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Structure of the exact wave function. IV. Excited states from exponential
ansatz and comparative calculations by the iterative configuration
interaction and extended coupled cluster theories

Hiroshi Nakatsujia)

Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering,
Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan

~Received 23 July 2001; accepted 6 November 2001!

In a previous paper of this series@Paper III: Nakatsuji, J. Chem. Phys. 105, 2465~2001!#, the author
showed a high potentiality of the extended coupled cluster~ECC! method to calculate the exact
wave function of the ground state. In this paper, we propose ECC-configuration interaction~CI!
method, which is an accurate useful method to calculate the excited states from the ECC wave
function of the ground state. In contrast to the ECC method, the standard ECC-CI method is
approximate, but we can make it exact by generalizing its excitation operator~ECC-CI general!. The
ECC-CI method is applicable not only to the excited states having the same spin-space symmetry as
the ground state, but also to those having different spin-space symmetries and to the ionized and
electron-attached states. The theoretical framework of the ECC-CI method is similar to that of the
symmetry-adapted-cluster~SAC!-CI method proposed in 1978 by the present author. Next in this
paper, we examine the performance of the methods proposed in this series of papers for a simple
one-dimensional harmonic oscillator. The iterative configuration interaction~ICI! and ECC methods
are examined for the ground state and the ICI-CI and ECC-CI methods for the excited states. The
ICI method converges well to the exact ground state and the excited states are calculated nicely by
the ICI-CI method in both the standard and general active spaces. In contrast to the simplest~S!ECC
examined in Paper III, the ECC2 method shows quite a rapid convergence to the exact ground state,
which enables us to calculate the true exact wave function in the ECC form. The ECC-CI methods
in both the standard and general active spaces also work well to calculate the excited states. Thus,
we conclude that the ICI and ECC approaches have a potentiality to provide useful method to
calculate accurate wave functions of the ground and excited states. A merit of ECC is that it provides
the exact wave function in a simple explicit form. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1430741#
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I. INTRODUCTION

Toward precise predictions and gigantic-scale syste
are the two ways modern quantum chemistry must expan
this decade. The first aim is essentially realized if we c
solve the Schro¨dinger equation with a realistic cost. Th
full-CI method, only one general method of solving th
Schrödinger equation within a given basis set, is howev
very time consuming and highly demanding computationa
and therefore cannot be applied to chemically interes
systems. Since the Hamiltonian operator has a very sim
structure, involving only one and two particle operators,
eigenfunctions must also have some simple structure, refl
ing the simplicity of the Hamiltonian. Though modern alg
rithms of the full-CI method1,2 utilize this fact in the evalu-
ation of the matrix elements, it does not presume suc
simplicity in the structure of the wave function.

The Schro¨dinger equation is given by

~H2E!c50, ~1.1!

where the Hamiltonian involves only one- and two-partic
operators as

a!Electronic mail: hiroshi@sbchem.kyoto-u.ac.jp
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H5(
i

N

v~ i !1(
i . j

N

w~ i , j !, ~1.2!

in a coordinate representation, or

H5(
pr

vp
r ar

1ap1 (
pqrs

wpq
rs ar

1as
1aqap , ~1.3!

in a second-quantized form. In Eq.~1.3! the indicesp,q,r,s
run over allm reference orbitals~both occupied and unoccu
pied!. The number of terms in Eq.~1.3! is

MGSD5m21Fm

2
~m21!G2

, ~1.4!

where we did not assume the Hermiticity of the operatorv
andw, and GSD stands for general singles and doubles.

We have studied in this series of studies3–5 the structure
of the exact wave function using the equations that
equivalent to the Schro¨dinger equation in a necessary an
1 © 2002 American Institute of Physics
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sufficient sense. This equivalence is important, since th
equations have the same determinative power as the Sc¨-
dinger equation. The variational principle,

^cuH2Eudc&50, ~1.5!

is well-known to be equivalent to the Schro¨dinger equation.
The energy of the system,E, is defined by

^cuH2Euc&50. ~1.6!

The variational principle is used to search for the best p
sible wave function within the functional form of the give
c. If c can become exact in its functional form, this pri
ciple gives the exact wave function as an extreme.

Another useful set of equations that is equivalent to
Schrödinger equation is H-square or H-nijou~‘‘nijou’’ is
Japanese meaning square! equations. The equation,

^cu~H2E!2uc&50, ~1.7!

and each of the following equations

^cu~H2E!Huc&50, ~1.8!

and

^cuH22E2uc&50, ~1.9!

together with Eq.~1.6! are equivalent to the Schro¨dinger
equation. Further, based on these equations, we have sh
in Paper II a useful set of equations that is equivalent to
Schrödinger equation. We define a division of the Ham
tonian operator intoND parts by

H5(
I 51

ND

HI . ~1.10!

Then, the wave functionc that satisfies

^cu~H2E!HI uc&50, ~ I 51, . . . ,ND!, ~1.11!

and Eq.~1.6! is exact in the necessary and sufficient sen
Similarly, the wave functionc that satisfies

^cu~H2E!~HI2EI !uc&50, ~ I 51, . . . ,ND!, ~1.12!

is also exact in the necessary and sufficient sense. In
~1.12!, the partial energyEI corresponding toHI is defined
by

^cuHI2EI uc&50, ~1.13!

and satisfies

E5(
I 51

ND

EI . ~1.14!

We refer to Eqs.~1.11! and ~1.12! also as H-square o
H-nijou equations. Equation~1.8! is a special case of Eq
~1.11! for ND51. Likewise, Eq.~1.7! is a special case of Eq
~1.12!. It is easily seen from Eq.~1.7! that the H-nijou equa-
tion is validonly to the exact wave function: when we defin

f ~c!5^cu~H2E!2uc&, ~1.15!

this quantity is always positive or zero, andf (c)50 is real-
ized only whenc is exact.

An underlying principle in this series of papers3–5 is that
we can find the structure of the exact wave function by
Downloaded 31 May 2007 to 130.54.110.22. Redistribution subject to AI
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following criterion. When we apply the variational principl
to some candidate functionc, and if the variational equation
actually gives one set of the H-nijou equations, then thac
has the structure of the exact wave function. This is realiz
for example, when

d I c5HI c, ~1.16!

or

d I c5~HI2EI ! c, ~1.17!

whered I represents a variation with respect to the varia
associated toHI included inc, since then we have Eq.~1.11!
or ~1.12! as a result of the variational equation~1.5!. In other
words, when this holds, the variational best is the exact w
function: thatc has a freedom to be able to become the ex
wave function. Note however that the condition given by E
~1.16! or ~1.17! is a bit too strong: it is enough if we coul
obtain Eq.~1.11! or ~1.12! from Eq. ~1.5!, as we argued in
Paper III. In other words, Eq.~1.16! or ~1.17! is a sufficient
condition forc to have an exact structure, but not necessa
Theorem II-2 of Paper I3 is a special case of the above the
rem.

This fact further implies that the exact wave function c
be described with onlyND variables,ND being defined by
Eq. ~1.10!. The equivalence of a set of theND equations
~1.11! or ~1.12! to the Schro¨dinger equation means that w
can describe the exact wave function with onlyND variables,
because these equations have the same determinative p
as the Schro¨dinger equation. This actually implies that th
exact wave function can be described with the number
variables from unity to, say,MGSD. The latter corresponds to
the division of the Hamiltonian defined by Eq.~1.3!. These
numbers are much smaller than the number of variable
full-CI, so that this line of research may lead us to a n
simpler method of solving the Schro¨dinger equation.

