Electron–phonon coupling in negatively charged acene- and phenanthrene-edge-type hydrocarbon crystals

Takashi Kato
Institute for Fundamental Chemistry, 34-4 Takano-Nishihiraki-cho, Sakyo-ku, Kyoto 606-8103, Japan

Kazunari Yoshizawa
Institute for Fundamental Research of Organic Chemistry, Kyushu University, Higashi-ku, Fukuoka 812-8581, Japan

Kazuyuki Hirao
Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan

(Received 15 October 2001; accepted 29 November 2001)

Vibronic interaction and its role in the occurrence of possible superconductivity in the monoanions of phenanthrene-edge-type aromatic hydrocarbons are studied. The vibrational frequencies and the vibronic coupling constants are computed and analyzed and the electron–phonon coupling constants are estimated. The results for phenanthrene-edge-type hydrocarbons are compared with those for acene-edge-type hydrocarbons. The lowest frequency mode and the C–C stretching modes of 1400–1600 cm\(^{-1}\) afford large electron–phonon coupling constants in the monoanions of acene- and phenanthrene-edge-type hydrocarbons. The total electron–phonon coupling constants decrease with an increase in the number of carbon atoms in both acene- and phenanthrene-edge-type hydrocarbons, but those for the monoanions of phenanthrene-edge-type hydrocarbons are larger than those for the monoanions of acene-edge-type hydrocarbons. Possible superconducting transition temperatures \(T_c\)'s for the monoanions are estimated. The monoanions of phenanthrene-edge-type hydrocarbons would have higher \(T_c\)'s than the monoanions of acene-edge-type hydrocarbons if phenanthrene-edge-type hydrocarbons exhibit superconductivity. These results suggest that molecular edge structures as well as molecular sizes have relevance to the strength of electron–phonon coupling and \(T_c\)'s. The fragment molecular-orbital method (FMO) method successfully characterizes the distinct electronic structures of the two small polynuclear aromatic hydrocarbons (PAHs) with different type of edges such as anthracene and phenanthrene.

I. INTRODUCTION

Superconductivity or the presence of zero resistance towards the passage of an electrical current is a very interesting property of many solids. Early ideas about conventional superconductivity culminated in a theory put forward by Bardeen, Cooper, and Schrieffer (BCS) (Refs. 1, 2) in 1957. According to the BCS theory, the interaction of conduction electrons with phonons\(^3\)–\(^5\) leads to an attraction between the normally repulsive electrons so that they can pair up and flow without resistance. However, we cannot at present still define the connection between structure and superconductivity because the microscopic mechanisms for the phenomenon remains unsolved for many systems such as high-temperature cuprates.

Batlogg et al.\(^6\) reported complete switching between the insulating and superconducting states in the fullerene field-effect transistor (FET). A series of acenes such as anthracene \((C_{14}H_{10})\), tetracene \((C_{18}H_{12})\), and pentacene \((C_{22}H_{14})\) were recently found to exhibit superconductivity at low temperatures.\(^7\) The superconducting transition temperatures \(T_c\)'s increase from 2 to 4 K with a decrease in molecular size from pentacene to anthracene. Such a new class of superconductors is insulating organic crystals that are made metallic through charge injection by using FET geometry. The electron density should correspond to about one electron per molecule, assuming that only the topmost molecular layer takes part in conduction.\(^8\) Several researchers proposed that the charge transport in the crystals of naphthalene \((C_{10}H_8)\), anthracene, tetracene, and pentacene is dominated by electron–phonon interactions.\(^9\)–\(^12\) Interestingly, possible superconductivity of polyacenes has been proposed from a theoretical viewpoint.\(^13\),\(^14\) Batlogg et al. recently observed gate-induced superconductivity in hole- and electron-doped \(C_{60}\) single-crystal FET structures.\(^15\) Pure intramolecular Raman-active modes are suggested to be important in a BCS-type strong coupling scenario in superconductivity in fullerenes.\(^16\)

It has been clarified from theoretical studies at various levels that the electronic properties of highly condensed polynuclear aromatic hydrocarbons (PAHs) significantly depend on their molecular sizes and edge structures.\(^17\)–\(^22\) There are several prototypes for the edge structures of PAHs: one of the most important edge structures is “phenanthrene-edge-type hydrocarbons.”

