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The iterative configuration interactiothCl) method is applied to molecular systems within finite
basis using only few1—3) variables and shown to give the exact results that are identical to the full
ClI (FCI) ones. Since each iteration step of ICl is variational, the ICI converges monotonically to the
exact solution from above. The diagonalization in ICl is so slight as the number of variables is so
small, in contrast to the huge number of variables of FCI. We calculated the molecular ground states
of various spin-space symmetries using minimal basis and double zeta basis. The number of
iterations for convergence was small for minimal basis but moderate for double zeta basis,
considering that only 1-3 variables are optimized in each iteration ste@0@ American Institute

of Physics. [DOI: 10.1063/1.1487830

I. INTRODUCTION We may further divide the nuclear attraction operator into

. . . . those due to nucleus, nucleusB, etc., and thenNp is
Solving the Schrdinger equatioriSE) is a central theme 1 5 whereN, is the number of the nuclei involved in the

of theoretical chemistry, since it constitutes a basic principl§y,gjecule. When we use the Hamiltonian in the second quan-
. . . . _6 . . .

of chemistry. In this series of studie;, we have investi- ;04 form, it may be divided into singles and doubles opera-
gated the structure of the exact wave function, and proposegs ang therNp, is the general singles and doubk&SD)

the iterative configuration interactidfCl) method-*and the |, per it necessary, the singles part may be further divided
extended coupled clust¢ECC) r_nethod_ as the methods 10 4 kinetic part and nuclear attraction part. In this paper, we
calculate the exact wave function. This has been confirmefise the division associated with EQ.]) and the nuclear
numerically in the applications to harmonic o_scillét%and attraction part is not divided, so thik, is three for all the
hydrogen atonf, both involving only one-particle operator. molecules, independent of the quality of the basis set. We
Horn and Weinstein, Kosloff and Tal-Ezer, Cioslowski, andp,ve also performed the simplest ICSICI), where the
others considered to solve the time-dependent SE on thg,miltonian is not divided nameljp=1. Th'e number of

Imaginary time axis. Huang etal” proposed the surplus araples in the present ICI is, therefore, only one or three, in
function method for the variational Monte Carlo calcula- -ynirast to the huge ones of the FCI.

tions. Nooijerf considered to solve the generalized coupled
cluster wave function by the density equafibrthat is
equivalent with the SE. Van Voorhis and Head-Gordon II. ICI METHOD
sh_owed numerically that the generalized coupled cluster cer- We briefly explain the ICI method® We divide the
tainly reproduces the full Cl energy for Ne and.N Hamiltonian intoN, parts as

In a finite basis set space, the full FCI) method gives D
the best possible approximation of the exact solution of the No
SE within the linear expansion treatment. The ICl and ECC H=|21 Hi, (2.9)
methods should therefore give the results identical to the
FCI, when applied using the same basis set. We show in thignd corresponding to this division, we define the variable
paper that this is certainly the case for the ICI method. operatorS by

The number of the variables of the ICI methdd , is Np
related to the way how we define the Hamiltonian operator: 5= CH,. (2.2)
Np is the dividing number of the Hamiltonian operator. =1

When the Hamiltonian is given by The ICI wave function is defined by the recurrence,

n=(1 n-1 2.3
H=2 —%Ai—Z > zA/rAiJriZj 1r;, (1.0 Un= (1S @3

i wheren is the iteration number. The variable coefficie@s

o o . in theith iteration are written a€, ,, and are calculated by
we may divide it into the kinetic operator, nuclear attractionihe variational principle using the secular equation

operator, and electron repulsion operator. Thég,is three.

<‘r/fn|H_En|l//n—l>:O- (2.4
dFax: +81-75-753-5910. Electronic mail: hiroshi@sbchem.kyoto-u.ac.jp (pal(H=E)H,|,_1)=0, (I=1,...Np). (2.5
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Note that the energy of theth iteration,E,, satisfies 65 -

<¢n|H_En|¢n>:O (2.6

as well as Eq(2.4).
It is convenient to introduce a unity operator b

70

(Hp=1), and assigrC, to this operator instead of unity in

Eq. (2.3. Then, the ICI wave function is written as 1
N —_— 80 -1
D o\c> 4
1//n=2 CI,nHI‘#nfla (27) ; ]
=0 o 85
%) 4

i

and the above secular equation is rewritten as ]
Np 90
2 (n-a[Hi(H=E)Hylgn-1)C1n=0, ]
95

(1=0,..Np). (2.8
Note that this is a very small secular equation of the dimen- 100

sion of 2 and 4 in the present calculations. All that is neces-
sary for the ICI calculation is the evaluation of the few inte-

grals involved in Eq(2.8), namely Iteration
_ FIG. 1. Convergence of SICI and ICI3 calculations with the minimal
HlJ—<‘r//n—1|H|HHJ|'/’n—1> (2.9 STO-6G basis sets. Full and open symbols are SICI and ICI3 results, re-
and spectively.
Siy=(¥n-a|HiHs[¢n-1). (2.10

