orthogonality with the exact ground staig, these functions as,

(Ygl(H—E)|®k)=0, 3.3

— — + + + + 4t
as easily seen from Eq3.1). This relation implies that the Ye=Rig={do ; dp.rar 3 p%s Gparsar 8s 3qdp | g,
functions{®} are good basis for the excited statesygf, (3.10

S0 '_[hat we approxmate our ?Xc'ted states by a linear COmb\/'vhere the ground state is included to ensure the orthogonal-
hation of these excited functions as ity of , to ¢4. This is ECCGSD-CI, and this expression
Np Np would be familiar since it is similar to the standard singles
Y= >, qu)K:( > dKHK) by, (3.4  and doubles SAC-CI.
K=0 K=0 Now, we come back again to the ECCND-CI case. The
where we have includegy (=®,, Hp=1) to ensure the expansion coefficientdy are determined variationally by the
orthogonality ofi to ¢ . If we introduce the operatd® by  secular equation,
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(P|H-E|ge)=0 (K=0,1,...Np), (3.113  ever, like in the SAC-CI method, we can extend the ECC-CI
method so that it also gives the excited states of different

which is equivalent to spin-space symmetries, ionized states, and electron-attached

Np states. Since the operators of the ECC-CIGSD are composed
2 (k|(H-E)|®)d =0 (K=0,1,...Np). of a set of the products of the creation and annihilation op-
L0 (3.110 eratorsa,” and a, where the suffices and p denote spin-

_ _ _ _ _ space orbitals, it is easy to introduce similar set of substitu-
The solutions of this secular equation satisfy orthogonalittion operators that belong to different spin-space symmetry.
and Hamiltonian-orthogonality to the ground-stgigand to  Examples are seen from the SAC-CI operators given in Refs.

each other, namely, 9 and 10. Denoting such set of operators again 7y
_ _ ={Rg}, and using Eq¥3.5b and(3.6), we can calculate the
(el i) =0, (¥elHlyg)=0, 312 excited states belonging to the different symmetry.
and Similarly, we can calculate the ionized and electron-
(Yol he)= e (Wer|H|the) = Eedow , (3.13  attached states. In the above case, the substitution operators
) were made of the products of the same number of creation
respectively. and annihilation operators. But, if the number of the creation

Though the ECC wave function for the ground state ispperators is smaller by than the number of the annihilation
exact, the ECC-CI wave function defined in this section foroperators, it is ther-electron ionization operator, and if the
the excited state is approximate, since the space spanned Rymber of the creation operators is largerrbthan the num-
{®} is not complete. The nature of the excited states deper of the annihilation operators, it is the-electron-
scribed by this method is characterized and restricted by thgttachment operator. If we denote such set of operators again
nature of th Py} space. To explicitly express the quality of py R —{RJ}, we can calculaten-electron ionized and

the calculated excited states, we may refer to the at_’OVﬁ-electron-attached states by applying the opertdefined
ECC-CI method as ECCND-CIND method, where the firstpy Eq. (3.5 to the ground state as in E(B.6).

ND stands for the size of the ECC calculations and the sec-
ond ND stands for the size of tH&«} space considered in
the ECC-CI calculations. This is in some sense similar to theév. ECC-CI general

SAC-CI SDR method in which the dimensions of both SAC _ _ _
and SAC-CI are singles and doubl¢R stands for the Since the ECC-CI method in the standard active space

SAC-CI excitation operator described above may be insufficient to obtain sufficient ac-
We note that whewy, strictly satisfies the ECC equation, curacy, we need a theory that can reach up_to the exact limit
Eq. (3.1), then it is exact and not modified by the ECC-CI along the same line of the formallsm._ We give here as such
method, but wheny is an approximate solution of the ECC theory ECC-CI general theory. In this theory, we can de-
equation, it may be improved at the ECC-CI step: the groun&c”_b? the excited, ionized, and electron-a}ttgched states'ln a
state solution obtained from the ECC-CI secular equationSUfficient accuracy even up to the exact limit by expanding
Eq. (3.1, may become lower than that of the input approxi-the size of theR operator. This method is similar to the

27,29-31
mate ;. The improvedy, satisfies the relation similar to SAC-CI generaR method. _
Eq. (3.12. We expand the ECC-CI space defined®y of Eq. (3.7)

Like in the SAC-CI method. we can also consider thePY including the operators that are linearly independent from
nonvariational method of solution. Though the quality of theth€m. Such linearly independent operators may be made of

solution would become worse, the computational labor id€ Products of the lower operators as
diminished. In the nonvariational method, the bra-functions ~ R,={HH;, H/HiH, HHHH,,. __}={RA}(,4

of Eq. (3.113 are replaced by the s¢iy, Hkio}, where 1
%o is the reference function and we obtain where the subscripk implies “additional.” Here, we note in
(olH—Ele) =0, (3.143  generalH,H;#H,H,, etc. Using these higher operators, we
expand the ECC-CI operator as
(Yol HK(H=E)[pe)=0 (K=1,... Np). (3.14b
Rg=Rs+tRa, (4.2