\(^\text{a}\)Author to whom correspondence should be addressed. Present address: Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, D-70569 Stuttgart, Germany. Electronic mail: kato@ifc.or.jp, t.kato@fkf.mpg.de

\(^\text{b}\)Electronic mail: kato@ifc.or.jp, t.kato@fkf.mpg.de
edge-type” (or armchair-edge-type) and another is “acene-edge-type” (or zig–zag-edge-type), as shown in Scheme 1. The characteristics of the frontier orbitals, the orbitals in the vicinity of the Fermi level, significantly depend on the edge structures of PAHs. In the acene-edge structure, the frontier orbitals are localized at the edges, whereas in the phenanthrene-edge structure the frontier orbitals are distributed over the carbon structure. The characterization of the electronic structures of anthracene and phenanthrene is a classical problem in quantum chemistry. Although both anthracene and phenanthrene have the same molecular formula of C14H10, their electronic properties are quite different, due to their structural differences. Fukui and Hosoya explained the reason why phenanthrene is energetically more stable than anthracene. It is intriguing to study how the structural differences cause the different properties of the vibronic interactions and electron–phonon interactions between acene- and phenanthrene-edge-type hydrocarbons.

In view of the interesting molecular superconductivity in acenes and fullerene, we can reasonably expect that phenanthrene-edge-type hydrocarbon crystals such as phenanthrene (C14H18), chrysene (C18H12), and benzo[a]chrysene might also exhibit superconductivity caused by vibronic interactions between molecular vibrations and frontier orbitals. In this study, we first calculate the orbital vibronic coupling constants which are characterized by intramolecular properties in phenanthrene-edge-type hydrocarbons. We next calculate the electron–phonon coupling constants for the monoanions of phenanthrene-edge-type hydrocarbons in the framework of a one-electron approximation. We compare the electron–phonon coupling in the monoanions of phenanthrene-edge-type hydrocarbons with that in the monoanions of acene-edge-type hydrocarbons studied in a previous research. Next, we predict possible Tcs for the monoanions of phenanthrene-edge-type hydrocarbon crystals. We derive structure-property relationships in the predicted Tcs.

II. THEORETICAL BACKGROUND

We describe the theoretical background for the vibronic coupling in phenanthrene-edge-type hydrocarbons. That for acene-edge-type hydrocarbons was described in the previous research. We will use small letters for “one-electron orbital symmetries” and capital letters for symmetries of both “electronic” and “vibrational” states, as usual. The vibronic matrix element, E_{xy}(r,Q), is given by

\[E_{xy}(r,Q) = \epsilon_{xy}(r,Q) - \epsilon_{xy}(r,0) \]

\[= \sum_a \left(\frac{\partial \epsilon_{xy}}{\partial Q_a} \right)_0 Q_a + \frac{1}{2} \sum_{a,b} \frac{\partial^2 \epsilon_{xy}}{\partial Q_a \partial Q_b} \left(Q_a Q_b \right)_0, \]

where \(\epsilon_{xy}(r,Q) \) is defined as

\[\epsilon_{xy}(r,Q) = \langle \phi_x | h(r,Q) | \phi_y \rangle. \]

Here, \(h(r,Q) \) is the Hamiltonian of one-electron orbital energy, and \(\phi_x \) and \(\phi_y \) are one-electron wave functions. \(r \) and \(Q \) signify the whole set of coordinates of the electrons and nuclei, respectively. What we see in the first term on the right-hand side of Eq. (1) is the linear orbital vibronic coupling constant.

A. Vibronic interactions between the nondegenerate lowest unoccupied molecular orbitals (LUMO) and the totally symmetric vibrational modes in phenanthrene-edge-type hydrocarbons

Let us look into orbital vibronic coupling in phenanthrene-edge-type hydrocarbons. The symmetry labels of the LUMO of phenanthrene (C14H18), chrysene (C18H12), and benzo[a]chrysene (C22H14) are \(A_1 \), \(b_g \), and \(a_2 \), respectively. Direct product of the LUMO symmetry can be reduced as

\[a_2 \times a_2 = A_1 \]

for phenanthrene and benzo[a]chrysene,

\[b_g \times b_g = A_g \]

for chrysene.

