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Structure of the exact wave function. V. Iterative configuration interaction
method for molecular systems within finite basis

Hiroshi Nakatsujia) and Masahiro Ehara
Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering,
Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan

~Received 28 December 2001; accepted 30 April 2002!

The iterative configuration interaction~ICI! method is applied to molecular systems within finite
basis using only few~1–3! variables and shown to give the exact results that are identical to the full
CI ~FCI! ones. Since each iteration step of ICI is variational, the ICI converges monotonically to the
exact solution from above. The diagonalization in ICI is so slight as the number of variables is so
small, in contrast to the huge number of variables of FCI. We calculated the molecular ground states
of various spin-space symmetries using minimal basis and double zeta basis. The number of
iterations for convergence was small for minimal basis but moderate for double zeta basis,
considering that only 1–3 variables are optimized in each iteration step. ©2002 American Institute
of Physics. @DOI: 10.1063/1.1487830#
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I. INTRODUCTION

Solving the Schro¨dinger equation~SE! is a central theme
of theoretical chemistry, since it constitutes a basic princi
of chemistry.1 In this series of studies,2–6 we have investi-
gated the structure of the exact wave function, and propo
the iterative configuration interaction~ICI! method2,3 and the
extended coupled cluster~ECC! method4 as the methods to
calculate the exact wave function. This has been confirm
numerically in the applications to harmonic oscillator4,5 and
hydrogen atom,6 both involving only one-particle operato
Horn and Weinstein, Kosloff and Tal-Ezer, Cioslowski, a
others considered to solve the time-dependent SE on
imaginary time axis.7 Huang et al.8 proposed the surplu
function method for the variational Monte Carlo calcul
tions. Nooijen9 considered to solve the generalized coup
cluster wave function by the density equation10 that is
equivalent with the SE. Van Voorhis and Head-Gordo11

showed numerically that the generalized coupled cluster
tainly reproduces the full CI energy for Ne and N2.

In a finite basis set space, the full CI~FCI! method gives
the best possible approximation of the exact solution of
SE within the linear expansion treatment. The ICI and E
methods should therefore give the results identical to
FCI, when applied using the same basis set. We show in
paper that this is certainly the case for the ICI method.

The number of the variables of the ICI method,ND , is
related to the way how we define the Hamiltonian opera
ND is the dividing number of the Hamiltonian operato
When the Hamiltonian is given by

H5(
i

2
1

2
D i2(

i
(
A

ZA /r Ai1(
i . j

1/r i j , ~1.1!

we may divide it into the kinetic operator, nuclear attracti
operator, and electron repulsion operator. Then,ND is three.
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We may further divide the nuclear attraction operator in
those due to nucleusA, nucleusB, etc., and then,ND is
NN12 whereNN is the number of the nuclei involved in th
molecule. When we use the Hamiltonian in the second qu
tized form, it may be divided into singles and doubles ope
tors and thenND is the general singles and doubles~GSD!
number. If necessary, the singles part may be further divi
into kinetic part and nuclear attraction part. In this paper,
use the division associated with Eq.~1.1! and the nuclear
attraction part is not divided, so thatND is three for all the
molecules, independent of the quality of the basis set.
have also performed the simplest ICI~SICI!, where the
Hamiltonian is not divided, namelyND51. The number of
variables in the present ICI is, therefore, only one or three
contrast to the huge ones of the FCI.

II. ICI METHOD

We briefly explain the ICI method.2,3 We divide the
Hamiltonian intoND parts as

H5(
I 51

ND

HI , ~2.1!

and corresponding to this division, we define the varia
operatorS by

S5(
I 51

ND

CIHI . ~2.2!

The ICI wave function is defined by the recurrence,

cn5~11Sn!cn21 , ~2.3!

wheren is the iteration number. The variable coefficientsCI

in the i th iteration are written asCI ,n and are calculated by
the variational principle using the secular equation,

^cnuH2Enucn21&50, ~2.4!