The nonvariational method is acceptable when the set of bras )

in Eq. (3.14, {1y, Huwo! is a good approximation of the @nd calculate the excited state by

set{dy}. We note that whemy, is Hartree—Fock and when Ye=R iy, (4.3
someHy operators are composed only of purély type

operator€® which include eithem;” or a,, where the sub- where
scriptsi and a denote occupied and unoccupied orbitals, Np
respectively’ then Eq.(3.14b would vanish identically and R=S§_:O dsRs+§A: daRa. (4.4

therefore, this nonvariational method would be inappropri-

ate, because the number of the equations would be small&ve refer to this expansion of ECC-Cl as ECC-CI general,

than that of the variables. from the similarity to the SAC-CI gener&-theory?® Note
The above ECC-CI method produces the excited statethat for the SECC Np=1), the spaceR; defined by Eq.

belonging to the same symmetry as the ground state. How4.2) is just the same as the Krilov spaige.
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When our ECC is ECCGSD, the standard operatorfABLE I. SICI for the ground states of harmonic oscillator.

space Rs is defined by singles and doubles

{1, a’a,, a/aJ aa,}, and the additional operators for the ° c

ECC-CI general are composed of the product operators like gerade Loe7

triples, quadruples, and highers as, 1 1,000 203 01961
Ra=lagalajangd,, a/aja/a,adagdy, -, ; 11000001 04 “o0oree

(4.9 4 1.000 000 318 -0.1142

and therefore, it is easily understood that this ECC-CI gen- 2 11_'(?00(;) (?00(? Olfsg __06907859756

eral can formally become up to exact. 7 1.000 000 0206 —0.0654
By this method, the quality of the calculated excited 8 1.000 000 0103 —-0.0739

states is improved, and furthermore, we can calculate higher 9 1.000 000 005 41 —0.0571

excitation processes that may be rather poorly described by Ungerade

the standard ECC-CI method. For example, three electron 3.05

excitation processes from the ground state would not be de- 1 3.001 00 —0.13955

scribed within the ECCGSD-CIGSD method, but would be 2 3.000 0340 —0.0894

described when we include higher operators defined by Eq. 3 3.000 008 41 —0.0790

4.5). 4 3.000 002 69 -0.0887
The formation of the higher operators by E4.1) is an g 2:888 888 ZZZ _8:8322

example of the exponential generati@®G) idea presented 7 3.000 000 193 —0.0581

in 19853 When lower operator®®, and R; are of some 8 3.000 000 0984 ~0.0621

importance, the produ®,R; should also be important in the 9 3.000 000 0526 —0.0514

description of the states. If it is difficult to include all of

these higher operators, because the size of the product opera-

tors easily becomes formidably large, we may include only

such product®}|R; in which bothR, and R; are important q2

by some given threshold. By such a criterion, we can pro- (_ —+xX2 | Y=gy, (5.1

duce only the important higher excitation operators. dx?

The modifications of the ECC-CI general method to in-
clude the excited states of different symmetries, ionize
states and the electron-attached states are rather simple.

and the Hamiltonian is the sum of the kinetic
V\}éerators as

and potential

can improve the quality and expand the nature of these states d?
by expanding the active space by the ECC-Cl general H=———5+x% (5.2
method. Many examples have actually been reported by the
SAC-CI general-R method&3°3for the calculations of the Two lowest solutions of this equation are
ionization spectra including shake-up satellite peaks. 1
wg:ﬂ_—l/ 4_5)(2),
V. PERFORMANCE OF ICI AND ECC METHODS FOR 8921, (5.3
HARMONIC OSCILLATOR
and

We here examine the performance of the ICl and ECC 1
methods by applying them to the ground and excited states = \/Ew‘1’4xexp< — §x2>,
of a one-dimensional harmonic oscillator. This is probably
the simplest possible system. Some behavior would be spe- £o=3, (5.4)

cific to this simple system, but some would be common to

more complex electronic systems. We want to see the qualityhich are the ground states of the gerade and ungerade sym-
of the results calculated by the ICI and ICI-Cl methods andmetries, respectively. The eigenvalues of the gerade states
the ECC and ECC-CI methods for the ground and excited@re 1.0, 5.0, 9.0, 13.0, 17.0, 21.0,..., and the ungerade eigen-
states. In Paper I, we have app“ed th6|ﬁ]p|es):ECC, values are 3.0, 7.0, 11.0, 15.0, 19.0, 23.0, ... . We take
which ?s ECCl, and ECC2 to this model system and obtained Yo=exp — ax?), (5.5
much insight on the performance of these methods. Though
both are exact, the performance of ttrencated ECC is and
much different: the SECC is rather slowly converging, but _ 2
ECC2 shows quite a rapid convergence. This shows a differ- Yo=xexp(— ax?), 5.6
ent behavior of ECCND foNp=1 andNp=2, and isdueto with «=0.60 as our reference functionf, for the gerade
a nonlinear nature of the ECCND method. and ungerade states, respectively=0.5 is the exact solu-
The Schrdinger equation for the one-dimensional har- tion.
monic oscillator is The S operator for SICI and SECC is
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TABLE IlI. ICI2 and ICI2-CI2 for gerade ground and excited states of harmonic oscillator.