Therefore, the totally symmetric \(A_1 \) and \(A_g \) modes couple to the LUMO. The symmetry labels of \(A_1 \) and \(A_g \) are abbreviated as “A” in the following discussion. The numbers of such totally symmetric modes are 23, 29, and 35 for phenanthrene, chrysene, and benzo[a]chrysene, respectively. The dimensionless linear orbital vibronic coupling constants of the LUMO for its \(m \)th mode is defined by Eq. (5),

\[g_{\text{LUMO}}(\omega_m) = \frac{1}{\hbar \omega_m} \left\langle \text{LUMO} \left| \frac{\partial h}{\partial q_{A_m}} \right| \text{LUMO} \right\rangle. \]

In this equation, \(q_{A_m} \) is the dimensionless normal coordinate of the \(m \)th mode defined by the normal coordinate \(Q_{A_m} \), as

\[q_{A_m} = \sqrt{\omega_m / \hbar Q_{A_m}}. \]
B. Electron–phonon coupling constants in the monoanions of phenanthrene-edge-type hydrocarbons

We set up some assumptions to apply the calculated vibronic coupling constants to the solid-state properties of phenanthrene-edge-type hydrocarbon crystals. We first use a molecular orbital approximation for the band structure of the anion crystals in order to estimate electron–phonon coupling constants. We next assume that the conduction band of the anion crystals mainly consists of LUMO of free phenanthrene-edge-type hydrocarbons. We can derive the dimensionless electron–phonon coupling constant λ (Refs. 16,
26) in the monoanions of phenanthrene-edge-type hydrocarbon crystals,

$$\lambda = \sum_m \lambda_m \cdot \lambda_m = n(0) l_{\text{LUMO}}(\omega_m),$$ \hspace{1cm} (7)

where $n(0)$ is the density of states at the Fermi level per eV, per spin, and per molecule, and $l_{\text{LUMO}}(\omega_m)$ is the electron–phonon coupling constant defined as

$$l_{\text{LUMO}}(\omega_m) = g_{\text{LUMO}}^2(\omega_m) \hbar \omega_m.$$ \hspace{1cm} (8)