^cnu~H2En!HI ucn21&50, ~ I 51,...,ND!. ~2.5!
© 2002 American Institute of Physics
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Note that the energy of thenth iteration,En , satisfies

^cnuH2Enucn&50 ~2.6!

as well as Eq.~2.4!.
It is convenient to introduce a unity operator byH0

(H051), and assignC0 to this operator instead of unity in
Eq. ~2.3!. Then, the ICI wave function is written as

cn5(
I 50

ND

CI ,nHIcn21 , ~2.7!

and the above secular equation is rewritten as

(
J50

ND

^cn21uHI~H2En!HJucn21&CJ,n50,

~ I 50,...,ND!. ~2.8!

Note that this is a very small secular equation of the dim
sion of 2 and 4 in the present calculations. All that is nec
sary for the ICI calculation is the evaluation of the few int
grals involved in Eq.~2.8!, namely

HIJ5^cn21uHIHHJucn21& ~2.9!

and

SIJ5^cn21uHIHJucn21&. ~2.10!

The essence of the finite basis approximation adopte
FCI is that these integrals are calculated within the spac
this finite basis set. We denote the full configuration space
this finite space by$uk&%, which is complete within this finite
space, namely

(
k

uk&^ku51. ~2.11!

Then, the integralsHIJ and SIJ within this finite space are
evaluated by using the so-called resolution of identity~RI!
procedure as

HIJ5(
k,l

^cn21uHI uk&^kuHu l &^ l uHJucn21& ~2.12!

and

SIJ5(
k

^cn21uHI uk&^kuHJucn21&. ~2.13!

An important notice here is that if we calculate the in
gralsHIJ andSIJ by analytical procedure or some equivale
method, the solution of the ICI will be the true solution
the SE. In general, Eq.~2.11! does not hold, as long as th
basis$uk&% is not truly complete. The finite space approx
mation adopted above is a crude approximation and its a
racy is limited by the quality of the basis set initial
adopted. A dilemma of FCI is that to improve the quality, w
have to use very large basis set, but it is impractical since
dimension of FCI soon reaches an astronomical figure.

The ICI calculation of FCI is very simple: it was pe
formed by modifying the related parts of theGAMESS

program.12 All we have to do is an evaluation of the ten
three integrals ofHIJ andSIJ , depending on ICI3 (ND53)
or SICI (ND51). In the RI formula, the configurationuk&
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runs over the full configurations. However, since the opera
HI is one or two electron operator, the integral^cn21uHI uk&
is zero if uk& is different from the elements ofucn21& by
more than two orbital indices. Using such a criterion, we c
make the evaluation of the integralsHIJ andSIJ efficient.

Since each step of ICI is variational, we can calculate
ground state of each spin-space symmetry by starting f
an appropriate initial guess functionuc0&. The higher excited
states of the same symmetry as the ground state can be
culated by Method A described in Paper II.3 For this purpose,
all the lower states of the desired excited states must e
within the eigenvalues of the small matrix of the dimensi
ND11 in the iteration process, even though the ground a
other lower excited states are approximate except for
excited state under consideration. In the present very sm
ND case, this requirement was difficult to be satisfied ev
for the lowest excited state, so that we calculated only
ground state of each spin-space symmetry. The calculat
of the excited states by Method B,3 which is ICI–CI in the
notation of Paper IV,5 were also not performed by the sam
reason.

III. RESULTS

We performed ICI calculations using minimal STO-6
basis13 and double-zeta basis.14 Minimal basis calculations
were done for CO, H2O, HCN, acetylene (C2H2), ethylene
(C2H4), CH3F, HCHO, CO2, O3 and HNCO. Double zeta
calculations were done for Be, LiH, CH1, HF, 1A1 and3B1

states of CH2, and H2O in various spin-space symmetrie
~1A1 , 1A2 , 1B1 , doublet ionized2A1 , 2B1 , 2B2 , and triplet
3A1 , 3A2 , 3B1 states!. In the minimal basis calculations, th
1s orbitals of the second-row atoms were kept as froz
cores.

Figure 1 shows the convergence behavior of the S

FIG. 1. Convergence of SICI and ICI3 calculations with the minim
STO-6G basis sets. Full and open symbols are SICI and ICI3 results
spectively.
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TABLE I. FCI, SICI, and ICI3 results for the minimal basis sets. The initial guess is Hartree–Fock.