In Paper I of this series,3 we have investigated the pos
sibility of the general singles and doubles~GSD! description
of the exact wave function based on Theorem II-1 of Pape
which is also a kind of H-nijou equation, and proposed ite
tive CI ~ICI! method including GSD number of variables.
Paper II,4 we have presented the H-nijou equations, E
~1.11! and ~1.12!, and shown that the number of variable
necessary to solve the Schro¨dinger equation is defined by th
number of division of the Hamiltonian operator, and the
fore ranges from unity to the GSD number. Based on t
finding, we have extended the concept of the ICI method
proposed the ICIND method, which is the ICI includingND

variables. We have also considered the methods of calcu
ing the excited states from the ICI theory. The simple
~S!ICI method that includes only one variable is similar
the surplus function approach proposed recently by Hu
et al.6 It is also related to the Lanczos method7 in eigenvalue
problems.8 In Paper III,5 we have examined the exponenti
ansatz and shown that it can also be exact if the operato
defined using the divided Hamiltonian. We have propos
extended coupled cluster~ECC! method, and two interesting
cases were considered: one is the S~simplest!ECC that in-
cludes only one variable and the other is the general ECC
~ND>2!. SECC is exact in spite of its simple structure, but
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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rather inflexible. ECCND is also able to describe the ex
wave function rather efficiently through its flexible nonline
structure. Test calculations were given for harmonic osci
tor, showing different behaviors of the SECC and ECCN
methods: when truncated, the SECC was rather slowly c
verging, but the ECCND converged quite nicely.5

One purpose of this paper is to formulate a method
calculate the excited states from the ECCND method.
refer to the proposed method as the ECC-CI method, s
the theoretical framework of the theory is similar to that
the SAC~symmetry adapted cluster!-CI theory.9,10 Though
the ECC method is exact, the ECC-CI method is not, bu
can be improved up to the exact limit by expanding the
erator space. Another purpose of this paper is to examine
ICI and ECC methods in the calculations of the ground a
excited states of harmonic oscillator. We examine the c
vergence behaviors of both methods and the qualities of
calculated ground and excited states. The harmonic oscill
is probably the simplest possible system, but the analyt
application of the ICI and ECC methods may clarify the
behaviors, some of which would be common to those
more general many-electron systems, which is a goal of
present theory.

II. ECC

We summarize here briefly the extended coupled clu
~ECC! theory.5 We first define the division of the Hamil
tonian intoND parts

H5(
I 51

ND

HI , ~2.1!

and correspondingly, we define the variable operator,

S5(
I 51

ND

CIHI , ~2.2!

which includesND variables$CI%. Using this variable opera
tor, we define the coupled cluster expansion by

c5exp~S! c0 ~2.3a!

5F11S1
1

2
S21

1

3!
S31 •••G c0 , ~2.3b!

where c0 is some reference function, which may b
Hartree–Focku0&, or some other function. Since this is
small extension of the coupled cluster theory,11–13 we called
it extended coupled cluster~ECC! theory:14 since this ECC
involves ND variables, we refer to the ECC given by E
~2.3! as ECCND method.

When we divide the Hamiltonian into all singles an
doubles parts as given by Eq.~1.3!, we have ECCGSD,

cECCGSD5exp~T!c0 , ~2.4!

T5(
pr

Cp
r ar

1ap1 (
pqrs

Cpq
rs ar

1as
1aqap . ~2.5!

On the other hand, the conventional coupled cluster wit
singles and doubles~CCSD! is written as

cCCSD5exp~Tc!c0 , ~2.6!
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Tc5(
ia

Ci
aaa

1ai1(
i jab

Ci j
abaa

1ab
1ajai , ~2.7!

where the indicesi, j run over occupied orbitals anda, bover
unoccupied orbitals. Since the operatorTc does not corre-
spond to a division of the Hamiltonian operator, the conve
tional CCSD does not have a freedom of the exact w
function, while since the ECCGSD operatorT corresponds to
a division of the Hamiltonian as defined by Eq.~1.3!, the
ECCGSD is capable of representing the exact wave funct
as discussed in Paper III.5 Nooijen15 also proposed indepen
dently that the generalized CCSD that is equivalent to
above ECCGSD might be exact. Van Voorhis a
Head-Gordon16 recently confirmed numerically that th
ECCGSD certainly gives the exact wave function for ne
and N2.

It was also shown in Paper III that the SECC includi
only one variable,

c5exp~CH!c0 , ~2.8!

is exact in the necessary and sufficient sense: the variati
determination of the variableC gives the H-nijou equation
Eq. ~1.8!. As shown by Kozloff and Tal-Ezer,17 this SECC
becomes exact with a large negative value~negative infinite!
of C. Therefore, a truncation of the expansion of the exp
nential operator at some order is not a good approximatio
is desirable to treat it in the exponential form, not in
approximate finite-order truncated form. This implies that t
convergence of the SECC may not be fast, though actu
its rate is dependent on the quality of the reference func
c0. A simple example was given in Paper III. The SECC
also related to thet expansion of Horn and Weinstein18 and
connected-moments expansion of Cioslowski.19

Since even the simplest ECC~SECC! is exact, the
ECCND should also be exact: it includes SECC as a spe
case. Therefore, we impose variational and H-nijou eq
tions to the ECCND and obtain,

GI~$CI%!5^cu~H2E!FHI1
1

2
~HIS1SHI !1

1

3!
~HIS

2

1SHIS1S2HI !1•••G uc0&50, ~2.9!

and

FI~$CI%!5^cu~H2E!HI uc&

5^cu~H2E!FHI1HIS

1
1

2
HIS

21•••G uc0&50, ~2.10!

respectively, for allI (1<I<ND) The exact wave function
should satisfy both of them. Subtracting Eq.~2.9! from Eq.
~2.10!, we obtain
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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D I~$CI%!5^cu~H2E!F1

2
~HIS2SHI !1

1

3!
~2HIS

22SHIS

2S2HI !1•••G uc0&

5^cu~H2E!H 1

2
@HI ,S#1

1

3!
~2@HI ,S#S

1S@HI ,S# !1•••J uc0&50 ~2.11!

for all I. If all HI and S commute,@HI ,S#50, Eq. ~2.11!
holds and Eq.~2.9! reduces to Eq.~2.10!, but in general, such
commutation relation can not be assumed. If two of the th
equations, Eqs.~2.9!–~2.11!, hold, thisc satisfies both varia-
tional and H-nijou equations, and therefore, it is exact. Si
Eqs. ~2.9!–~2.11! are all non-linear for the variables$CI%,
they can be satisfied not only in the SECC case, where aCI

are equal~Case A!, but also in a more general case whereCI

takes different optimal values~Case B!.5 We have shown in
Paper III that a quick convergence of the ECC expansio
realized in Case B. This is natural since the standard CC
an approximation of ECCGSD as explained above, is alre
a good approximation of the exact wave function for ma
molecular systems.5

The ECC method describes the ground state of e
symmetry. Since theSoperator is totally symmetric, the ECC
exponential operator is also totally symmetric, and therefo
the symmetry of the calculated state is that of the refere
function c0. In the next section, we consider how to calc
late the excited states from the ECC theory of the grou
state.