III. RESULTS AND DISCUSSION

A. Optimized structure

The structures of neutral phenanthrene, chrysene, and benzo[a]chrysene were optimized under C_{2v}, C_{2h}, and C_{2v} symmetries, respectively, using the hybrid Hartree–Fock (HF)/density-functional-theory (DFT) method of Becke and Lee, Yang, and Parr (B3LYP), and the 6-31G* basis set. The GAUSSIAN 98 program package was used for our theoretical analyses. This level of theory is, in our experience, sufficient for reasonable descriptions of the geometric and vibrational features of hydrocarbons. Optimized structures of acene- and phenanthrene-edge-type hydrocarbons are shown in Fig. 1. Each structure was confirmed from vibrational analysis to be a minimum on each potential energy surface. Occupied frontier orbitals of anthracene and phenanthrene are shown in Fig. 2. According to our calculations, the energy difference between the highest occupied molecular orbital (HOMO) and the LUMO of phenanthrene (4.667 eV) is larger than that of anthracene (3.593 eV), as expected. Optimized structures of phenanthrene, chrysene, and benzo[a]chrysene are more stable in energy than those of anthracene, tetracene, and pentacene by 2.5, 10.2, and 16.5 kcal/mol, respectively. The monoanions of phenanthrene-edge-type hydrocarbons, however, are expected to be energetically less stable than the monoanions of acene-edge-type hydrocarbons because the LUMOs of phenanthrene-edge-type hydrocarbons lie higher in energy than those of acene-edge-type hydrocarbons. We can see from Fig. 1 that in the D_{2d} structure of anthracene, there is a distinct variation in the C–C distances. This result is reasonable in view of the orbital patterns of the HOMOs shown in Fig. 2. This illustra-
tion demonstrates that the atomic orbitals between two neighboring C_{1a} and C_{2a}, and C_{3a} and C_{4a} are combined in phase and thus form strong \(\pi \)-bonding in the HOMO of anthracene. On the other hand, the HOMO contributes to antibonding interactions between C_{2a} and C_{3a}, C_{2a} and C_{2b}, and C_{4a} and C_{4b}. This can explain why the C_{1a}–C_{2a} \approx 1.400 \text{ Å} and C_{3a}–C_{4a} bonds \approx 1.370 \text{ Å} are shorter than the C_{2a}–C_{3a} \approx 1.430 \text{ Å}, C_{2a}–C_{2b} \approx 1.445 \text{ Å}, and C_{4a}–C_{4b} bonds \approx 1.426 \text{ Å}. Similar discussions can be made in phenanthrene. The C–C bond distances between two neighboring C atoms whose atomic orbitals are combined in phase in the HOMO are short [C_{1}–C_{2} (1.403 \text{ Å}), C_{3}–C_{8} (1.402 \text{ Å}), C_{4}–C_{5}...
(1.379 Å), and C₆–C₇ (1.379 Å), whereas those between two neighboring C atoms whose atomic orbitals are combined out of phase in the HOMO are long [C₂–C₃ (1.443 Å), C₅–C₆ (1.410 Å), and C₇–C₈ (1.420 Å)]. It should be noted that the C₃–C₄ (1.420 Å) and C₈–C₉ (1.443 Å) bonds are significantly long even though the HOMO contributes to π bonding interactions between these two neighboring carbon atoms. This is because the HOMO-1, which lies only 0.32 eV below the HOMO, also plays an essential role in the determination of the structure of phenanthrene. In fact, the HOMO-1 contributes strong π antibonding interactions between C₃ and C₄, and C₈ and C₉.

B. Orbital vibronic interactions and electron–phonon coupling in the monoanions of acene- and phenanthrene-edge-type hydrocarbons

We carried out vibrational analyses of these acene- and phenanthrene-edge-type hydrocarbons at the B3LYP/6-31G* level of theory. Selected vibrational modes of these molecules are shown in Fig. 3. We next calculated first-order derivatives at this equilibrium structure on each orbital energy surface by distorting the molecule along the totally symmetric modes of these molecules in order to obtain orbital vibronic coupling constants \(g_{\text{LUMO}}(\omega_m) \). We can estimate the electron–phonon coupling constants \(l_{\text{LUMO}}(\omega_m) \) from the dimensionless diagonal linear orbital vibronic coupling constants by using Eq. (8). The calculated electron–phonon coupling constants in the monoanions of acene- and phenanthrene-edge-type hydrocarbons are shown in Fig. 4. The LUMOs of these molecules are shown in Fig. 5.