Molecule

Active space

occ.3unocc.
Hartree–Fock

Energy~au!

FCI SICI ICI3

Dimension

Energy

~au! Dim.

Iter.

1025 au
accuracy

Energy

~au!

Iter.

1023 au
accuracy

Iter.

1024 au
accuracy Dim.

Iter.

1025 au
accuracy

Energy

~au!

Iter.

1023 au
accuracy

Iter.

1024 au
accuracy

H2O 432 275.676 51 37 275.727 91 2 10 275.727 91 2 5 4 7 275.727 91 2 4

HCN 534 292.573 46 1436 292.741 21 2 29 292.741 21 8 18 4 27 292.741 21 8 17

C2H2 535 276.602 41 2640 276.775 87 2 30 276.775 87 9 19 4 28 276.775 87 9 18

C2H4 636 277.826 60 29248 277.991 65 2 34 277.991 65 11 21 4 33 277.991 65 10 21

CH3F 734 2138.472 33 16542 2138.570 67 2 23 2138.570 67 4 10 4 20 2138.570 67 4 9

HCHO 634 2113.440 29 3644 2113.584 52 2 34 2113.584 52 9 21 4 33 2113.584 52 9 21

CO2 834 2186.852 49 9189 2187.065 94 2 46 2187.065 94 16 30 4 44 2187.065 94 15 29

O3 933 2223.415 85 4067 2223.679 98 2 67 2223.679 98 29 48 4 68 2223.679 98 29 48

HNCO 835 2167.105 76 216249 2167.323 97 2 68 2167.323 97 18 39 4 69 2167.323 97 19 40
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and ICI3 with the minimal basis. The initial guess
Hartree–Fock. The energy decreases monotonically and
verges to the FCI energy from above as theoretically p
dicted since each iteration process of ICI is variational. T
ICI3 gives initially more rapid convergence than the SIC
because the number of variables is larger in ICI3. Howe
since the difference is only two, the overall behaviors of IC
and SICI are similar. Generally speaking, the convergenc
ICI is very rapid in the initial stage; for example, at 5 iter
tions, 99.66% of the correlation energy is achieved
CH3F. The convergence of O3 is slower initially than the
other molecules, since the ground state of O3 has quasi-
degenerate biradical character and so the Hartree–Fock
tial guess is poor. For the ICI with the double-zeta ba
similar convergence behavior was observed, though the
vergence was slower than the minimal basis case.

Table I shows the SICI and ICI3 results, together w
the FCI results, for nine molecules calculated with the mi
mal basis. The ICI converges exactly to the FCI energy w
out any difficulty. The dimension of the present ICI is only
or 4 and is remarkably small in comparison with the F
dimension~29 248 for ethylene and 216 249 for HNCO!. We
show the number of iterations for obtaining the accuracy
1023 au ~0.6 kcal/mol!, 1024 au ~0.06 kcal/mol!, and
1025 au~0.006 kcal/mol!. For ordinary calculations in chem
istry, 1023 au accuracy would be sufficient. Comparing t
iteration times necessary for different accuracies, we see
the ICI converges quite nicely at the initial stage and then
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improve only the order of 0.1–0.01 kcal/mol, many iteratio
are done. For example, for HNCO, the molecule having la
est FCI dimension, the iteration time for the 1023 au accu-
racy is 19, that for 1024 au accuracy is 40 and that for th
1025 au accuracy is 69. Similar behavior is also observed
other molecules. For obtaining millihartree of accura
10–20 iterations are enough, except for ozone.

Table II shows the results for the molecules calcula
with the double-zeta basis. Again, we confirm that the S
and ICI3 energies converge to the FCI energy from abo
Here, we need larger number of iterations than the minim
basis case, but the convergence was very smooth and m
tonic, never oscillating, for all the cases. For obtaining
chemical accuracy, i.e., 1023 au accuracy, we need about 6
~average value! iterations. The iteration numbers show aga
that the convergence is very slow in the final stage to
prove only 0.01 kcal/mol. For example, for singlet methy
ene, it took 260 times of iterations to improve only abo
1025 au ~0.006 kcal/mol!. A reason is clearly a very sma
number of variables in the present calculations, which w
kept to 2 to 4 irrespective of the quality of the basis set a
the size of the molecules.