III. ECC-CI

We now formulate the theory for the excited states fro
the ECC theory of the ground state. Though the ECC the
for the ground state is exact, the theory presented in
section for the excited state is not exact. We start from
H-nijou equation for the ground state,

^cgu~H2E!HKucg&50 ~K51, . . . ,ND!, ~3.1!

where the subscriptg on cg denotes the ground state. Now
we define the~excited! functionsFK by

FK5HKcg, ~3.2!

then this set of functions$FK%, (K51, . . . ,ND) satisfies the
Brillouin-orthogonality with the exact ground statecg ,

^cgu~H2E!uFK&50, ~3.3!

as easily seen from Eq.~3.1!. This relation implies that the
functions$FK% are good basis for the excited states ofcg ,
so that we approximate our excited states by a linear com
nation of these excited functions as

ce5 (
K50

ND

dKFK5S (
K50

ND

dKHKDcg , ~3.4!

where we have includedcg (5F0 , H051) to ensure the
orthogonality ofce to cg . If we introduce the operatorR by
Downloaded 31 May 2007 to 130.54.110.22. Redistribution subject to AI
e

e

is
D,
y

y

h

e,
e

d

ry
is
e

i-

R5 (
K50

ND

dKHK, ~3.5a!

then this operator is a generator of the excited state from
ground state as

ce5Rcg . ~3.6!

Note a similarity of theR operator defined by Eq.~3.5a! to
the S operator defined by Eq.~2.2!. For convenience, we
denote the set of operators$HK% included in Eq.~3.5a! as
RS ,

RS5$1, HK%5$RS%, ~3.7!

where the subscriptS implies ‘‘standard,’’ in contrast to
‘‘general’’ introduced in the next section. With the use of E
~3.7!, the excitation operatorR is written as

R5 (
S50

ND

dSRS . ~3.5b!

We refer to this method of calculating the excited states
the ECC-CI method, since Eq.~3.4! is CI-like. This naming
is also due to the similarity of the present theory to t
SAC ~symmetry adapted cluster!-CI theory for excited
states.9,10 The SAC theory20 is a kind of coupled cluster
theory11,13 for the ground state, like ECC is for the groun
state, and the SAC-CI theory is for the excited state and
formulated similarly to Eqs.~3.4!–~3.6! using the SAC
ground statecg

SAC instead of the ECC ground statecg . The
CCLRT ~coupled cluster linear response theory!21–23and the
EOMCC ~equation-of-motion coupled cluster! theory24–26

developed later are equivalent to the SAC-CI theory.27

The formulation for the ECCGSD case is interestin
where the division of the Hamiltonian is defined by Eq.~1.3!.
In this case, we start from the H-nijou equations,

^cgu~H2E!ar
1apucg&50,

~3.8!
^cgu~H2E!ar

1as
1aqapucg&50,

which were given in Paper I as Theorem II-1. Note, in the
equations, we have omitted the constant integral factorsvp

r

and wpq
rs of Eq. ~1.3!. Now, we define the excited function

$FK% of the ECCGSD-CI method by

Fp,r5ar
1apcg ,

Fpq,rs5ar
1as

1aqapcg , ~3.9!

and approximate our excited state by a linear combination
these functions as,

ce5Rcg5S d01(
p,r

dp,rar
1ap1 (

pq,rs
dpq,rsar

1as
1aqapDcg ,

~3.10!

where the ground state is included to ensure the orthogo
ity of ce to cg . This is ECCGSD-CI, and this expressio
would be familiar since it is similar to the standard singl
and doubles SAC-CI.

Now, we come back again to the ECCND-CI case. T
expansion coefficientsdK are determined variationally by th
secular equation,
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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^FKuH2Euce&50 ~K50,1, . . . ,ND!, ~3.11a!

which is equivalent to

(
L50

ND

^FKu~H2E!uFL&dL50 ~K50,1, . . . ,ND!.

~3.11b!

The solutions of this secular equation satisfy orthogona
and Hamiltonian-orthogonality to the ground-statecg and to
each other, namely,

^ceucg&50, ^ceuHucg&50, ~3.12!

and

^ce8uce&5dee8 , ^ce8uHuce&5Eedee8 , ~3.13!

respectively.
Though the ECC wave function for the ground state

exact, the ECC-CI wave function defined in this section
the excited state is approximate, since the space spanne
$FK% is not complete. The nature of the excited states
scribed by this method is characterized and restricted by
nature of the$FK% space. To explicitly express the quality o
the calculated excited states, we may refer to the ab
ECC-CI method as ECCND-CIND method, where the fi
ND stands for the size of the ECC calculations and the s
ond ND stands for the size of the$FK% space considered in
the ECC-CI calculations. This is in some sense similar to
SAC-CI SD-R method in which the dimensions of both SA
and SAC-CI are singles and doubles~R stands for the
SAC-CI excitation operator!.

We note that whencg strictly satisfies the ECC equation
Eq. ~3.1!, then it is exact and not modified by the ECC-C
method, but whencg is an approximate solution of the EC
equation, it may be improved at the ECC-CI step: the grou
state solution obtained from the ECC-CI secular equat
Eq. ~3.11!, may become lower than that of the input appro
matecg . The improvedcg satisfies the relation similar to
Eq. ~3.12!.

Like in the SAC-CI method, we can also consider t
nonvariational method of solution. Though the quality of t
solution would become worse, the computational labor
diminished. In the nonvariational method, the bra-functio
of Eq. ~3.11a! are replaced by the set$c0 , HKc0%, where
c0 is the reference function and we obtain

^c0uH2Euce&50, ~3.14a!

^c0uHK* ~H2E!uce&50 ~K51, . . . ,ND!. ~3.14b!

The nonvariational method is acceptable when the set of
in Eq. ~3.14!, $c0 , HKc0% is a good approximation of the
set $FK%. We note that whenc0 is Hartree–Fock and whe
some HK operators are composed only of purelyXt type
operators,28 which include eitherai

1 or aa , where the sub-
scripts i and a denote occupied and unoccupied orbita
respectively,3 then Eq.~3.14b! would vanish identically and
therefore, this nonvariational method would be inapprop
ate, because the number of the equations would be sm
than that of the variables.

The above ECC-CI method produces the excited st
belonging to the same symmetry as the ground state. H
Downloaded 31 May 2007 to 130.54.110.22. Redistribution subject to AI
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ever, like in the SAC-CI method, we can extend the ECC
method so that it also gives the excited states of differ
spin-space symmetries, ionized states, and electron-atta
states. Since the operators of the ECC-CIGSD are compo
of a set of the products of the creation and annihilation
eratorsar

1 and ap where the sufficesr and p denote spin-
space orbitals, it is easy to introduce similar set of subst
tion operators that belong to different spin-space symme
Examples are seen from the SAC-CI operators given in R
9 and 10. Denoting such set of operators again byRS

5$RS%, and using Eqs.~3.5b! and~3.6!, we can calculate the
excited states belonging to the different symmetry.

Similarly, we can calculate the ionized and electro
attached states. In the above case, the substitution oper
were made of the products of the same number of crea
and annihilation operators. But, if the number of the creat
operators is smaller byn than the number of the annihilatio
operators, it is then-electron ionization operator, and if th
number of the creation operators is larger byn than the num-
ber of the annihilation operators, it is then-electron-
attachment operator. If we denote such set of operators a
by RS5$RS%, we can calculaten-electron ionized and
n-electron-attached states by applying the operatorR defined
by Eq. ~3.5b! to the ground state as in Eq.~3.6!.