n € Co Ck Cp
Ground state
0 1.0167
12 1.000 203 1.0 —.196 086 246
2 1.000002 10 1.0 —.108 505 5618 —.107 506 5766
3 1.000 000 0406 1.0 —.075 653 4009 —.075632 6339
4 1.000 000 004 85 1.0 —.068 8446171 —.068 844 1948
5 1.000 000 000 804 1.0 —.072 965 4691 —.072 965 4621
6 1.000 000 000 160 1.0 —.058 936 1691 —.058 936 1679

Excited state

17 5.0998 1.0 —.999 799 67

2 5.002 94 —.232577 —.53142350 1.0
3 5.000 0663 —.197 249 —.605 446 65 1.0
4 5.000 001 97 —.212814 —.574 3707 1.0
5 5.000 000 0705 —.363 227 —.273564 1.0
6 5.000 000 0226 —.413158 —.173 683 1.0

#Forn=1, the rank of the matrix is 2 and therefore identical with SICI.

2
———+x2
dx?

states by Methods B and C of Paper Il. In the terminology of
, (5.7 this paper, method B is called ICIND-CIND method, and
method C is called ICIND-CI general. The latter naming is
which includes only one variable, and that for ICI2 anduseful because it makes the active space involved in each

S=C

ECC2is method clear.
& Table | gives the result of SICI for the gerade and un-
S= _CK_2+CPX2y (5.8 gerade ground states. The SICI shows a good convergence

for both states. The energy converges nicely to the exact
energy, 1.0 and 3.0, both from above. The coefficients ini-
tially vibrate to some extent and would converge to zero
finally. But, it would take some more iterations before con-
vergence. The energy converges faster than the wave func-
tion itself. Tables Il and Ill are the results of ICI2 for the
The ICI method is defined by the recursion, gerade and ungerade ground states, respectively. The excited
state calculated from the same secular equati@amely by
Yn=(1+S)¥n-1, (5.9 ICI2-CI2) is also given in these tables. Note for=1 (first
and the variables in each iteration are solved by the variaiteration, the rank of the matrix is 2, and therefore the result
tional principle. As an initial function), , we take the func- becomes identical with that of SICI. For higher iterations, the
tions given by Eqgs(5.5 and(5.6) for the gerade and unger- ICI2 gives faster convergence than SICI because of an in-
ade ground states, respectively. We also calculate the excitedease in the number of the variational parameters. It is in-

which includes two variable€y andCp that are associated
to the kinetic and potential operators, respectively.

A. ICI method

TABLE IIl. ICI2 and ICI2-CI2 for ungerade ground and excited states of harmonic oscillator.

n e Co Ck Cp
Ground state
12 3.001 00 1.0 —.13955
2 3.000 0145 1.0 —.088 643 9874 —.087 285 2785
3 3.000 000 371 1.0 —.065561 1301 —.065 519 9553
4 3.000 000 0463 1.0 —.060 767 7653 —.060 766 6567
5 3.000 000 008 02 1.0 —.062 131 7043 —.062 131 6816
6 3.000 000 001 67 1.0 —.055 270 6686 —.052 706 6821

Excited state

2 7.006 69 —.826 3355 —.443 8106 1.0

3 7.000 196 —.6726282 —.551 4566 1.0

4 7.000 007 51 —.740 2273 —.506 5120 1.0

5 7.000 000 294 1.0 1750141 —.841 6808
6 7.000 000 0938 1.0 .102194 12 —.768 860 799

8 or n=1, the rank of the matrix is 2 and therefore identical with SICI.
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TABLE IV. ICI2-CI general for the gerade and ungerade states of harmonic oscillator.

