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A quantum solute–solvent interaction using spectral representation
technique applied to the electronic structure theory in solution
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In this paper, we present a new approach to treat the electronic structure of a molecule in
solution. Unlike the hybrid-type method, such as the reference interaction site model
self-consistent-field theory, the new approach describes not only the electronic structure of solute
but also solute–solvent interactions in terms of the quantum chemistry based on the Hartree–Fock
frozen density formulation. In the treatment, the quantum effect due to solvent, including exchange
repulsion, is projected on to the solute Hamiltonian using the spectral representation method. The
solvent distribution around the solute is handled by the integral equation theory of liquids. As
illustrative applications of the approach, the electronic and solvation structure of noble atoms, neon
and argon, in liquid neon are studied. We also investigate the electronic structure of an excess
electron in liquid helium. The preliminary results demonstrate that the quantum-mechanical effect
on the electronic and solvation structure of the solute due to solvent molecules is successfully
represented by the new method. ©2003 American Institute of Physics.@DOI: 10.1063/1.1604381#
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I. INTRODUCTION

Elucidating solvation effect on molecules in solution
one of the most important issues in the area of chemis
biology, and medicine, since most chemical processes o
terest occur and are observed in solutions. Due to the la
development in the experimental techniques, such as the
trafast spectroscopy, it has become possible to trace
quantum processes in molecules in liquid phases. It is nat
that more and more quantum chemists have become in
ested in the electronic structure of molecules in solutio
Many theoretical methods have been proposed for trea
chemical processes in solutions in the last two decade1–3

The approach typical to most of those theories so far i
hybrid between the quantum and classical treatments
plied, respectively, to solute and solvent, such as the re
ence interaction site model self-consistent-field~RISM-SCF!
method,4–6 since it is impossible to solve the Schro¨dinger
equation for an entire system including all the solvent m
ecules. The question how we connect the quantum solute
classical solvent in such hybrid theories is equivalent to a
ing how we describe the interaction between the solute
solvent. Most of those theories treat the interaction as a
of the classical electrostatic interaction and classical sh
range interactions, such as the Lennard-Jones interac
Consequently, the interaction does not include the quant
mechanical effects explicitly.

Recently, attempts have been proposed to defeat the

a!Electronic mail: hirata@ims.ac.jp
6660021-9606/2003/119(13)/6663/8/$20.00

Downloaded 04 Jun 2007 to 130.54.110.22. Redistribution subject to AIP
y,
n-
st

ul-
he
ral
er-
s.
g

a
p-
r-

-
nd
k-
d
m
t-
n.
-

tu-

ation in which solvents are represented classically. Amov
and Mennucci7 have derived an expression for the Pauli r
pulsion and dispersion contribution to the solvation free
ergy in terms of the polarizable continuum model. In t
development of the so-called QM/MM methods, Gordon a
co-workers8 have proposed the effective fragment potent
~EFP! to treat solvent effects on chemical properties and
actions. The EFP simulates the important nonbonded en
terms, including Coulomb interactions, polarization, and e
change repulsion. Warshelet al.9 have proposed the froze
density functional theory, which is applied toab initio free-
energy calculations of chemical reactions in solution. T
potential of the solvent molecules exerted on the solute
derived from a formal DFT treatment by freezing the ele
tronic density of solvents. More recently, Yoshida and Kat10

have proposed an electronic structure theory in solution
using the molecular Ornstein–Zernike equation, which is
ferred as the MOZ-SCF method. In their treatment, the
change repulsion/charge transfer interactions are inco
rated for calculating the solute–solvent interactions. Unl
the former treatments, the MOZ-SCF has an advantag
describing the solvent distribution, which comes from t
use of the integral equation theory. Utilization of the integ
equation theory gives us the microscopic picture of sol
tion, and frees us from the sampling problem faced in
molecular simulation which is needed in the QM/MM
method for liquid systems. We can readily evaluate
chemical properties of interest in a variety of thermodynam
states. However, the MOZ-SCF method has some trou
3 © 2003 American Institute of Physics
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some aspects in determination of the short-range solu
solvent interactions. The method requiresab initio calcula-
tions for many configurations of solvents to fit the parame
for the short-range interactions; thereby, it costs a lot of co
putational time.