Let us take a look at the electron–phonon coupling of \(A_1 \) vibrational modes to \(a_2 \) LUMO in phenanthrene. We see from Fig. 4 that the C–C stretching \(A_1 \) mode of 1434 cm⁻¹ strongly couples to the \(a_2 \) LUMO in phenanthrene. When phenanthrene is distorted along this \(A_1 \) mode shown in Fig. 3, the antibonding interactions between C₁ and C₂, and C₅ and C₆ in the \(a_2 \) LUMO become weak, and the bonding interaction between C₂ and C₃ becomes strong. Therefore, the \(a_2 \) LUMO is significantly stabilized in energy by such a distortion. On the other hand, when phenanthrene is distorted toward the opposite direction along the arrow of this mode, the \(a_2 \) LUMO is significantly destabilized in energy. This orbital–vibration relationship explains why the C–C stretching \(A_1 \) mode of 1434 cm⁻¹ strongly couples to the \(a_2 \) LUMO in phenanthrene. In a similar way, the C–C stretching \(A_1 \) mode of 1670 cm⁻¹ strongly couples to the \(a_2 \) LUMO in phenanthrene. Let us next look at the electron–phonon coupling of the \(A_1 \) vibrational modes to the \(b_{3u} \) LUMO in anthracene. Figure 4 demonstrates that the C–C stretching \(A_1 \) modes of 1445 and 1610 cm⁻¹ and the lowest frequency \(A_1 \) mode of 399 cm⁻¹ strongly couple to the \(b_{3u} \) LUMO. It is worth noting that the electron–phonon coupling constants for...
the C–C stretching A_g modes of 1445 and 1610 cm$^{-1}$ in anthracene are smaller than those for the C–C stretching A_1 modes of 1434 and 1670 cm$^{-1}$, respectively, in phenanthrene. This can be understood as follows. When anthracene is distorted along the A_g mode of 1445 cm$^{-1}$, the antibonding interactions between C_{1a} and C_{2a}, and C_{1b} and C_{2b} in the b_{3u} LUMO are weakened, and the bonding interaction between C_{2a} and C_{2b} is strengthened, and therefore the b_{3a} LUMO is stabilized in energy. However, the antibonding interactions between C_{3a} and C_{4a}, and C_{3b} and C_{4b} is strengthened, and the bonding interactions between C_{2a} and C_{3a}, C_{4a} and C_{4b}, and C_{2b} and C_{3b} are weakened and thus the b_{3u} LUMO is significantly destabilized in energy by such a distortion. Since such stabilization and destabilization effects are compensated each other, the A_g mode of 1445 cm$^{-1}$ couples less strongly to the LUMO in anthracene than the A_1 mode of 1434 cm$^{-1}$ in phenanthrene. In addition, the frontier orbitals of anthracene is somewhat localized on C_{1a}, C_{3a}, and C_{3b}, while those of phenanthrene are distributed evenly over the carbon structure. That is, the frontier orbitals of anthracene have nonbonding characters and thus these orbitals cannot strongly couple to the LUMO in anthracene than the A_1 mode.

Table I. Superconducting transition temperatures T_C(s) (in K) for anthracene, tetracene, and pentacene as a function of $n(0)$ and μ^*.

<table>
<thead>
<tr>
<th>$n(0)$</th>
<th>2.0</th>
<th>2.5</th>
<th>3.0</th>
<th>3.5</th>
<th>4.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>anthracene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ^*</td>
<td>0.099</td>
<td>0.154</td>
<td>0.204</td>
<td>0.250</td>
<td>0.292</td>
</tr>
<tr>
<td>T_C obs.</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>tetracene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ^*</td>
<td>0.069</td>
<td>0.118</td>
<td>0.163</td>
<td>0.205</td>
<td>0.244</td>
</tr>
<tr>
<td>T_C obs.</td>
<td>2.7</td>
<td>2.7</td>
<td>2.7</td>
<td>2.7</td>
<td>2.7</td>
</tr>
<tr>
<td>pentacene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ^*</td>
<td>0.041</td>
<td>0.084</td>
<td>0.124</td>
<td>0.161</td>
<td>0.197</td>
</tr>
<tr>
<td>T_C obs.</td>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
</tr>
</tbody>
</table>

Reference 7.

Table II. Calculated T_C(s) (K) for the monooanion of phenanthrene (C$_{14}$H$_{10}$) as a function of μ^* and $n(0)$.