n=2 n=4 n=6
Variational
Eo (9 1.000 000 000 001 59 1.000 000 000 000 172 1.000 000 000 000 157
E, (W 3.000 000 000 0238 3.000 000 000 002 50 3.000 000 000 002 08
E; (9 5.000 000 004 07 5.000 000 000 750 5.000 000 000 432
E; (W) 7.000 000 0208 7.000 000 003 55 7.000 000 001 79
E, (9) 9.000 000 756 9.000 000 0573 9.000 000 0107
Es (U) 11.000 002 37 11.000 000 180 11.000 000 0257
Es (9) 13.000 007 75 13.000 002 83 13.000 000 161
E; (U) 15.000 0205 15.000 005 38 15.000 000 314
Es (9 17.000 693 17.000 0484 17.000 001 52
Es (U) 19.001 13 19.000 0817 19.000 002 38
E10 (9 21.0246 21.000 428 21.000 0105
Eqy (U) 23.0321 23.000 669 23.000 0139
Nonvariational
Eo (9 0.999 999 999 9393 1.000 000 000 178 0.999 999 999 9751
E, (W) 2.999 999 999 435 2.999 999 999 791 2.999 999 999 775
E, (9) 5.000 662 4.999 992 01 5.000 000 0284
E; (W) 7.000 006 88 7.000 0487 7.000 000 0587
E, (9) 8.999 641 8.999 996 29 9.000 004 36
Es (U) 10.999 895 10.999 9281 11.000 005 64
Es (9) 13.000 853 13.000 220 12.999 669
E; (u) 14.997 20 15.001 97 14.999 777
Es (9) 17.0332 17.002 46 17.004 98
Es (U) 19.414 19.003 59 19.003 18
Eyo (9 21.124 21.005 10 20.9883
Eqy (U) 23.224 22.9789 22.9861
teresting to note that the variational parametggsand Cp ICI2 - Cl general method Q:
become closer as the iteration proceeds for both the gerade
and ungerade ground states: they would converge to the 1 K. P. PP, PPP, PPPP PPPPR (5.11

same value and would converge to zero. This behavior shows
that the ICI2 converges to the same solution as the SICJI.

?r:\éfﬁol(;' TEE‘\%?] IirI) Tshls tﬂ:e\}gﬂg‘g Imez;gact:urebziglﬁelm general method in comparison with 3 of the original ICI2-
' 9 & P Cl2 method. As the(input) ICI2 solution for the ground

closer as the iteration proceeds, using two independent vari:,

. ) state, we used the results of the 2nd, 4th, and 6th iterations
ables makes the convergence faster than just using one vari-

. . . iven in Tables Il and Ill. We hav rform h varia-
able. Already at 5th iteration, the energy is correct by 9 zero%.J c ables @l d ¢ have perio ed both varia
ional and nonvariational calculations.

and 8 zeros after the dec'”!""' point for the gerade and unger- The results for the ground and excited states obtained by
ade ground states, respectively. Nevertheless, though the en-

. ) .. the variational ICI2-CI general method are certainly much
ergy essentially converges, it would take some more itera-

. : improved, as expected, in comparison with those obtained by
tions before true convergence of the wave function, where{}he ICI2-CI2 method. The numbers of zeros for the lower
Ck "fll_r;]dCP b.fcgmte tzero. lculated b thod B of P IIfour states of Table IV are much larger than those of the
ICI2-CIezei§Ctlhee psrea'lsgﬁtcr?o(t::ts)r? a|g0n;EOV(\; a g(;)od Sgr?\:er_borresponding states shown in Tables I! and lll. Note that the
. . round state is also much improved, since the results of the
gence to the exact solution again from above, though th nd, 4th, and 6th iterations are not yet the true ICI solution.

convergence is slower than that for .the ground state. Th urther, by the ICI2-CI general method, we could calculate
results for the gerade excited states given in Table Il and thﬁigher éxcited states not calculated by t,he ICI2-CI2 method.

ungigiclig ﬁ;«;ﬁ%ﬂ\/?a}g ?é\éirll I(_-Tf :;?gﬁolél gr?gggalr. eneralThis merit of the ICI-CI general method is very important for
: : ' ' 9 investigations of higher excited and ionized states in atomic
in the present notation. We have extended the variable space d molecul
of the ICI-CI method, following Eqs(4.1) and (4.2), by and molecular systems.
including not only the i<inetic¢k) and oteﬁtia( )0 éra,\tors The nonvariational results are almost always worse than
9 ny P P op ' the variational results. Many results show overshooting of
but also the higher products of the potential operatpps, e
in the active space. givina independent the exact energy. The accuracy of the nonvariational result
PPR_PPPR PPPPP pace, giving P depends rather critically on the accuracy of the ICI2 ground
variable to each of the operators, following the spirit of the . . ?
3 . “state. As the number of iteratiomsof the ICI2 calculation
EGCI method®® Namely, the operator space used for defin-; . : .
: o L . increases, the accuracy of the nonvariational calculations is
ing the S operator in this calculation is written as . . .
improved. The higher excited states calculated by the nonva-

ICI2-CI2 (method B: 1, k, p, (5.10 riational method are rather miserable particularly rfier 2.

he dimension of the secular equation is 7 in the ICI2-Cl
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B. ECC2 method TABLE V. ECC2-CI2 and ECC2-CI general from the exact ground states of
the gerade and ungerade states of harmonic oscillator.