In this paper, we propose a new approach based on
integral equation theory of liquids which enables us to
count the quantum nature in the short-range interaction
tween solute and solvent in solution. In order to describe
solute–solvent interaction, we apply a kind of mod
potential method based on the Hartree–Fock frozen den
formulation, so that the interaction is described essentiall
terms of the quantum chemistry. Combining the two theo
ical frameworks, the model-potential method and the integ
equation theory of liquids, we construct the electronic str
ture theory in solution. As the first step, we focus our att
tion on a system consisting of monatomic molecules,
which a solute is at infinite dilution in solvent.

The idea behind the model-potential method is to se
rate chemically active electrons from inactive ones in a m
ecule, and to project the inactive electrons onto active o
to construct a model potential or an effective Hamiltonia
The core–valence separation in atoms is the best-known
ample. In this case, the core electrons are projected onto
valence electrons. A mathematical device referred to as
‘‘spectral representation’’ method has been used to facili
the projection. For instance, the exchange interaction an
Coulomb interaction between the core and valence elect
are represented in terms of an effective potential for the
lence electrons by means of the spectral representa
method.11,12 The method has been extended to a more g
eral system in which molecules form a cluster.13–15 In the
treatment, molecules in a cluster are classified into two pa
a molecule for which the electronic structure is explici
calculated, and the rest, which are regarded as an ‘‘envi
ment’’ to the molecule. The exchange and Coulomb inter
tions between the molecule and the environment are map
into an effective Hamiltonian, or the ‘‘environmental pote
tial,’’ for the molecule. In the present paper, the environme
tal potential method14,15 is used for describing the quantu
effect exerted on a solute from solvent molecules, in wh
both the exchange and Coulomb interaction are treated
means of the spectral representation technique.

The organization of this paper is as follows. In Sec.
we review briefly the environmental potential method, a
present a electronic structure theory in solution based on
method. In Sec. III, we show the results concerning the e
tronic and solvation structure of noble atoms, the neon
the argon, solvated in liquid neon. We also investigate
electronic structure of an excess electron in liquid helium
should be noted that both the electronic and the solva
structure of these systems can not be treated consistent
most existing theories in which the quantum-mechanical
fects between solute and solvent are ignored. Conclud
remarks are given in Sec. IV along with an idea for t
generalization of the present treatment to the molecular
uid systems.
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II. THEORY

A. Outline of environmental potential method

In this section, we review briefly the environmental p
tential method. Although this method can be applied to
molecules consisting of many atoms, here we consider
atomic cluster for an illustrative purpose. The Fock opera
of the total cluster system is expressed as follows:

F tot52
1

2
D2(

N

ZN

r
1(

r ,s
~2Jrs2Krs!(

j
cr j cs j , ~1!

whereZN is the nuclear charge of nucleusN, r is the dis-
tance between an electron and nucleus.Jrs and Krs are the
Coulomb and exchange integrals, respectively.cr j is the mo-
lecular orbital~MO! coefficient. Subscriptsr and s indicate
the atomic orbitals, andj means the molecular orbital. W
can divide the cluster into one central atom~cent! and envi-
ronmental atoms~env!. The Fock operator in Eq.~1! is re-
written as

F tot52
1

2
D2

Zcent

r
1 (

r ,s

on cent

~2Jrs2Krs!

3(
j

cr j cs j2(
M

env
ZM

r
1 (

t,u

Rest of all contribution

~2Jtu2Ktu!

3(
j

ct jcu j . ~2!

Here, we assume that the total environmental effects on
central atom are approximated by a linear combination of
potential fields of the environmental atoms, and that the
laxation of the environmental molecular orbitals due to t
interaction with the central atom is negligible. On the ba
of Eq. ~2!, the Fock operator for the central atom includin
the effects of the environmental atoms can be written as

F>2
1

2
D2

Zcent

r
1 (

r ,s

on cent

~2Jrs2Krs!(
j

cr j cs j1(
D

env

V̄D ,

~3!

where

V̄D5
2ZD

r
1 (

r ,s

on D

~2Jrs2Krs!(
j

cr j8 cs j8 . ~4!