‘runs over the full configurations. However, since the operator

The essence of the finite basis approximation adopted iRy, is one or two electron operator, the integfa,_,|H,|Kk)
FCl is that these integrals are calculated within the space q§ ,erq if k) is different from the elements dfj,_;) by
this finite basis set. We denote the full configuration space ofyore than two orbital indices. Using such a criterion, we can
this finite space by|k)}, which is complete within this finite  make the evaluation of the integrats, andsS,; efficient.

space, namely Since each step of ICl is variational, we can calculate the
ground state of each spin-space symmetry by starting from
zk: [k)(k|=1. (212 an appropriate initial guess functioit,). The higher excited

states of the same symmetry as the ground state can be cal-
Then, the integral$d,; and S,; within this finite space are culated by Method A described in Papef For this purpose,
evaluated by using the so-called resolution of identRy) all the lower states of the desired excited states must exist

procedure as within the eigenvalues of the small matrix of the dimension
Np+1 in the iteration process, even though the ground and
HlJZE (2| H KR DA H;| - 1) (2.12 other lower excited states are approximate except for the
kil excited state under consideration. In the present very small

and Np case, this requirement was difficult to be satisfied even
for the lowest excited state, so that we calculated only the
_ ground state of each spin-space symmetry. The calculations

SIJ_EK (n-alHilk)(KIH,[ v 1). 213 of the excited states by Method®Bwhich is ICI-Cl in the

notation of Paper IV,were also not performed by the same

An important notice here is that if we calculate the inte- eason.

gralsH,; andS,; by analytical procedure or some equivalent
method, the solution of the ICI will be the true solution of
the SE. In general, Eq2.11) does not hold, as long as the
basis{|k)} is not truly complete. The finite space approxi- We performed ICI calculations using minimal STO-6G
mation adopted above is a crude approximation and its accibasid® and double-zeta basté.Minimal basis calculations
racy is limited by the quality of the basis set initially were done for CO, KD, HCN, acetylene (§H,), ethylene
adopted. A dilemma of FCI is that to improve the quality, we (C,H,), CHzF, HCHO, CQ, O; and HNCO. Double zeta
have to use very large basis set, but it is impractical since thealculations were done for Be, LiH, CH HF, 'A; and®B;
dimension of FCI soon reaches an astronomical figure. states of CH, and HO in various spin-space symmetries
The ICI calculation of FCI is very simple: it was per- (*A;, 'A,, 'B;, doublet ionizedA,, ?B;, ?B,, and triplet
formed by modifying the related parts of theamess S3A;, 3A,, 3B, state$. In the minimal basis calculations, the
program*? All we have to do is an evaluation of the ten or 1s orbitals of the second-row atoms were kept as frozen
three integrals oH,; and S;;, depending on ICI3Np=3) cores.
or SICI (Np=1). In the RI formula, the configuratiofk) Figure 1 shows the convergence behavior of the SICI

Ill. RESULTS
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TABLE I. FCI, SICI, and ICI3 results for the minimal basis sets. The initial guess is Hartree—Fock.

FCI SICI ICI3

Iter. Iter. Iter. Iter. Iter. Iter.

Active space Hartree—Fock Energy 10 ° au Energy 10%au 10 *au 10 ° au Energy 10%au 10 “au

Molecule occ.Xunocc. Energy(ay Dimension (au) Dim. accuracy (au) accuracy accuracy Dim. accuracy (au accuracy accuracy
H,O 4X2 —75.676 51 37 —75.72791 2 10 —75.72791 2 5 4 7 —75.72791 2 4
HCN 5x4 —92.57346 1436  —92.74121 2 29 -92.74121 8 18 4 27 —92.741 21 8 17
C,H, 5x5 —76.602 41 2640 —76.77587 2 30 —76.775 87 9 19 4 28 —76.775 87 9 18
C,H, 6X6 —77.826 60 29248 —77.99165 2 34 —77.991 65 11 21 4 33 —77.991 65 10 21
CH;F x4 —138.47233 16542 —138.57067 2 23 —138.570 67 4 10 4 20 —138.570 67 4 9
HCHO 6X4 —113.440 29 3644 —113.58452 2 34 —113.584 52 9 21 4 33 —113.584 52 9 21
COo, 8x4 —186.852 49 9189 —187.06594 2 46 —187.06594 16 30 4 44 —187.06594 15 29
O3 9x3 —223.41585 4067 —223.67998 2 67 —223.67998 29 48 4 68  —223.67998 29 48
HNCO 8X5 —167.10576 216249 —167.32397 2 68 —167.32397 18 39 4 69 —167.32397 19 40

and ICI3 with the minimal basis. The initial guess is improve only the order of 0.1-0.01 kcal/mol, many iterations
Hartree—Fock. The energy decreases monotonically and coare done. For example, for HNCO, the molecule having larg-
verges to the FCI energy from above as theoretically preest FCI dimension, the iteration time for the B0au accu-
dicted since each iteration process of ICl is variational. Theacy is 19, that for 10* au accuracy is 40 and that for the