<table>
<thead>
<tr>
<th>μ^*</th>
<th>0.00</th>
<th>0.05</th>
<th>0.10</th>
<th>0.15</th>
<th>0.20</th>
<th>0.25</th>
<th>0.30</th>
<th>0.35</th>
<th>0.40</th>
<th>0.45</th>
<th>0.50</th>
<th>0.55</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n(0)$</td>
<td></td>
</tr>
<tr>
<td>$n(0)$</td>
<td>2.0</td>
<td>2.5</td>
<td>3.0</td>
<td>3.5</td>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$n(0)$</td>
<td></td>
</tr>
<tr>
<td>$n(0)$</td>
<td>2.0</td>
<td>2.5</td>
<td>3.0</td>
<td>3.5</td>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>89.88</td>
<td>127.09</td>
<td>160.10</td>
<td>188.81</td>
<td>213.67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.86</td>
<td>97.76</td>
<td>130.06</td>
<td>158.80</td>
<td>184.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39.54</td>
<td>70.56</td>
<td>101.16</td>
<td>129.32</td>
<td>154.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.17</td>
<td>46.55</td>
<td>74.19</td>
<td>100.96</td>
<td>125.64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.72</td>
<td>26.88</td>
<td>50.13</td>
<td>74.47</td>
<td>97.90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.24</td>
<td>12.59</td>
<td>30.05</td>
<td>50.77</td>
<td>72.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.21</td>
<td>4.12</td>
<td>14.99</td>
<td>30.88</td>
<td>49.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.08</td>
<td>0.68</td>
<td>5.51</td>
<td>15.79</td>
<td>29.76</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.07</td>
<td>1.15</td>
<td>6.08</td>
<td>15.20</td>
<td>29.76</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.40</td>
<td>5.85</td>
<td>13.72</td>
<td>29.76</td>
<td>58.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.11</td>
<td>1.36</td>
<td>2.47</td>
<td>5.85</td>
<td>13.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.11</td>
<td>1.11</td>
<td>2.47</td>
<td>5.85</td>
<td>13.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C. Possible T_Cs for the monooanions of phenanthrene-edge-type hydrocarbon crystals

We are now able to estimate T_C for the hydrocarbon monooanions by using the approximate solution of the Eliashberg equation32 from the intramolecular vibronic coupling constants, $g_{\text{LUMO}}(\omega_m)$, and Eqs. (7) and (8). On the basis of the calculated BCS electron–phonon coupling constants,33 we estimate T_C using McMillan’s formula34,35 McMillan’s formula was derived from a three-dimensional formalism, while the electron carriers in acene-edge-type molecules...
form a quasi-two-dimensional system. But we believe that McMillan’s formula is still available for qualitative discussions. For $\lambda < 1.5$, this is available for an approximate solution to the Eliashberg equations,

$$T_c = \frac{\omega_{in}}{1.2} \exp \left[-\frac{1.04(1 + \lambda)}{\lambda - \mu^*(1 + 0.62\lambda)} \right],$$ \hspace{1cm} (9)$$

where μ^* is the Coulomb pseudopotential describing the electron–electron repulsion, and the logarithmically averaged phonon frequency, ω_{in}, is given by

$$\omega_{in} = \exp \left[\sum_m \frac{\lambda_m \ln \omega_m}{\lambda} \right].$$ \hspace{1cm} (10)$$

The density of states at the Fermi level $n(0)$ is obviously sensitive to the overlap (the transfer integral) between the LUMOs on neighboring molecules, and consequently to the distance and the orientation between the molecules and to the extent and the position of the nodes of the LUMO. Therefore, let us first estimate approximate values of $n(0)$ for anthracene, tetracene, and pentacene using Eqs. (9) and (10). T_c for the monoanions of anthracene, tetracene, and pentacene as a function of $n(0)$ and μ^* are listed in Table I. The T_c for anthracene, tetracene, and pentacene were reported to be 4, 2.7, and 1.9 K, respectively.\(^7\) Considering usual values of μ^* (0.1–0.2) and the experimental values of T_c, the values of $n(0)$ for anthracene, tetracene, and pentacene are 2.0–3.0, 2.0–3.5, and 2.5–4.0 states/eV·spin-molecule, respectively. Therefore, $n(0)$ would slightly increase with an increasing in molecular size. Calculated T_c for the monoanions of phenanthrene, chrysene, and benzo[a]chrysene as a function of $n(0)$ and μ^* are listed in Tables II–IV, respectively. We expect from these data that the monoanions of phenanthrene-edge-type hydrocarbons would have higher T_c than the monoanions of acene-edge-type hydrocarbons if we assume that both type hydrocarbons have the same molecular formula have approximately similar values of $n(0)$ and μ^*. For example, the T_c for the monoanion of phenanthrene is estimated to be high; 39.54 K for $n(0) = 2.0$ and $\mu^* = 0.10$, 46.55 K for $n(0) = 2.5$ and $\mu^* = 0.15$, and 50.13 K for $n(0) = 3.0$ and $\mu^* = 0.20$. The T_c for the monoanion of chrysene is also estimated to be higher than that for the monoanion of tetracene; 15.56 K for $n(0) = 2.5$ and $\mu^* = 0.20$. Therefore, molecular edge structures as well as molecular sizes have relevance to the values of the T_c.