The prime indicates that the molecular orbital coefficie
are determined for the isolated system. The element of
above Fock operator is written as follows:

Fpq>Hpq1Gpq1(
D

env

^xpuV̄Duxq&, ~5!

where

^xpuV̄Duxq&5 K xpU 2ZD

r UxqL
1 (

r ,s

on D

Prs8 F ~xpxqux rxs!2
1

2
~xpxsux rxq!G .

~6!
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6665J. Chem. Phys., Vol. 119, No. 13, 1 October 2003 A quantum solute–solvent interaction
Prs is the density matrix of the environmental atom. No
that p andq correspond to the atomic orbitals of the cent
atom. On the other hand,r ands indicate those of the envi
ronmental atoms.Hpq andGpq are the one- and two-electro
terms of the central atom, respectively. Next, we replace
operatorV̄D by an appropriate spectral representation

V̄D→VDV̄DVD , ~7!

where

VD5 (
a,b

on D

u f a&~S21!ab^ f bu. ~8!

$ f a% is an arbitrary basis function set for the spectral rep
sentation andS is its overlap matrix. We obtain the Foc
matrix

Fpq;Hpq1Gpq1(
D

env

^xpuVDV̄DVDuxq&. ~9!

The molecular orbitals of the environmental atoms should
prevented from collapsing into the space that the envir
mental electrons occupy due to the penetration of the
lecular orbitals of the central atom. This problem can
remedied by adding the following projection operator, t
so-called energy shift operator, to Eq.~9!:

%D5 (
j

occ onD

(
r ,s

on D

2ne j8ux r&cr j8 cs j8 ^xsu, ~10!

wheree j8 is the j th molecular orbital energy of the isolate
atomD, andn is an arbitrary positive parameter. The ener
shift operator simulates the effect of the Pauli exclusion p
ciple and maintains the strong orthogonality of the molecu
orbitals between central and environmental atoms.16 In the
present work, the value ofn is determined so as to reproduc
the results obtained by all-electron calculation, as is
plained in the next section.

Finally, we obtain the approximated Fock matrix wi
the environmental effect

Fpq5Hpq1Gpq1(
D

env

^xpuVDuxq&, ~11!

where

^xpuVDuxq&5^xpuVD$V̄D1%D%VDuxq&

5 (
a,b,c,d

on D

^xpu f a&~S21!ab

3^ f bu H 2ZD

r
1 (

j

on D

~2Jj2K j !

1%DJ u f c&~S21!cd^ f duxq&. ~12!

VD is the environmental potential exerted on the central a
from the environmental atomD. It should be noted that the
nuclear repulsion term between the central and environm
tal atoms does not appear in the total Hamiltonian in
present system. It is assumed that the nuclear charges o
Downloaded 04 Jun 2007 to 130.54.110.22. Redistribution subject to AIP
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environmental atoms are perfectly shielded by the envir
mental electrons as is in case of the model core potentia17

B. Formulation of an electronic structure
of molecules in solution

In the present section, we apply the environmental
tential method to formulate a new theory for the electro
structure of a molecule in solution. Here, we separate
solute from solvent, and regard the latter as an environm
to the former in the spirit of the environmental potent
method. For describing the liquid structure, the integ
equation theory is used in the present work. As the first s
we focus our attention on a system consisting of monato
molecules, in which a solute is at infinite dilution in so
vent. We also assume that the system is homogeneous
isotropic.

The interaction potentialuuv(R) between solute and sol
vent separated by the distanceR is described by using the
environmental potential as follows:

uuv~R!52(
i

^w i uVsolvuw i&

5(
p,q

(
a,b,c,d

on solv

Ppq^xpu f a&~S21!ab

3^ f bu H 2Z

r
1 (

j

on solv

~2Jj2K j !

1%solvJ u f c&~S21!cd^ f duxq&. ~13!

w i are the molecular orbitals of solute, which are expres
as a linear combination of the atomic orbitalsxp . r is the
separation between an electron and a solvent nucleus w
has the chargeZ. Jj andK j are the Coulomb and exchang
operator, respectively.% is the shift operator.$ f a% is the
spectral-representation basis set andS is its overlap matrix.
Note that$ f a% has the same origin with the solvent nucleu
The overlap matrix element̂xpu f a& is a function of R
5(R,u,f) originated from solute. The problem associat
with the integration over the angular space is explained
the Appendix.