We have already applied the SECC to the present har

monic oscillator in Paper Ill. The convergence of the trun- ECC2-Ci2 ECC2-Cl general
cated SECC was slow: evenrat 30, we had only three and  viational
two zeros after the decimal point for the gerade and ungerade g, (g) 1.0 1.0
ground states, respectively, in contrast to the SICI result E: (W 3.0 3.0
given in Table I. Though the truncated SECC certainly con- Ez (@ 50 50
verges to the exact solution, the rate was much slower than E3 g 0 g '8
the SICI given in this paper. The difference is that though the E: ) 11.0
SICI has one fresh variable at each iteration step, the SECCE; (g) 13.0
has only one variable at any truncation level. Ez (U) 15.0
We apply here the ECC2 to the same harmonic oscilla- Es 8 g-g
9 .

tor. Some results were already given in Paper Ill. The E.s (@) 210
operator is given by Ed5.8) with two variablesC andCp. E, (U) 23.0
It is easily seen that the present ECC2 has at least three

different solutions that give the exact wave function: one isNonvariational

the solution which is the same as the SECC v@thandCp Eo (9 1.0 1.0
both equal toC of SECC, the second i€x=0.0 andCp El g g'g g'g
=0.1, a self-evident solution, and the third is the nontrivial Ez w 70 70
solution that was already given in Paper Il for the truncated E, (g) 9.0
ECC2 in 2nd and 3rd orders. This fact means that the solu- Es (u) 11.0
tion of the ECC method is generally not unique, though all Es (9 13.0
gives, of course, the same unique exact wave function. Since E7 Eg; 13'8
the first solution is already given in Paper Ill as the result of Ez () 190
SECC, we discuss here the second self-evident solution andg,, (g) 21.0
the third nontrivial solution of ECC2. Eu () 23.0
First, we consider the self-evident solution of ECC2:
Ck=0.0 andCp=0.1. In this case, the ECC2 becomes Next, we discuss the nontrivial solution of ECC2, which
YECCZ= exp(0.0k+ 0.1p) exp — 0.6¢2) is more importan'F than the self-evident splution, since such
self-evident solution would never occur in actual complex
=exp(0.1x?)exp( — 0.6x?) electronic systems. Tables VI and VIl show the nontrivial
9 solutions for the gerade and ungerade ground states, respec-
=exp(—0.5¢) tively, of the harmonic oscillator calculated by the ECC2
= Yexact (5.12  truncated ah=2, 3, 4, and 5, whera denotes the order of

the truncation of the exponential operator, namely,
for the gerade ground state, and

1 2 1 3 1 n
Yo=|1+S+ 58+ S+ + oS Y. (514

YFCC%= exp(0.0k+ 0.1p) x exp( — 0.6x?) 2 31
=exp(0.1x?)x exp( — 0.6x?) The results of these tables were calculated by the variational
5 method given in Paper Ill. Note that the first-order=(1)
=xexp(—0.5¢%) truncated ECC is identical to the first iteration of the ICI

(5.13 method and therefore omitted here. The values of the vari-
ablesCyx and Cp were optimized only up to five decimal

for the ungerade ground state, so that they are exact. THegures.
values ofCx andCp are common to both gerade and unger-  First, we are rather surprised by a marvelous converging
ade states. Since the values@f andCp are different, this behavior of the ECC2 method. Only with the two variables,
solution is different from the solution of SECC given in Pa-then=5 results are accurate by ten zeros and nine zeros for
per Ill. Note that this self-evident exact solution is possiblethe gerade and ungerade ground states, respectively. In com-
only for ECC2: other SICI, ICI2, and SECC do not have parison with the truncated SECC result given in Paper lll,
such a straightforward solution. the convergence of the truncated ECC2misich faster. In

We apply ECC2-CI2 using this exact solution: the activecomparison with the ICI2 result, the ECC2 energy is better
space is given by E(q5.10. The result is given in Table V. by one order of magnitude than the ICI2 one, if we compare
The solutions for the excited states are also exact in botthe ordem result of ECC2 to thath iteration result of ICI2.
variational and nonvariational methods. We further appliedThis is marvelous considering the fact that in the ECC2
ECC2-ClI general using the exact solution for the groundmethod, the two variables are optimized only once, but in the
state: the active space is given by Ef.11). The result is  I1CI2 method, the two variables are reoptimized at each itera-
summarized in Table V. Again, we get the exact solution fortion step. Within the present accuracy 6f and Cp, the
the lowest 12 states, not only by the variational method busmallness ofG'n and JE,/dC, implies that the solution is
also by the nonvariational method. essentially at the variational minimum, and the smallness of

= Yexact
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TABLE VI. Truncated ECC2 for the gerade ground state of harmonic oscillator.

n=2 n=3 n=4 n=5
Optimal Cy —0.036 41 —0.036 62 —0.036 62 —0.036 62
Cp +0.056 50 +0.055 80 +0.055 79 +0.055 78

E, 1.000 002 10 1.000 0000313  1.000 000 000 438  1.000 000 000 0271
G, =K —1.1605<10°  1.251710°° —1.4802¢<10°° 1.1979<10°°

I=P  1.3959%10 ° 1.0381x 10 ° 1.2320<10 ° 0.9969< 10 °
A, =K  —0.2290<107°  0.1253<10°° 0.1500<10°® —-0.1213<10°®