D. Electronic structures of anthracene and phenanthrene

To clarify the remarkable difference in polyacene and polyphenanthrene, we examine the electronic structures of small carbon clusters with different edge structures. For example, we have investigated anthracene and phenanthrene as a member of the acene-edge group and the phenanthrene-edge group, respectively. We think that the difference between the two types of ladder polymers with different edge structures can be reduced to the characterization of anthracene and phenanthrene. The characterization of the electronic structures of anthracene and phenanthrene is a classical problem in quantum chemistry. Fukui\(^23\) and Hosoya\(^24,25\) explained the reason why phenanthrene is energetically more stable than anthracene by regarding naphthalene as a starting molecule for construction of the two PAHs. To the best of our knowledge, however, detailed orbital-interaction analyses that are helpful for gaining a better understanding of the contrast between the two PAHs have not yet been performed.

Let us look at the difference between anthracene and phenanthrene in terms of orbital interactions.\(^22\) Anthracene

<table>
<thead>
<tr>
<th>μ^* (eV)</th>
<th>$n(0)$ (states/eV·spin-molecule)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>20.90</td>
</tr>
<tr>
<td>0.05</td>
<td>9.29</td>
</tr>
<tr>
<td>0.10</td>
<td>2.72</td>
</tr>
<tr>
<td>0.15</td>
<td>0.34</td>
</tr>
<tr>
<td>0.20</td>
<td>0.01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>μ^* (eV)</th>
<th>$n(0)$ (states/eV·spin-molecule)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>0.35</td>
<td></td>
</tr>
</tbody>
</table>
and phenanthrene can be theoretically partitioned into naphthalene and butadiene fragments in different ways, although other partitions are possible. Anthracene is derived by connecting the two terminal carbons of butadiene to the 2 and 3 sites of naphthalene, and phenanthrene by connecting the two terminal carbons of butadiene to the 1 and 2 sites of naphthalene, as indicated in Scheme 2. Tetracene and chrysene can be constructed in similar ways. We apply the useful fragment molecular orbital (FMO) method\(^\text{36}\) to the characterization of the electronic structures of anthracene and phenanthrene.

We show an orbital-interaction diagram for anthracene in Fig. 7, in which \(\sigma\) orbitals are neglected. It is essential to note that the \(b_{2g}\) HOMO and \(b_{3u}\) LUMO of anthracene are close-lying compared with the HOMOs and LUMOs of the naphthalene and butadiene fragments. We consider the reason why the HOMO–LUMO gap of anthracene becomes small. As shown in Fig. 7, the \(a_{1u}\) HOMO of naphthalene and the \(a_{2}\) HOMO of butadiene interact nicely at the connecting sites (2 and 3 sites of naphthalene) so that the in-phase combination \(a_{1u}\) is pushed down and out-of-phase counterpart \(b_{2g}\), the HOMO of anthracene, is pushed up. Moreover, since the \(b_{1g}\) LUMO of naphthalene and the \(b_{2}\) LUMO of butadiene also interact nicely, the in-phase combination \(b_{3u}\), the LUMO of anthracene, is pushed down and the out-of-phase combination \(b_{1g}\) is pushed up. As a consequence, the HOMO–LUMO gap of anthracene becomes small.