ICI3 gives initially more rapid convergence than the SICI, 10~ au accuracy is 69. Similar behavior is also observed for
because the numbel’ Of Val’lableS IS |argel’ in ICI3. HOWeVerother molecules. For Obtaining millihartree of accuracy,
since the difference is only two, the overall behaviors of ICI310_20 iterations are enough, except for ozone.

and SICl are similar. Generally speaking, the convergence of  Taple || shows the results for the molecules calculated

ICl is very rapid in the initial stage; for example, at S itera- it the double-zeta basis. Again, we confirm that the SICI
tions, 99.66% of the correlation energy is achieved forand ICI3 energies converge to the FCI energy from above.
CHgF. The convergence of Qis slower initially than the

! - Here, we need larger number of iterations than the minimal
other molecules, since the ground state of l@s quasi-

o . basis case, but the convergence was very smooth and mono-
degenerate biradical character and so the Hartree—Fock ini- 9 y

tial guess is poor. For the ICI with the double-zeta basis,omc’ never oscillating, for all the cases. For obtaining a

similar convergence behavior was observed, though the cor‘f—hemlcal accuracy, i.e., 16 au accuracy, we need about 60

vergence was slower than the minimal basis case. average valueiterations. The iteration numbers show again
Table | shows the SICI and ICI3 results, together withthat the convergence is very slow in the final stage to im-
the FCI results, for nine molecules calculated with the mini-Prove only 0.01 kcal/mol. For example, for singlet methyl-
mal basis. The ICI converges exactly to the FCI energy with€N€, it 100k 260 times of iterations to improve only about
out any difficulty. The dimension of the present ICI is only 2 10 ° au (0.006 kcal/mol. A reason is clearly a very small
or 4 and is remarkably small in comparison with the FCInumber of variables in the present calculations, which was
dimension(29 248 for ethylene and 216 249 for HNGQVe kept to 2 to 4 irrespective of the quality of the basis set and
show the number of iterations for obtaining the accuracy othe size of the molecules.
10 % au (0.6 kcal/mo), 10 *au (0.06 kcal/mo), and Table 1ll shows the ICI3 results for water with the
10™° au(0.006 kcal/mol. For ordinary calculations in chem- double zeta basis. We calculated the ground states of many
istry, 102 au accuracy would be sufficient. Comparing thedifferent spin-space symmetries. Since every step of the
iteration times necessary for different accuracies, we see tharesent ICl is totally symmetric, we just used the initial
the ICI converges quite nicely at the initial stage and then, t@uess function of appropriate spin-space symmetry. We used

TABLE II. FCI, SICI, and ICI3 results for the double zeta basis sets. The initial guess is Hartree—Fock excepi(fiB,FHor which it is a single dominant
spin-adapted configuration.

FCI SICI ICI3
Hartree—Fock
or single Iter. Iter. Iter. Iter. Iter. Iter.
Active space config. 10°° au 10%au 10 “au 10°%au 10%au 10 “*au

Molecule occXunocc. Energy(a Dimension Energyau Dim. accuracy Energyau accuracy accuracy Dim. accuracy [Energyau) accuracy accuracy

Be 2X2 —14.568 53 20 —14.58269 2 24 —14.582 69 4 13 4 24 —14.582 69 3 12
LiH 2X10 —7.98109 620 —8.00868 2 89 —8.008 68 11 42 4 86 —8.008 68 9 38
CH* 3X9 —37.885 84 4582 —37.96940 2 286 —37.969 40 89 181 4 329 —37.96940 101 208
HF 5X7 —100.02197 44388 —100.16029 2 198 —100.160 29 59 112 4 201 —100.160 29 63 119
CH, (lAl) 4X10 —38.86152 71881 —38.96244 2 618 —38.96244 145 374 4 679 —38.96244 162 419
CH, (351) 4X10 —38.87492 111600 —38.99814 2 251 —38.99814 107 178 4 288 —38.99814 120 203
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TABLE Ill. FCI and ICI3 results for the singlet, triplet, and ionized states gDHvith double zeta basis s&t.

FCI ICI3

Hartree—Fock Iter. Iter. Iter.
or single config. 10 ° au 10%au 10 “*au
State Energy(au) Dimension Energyay) Dim. accuracy Energyau) accuracy accuracy

Singlet

A, —76.009 56 256 473 —76.157 87 4 214 —76.15787 67 125
A, —75.567 61 245000 -—75.76102 4 362 —75.76102 130 241
B, —75.64327 245776 —75.83826 4 334 —75.83826 117 221
Triplet

A, —75.61383 440475 —75.79715 4 825 —75.79715 169 480
A, —75.584 53 437640 —75.779 89 4 421  —75.779 89 144 276
°B, —75.67220 437520 —75.867 48 4 330 —75.86748 111 215
lonized

2p, —75.456 87 232968 —75.65568 4 319 —75.65568 92 197
2B, —75.507 36 223282 —75.72023 4 290 —75.72023 85 175
2B, —75.292 61 232068 —75.46008 4 356 —75.46008 78 175

°For inital guess, see the text.
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