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We report the results of a molecular dynamics simulation that looked for the triple point of
Lennard-Jones fluid in slit-shaped nanopores. The simulation method employed for this purpose is
able to maintain vapor–liquid coexistence in a nanopore at a specific equilibrium bulk-phase
pressure. The triple point is the freezing point of the critical condensate. The triple-point
temperature could be higher or lower than the bulk triple point, depending on the pore size. This is
thought to be due to two opposing factors: the elevating effect of the pore-wall potential energy, and
the depressing effect of the capillary condensate’s tensile condition. Because of the cancellation, the
deviation of the triple-point temperature from the bulk triple-point temperature was not considered
significant. The pressure of the triple point, however, was significantly different from that of the
bulk triple point. A simple model to describe the triple point is developed and shown to agree well
with the results of the simulation. The importance of the two factors in nanoscale pores, which
cannot be described by the classic Gibbs–Thomson equation, is emphasized. ©2004 American
Institute of Physics.@DOI: 10.1063/1.1652431#

I. INTRODUCTION

Solidification in pores has been extensively studied
experimentally.1–10Most of these studies report a decrease in
freezing point and confirm the reliability of the Gibbs–
Thomson equation,11 which shows a linear relationship be-
tween the shift in freezing point and the reciprocal pore size.
The equation for the simplest geometry of the confining
space, a slit pore, is as follows:

Tf2T5
2gslTf

HDhm
vS cosu, ~1!

whereH is pore width,Dhm the latent heat of melting for the
bulk phase,Tf the normal freezing point,gsl the solid–liquid
interfacial tension,vS the volume per molecule of the bulk
solid, andu the contact angle of the solid–liquid interface
against the wall. According to Eq.~1!, only the excess energy
of the solid–fluid interface contributes to the decrease in the
freezing point, and the freezing point must be independent of
the vapor pressure in the bulk phase. However, some recent
experimental studies report an inexplicable elevation of the
freezing point.12,13 Moreover, recent molecular simulation
studies by some research groups, including us, have revealed
the inadequacies of the Gibbs–Thomson equation, especially
at the nanometer scale.

The freezing phenomena in confined spaces must be af-
fected, we suppose, by at least the following three effects:~i!
the strength of pore-wall potential energy~compression ef-
fect!, ~ii ! the geometrical shape of pore~geometrical hin-
drance!, and~iii ! the equilibrium vapor-phase pressure~ten-
sile effect!. Molecular simulation techniques are appropriate

for clarifying the contribution of each, while experimental
measurements may suffer from the combined effects of the
above factors and others.

The following aspects of the first effect14 were clarified
by conducting the grand canonical Monte Carlo~GCMC!
simulations of Lennard-Jones~LJ! fluids in slit pores. De-
pending on the strength of the attractive potential energy
from the pore walls, the fluid in a slit pore in equilibrium
with saturated vapor shows elevation as well as depression of
the freezing point, and the critical strength dividing these
two cases was the potential energy exerted by the fluid’s
solid state. The ‘‘excess’’ attraction relative to the critical one
was thought to bring the confined liquid to a higher-density
state that resembles a compressed state, which would result
in the elevated freezing point.

These results agree well with those of other recent stud-
ies. Dominguezet al.15 examined the freezing of LJ fluid in
slit pores with purely repulsive and weakly attractive walls,
employing thermodynamic integral techniques to determine
the true equilibrium points. The freezing points, rigorously
determined by free-energy calculation, showed a significant
downward shift relative to the bulk in purely repulsive walls,
while the downward shift was much smaller in magnitude in
weakly attractive walls. Radhakrishnan and Gubbins16 used a
different approach to determine the freezing point in slit
pores, employing the Landau free energy calculation. They
showed that a simple fluid in strongly attractive slit pores has
elevated freezing points, not only theoretically but also ex-
perimentally, as reported in other papers.17,18