On the other hand, the HOMO–LUMO gap of phenanthrene is rather large, as shown in Fig. 7. The FMO analyses for phenanthrene are strikingly different from those for anthracene. The \(a_{1u}\) HOMO of naphthalene and the \(a_{2}\) HOMO of butadiene have no good interaction at the connecting sites (1 and 2 sites of naphthalene), but the \(a_{1u}\) HOMO of naphthalene and the \(b_{2}\) LUMO of butadiene have a good interaction due to their orbital symmetries. The latter in-phase HOMO–LUMO interaction between the fragments would importantly give rise to electron delocalization at the connecting sites,\(^\text{23}\) which will lead to stabilization of this molecule, phenanthrene. Also, the \(b_{1g}\) LUMO of naphthalene and the \(b_{2}\) LUMO of butadiene have no interaction at the connecting sites, but the \(b_{1g}\) LUMO of naphthalene and the \(a_{2}\) HOMO of butadiene have a good interaction that would also lead to electron delocalization at the connecting sites. As a consequence, the HOMO of phenanthrene is stabilized and the LUMO of phenanthrene is destabilized. Thus, the HOMO–LUMO gap of phenanthrene becomes larger than that of anthracene.

IV. CONCLUDING REMARKS

We have studied the vibronic interaction and its role in the occurrence of possible superconductivity in phenanthrene-edge-type hydrocarbons. We have computed the vibrational frequencies and the orbital vibronic coupling constants for phenanthrene-edge-type hydrocarbons. Using the vibronic coupling constants, we evaluated the electron–phonon coupling constants in the monoanions of phenanthrene-edge-type hydrocarbons. Our calculational result shows that the C–C stretching \(A_{1}\) modes of 1434 and 1670 cm\(^{-1}\) have large electron–phonon coupling constants in the monoanion of phenanthrene. The lowest frequency \(A_{2}\) mode of 399 cm\(^{-1}\) and the C–C stretching modes of 1445 and 1610 cm\(^{-1}\) strongly couple to the \(b_{3u}\) LUMO in anthracene. As in anthracene and phenanthrene, the lowest fre-
quency mode and the C–C stretching modes give large electron–phonon coupling constants in the monoanions of other acene- and phenanthrene-edge-type hydrocarbons. The total electron–phonon coupling constants for the monoanions of anthracene, tetracene, and pentacene are estimated to be 0.186, 0.154, and 0.127 eV, respectively, whereas those for the monoanions of phenanthrene, chrysene, and benzo[a]chrysene are estimated to be 0.300, 0.194, and 0.179 eV, respectively. Therefore, the electron–phonon coupling constants decrease with an increase in the number of carbon atoms in both acene- and phenanthrene-edge-type hydrocarbons. The total electron–phonon coupling constants for the monoanions of phenanthrene-edge-type hydrocarbons are larger than those for the monoanions of acene-edge-type hydrocarbons. The LUMOs of acene-edge-type hydrocarbons are localized at the edges, whereas those of phenanthrene-edge-type hydrocarbons are distributed over the carbon structure. That is, the LUMOs of acene-edge-type hydrocarbons have somewhat nonbonding character and thus cannot strongly couple to the totally symmetric vibrational modes compared with the LUMOs of phenanthrene-edge-type hydrocarbons. Therefore, not only molecular sizes but also molecular edge structures have relevance to the strength of the electron–phonon coupling. We estimated possible T_s for the monoanions of phenanthrene-edge-type hydrocarbons. According to our calculation, the monoanions of phenanthrene-edge-type hydrocarbons would have higher T_s than the monoanions of acene-edge-type hydrocarbons if the monoanions of phenanthrene-edge-type hydrocarbons exhibit superconductivity. Using the FMO method, we explained the distinct electronic structures of the two small PAHs with different type of edges such as anthracene and phenanthrene.

ACKNOWLEDGMENTS

K.Y. would like to thank a Grant-in-Aid for Scientific Research on the Priority Area “Molecular Physical Chemistry” from the Mombu-Kagaku-Shou and the Iwata Niqo Foundation’s Research Grant. T.K. is grateful to a Research Fellowship from the Japan Society for the Promotion of Science.

10 E. A. Silinich and V. Capek, Organic Molecular Crystals (AIP, New York, 1994).
32 (a) G. M. Eliashberg, Zh. Eksp. Teor. Fiz. 38, 966 (1960); (b) 39, 1437 (1960); (c) Sov. Phys. JETP 11, 696 (1960); (d) 12, 1000 (1961).