I=P —0.1475<10°°  0.2094<10 °® —0.0277x10°° —0.1000< 10°°
9E,1dC, =K 1.4179<10°° 1.5306x 10 ° —1.8099x 10°° 1.4648<10°°

I=P 0.483710°° 1.2694< 10 ° 1.5065< 10 ° —1.2190<10°°
Virial coefficient 1.999 871 2.000011 2.000016 1.999 987

A'n implies that both of the variational and H-nijou equationsimplies that we can easily calculatiee exact wave function
are essentially satisfied. The virial relation is also well-simply by using the converged coefficients in the ECC2
satisfied. wave function as

Another important fact is that the optimal values@f
andCy; are different, showing that the present ECC2 result is
different from the SECC results given in Tables I-Ill of Pa-
per lll. The value ofCp is larger (in absolute magnitude
than that ofCy . This is in sharp contrast from the SICI and which is valid for both the gerade and ungerade ground
ICI2 results given in Tables Il and Ill, where the values of states. Heres andp represent kinetic and potential operators,
Ck andCp become close as the iteration proceeds and finallyespectively, in the Hamiltonian given by E¢.2). The en-
converge to the same solution as the SICI one. This behaviargy calculated from the right-hand side of E®.15 is
of ECC2 is due to the nonlinear nature of the ECC methodabove the exact energy only by 0.2080 *° and 0.623
Furthermore, ah=4 and 5, the values of the variables of the X 10~ 1° for the gerade and ungerade states, respectively, be-
gerade and ungerade ground states are the same, within timg essentially in the same order of accuracy asrhes
present accuracy of calculations. This means that the qualitsesult given in Tables VI and VII, reflecting the accuracy of
of the initial functiony is the same for both states. the variablesCx and Cp of the present optimization. This

Probably the most impressive and important result fronreflects also the Eckert theorem. The correctness of Eq.
Tables VI and VIl is that the convergence of the varialilgs  (5.15 for the wave function is more clearly checked by com-
andCp is quite rapid in the truncated ECC2 methddlmay  paring numerically the both sidesi.,. iS given by Egs.
be noted that the converged values @f and Cp of the (5.3 and (5.4) for the gerade and ungerade states, respec-
present solution of ECC2 are not zero, in contrast to the ICtively, and ¢ is given by Eqs(5.5 and(5.6), respectively,
case). The values of these variables converge up to five deciwith a«=0.60. Therefore, we can directly compare both sides
mal figures already at the truncation of order 5. This factof Eq. (5.15 numerically by expanding them into

Yexac=NeEXp(— 0.036 6X+0.055 78) i, (5.15

TABLE VII. Truncated ECC2 for the ungerade ground state of harmonic oscillator.

n=2 n=3 n=4 n=5
Optimal Ck —0.036 39 —0.036 62 —0.036 62 —0.036 62
Cp +0.056 91 +0.055 81 +0.055 79 +0.055 78

E, 3.000 0146 3.000 000 307 3.000 000 004 94  3.000 000 000 152
G, =K  —2.2053x10°°  1.9039<10°° —0.3047x 10 1.6060< 10 °

I=P —1.3409%X10°° —1.6156<10° 0.2544<10°° —1.3365<10 °
Al I=K  —1.2299%<10°° —0.2076<10°° 0.0310<10°° —0.1626<10°°

I=P  —0.7864<10 ° 0.5616x<10°° —0.5860< 10 ° —0.1519< 10 °
9E,1dC, =K 6.3107x10°° 5.4681x10°° —0.8750<10°° 4.612710°°

I=P —3.8371X10°° —4.6400<10° 0.7308<10°° 3.8386x10°°
Virial coefficient 1.999 683 2.000 048 2.000 002 1.999 986
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TABLE VIII. Exact wave function estimated from the ECC2 wave functiomat5.?

i ECC2 atn=5 Estimated Exact

Gerade ground

0 0.7511%10°° 0.7511310°° 0.7511310°°
1 0.37556<107° 0.3755% 107° 0.37556<10°°
2 0.93886<10°* 0.93892% 10 * 0.93891x10°*
3 0.156 441071 0.156 4% 10 * 0.156 4810 *
4 0.1953% 10?2 0.19561x 102 0.19561x 102
5 0.1948%10°° 0.19561x 103 0.19561x 103
6 0.161 13104 0.16301x10°* 0.16300< 104
7 0.1129%10°° 0.116 4410 ° 0.116 4% 10 °
8 0.676 2% 107 0.727 741077 0.727 70 1077
9 0.34081x 1078 0.40430x10°8 0.404 28108
Ungerade ground