As in the case of the RISM-SCF variational method,6 we
derive the solvated Fock operator by the variation of
free-energyA of the solute–solvent system. The free-ener
A is given as the sum of the solute electronic energyEsolute

and the excess chemical potential due to solute–solven
teractionsDm

A5Esolute1Dm. ~14!

For evaluatingEsolute, various types ofab initio electronic
structure theory, such as multiconfigurational SCF and c
figuration interaction, can be applied. Here, we simply ad
the Hartree–Fock~HF! method forEsolute, and the excess
chemical potential derived from the OZ/HNC equation
adopted
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Esolute52(
i

^w i uhuw i&1(
i , j

~2^w iw i uw jw j&2^w iw j uw jw i&!

1Enuc, ~15!

Dm52
r

b E H exp@2buuv~R!1tuv~R!#212tuv~R!

2huv~R!tuv~R!1
1

2
huv~R!2J dR

2
1

b E H 2cuv~R!huv~R!1
1

2
cuv~R!cuv~R!* xvvJ dR.

~16!

In the above expression,h is the one-electron operator.b is
equal to 1/kBT, wherekB andT are the Boltzmann constan
and temperature, respectively.r is the density of solvent.cuv
andhuv are the direct and total correlation functions, resp
tively. tuv is equal tohuv2cuv . xvv is the pure solvent site
density pair correlation functions. The quantityA can be re-
garded as a functional of the functionshuv , cuv , tuv , and
w i . We defineI with the constrains to the orthonormality o
the molecular orbitals as

I 5A@huv ,cuv ,tuv ,w#2(
i ,m

e im~^w i uwm&2d im!. ~17!

Variations with respect to the functions yield

dI 52(
i

^dw i uhuw i&12(
i

^dw i u(
j

~2Jj2K j !uw i&

2rE 2(
i

^dw i uVsolvuw i&exp@2buuv~R!

1tuv~R!#dR2
r

b E ~exp@2buuv~R!1tuv~R!#

2huv~R!21!dtuv dR2
r

b E ~2tuv~R!1huv~R!

2cuv~R!!dhuv dR2
1

b E ~huv~R!

1cuv~R!* xvv!dcuv dR2(
i ,m

e im^dw i uwm&. ~18!

The fourth, fifth, and sixth terms give a set of the OZ/HN
equations. One can eventually obtain the expression for
solvated Fock matrix element

Fpq5Hpq1Gpq1rE ^xpuVsolvuxq&guv~R!dR, ~19!

where Hpq and Gpq are the usual one- and two-electro
terms, respectively.guv(R)5huv(R)11 is the radial distri-
bution function between solute and solvent.

In this way, we obtained a set of equations for the el
tronic structure in solution, i.e., the solute–solvent OZ/HN
equation and the modified HF equation incorporating
quantum solvation effect. These equations are solved b
self-consistent procedure.
Downloaded 04 Jun 2007 to 130.54.110.22. Redistribution subject to AIP
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III. RESULTS AND DISCUSSION

In this section, we present some illustrative results o
tained from the new theory presented in the previous sect
The electronic and the solvation structure of a neon and
argon solvated in liquid neon, and an excess electron in
uid helium are calculated to demonstrate the validity of
present treatment. For the calculation of the density pair c
relation functionxvv in pure solvent, it is possible to use th
environmental potential method as discussed above. H
ever, in order to make the comparison of the present tr
ment with the classical approach easier, the radial distri
tion function between a solvent pair is determined by us
the Lennard-Jones potential:s52.75 Å ande535.8 K are
employed for the solvent neon site,18 and s52.556 Å and
e510.2 K for the solvent helium.19 Only the interaction be-
tween the solute and solvent is treated by using the envi
mental potential method. The electronic wave functions
the solute neon and argon atoms were calculated at the
level with 6-311G basis set. For the basis set of the exc
electron, we adopted the 6-31111G** basis set for the
hydrogen atom with the sevens-type functions and seven
p-type functions. This extensively diffuse basis set was u
for investigating the water dimer anion and trimer anion
Tsurusawaet al.20 The environmental potential was gene
ated by projecting the reference electronic wave functions
the solvent on an arbitrary spectral-representation basis
$ f a%. Although $ f a% is desirable to be as complete as po
sible, a suitable choice of$ f a%, from the practical point of
view, may be a set which is composed of primitive Gauss
type orbital~PGTO! decontracted from the atomic basis se
used in the reference calculation of solvent. Katsuki has
plied the environmental potential method to the interact
between three ammonia molecules using the spec
representation basis sets as mentioned above. The resu
tained by the environmental potential method is in go
agreement with that of the all-electron calculation.14