IV. ECC-CI general

Since the ECC-CI method in the standard active sp
described above may be insufficient to obtain sufficient
curacy, we need a theory that can reach up to the exact l
along the same line of the formalism. We give here as s
theory ECC-CI general theory. In this theory, we can d
scribe the excited, ionized, and electron-attached states
sufficient accuracy even up to the exact limit by expand
the size of theR operator. This method is similar to th
SAC-CI general-R method.27,29–31

We expand the ECC-CI space defined byRS of Eq. ~3.7!
by including the operators that are linearly independent fr
them. Such linearly independent operators may be mad
the products of the lower operators as

RA5$HIHJ , HIHJHK , HIHJHKHL , . . . %5$RA%,
~4.1!

where the subscriptA implies ‘‘additional.’’ Here, we note in
general,HIHJÞHJHI , etc. Using these higher operators, w
expand the ECC-CI operator as

RG5RS1RA , ~4.2!

and calculate the excited state by

ce5R cg , ~4.3!

where

R5 (
S50

ND

dSRS1(
A

dARA . ~4.4!

We refer to this expansion of ECC-CI as ECC-CI gener
from the similarity to the SAC-CI general-R theory.29 Note
that for the SECC (ND51), the spaceRG defined by Eq.
~4.2! is just the same as the Krilov space.32
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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When our ECC is ECCGSD, the standard opera
space RS is defined by singles and double
$1, ar

1ap, ar
1as

1aqap%, and the additional operators for th
ECC-CI general are composed of the product operators
triples, quadruples, and highers as,

RA5$as
1at

1au
1araqap , at

1au
1av

1aw
1asaraqap , . . . %,

~4.5!

and therefore, it is easily understood that this ECC-CI g
eral can formally become up to exact.

By this method, the quality of the calculated excit
states is improved, and furthermore, we can calculate hig
excitation processes that may be rather poorly described
the standard ECC-CI method. For example, three elec
excitation processes from the ground state would not be
scribed within the ECCGSD-CIGSD method, but would
described when we include higher operators defined by
~4.5!.

The formation of the higher operators by Eq.~4.1! is an
example of the exponential generation~EG! idea presented
in 1985.33 When lower operatorsRI and RJ are of some
importance, the productRIRJ should also be important in th
description of the states. If it is difficult to include all o
these higher operators, because the size of the product o
tors easily becomes formidably large, we may include o
such productsRIRJ in which bothRI and RJ are important
by some given threshold. By such a criterion, we can p
duce only the important higher excitation operators.

The modifications of the ECC-CI general method to
clude the excited states of different symmetries, ioniz
states and the electron-attached states are rather simple
can improve the quality and expand the nature of these s
by expanding the active space by the ECC-CI gene
method. Many examples have actually been reported by
SAC-CI general-R methods27,30,31for the calculations of the
ionization spectra including shake-up satellite peaks.

V. PERFORMANCE OF ICI AND ECC METHODS FOR
HARMONIC OSCILLATOR

We here examine the performance of the ICI and E
methods by applying them to the ground and excited st
of a one-dimensional harmonic oscillator. This is proba
the simplest possible system. Some behavior would be
cific to this simple system, but some would be common
more complex electronic systems. We want to see the qu
of the results calculated by the ICI and ICI-CI methods a
the ECC and ECC-CI methods for the ground and exc
states. In Paper III, we have applied the S~simplest!ECC,
which is ECC1, and ECC2 to this model system and obtai
much insight on the performance of these methods. Tho
both are exact, the performance of thetruncated ECC is
much different: the SECC is rather slowly converging, b
ECC2 shows quite a rapid convergence. This shows a di
ent behavior of ECCND forND51 andND>2, and is due to
a nonlinear nature of the ECCND method.

The Schro¨dinger equation for the one-dimensional ha
monic oscillator is
Downloaded 31 May 2007 to 130.54.110.22. Redistribution subject to AI
r

e

-

er
by
n
e-

q.

ra-
y

-

-
d
We
tes
al
he

es
y
e-

o
ity
d
d

d
h

t
r-

S 2
d2

dx2
1x2D c5«c, ~5.1!

and the Hamiltonian is the sum of the kinetic and poten
operators as

H52
d2

dx2
1x2. ~5.2!

Two lowest solutions of this equation are

cg5p21/4expS 2
1

2
x2D ,

«g51, ~5.3!

and

ce5A2p21/4xexpS 2
1

2
x2D ,

«e53, ~5.4!

which are the ground states of the gerade and ungerade
metries, respectively. The eigenvalues of the gerade st
are 1.0, 5.0, 9.0, 13.0, 17.0, 21.0,..., and the ungerade ei
values are 3.0, 7.0, 11.0, 15.0, 19.0, 23.0, ... . We take

c05exp~2ax2!, ~5.5!

and

c05xexp~2ax2!, ~5.6!

with a50.60 as our reference functionsc0 for the gerade
and ungerade states, respectively.a50.5 is the exact solu-
tion.

The S operator for SICI and SECC is

TABLE I. SICI for the ground states of harmonic oscillator.

n « C

Gerade
0 1.0167
1 1.000 203 20.1961
2 1.000 004 46 20.1093
3 1.000 001 04 20.091 58
4 1.000 000 318 20.1142
5 1.000 000 109 20.075 76
6 1.000 000 0459 20.0895
7 1.000 000 0206 20.0654
8 1.000 000 0103 20.0739
9 1.000 000 005 41 20.0571

Ungerade
0 3.05
1 3.001 00 20.139 55
2 3.000 0340 20.0894
3 3.000 008 41 20.0790
4 3.000 002 69 20.0887
5 3.000 000 975 20.0666
6 3.000 000 419 20.0731
7 3.000 000 193 20.0581
8 3.000 000 0984 20.0621
9 3.000 000 0526 20.0514
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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TABLE II. ICI2 and ICI2-CI2 for gerade ground and excited states of harmonic oscillator.

n « C0 CK CP

Ground state
0 1.0167 ••• ••• •••
1a 1.000 203 1.0 2.196 086 246 •••
2 1.000 002 10 1.0 2.108 505 5618 2.107 506 5766
3 1.000 000 0406 1.0 2.075 653 4009 2.075 632 6339
4 1.000 000 004 85 1.0 2.068 844 6171 2.068 844 1948
5 1.000 000 000 804 1.0 2.072 965 4691 2.072 965 4621
6 1.000 000 000 160 1.0 2.058 936 1691 2.058 936 1679

Excited state
0 ••• ••• ••• •••
1a 5.0998 1.0 2.999 799 67 •••
2 5.002 94 2.232 577 2.531 423 50 1.0
3 5.000 0663 2.197 249 2.605 446 65 1.0
4 5.000 001 97 2.212 814 2.574 3707 1.0
5 5.000 000 0705 2.363 227 2.273 564 1.0
6 5.000 000 0226 2.413 158 2.173 683 1.0

aFor n51, the rank of the matrix is 2 and therefore identical with SICI.
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S5CS 2
d2

dx2
1x2D , ~5.7!

which includes only one variable, and that for ICI2 a
ECC2 is

S52CK

d2

dx2
1CPx2, ~5.8!

which includes two variablesCK andCP that are associate
to the kinetic and potential operators, respectively.