Table III shows the ICI3 results for water with th
double zeta basis. We calculated the ground states of m
different spin-space symmetries. Since every step of
present ICI is totally symmetric, we just used the initi
guess function of appropriate spin-space symmetry. We u
TABLE II. FCI, SICI, and ICI3 results for the double zeta basis sets. The initial guess is Hartree–Fock except for CH2(3B1), for which it is a single dominant
spin-adapted configuration.

Molecule

Active space

occ.3unocc.

Hartree–Fock

or single

config.

Energy~au!

FCI SICI ICI3

Dimension Energy~au! Dim.

Iter.

1025 au
accuracy Energy~au!

Iter.

1023 au
accuracy

Iter.

1024 au
accuracy Dim.

Iter.

1025 au
accuracy Energy~au!

Iter.

1023 au
accuracy

Iter.

1024 au
accuracy

Be 232 214.568 53 20 214.582 69 2 24 214.582 69 4 13 4 24 214.582 69 3 12

LiH 2310 27.981 09 620 28.008 68 2 89 28.008 68 11 42 4 86 28.008 68 9 38

CH1 339 237.885 84 4582 237.969 40 2 286 237.969 40 89 181 4 329 237.969 40 101 208

HF 537 2100.021 97 44 388 2100.160 29 2 198 2100.160 29 59 112 4 201 2100.160 29 63 119

CH2 ~1A1! 4310 238.861 52 71 881 238.962 44 2 618 238.962 44 145 374 4 679 238.962 44 162 419

CH2 ~3B1! 4310 238.874 92 111 600 238.998 14 2 251 238.998 14 107 178 4 288 238.998 14 120 203
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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TABLE III. FCI and ICI3 results for the singlet, triplet, and ionized states of H2O with double zeta basis set.a

State

Hartree–Fock
or single config.

Energy~au!

FCI ICI3

Dimension Energy~au! Dim.

Iter.
1025 au
accuracy Energy~au!

Iter.
1023 au
accuracy

Iter.
1024 au
accuracy

Singlet
1A1 276.009 56 256 473 276.157 87 4 214 276.157 87 67 125
1A2 275.567 61 245 000 275.761 02 4 362 275.761 02 130 241
1B1 275.643 27 245 776 275.838 26 4 334 275.838 26 117 221
Triplet
3A1 275.613 83 440 475 275.797 15 4 825 275.797 15 169 480
3A2 275.584 53 437 640 275.779 89 4 421 275.779 89 144 276
3B1 275.672 20 437 520 275.867 48 4 330 275.867 48 111 215
Ionized
2A1 275.456 87 232 968 275.655 68 4 319 275.655 68 92 197
2B1 275.507 36 223 282 275.720 23 4 290 275.720 23 85 175
2B2 275.292 61 232 068 275.460 08 4 356 275.460 08 78 175

a
For inital guess, see the text.
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Hartree–Fock for the1A1 ground state, single dominant spin
adapted configuration for the singlet and triplet excit
states, and Koopmans state for the doublet ionized sta
Again, the ICI of only 2 to 4 dimensions has reproduced
FCI results of the dimensions as large as 223 282–440
The convergence rate is different from state to state but
average iteration number for obtaining 1023 accuracy is 110.

IV. CONCLUDING REMARKS

This paper gives a numerical proof that the ICI meth
certainly gives the exact wave function for molecular s
tems within finite basis. The exact nature of the ICI is th
confirmed, together with the theoretical proof given in P
pers I and II.

It is necessary to study the computational algorithm b
suited to the ICI method for practical utilities in molecul
calculations. As this method isdifferent from the conven-
tional FCI, the suitable algorithm may be different from th
FCI ones. Use of the general singles and doubles~GSD!
number of variables is also interesting, because it would
sult in better convergence and simultaneous calculation
excited states with the ICI–CI method5 ~Method B3!. Such
study is in progress in our laboratory.
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