In this work, the reference electronic wave functio
were calculated in the HF level with 6-311G basis set and
PGTO decontracted from 6-311G basis set is chosen as
spectral-representation basis set.

A. Neon and argon solvated in liquid neon

The radial distribution functions~RDFs! between the sol-
ute and solvent neons calculated by the present method
shown in Fig. 1. The RDFs obtained by the OZ/HNC equ
tion using the LJ potential for the solute–solvent interact
are also presented in the figure. The LJ parameters use
the solute neon are the same as those used for calculatin
pure solvent site density pair correlation functionxvv . The
density dependences of the RDFs at 300 and at 100 K
shown in Figs. 1~a! and in 1~b!, respectively. The density is
the reduced density,r* 5rs3. The parametern of the shift
operator is determined so as to reproduce best the intera
energy of the neon dimer obtained from an all-electron c
culation with 6-311G basis set. The behavior of the repuls
part of the interaction at the distance of closest approac
our main concern in fitting the parameter, because that pa
essential for determining the liquid structure. As shown
the figures, the present method reproduces reasonably
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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the density and the temperature dependence of the R
obtained by using the LJ interaction potential: the positio
of the contact between solute and solvent in the RDFs,
the decrease in the peak height around the solute neon
decreasing density. These results demonstrate capabili
the present theory to predict the solvation structure at lea
the qualitative level. From the quantitative view point, t
disagreement becomes more conspicuous with decrea
density or cooling temperature. Generally speaking, the
portance of the attractive forces between molecules for
liquid structure becomes larger at lower density as well
temperature. The environmental potential in the HF le
cannot describe the attractive potential due to the disper
force. Therefore, the solvation structure is more readily
structured due to decrease in density and temperature
that obtained by using the LJ interactions.

The results for RDFs between the solute argon and
vent neons are shown in Fig. 2 along with those from
OZ/HNC equation using the LJ interactions. The LJ para
eters used for solute argon ares53.42 Å ande5124.03 K.21

The parameter of the shift operator was determined by fit
the results with the all-electron calculation for the Ar–N
dimer. Although the results show the discrepancy betw

FIG. 1. The results for the radial distribution functions~RDFs! between the
solute neon and solvent neon obtained by the two methods. LJ indicate
OZ/HNC equation with the Lennard-Jones~LJ! interaction. EP indicates the
present method using the environmental potential.~a! is the result at 300 K,
and ~b! is at 100 K.
Downloaded 04 Jun 2007 to 130.54.110.22. Redistribution subject to AIP
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the LJ potential and the present interactions in terms of
temperature and density dependences of RDF, similar to
previous case, the present treatment qualitatively reprodu
the contact position between a solute argon and a sol
neon, and the density and temperature dependence o
RDFs.

In Fig. 3, the density dependence of the electronic spa
extent, which is an expected value ofr 2, of a solute argon is

the

FIG. 2. The results for the RDFs between the solute argon and solvent
obtained by the two methods. LJ indicates the OZ/HNC equation with
Lennard-Jones~LJ! interaction. EP indicates the present method using
environmental potential.~a! is the result at 300 K, and~b! is at 100 K.