A. ICI method

The ICI method is defined by the recursion,

cn5~11Sn!cn21 , ~5.9!

and the variables in each iteration are solved by the va
tional principle. As an initial functionc0 , we take the func-
tions given by Eqs.~5.5! and~5.6! for the gerade and unger
ade ground states, respectively. We also calculate the ex
y 2007 to 130.54.110.22. Redistribution subject to AI
a-

ed

states by Methods B and C of Paper II. In the terminology
this paper, method B is called ICIND-CIND method, an
method C is called ICIND-CI general. The latter naming
useful because it makes the active space involved in e
method clear.

Table I gives the result of SICI for the gerade and u
gerade ground states. The SICI shows a good converg
for both states. The energy converges nicely to the ex
energy, 1.0 and 3.0, both from above. The coefficients
tially vibrate to some extent and would converge to ze
finally. But, it would take some more iterations before co
vergence. The energy converges faster than the wave f
tion itself. Tables II and III are the results of ICI2 for th
gerade and ungerade ground states, respectively. The ex
state calculated from the same secular equation~namely by
ICI2-CI2! is also given in these tables. Note forn51 ~first
iteration!, the rank of the matrix is 2, and therefore the res
becomes identical with that of SICI. For higher iterations, t
ICI2 gives faster convergence than SICI because of an
crease in the number of the variational parameters. It is
TABLE III. ICI2 and ICI2-CI2 for ungerade ground and excited states of harmonic oscillator.

n « C0 CK CP

Ground state
0 3.05 ••• ••• •••
1a 3.001 00 1.0 2.139 55 •••
2 3.000 0145 1.0 2.088 643 9874 2.087 285 2785
3 3.000 000 371 1.0 2.065 561 1301 2.065 519 9553
4 3.000 000 0463 1.0 2.060 767 7653 2.060 766 6567
5 3.000 000 008 02 1.0 2.062 131 7043 2.062 131 6816
6 3.000 000 001 67 1.0 2.055 270 6686 2.052 706 6821

Excited state
2 7.006 69 2.826 3355 2.443 8106 1.0
3 7.000 196 2.672 6282 2.551 4566 1.0
4 7.000 007 51 2.740 2273 2.506 5120 1.0
5 7.000 000 294 1.0 .175 0141 2.841 6808
6 7.000 000 0938 1.0 .102 194 12 2.768 860 799

aFor n51, the rank of the matrix is 2 and therefore identical with SICI.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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TABLE IV. ICI2-CI general for the gerade and ungerade states of harmonic oscillator.

n52 n54 n56

Variational
E0 ~g! 1.000 000 000 001 59 1.000 000 000 000 172 1.000 000 000 000
E1 ~u! 3.000 000 000 0238 3.000 000 000 002 50 3.000 000 000 002
E2 ~g! 5.000 000 004 07 5.000 000 000 750 5.000 000 000 43
E3 ~u! 7.000 000 0208 7.000 000 003 55 7.000 000 001 79
E4 ~g! 9.000 000 756 9.000 000 0573 9.000 000 0107
E5 ~u! 11.000 002 37 11.000 000 180 11.000 000 0257
E6 ~g! 13.000 007 75 13.000 002 83 13.000 000 161
E7 ~u! 15.000 0205 15.000 005 38 15.000 000 314
E8 ~g! 17.000 693 17.000 0484 17.000 001 52
E9 ~u! 19.001 13 19.000 0817 19.000 002 38
E10 ~g! 21.0246 21.000 428 21.000 0105
E11 ~u! 23.0321 23.000 669 23.000 0139

Nonvariational
E0 ~g! 0.999 999 999 9393 1.000 000 000 178 0.999 999 999 975
E1 ~u! 2.999 999 999 435 2.999 999 999 791 2.999 999 999 77
E2 ~g! 5.000 662 4.999 992 01 5.000 000 0284
E3 ~u! 7.000 006 88 7.000 0487 7.000 000 0587
E4 ~g! 8.999 641 8.999 996 29 9.000 004 36
E5 ~u! 10.999 895 10.999 9281 11.000 005 64
E6 ~g! 13.000 853 13.000 220 12.999 669
E7 ~u! 14.997 20 15.001 97 14.999 777
E8 ~g! 17.0332 17.002 46 17.004 98
E9 ~u! 19.414 19.003 59 19.003 18
E10 ~g! 21.124 21.005 10 20.9883
E11 ~u! 23.224 22.9789 22.9861
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s is
va-
teresting to note that the variational parametersCK and CP

become closer as the iteration proceeds for both the ge
and ungerade ground states: they would converge to
same value and would converge to zero. This behavior sh
that the ICI2 converges to the same solution as the S
given in Table I. This is due to the linear nature of the I
method. Even though the variablesCK and CP become
closer as the iteration proceeds, using two independent v
ables makes the convergence faster than just using one
able. Already at 5th iteration, the energy is correct by 9 ze
and 8 zeros after the decimal point for the gerade and un
ade ground states, respectively. Nevertheless, though th
ergy essentially converges, it would take some more ite
tions before true convergence of the wave function, wh
CK andCP become zero.

The excited states calculated by method B of Paper
ICI2-CI2 in the present notation, also show a good conv
gence to the exact solution again from above, though
convergence is slower than that for the ground state.
results for the gerade excited states given in Table II and
ungerade excited state given in Table III are similar.

Table IV shows the result of method C, ICI2-CI gene
in the present notation. We have extended the variable s
of the ICI-CI method, following Eqs.~4.1! and ~4.2!, by
including not only the kinetic~k! and potential~p! operators,
but also the higher products of the potential operators,pp,
ppp, pppp, ppppp in the active space, giving independe
variable to each of the operators, following the spirit of t
EGCI method.33 Namely, the operator space used for defi
ing theS operator in this calculation is written as

ICI2-CI2 ~method B!: 1, k, p, ~5.10!
y 2007 to 130.54.110.22. Redistribution subject to AI
de
he

s
I

I

ri-
ri-
s
r-

en-
a-
e

I,
r-
e
e
e

l
ce

-

ICI2 - CI general~method C!:

1, k, p, pp, ppp, pppp, ppppp. ~5.11!

The dimension of the secular equation is 7 in the ICI2-
general method in comparison with 3 of the original ICI
CI2 method. As the~input! ICI2 solution for the ground
state, we used the results of the 2nd, 4th, and 6th iterat
given in Tables II and III. We have performed both vari
tional and nonvariational calculations.

The results for the ground and excited states obtained
the variational ICI2-CI general method are certainly mu
improved, as expected, in comparison with those obtained
the ICI2-CI2 method. The numbers of zeros for the low
four states of Table IV are much larger than those of
corresponding states shown in Tables II and III. Note that
ground state is also much improved, since the results of
2nd, 4th, and 6th iterations are not yet the true ICI soluti
Further, by the ICI2-CI general method, we could calcul
higher excited states not calculated by the ICI2-CI2 meth
This merit of the ICI-CI general method is very important f
investigations of higher excited and ionized states in ato
and molecular systems.

The nonvariational results are almost always worse t
the variational results. Many results show overshooting
the exact energy. The accuracy of the nonvariational re
depends rather critically on the accuracy of the ICI2 grou
state. As the number of iterationsn of the ICI2 calculation
increases, the accuracy of the nonvariational calculation
improved. The higher excited states calculated by the non
riational method are rather miserable particularly forn52.
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B. ECC2 method

We have already applied the SECC to the present
monic oscillator in Paper III. The convergence of the tru
cated SECC was slow: even atn530, we had only three and
two zeros after the decimal point for the gerade and unge
ground states, respectively, in contrast to the SICI re
given in Table I. Though the truncated SECC certainly co
verges to the exact solution, the rate was much slower t
the SICI given in this paper. The difference is that though
SICI has one fresh variable at each iteration step, the SE
has only one variable at any truncation level.