0 1.062 2510 ° 1.062 26<10°° 1.062 25¢10°°
1 0.53111x107° 0.53113%10°° 0.53113%10°°
2 0.132 76<10°° 0.1327810°° 0.1327810°°
3 0.2211%10°* 0.22131x10°* 0.22130x10°*
4 0.2758% 10?2 0.276 64102 0.276 63102
5 0.274 4% 1073 0.276 64x 102 0.276 63x 102
6 0.225 7% 10°* 0.23053% 10 0.2305% 104
7 0.156 45¢10°° 0.164 6710 ° 0.16466<10°
8 0.91344<10°¢ 0.102 9% 10°© 0.10291x10°©
9 0.43500<10°8 0.571 7% 108 0.571 73108

The coefficients; of y=3;(—)'c;x? for gerade ground state and of=3;(—)'c;x? ** for ungerade ground
state are given.

to the slow convergence of the truncated SECC. We have

y=2 (—)ex? (5.16  written the reasons in some details in Paper Il.
' Using the solutions of the truncated ECC2 given in
for the gerade state, and Tables VI and VII for the ground states of gerade and unger-
ade symmetries, respectively, we have performed ECC2-CI2
g=2, (—)iex?*t (5.17  calculations for the excited states by both of the variational
I

and nonvariational methods, and the results are given in

for the ungerade state. We compare in Table VIl the coeffi-Table IX. Though the ECC-CI method is essentially the
cients ¢; of both sides of Eq.(5.15. The column below method to calculate excited states, it also gives the ground
ECC2 atn=5 showsgc; for the truncated wave function, the state as a lowest solution, since we incluggin Eq. (3.4) to
column below “estimated” shows; for the right-hand side ensure the orthogonality between the ground and excited
of Eqg. (5.195 and the column below “exact” shows for the  states. When the ground state is approximate, as in the
exact wave function. We again note that the present optimipresent truncated approximation, the ground state is im-
zation is valid only up to five decimal figures for the vari- proved also at thévariationa) ECC-CI level. Comparing the
ables. In Table VIil,c; for the truncated ECC2 becomes gerade and ungerade ground states of Table IX obtained by
depart from the exact one for higherbut c; of the right-  the variational method to those of Tables VI and VII, we see
hand side of Eq(5.195 is always close to the exact one to that the ground state is improved by one to two orders of
five decimal figures: such closenesscpfactually continues magnitude by the ECC-CI method. We could calculate by the
to higheri than shown here. Therefore, we can conclude thaECC2-Cl2 method one excited state for each symmetry, and
the estimation of the exact wave function by Ef.15 is  Table IX shows the four lower states of the harmonic oscil-
very accurate. This is a very encouraging result: we can calator. The quality of the calculated result becomes worse as
culatethe exact wave functiosimply by using the explicit the energy of the excited state becomes higher, but all of the
ECC function, when the convergence of the variables is rapidtates are much improved as the order of the truncation for
with respect to the truncation. We can do this since we knowhe ground state ECC2 increases.mAt5, even the second
the explicit structure of the exact wave function as ECCNDungerade state, the worst state in this calculation, is correct
given by Eq.(2.39. This is in sharp contrast to the ICI case. by eight zeros to the exact energy. Further, we can use the
This is valuable especially when we calculate accurate propestimated exact ground state given in Table VIII and the
erties of molecules. In comparison with the ICI result, theresult is shown in the last column of Table IX. The quality of
rapid convergence of the ECC2 seems to reflect the fact thadlhe calculated result is much improved.
the ECC gives a compact accurate expression of the structure We have also carried out the nonvariational calculations
of the exact wave function. at the ECC2-CI2 level, and the result is given in Table IX. As

We have already shown in Paper Il that this rapid con-expected, the nonvariational result is almost always worse
verging behavior of the truncated ECC2 is in sharp contrasthan the corresponding variational result. Further, though the
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TABLE IX. Truncated ECC2-CI2 for the gerade and ungerade states of harmonic oséillator.

n=2 n=3 n=4 n=5 Estimated exact
Variational
Eo (9 1.000 000 0360 1.000 000 003 11 1.000 000 000 0343 1.000 000 000 000 460 1.0
E; (u) 3.000 000 313 3.000 000 0348 3.000 000 000 448 3.000 000 000 007 69 3.0
E; (9 5.000 0664 5.000 001 69 5.000 000 0331 5.000 000 000 815 5.000 000 000 125
E; (u) 7.000 197 7.000 006 73 7.000 000 162 7.000 000 004 06 7.000 000 000 208
Nonvariational
Eo (9 1.000 002 05 1.000 006 38 1.000 000 0305 1.000 000 0150 1.000 000 000 000 257
Eq (u) 3.000 000 797 3.000 004 47 2.999 999 147 3.000 000 395 3.000 000 000 001 29
E, (9) 5.001 01 5.000 0698 5.000 0141 5.000 335 5.000 00351
E; (u) 7.002 39 6.996 81 7.000 0358 6.999 992 86 7.000 005 86

#1.0 and 3.0 means that the number has more than 15 zeros after the decimal point.