FIG. 3. The density dependence of the electronic spatial extents^r 2& of
solute argon atom at 300 K~black circles! and at 100 K~open circles!. The
dotted line is the value in the gas phase.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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shown along with that of an isolated argon atom in g
phase. Figure 3 is one of the principal results in this pape
should be noted that if the LJ parameter is used as
solute–solvent interaction for this system, the constant va
is obtained for the spatial extent through the various de
ties, which is same as in the gas phase. As can be rea
seen from the figure, the spatial extent decreases with
creasing density, that is, the short-range repulsive force
erted from solvents on the electronic structure of the so
argon increases. Additionally, the electronic extent of the s
ute argon is more sensitive to the density change at 30
than that at 100 K. This is due to the fact that the sta
thermal fluctuation of solvents increases with rising tempe
ture. The temperature and density dependence of the e
tronic spatial extent of a neon atom also has same tre
Although an excess repulsive character of the interac
may appear in the behavior of^r 2& due to the absence of th
attractive interaction such as dispersion force in the pre
treatment, these results are in accord with our intuiti
strongly indicating that our attempt is robust.

B. Excess electron in liquid helium

The present method can also treat an excess elec
solvated in liquids. Here, we calculate the electronic and
vation structure of an electron in liquid helium. The groun
state energy was obtained by the HF method, and the fi
excited state energy in the case of the vertical transition
estimated by the singly excited configuration interaction. T
parameter of the shift operator was determined by fitting
result for the hydrogen–helium dimer to that of the cor
sponding all-electron calculation. It should be noted that
can only discuss, in the present stage, the localized electr
state of an excess electron where the splitting between
ground and excited states is always larger compared
thermal energies.

The energy of the ground and first-excited states al
the 309 K isotherm is shown in Fig. 4 as a function of de
sity. Note that the electronic structure of the ground state
the s character, and that of the first-excited state has thp
character. Since the present theory assumes that the syst
homogeneous and isotropic, the first-excited state with thp

FIG. 4. The results for the ground and first-excited energies of an ex
electron in liquid helium as a function of the solvent density.
Downloaded 04 Jun 2007 to 130.54.110.22. Redistribution subject to AIP
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character degenerates triply. It should be noted that the
vation structure is not reorganized for the first-excited st
in this treatment, that is, the vertical transition. This con
tion would be reflected in the very diffuse character of t
electronic spatial extent̂r 2& of the first-excited state. In the
present estimation, atr*50.9, for example,^r 2& of the
ground state is 23 a.u. and that of the first-excited stat
1.33106 a.u.

Some of the energy eigenvalues in Fig. 4 are listed
Table I. As the density gets higher, the energies go up.
energy of the excited state increases more rapidly than tha
the ground state. The density dependence of the energet
in accord with the previous theoretical works22–27 for an ex-
cess electron in liquid helium at the same temperature.
potential and kinetic energies of the ground state are a
shown in Fig. 5 as a function of density, and the resu
obtained by the present treatment are in reasonable ag
ment with the previous works.22,23These results demonstra
the robustness of the present treatment.

Figure 6 shows the solvation structure of an electron
liquid helium for the various fluid densities atT5309 K. As
shown in the figure, the distance of the closest appro
between the electron and helium changes largely with
creasing density of solvent. If the particles in the syst
have the so-called ‘‘core’’ region, the distance of the clos
approach will not change largely by the density change
shown in Figs. 1 and 2. This interesting behavior of solvat
structure suggests that a solvated electron is ‘‘softer’’ than
electron consisting atom. However, the hardness of the
cess electron in the liquid helium manifested in the solvat
structure by the present treatment seems to be much less
what is obtained by the previous theoretical studies.22,27,28

Note that an electron is represented by an isomorphic
polymer consisting of ‘‘beads’’ in the path integra

ss

TABLE I. The energy eigenvalues for the ground and first excited state
the excess electron at 309 K in eV.

r* 0.3 0.5 0.7 0.9

E0 0.84 1.15 1.51 1.90
E1 0.87 1.45 2.03 2.61

FIG. 5. The results for the potential and kinetic energies of the ground s
of an excess electron in liquid helium as a function of the solvent dens
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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treatment,22,28 and that the present results should be co
pared with the RDF between the polymer center and solv
According to the previous works, the distance of closest
proach between the electron and helium has little dep
dence on the solvent density. This may be due to the re
sive character of the present potential. Since the paramet
the shift operator is fitted to the interaction between hyd
gen and helium, the present potential is likely to be m
repulsive than those in the previous works. It is also cons
ered that the description of the present basis sets is ins
cient for the excess electron and/or for the spectral repre
tation. The pseudopotentials which are used in the prev
theoretical studies mentioned above also have room for
provement. It is difficult at the present stage to conclu
which solvation structure is more faithful to the real pictu
of the excess electron. Further experimental and theore
studies are desired for elucidating the structure of solva
electrons as a function of the density.