We apply here the ECC2 to the same harmonic osc
tor. Some results were already given in Paper III. TheS
operator is given by Eq.~5.8! with two variablesCK andCP .
It is easily seen that the present ECC2 has at least t
different solutions that give the exact wave function: one
the solution which is the same as the SECC withCK andCP

both equal toC of SECC, the second isCK50.0 andCP

50.1, a self-evident solution, and the third is the nontriv
solution that was already given in Paper III for the trunca
ECC2 in 2nd and 3rd orders. This fact means that the s
tion of the ECC method is generally not unique, though
gives, of course, the same unique exact wave function. S
the first solution is already given in Paper III as the result
SECC, we discuss here the second self-evident solution
the third nontrivial solution of ECC2.

First, we consider the self-evident solution of ECC
CK50.0 andCP50.1. In this case, the ECC2 becomes

cECC25exp~0.0k10.1p!exp~20.6x2!

5exp~0.1x2!exp~20.6x2!

5exp~20.5x2!

5cexact, ~5.12!

for the gerade ground state, and

cECC25exp~0.0k10.1p!x exp~20.6x2!

5exp~0.1x2!x exp~20.6x2!

5x exp~20.5x2!

5cexact, ~5.13!

for the ungerade ground state, so that they are exact.
values ofCK andCP are common to both gerade and ung
ade states. Since the values ofCK andCP are different, this
solution is different from the solution of SECC given in P
per III. Note that this self-evident exact solution is possib
only for ECC2: other SICI, ICI2, and SECC do not ha
such a straightforward solution.

We apply ECC2-CI2 using this exact solution: the act
space is given by Eq.~5.10!. The result is given in Table V
The solutions for the excited states are also exact in b
variational and nonvariational methods. We further appl
ECC2-CI general using the exact solution for the grou
state: the active space is given by Eq.~5.11!. The result is
summarized in Table V. Again, we get the exact solution
the lowest 12 states, not only by the variational method
also by the nonvariational method.
Downloaded 31 May 2007 to 130.54.110.22. Redistribution subject to AI
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Next, we discuss the nontrivial solution of ECC2, whic
is more important than the self-evident solution, since su
self-evident solution would never occur in actual compl
electronic systems. Tables VI and VII show the nontriv
solutions for the gerade and ungerade ground states, res
tively, of the harmonic oscillator calculated by the ECC
truncated atn52, 3, 4, and 5, wheren denotes the order o
the truncation of the exponential operator, namely,

cn5S 11S1
1

2
S21

1

3!
S31•••1

1

n!
SnDc0 . ~5.14!

The results of these tables were calculated by the variatio
method given in Paper III. Note that the first-order (n51)
truncated ECC is identical to the first iteration of the IC
method and therefore omitted here. The values of the v
ablesCK and CP were optimized only up to five decima
figures.

First, we are rather surprised by a marvelous converg
behavior of the ECC2 method. Only with the two variable
then55 results are accurate by ten zeros and nine zeros
the gerade and ungerade ground states, respectively. In
parison with the truncated SECC result given in Paper
the convergence of the truncated ECC2 ismuch faster. In
comparison with the ICI2 result, the ECC2 energy is bet
by one order of magnitude than the ICI2 one, if we comp
the ordern result of ECC2 to thenth iteration result of ICI2.
This is marvelous considering the fact that in the EC
method, the two variables are optimized only once, but in
ICI2 method, the two variables are reoptimized at each ite
tion step. Within the present accuracy ofCK and CP , the
smallness ofGn

I and ]En /]CI implies that the solution is
essentially at the variational minimum, and the smallness

TABLE V. ECC2-CI2 and ECC2-CI general from the exact ground states
the gerade and ungerade states of harmonic oscillator.

ECC2-CI2 ECC2-CI general

Variational
E0 ~g! 1.0 1.0
E1 ~u! 3.0 3.0
E2 ~g! 5.0 5.0
E3 ~u! 7.0 7.0
E4 ~g! 9.0
E5 ~u! 11.0
E6 ~g! 13.0
E7 ~u! 15.0
E8 ~g! 17.0
E9 ~u! 19.0
E10 ~g! 21.0
E11 ~u! 23.0

Nonvariational
E0 ~g! 1.0 1.0
E1 ~u! 3.0 3.0
E2 ~g! 5.0 5.0
E3 ~u! 7.0 7.0
E4 ~g! 9.0
E5 ~u! 11.0
E6 ~g! 13.0
E7 ~u! 15.0
E8 ~g! 17.0
E9 ~u! 19.0
E10 ~g! 21.0
E11 ~u! 23.0
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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TABLE VI. Truncated ECC2 for the gerade ground state of harmonic oscillator.

n52 n53 n54 n55

Optimal CK 20.036 41 20.036 62 20.036 62 20.036 62
CP 10.056 50 10.055 80 10.055 79 10.055 78

En 1.000 002 10 1.000 000 0313 1.000 000 000 438 1.000 000 000 0

Gn
I I 5K 21.160531025 1.251731025 21.480231025 1.197931025

I 5P 1.395931025 1.038131025 1.232031025 0.996931025

Dn
I I 5K 20.229031025 0.125331025 0.150031025 20.121331025

I 5P 20.147531025 0.209431025 20.027731025 20.100031025

]En /]CI I 5K 1.417931025 1.530631025 21.809931025 1.464831025

I 5P 0.483731025 1.269431025 1.506531025 21.219031025

Virial coefficient 1.999 871 2.000 011 2.000 016 1.999 987
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I implies that both of the variational and H-nijou equatio

are essentially satisfied. The virial relation is also we
satisfied.

Another important fact is that the optimal values ofCK

andCP are different, showing that the present ECC2 resu
different from the SECC results given in Tables I–III of P
per III. The value ofCP is larger ~in absolute magnitude!
than that ofCK . This is in sharp contrast from the SICI an
ICI2 results given in Tables II and III, where the values
CK andCP become close as the iteration proceeds and fin
converge to the same solution as the SICI one. This beha
of ECC2 is due to the nonlinear nature of the ECC meth
Furthermore, atn54 and 5, the values of the variables of th
gerade and ungerade ground states are the same, withi
present accuracy of calculations. This means that the qu
of the initial functionc0 is the same for both states.