variational energy is always above the true exact energy, theoint increases much in this table. The accuracy of the re-
nonvariational one sometimes overshoots the exact energgults is improved very much as the order of the truncation
this is seen forE; of n=3, E; of n=4, andE; of n=5.  for the ground state ECC2 increases. This is especially so
When we use the estimated exact ground state given in Tablghen we use the estimated exact ground state given in Table
VIII, the nonvariational solution is also much improved. VIII. The solution obtained at this level is essentially exact,
Table X shows the result obtained by the ECC2-CI gendike those shown in Table V. Thus, the ECC2-CI general
eral calculations, extending the variable operator space asethod is very promising for calculating accurate ground
given by Eq.(5.11). By this calculation, we can not only and excited states.
improve the accuracies of all the states, but also calculate a Table X also gives the nonvariational results of ECC2-CI
larger number of excited states. Table X shows the twelvgieneral. The accuracy of the nonvariational method is rather
lower states of the harmonic oscillator in comparison withcapricious, and is almost always worse than that of the varia-
four of the ECC2-CI2 method shown in Table IX. Further- tional method. But, even so, the accuracy becomes steadily
more, in comparison with the ECC2-CI2 results given inbetter as the ordam increases. In contrast to the variational
Table IX, the results of ECC2-CI general are very muchcase, we see a lot of overshooting in the nonvariational case.
improved in quality. The number of zeros below the decimalHowever, the nonvariational solution obtained from the esti-

TABLE X. Truncated ECC2-CI general for the gerade and ungerade states of harmonic ogcillator.

n=2 n=3 n=4 n=5 Estimated exact
Variational
Eo (9) 1.000 000 000 001 69 1.000 000 000 000 221 1.000 000 000 000 0673 1.000 000 000 000 0107 1.0
E; (W) 3.000 000 000 0267 3.000 000 000 002 94 3.000 000 000 000 951 3.000 000 000 000 153 3.0
E, (9) 5.000 000 004 25 5.000 000 000 954 5.000 000 000 418 5.000 000 000 0764 5.0
E; (U) 7.000 000 0226 7.000 000 004 31 7.000 000 001 91 7.000 000 000 316 7.0
E, (9 9.000 000 781 9.000 000 153 9.000 000 0167 9.000 000 0116 9.0
Es (U) 11.000 002 52 11.000 000 444 11.000 000 0507 11.000 000 0314 11.0
Eg (9 13.000 008 13 13.000 002 96 13.000 003 16 13.000 000 567 13.0
E, (u) 15.000 0224 15.000 007 19 15.000 006 23 15.000 001 25 15.0
Eg (0) 17.000 686 17.000 420 17.000 091 38 17.000 0103 17.0
Eq (U) 19.001 11 19.000 666 19.000 154 19.000 0193 19.0
E1 (9) 21.0244 21.005 64 21.000 84 21.000 0833 21.000 000 001 37
Eq (U) 23.0317 23.007 82 23.001 26 23.000 138 23.000 000 001 62
Nonvariational
Eo (9 0.999 999 999 9605 0.999 999 999 9438 0.999 999 999 9710 1.000 000 000 000 262 1.0
E; (W) 2.999 999 999 509 3.000 000 003 37 3.000 000 000 125 2.999 999 999 9485 3.0
E; (9 5.000 000 180 4.999 999 9391 5.000 001 01 4.999 999 99549 5.0
E; (W) 6.999 9659 7.000 002 09 6.999 9895 6.999 999 9534 7.0
E, (9 8.999 995 36 9.000 000 219 8.999 993 43 9.000 000 403 9.0
Es (U) 11.000 475 11.000 0487 11.000 0297 11.000 002 78 11.0
Es (9) 13.000 393 13.000 199 13.000 192 13.000 0231 13.0
E, (U) 15.000 708 15.000 411 15.000 413 14.999 999 9719 15.0
Eg (9) 17.0269 17.0121 17.001 89 17.000 517 17.000 000 000 127
Eq (U) 19.0106 19.004 42 18.996 81 19.001 48 19.000 000 000 184
E1 (9) 21.154 21.0280 21.0155 21.002 78 21.000 0387
Eq (U) 23.441 23.143 23.0698 22.999 101 23.000 0457

1.0, 3.0, etc., means that the number has more than 15 zeros after the decimal point.
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mated exact ground state is again almost exact. Though one-dimensional harmonic oscillator is the sim-
It is true that the one-dimensional harmonic oscillator isplest possible system, some of the present results should be

probably the simplest possible system, so that we cannah common to those of the more general complex electronic

generalize the present result to more complex electronic sysystems.

tems. Nevertheless, it is thought that the present results The results of the present series of papers may lead to a

would already show some of the general aspects of the IOGhew wave in the studies of exact and very accurate wave

and ECC methods and their solutions. We may safely safunctions of the ground and excited states of molecular sys-

that the ICI and ECC methods are worth studying in moreems, making precise predictions possible in the theoretical

details as methods of giving exact solution of the Sehro studies of chemistry and physics.

dinger equation.
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