IV. CONCLUDING REMARKS

In the present paper, we have presented a new appr
for the electronic structure of a molecule in solution,
which both the solute electronic structure and the solu
solvent interactions are treated based on the Hartree–F
frozen density formulation. The spectral representation te
nique was employed to project the solvent environment o
the solute Hamiltonian in the same spirit with the enviro
mental potential method. The integral equation theory of
uids is employed to calculate the solvent distribution arou
solute. The electronic and solvation structure of neon
argon solvated in liquid neon, and the excess electron
liquid helium were investigated as illustrative applications
the new theory. The present method reproduced reason
well the density and the temperature dependence of
Ne–Ne and Ar–Ne RDFs obtained by using the LJ inter
tion potential. The results for the density dependence of
electronic spatial extent^r 2& of the solute argon showed tha
the quantum-mechanical effects from the solvent is incor
rated successfully and explicitly into the solute electro
structure, unlike the conventional electronic structure the
in solution. The energy eigenvalues for the ground and fi
excited states of the excess electron in liquid helium obtai

FIG. 6. The density dependence of the RDFs between the solute ele
and solvent helium at 309 K.
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by the present method were in accord with those obtained
the previous theoretical studies. These results demons
the robustness of the present method.

Extending the present treatment to the molecular liq
systems is important from a view point of chemistry. W
employ the 3D-RISM theory for describing the solvatio
structure of molecular liquid systems, unlike the MOZ-SC
method, and construct the electronic structure theory in
lution as in the case of the 3D-RISM/SCF theory.29 In order
to incorporate the environmental potential method into
RISM theory, we have to prepare the site–site environme
potential of solvent molecule by using some approximatio
A possible strategy for the site–site environmental potent
for example, is to project the quantum effect of solvent on
the spectral-representation basis sets originated from e
site of solvent molecule, and to ignore the contribution
cross term between different sites on the solvent molec
Such study is in progress in our laboratory.

It it is of great interest to improve the accuracy of th
present potential, which concerns the choice of the shift
erator, the basis set for the spectral representation, the
vent polarization, and charge transfer as well as the elec
correlation between solute and solvent. Those are among
future plans.
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APPENDIX: INTEGRATION OVER THE ANGULAR
SPACE

As was stated in the explanation of Eq.~13!, Lpq

[^xpuVsolvuxq& is the function ofR. In the present stage, w
simply adopt the interpolation manner for evaluati
Lpq(R,u,f) as follows.

Considering the sphere with the radiusR and dividing
the sphere into octants, each point on the spherical sur
has the value ofLpq(R,u,f). In the case of the first octan
as shown in Fig. 7, for example, three vertices have the
ues of Lpq(R,0,0), Lpq(R,p/2,0), andLpq(R,p/2,p/2).
The values ofLpq(R,u,f) in the first octant can be repre
sented by using these three values as follows:

Lpq~R,u,f!5sin2 u cos2 fLpq~R,p/2,0!

1sin2 u sin2 fLpq~R,p/2,p/2!

1cos2 uLpq~R,0,0!. ~A1!

The rest of the octants can be evaluated in the same ma
to get

on
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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rE ^xpuVsolvuxq&guv~R!dR

5rE E E Lpq~R,u,f!guv~R!R2 sinu dR du df

5rE 2
3 p@Lpq~R,0,0!1Lpq~R,p/2,0!

1Lpq~R,p/2,p/2!1Lpq~R,p,0!1Lpq~R,p/2,p!

1Lpq~R,p/2,3p/2!#R2guv~R!dR. ~A2!

By evaluatingLpq at grid points in Eq.~A2!, we can get the
solvated Fock matrix of Eq.~19!.
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