Probably the most impressive and important result fr
Tables VI and VII is that the convergence of the variablesCK

andCP is quite rapid in the truncated ECC2 method.~It may
be noted that the converged values ofCK and CP of the
present solution of ECC2 are not zero, in contrast to the
case.! The values of these variables converge up to five d
mal figures already at the truncation of order 5. This f
y 2007 to 130.54.110.22. Redistribution subject to AI
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implies that we can easily calculatethe exact wave function
simply by using the converged coefficients in the EC
wave function as

cexact>Nexp~20.036 62k10.055 78p!c0 , ~5.15!

which is valid for both the gerade and ungerade grou
states. Here,k andp represent kinetic and potential operato
respectively, in the Hamiltonian given by Eq.~5.2!. The en-
ergy calculated from the right-hand side of Eq.~5.15! is
above the exact energy only by 0.208310210 and 0.623
310210 for the gerade and ungerade states, respectively,
ing essentially in the same order of accuracy as then55
result given in Tables VI and VII, reflecting the accuracy
the variablesCK and CP of the present optimization. This
reflects also the Eckert theorem. The correctness of
~5.15! for the wave function is more clearly checked by com
paring numerically the both sides.cexact is given by Eqs.
~5.3! and ~5.4! for the gerade and ungerade states, resp
tively, andc0 is given by Eqs.~5.5! and ~5.6!, respectively,
with a50.60. Therefore, we can directly compare both sid
of Eq. ~5.15! numerically by expanding them into
152
TABLE VII. Truncated ECC2 for the ungerade ground state of harmonic oscillator.

n52 n53 n54 n55

Optimal CK 20.036 39 20.036 62 20.036 62 20.036 62
CP 10.056 91 10.055 81 10.055 79 10.055 78

En 3.000 0146 3.000 000 307 3.000 000 004 94 3.000 000 000

Gn
I I 5K 22.205331025 1.903931025 20.304731025 1.606031025

I 5P 21.340931025 21.615631025 0.254431025 21.336531025

Dn
I I 5K 21.229931025 20.207631025 0.031031025 20.162631025

I 5P 20.786431025 0.561631025 20.586031025 20.151931025

]En /]CI I 5K 6.310731025 5.468131025 20.875031025 4.612731025

I 5P 23.837131025 24.640031025 0.730831025 3.838631025

Virial coefficient 1.999 683 2.000 048 2.000 002 1.999 986
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TABLE VIII. Exact wave function estimated from the ECC2 wave function atn55.a

i ECC2 atn55 Estimated Exact

Gerade ground
0 0.751 1331020 0.751 1331020 0.751 1331020

1 0.375 5631020 0.375 5731020 0.375 5631020

2 0.938 8631021 0.938 9231021 0.938 9131021

3 0.156 4431021 0.156 4931021 0.156 4831021

4 0.195 3731022 0.195 6131022 0.195 6131022

5 0.194 8231023 0.195 6131023 0.195 6131023

6 0.161 1331024 0.163 0131024 0.163 0031024

7 0.112 9731025 0.116 4431025 0.116 4331025

8 0.676 2231027 0.727 7431027 0.727 7031027

9 0.340 8131028 0.404 3031028 0.404 2831028

Ungerade ground
0 1.062 2531020 1.062 2631020 1.062 2531020

1 0.531 1131020 0.531 1331020 0.531 1331020

2 0.132 7631020 0.132 7831020 0.132 7831020

3 0.221 1331021 0.221 3131021 0.221 3031021

4 0.275 8931022 0.276 6431022 0.276 6331022

5 0.274 4731023 0.276 6431023 0.276 6331023

6 0.225 7731024 0.230 5331024 0.230 5231024

7 0.156 4531025 0.164 6731025 0.164 6631025

8 0.913 4431026 0.102 9231026 0.102 9131026

9 0.435 0031028 0.571 7731028 0.571 7331028

aThe coefficientsci of c5( i(2) icix
2i for gerade ground state and ofc5( i(2) icix

2i 11 for ungerade ground
state are given.
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~2 ! icix
2i ~5.16!

for the gerade state, and

c5(
i

~2 ! icix
2i 11 ~5.17!

for the ungerade state. We compare in Table VIII the coe
cients ci of both sides of Eq.~5.15!. The column below
ECC2 atn55 showsci for the truncated wave function, th
column below ‘‘estimated’’ showsci for the right-hand side
of Eq. ~5.15! and the column below ‘‘exact’’ showsci for the
exact wave function. We again note that the present opt
zation is valid only up to five decimal figures for the va
ables. In Table VIII,ci for the truncated ECC2 become
depart from the exact one for higheri, but ci of the right-
hand side of Eq.~5.15! is always close to the exact one
five decimal figures: such closeness ofci actually continues
to higheri than shown here. Therefore, we can conclude t
the estimation of the exact wave function by Eq.~5.15! is
very accurate. This is a very encouraging result: we can
culate the exact wave functionsimply by using the explicit
ECC function, when the convergence of the variables is ra
with respect to the truncation. We can do this since we kn
the explicit structure of the exact wave function as ECCN
given by Eq.~2.3a!. This is in sharp contrast to the ICI cas
This is valuable especially when we calculate accurate p
erties of molecules. In comparison with the ICI result, t
rapid convergence of the ECC2 seems to reflect the fact
the ECC gives a compact accurate expression of the struc
of the exact wave function.

We have already shown in Paper III that this rapid co
verging behavior of the truncated ECC2 is in sharp cont
y 2007 to 130.54.110.22. Redistribution subject to AI
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t

l-

id
w

p-

at
re

-
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to the slow convergence of the truncated SECC. We h
written the reasons in some details in Paper III.

Using the solutions of the truncated ECC2 given
Tables VI and VII for the ground states of gerade and ung
ade symmetries, respectively, we have performed ECC2-
calculations for the excited states by both of the variatio
and nonvariational methods, and the results are given
Table IX. Though the ECC-CI method is essentially t
method to calculate excited states, it also gives the gro
state as a lowest solution, since we includecg in Eq. ~3.4! to
ensure the orthogonality between the ground and exc
states. When the ground state is approximate, as in
present truncated approximation, the ground state is
proved also at the~variational! ECC-CI level. Comparing the
gerade and ungerade ground states of Table IX obtained
the variational method to those of Tables VI and VII, we s
that the ground state is improved by one to two orders
magnitude by the ECC-CI method. We could calculate by
ECC2-CI2 method one excited state for each symmetry,
Table IX shows the four lower states of the harmonic os
lator. The quality of the calculated result becomes worse
the energy of the excited state becomes higher, but all of
states are much improved as the order of the truncation
the ground state ECC2 increases. Atn55, even the second
ungerade state, the worst state in this calculation, is cor
by eight zeros to the exact energy. Further, we can use
estimated exact ground state given in Table VIII and
result is shown in the last column of Table IX. The quality
the calculated result is much improved.

We have also carried out the nonvariational calculatio
at the ECC2-CI2 level, and the result is given in Table IX.
expected, the nonvariational result is almost always wo
than the corresponding variational result. Further, though
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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TABLE IX. Truncated ECC2-CI2 for the gerade and ungerade states of harmonic oscillator.a

n52 n53 n54 n55 Estimated exact

Variational
E0 ~g! 1.000 000 0360 1.000 000 003 11 1.000 000 000 0343 1.000 000 000 000 460 1.0
E1 ~u! 3.000 000 313 3.000 000 0348 3.000 000 000 448 3.000 000 000 007 69 3.0
E2 ~g! 5.000 0664 5.000 001 69 5.000 000 0331 5.000 000 000 815 5.000 000 000 1
E3 ~u! 7.000 197 7.000 006 73 7.000 000 162 7.000 000 004 06 7.000 000 000 2

Nonvariational
E0 ~g! 1.000 002 05 1.000 006 38 1.000 000 0305 1.000 000 0150 1.000 000 000 00
E1 ~u! 3.000 000 797 3.000 004 47 2.999 999 147 3.000 000 395 3.000 000 000 00
E2 ~g! 5.001 01 5.000 0698 5.000 0141 5.000 335 5.000 003 51
E3 ~u! 7.002 39 6.996 81 7.000 0358 6.999 992 86 7.000 005 86

a1.0 and 3.0 means that the number has more than 15 zeros after the decimal point.
t
rg

ab

en

y
te
lv
ith
r-
in
ch
a

re-
n

so
able
ct,
ral
nd

CI
ther
ria-
dily
al
ase.
sti-
variational energy is always above the true exact energy,
nonvariational one sometimes overshoots the exact ene
this is seen forE3 of n53, E1 of n54, andE3 of n55.
When we use the estimated exact ground state given in T
VIII, the nonvariational solution is also much improved.

Table X shows the result obtained by the ECC2-CI g
eral calculations, extending the variable operator space
given by Eq.~5.11!. By this calculation, we can not onl
improve the accuracies of all the states, but also calcula
larger number of excited states. Table X shows the twe
lower states of the harmonic oscillator in comparison w
four of the ECC2-CI2 method shown in Table IX. Furthe
more, in comparison with the ECC2-CI2 results given
Table IX, the results of ECC2-CI general are very mu
improved in quality. The number of zeros below the decim
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point increases much in this table. The accuracy of the
sults is improved very much as the order of the truncation
for the ground state ECC2 increases. This is especially
when we use the estimated exact ground state given in T
VIII. The solution obtained at this level is essentially exa
like those shown in Table V. Thus, the ECC2-CI gene
method is very promising for calculating accurate grou
and excited states.

Table X also gives the nonvariational results of ECC2-
general. The accuracy of the nonvariational method is ra
capricious, and is almost always worse than that of the va
tional method. But, even so, the accuracy becomes stea
better as the ordern increases. In contrast to the variation
case, we see a lot of overshooting in the nonvariational c
However, the nonvariational solution obtained from the e
37
62

27
84
TABLE X. Truncated ECC2-CI general for the gerade and ungerade states of harmonic oscillator.a

n52 n53 n54 n55 Estimated exact

Variational
E0 ~g! 1.000 000 000 001 69 1.000 000 000 000 221 1.000 000 000 000 0673 1.000 000 000 000 0107 1.0
E1 ~u! 3.000 000 000 0267 3.000 000 000 002 94 3.000 000 000 000 951 3.000 000 000 000 153 3.0
E2 ~g! 5.000 000 004 25 5.000 000 000 954 5.000 000 000 418 5.000 000 000 0764 5.0
E3 ~u! 7.000 000 0226 7.000 000 004 31 7.000 000 001 91 7.000 000 000 316 7.0
E4 ~g! 9.000 000 781 9.000 000 153 9.000 000 0167 9.000 000 0116 9.0
E5 ~u! 11.000 002 52 11.000 000 444 11.000 000 0507 11.000 000 0314 11.0
E6 ~g! 13.000 008 13 13.000 002 96 13.000 003 16 13.000 000 567 13.0
E7 ~u! 15.000 0224 15.000 007 19 15.000 006 23 15.000 001 25 15.0
E8 ~g! 17.000 686 17.000 420 17.000 091 38 17.000 0103 17.0
E9 ~u! 19.001 11 19.000 666 19.000 154 19.000 0193 19.0
E10 ~g! 21.0244 21.005 64 21.000 84 21.000 0833 21.000 000 001
E11 ~u! 23.0317 23.007 82 23.001 26 23.000 138 23.000 000 001

Nonvariational
E0 ~g! 0.999 999 999 9605 0.999 999 999 9438 0.999 999 999 9710 1.000 000 000 000 262 1.0
E1 ~u! 2.999 999 999 509 3.000 000 003 37 3.000 000 000 125 2.999 999 999 9485 3.0
E2 ~g! 5.000 000 180 4.999 999 9391 5.000 001 01 4.999 999 99549 5.0
E3 ~u! 6.999 9659 7.000 002 09 6.999 9895 6.999 999 9534 7.0
E4 ~g! 8.999 995 36 9.000 000 219 8.999 993 43 9.000 000 403 9.0
E5 ~u! 11.000 475 11.000 0487 11.000 0297 11.000 002 78 11.0
E6 ~g! 13.000 393 13.000 199 13.000 192 13.000 0231 13.0
E7 ~u! 15.000 708 15.000 411 15.000 413 14.999 999 9719 15.0
E8 ~g! 17.0269 17.0121 17.001 89 17.000 517 17.000 000 000 1
E9 ~u! 19.0106 19.004 42 18.996 81 19.001 48 19.000 000 000 1
E10 ~g! 21.154 21.0280 21.0155 21.002 78 21.000 0387
E11 ~u! 23.441 23.143 23.0698 22.999 101 23.000 0457

a1.0, 3.0, etc., means that the number has more than 15 zeros after the decimal point.
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mated exact ground state is again almost exact.
It is true that the one-dimensional harmonic oscillator

probably the simplest possible system, so that we can
generalize the present result to more complex electronic
tems. Nevertheless, it is thought that the present res
would already show some of the general aspects of the
and ECC methods and their solutions. We may safely
that the ICI and ECC methods are worth studying in m
details as methods of giving exact solution of the Sch¨-
dinger equation.

VI. CONCLUSION

In this paper, we have first presented the method of
scribing the excited states, ionized states, and the elec
attached states from the ECCND method. Since the ECC
method is very promising as a method of calculating
ground state, it is important to prepare the method of ca
lating the excited states of the same system. The propo
method is called the ECC-CI method, because the theore
framework is very similar to that of the SAC-CI metho
proposed in 1978 by the author, which was also formula
by the variational principle. Standard ECC-CI method tha
ECCND-CIND is approximate, but by expanding the
space, we obtain the ECC-CI general method that can e
become exact. We are able not only to improve the quality
the calculated states, but also to expand the nature of
excited states up to higher multiple-excitation processes

Second, we have applied the ICI and ECC methods
the calculations of the ground and excited states of the
monic oscillator. The ICI method gave good convergen
the ICI2 gave a faster convergence than the SICI, and c
verged to the same solution as the SICI. The convergenc
the wave function takes more iterations than the converge
of energy. The excited states were successfully calculate
the standard ICI-CI method. The ICI-CI general meth
gives better quality and a larger number of excited states
the standard ICIND-CIND method.

The ECC2 method gave at least three different soluti
of the unique exact ground state of the harmonic oscilla
the solution that is the same as the SECC solution, the s
evident and nontrivial solutions. The nontrivial solutio
which is most important as a general solution of ECC
shows quite a rapid convergence to the exact wave funct
This is in sharp contrast to the slow convergence of
SECC shown in Paper III. Using this fact, we could estim
the exact wave functionsimply by using the explicit ECC
form. Further, in contrast to the ICI case, the self-evident a
nontrivial solutions of ECC2 are different from that of th
SECC. Because of the flexibility of the ECC2 due to
nonlinear nature, the truncated ECC2 gives much better
sult than the SECC. This is a very valuable feature of
ECC method. The ECC-CI method gave also a very prom
ing result. Similarly to the ICI-CI results, the ECC-C
method gave very good results for both the ground and
cited states. In particular, very good results for the grou
and excited states were obtained by the ECC-CI gen
method. When the ground state is exact, the ECC-CI m
ods, both CI2 and CI general, gave the exact excited st
by both variational and non-variational methods.
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Though one-dimensional harmonic oscillator is the si
plest possible system, some of the present results shoul
in common to those of the more general complex electro
systems.

The results of the present series of papers may lead
new wave in the studies of exact and very accurate w
functions of the ground and excited states of molecular s
tems, making precise predictions possible in the theoret
studies of chemistry and physics.
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