As for the second effect, the freezing behavior of a LJ
fluid confined in cylindrical pores was investigated by the
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authors employing GCMC simulations.19 With the saturated
vapor for the equilibrium bulk condition, the fluid confined
in a cylindrical pore had a lower freezing point than that in a
slit pore with the same attractive potential energy, and the
lowering was more significant for smaller pores. The lower-
ing of the freezing temperature, relative to the slit pore, was
interpreted as the result of the difficulty in forming an or-
dered molecular arrangement within the circular pore space,
which we called ‘‘geometrical hindrance.’’ A fluid in a cylin-
drical pore with strong attraction is subject to the two com-
peting effects on the freezing point—the elevation by the
compression effect and the depression by the geometrical
hindrance—and exhibits nonmonotonic variation of the
freezing point relative to the pore diameter. Cylindrical pores
with relatively weak potential energy, however, display
monotonic depression of the freezing point relative to the
pore size. This is in line with the long-observed depression in
experimental studies that used materials with roughly cylin-
drical pores. The lower freezing point in pores with a cylin-
drical geometry other than a slit is in qualitative agreement
with the results of molecular dynamics~MD! simulation
studies by Maddox and Gubbins.20

The third effect—equilibrium vapor-phase pressure
p—was also examined by the authors21 for the following
reason. Contrary to the case with saturated vaporps ~the
equilibrium bulk-phase pressure condition!, the capillary-
condensed liquid withp/ps,1 is subjected to far lower pres-
sure than it is in the equilibrium bulk-phase pressure condi-
tion. Negative pressure, or a tensile condition, can occur
easily in liquids in nanopores, an effect that should depress
the freezing point. MD simulations have found liquid–solid
phase transitions at a constant temperature and with the
variation in the equilibrium vapor-phase pressure below that
of the saturated phase. In this way, on ap–T diagram, the
determined solid–liquid coexistence line exhibited signifi-
cant dependence on the freezing point vs small changes in
the bulk-phase vapor pressure. This is in contrast to the bulk-
phase coexistence of an almost vertical line, and illustrates
the importance of the tensile effect on freezing in nanopores.
The origin of the skew was proved to be the tensile effect in
capillary condensed phase, as shown by studies using a new
model based on this effect.

While our understanding and modeling of the freezing in
slit pores has been advancing in this way, the capillary con-
densation phenomena in nanospace, or gas–liquid coexist-
ence, has also been studied recently by many researchers,
including us.22–26 Using the Kelvin equation ensured mis-
leading estimations of nanoscale pore sizes, so a simple
model was developed to overcome the failure. However,
there is little understanding about the triple point in pores,
which should serve to connect the above two coexistence
lines.

Following the above studies concerning phase coexist-
ence relations in nanopores, this study examined the triple
points of pore fluids. We employed a MD technique in a unit
cell with an imaginary gas phase developed by the authors.22

This enabled us to set or obtain the equilibrium vapor-phase
pressure for the adsorbed phase. Fluid is kept in a pore suf-
ficiently long to remain in the critical condensation condi-

tion, and is then simulated at various temperatures. The
solid–liquid transition of the critical condensate, whichis the
triple point, is thus determined for various pore widths. Our
model of the triple point, or the simultaneous solution of our
model of vapor–liquid coexistence23,24 and that of solid–
liquid coexistence,21 successfully predicts the simulation re-
sults with no need to introduce any adjustable parameters,
and thus proves its reliability.

II. MD SIMULATION WITH IMAGINARY GAS PHASE

The strategy for finding the triple points of pore fluid is
as follows. Basically, NVT-MD simulation is carried out. We
keep a capillary condensate with an appropriate number of
molecules in a sufficiently long pore space, which automati-
cally maintains the capillary coexistence condition. The tem-
perature is gradually lowered from one simulation run to
another, and the condition of the pore fluid is checked during
this series of simulation runs at various temperatures. When
the fluid freezes, it indicates that the system has passed the
triple point temperature, because the freezing point of the
critical condensateis the triple point for a given pore space.

If a normal simulation cell is employed, we may encoun-
ter some difficulty in knowing the condition of the bulk equi-
librium vapor phase. This study used the unit cell shown in
Fig. 1. We originally developed it in order to more easily
obtain the equilibrium vapor-phase pressure. For details of
the cell, please refer to the authors’ previous papers21,22 as
only an outline is provided below. In the middle of the cell,
the pore space was given a specific potential field@full po-
tential field ~FPF!#. The pore fluid stays within the FPF in
order to produce the capillary coexistence condition. At each
end of the cell, at a sufficient distance from the edge of the
FPF, we established a border plane beyond which an imagi-
nary gas phase is assumed to exist. Since the external energy
in the gas phase must be zero, there should exist a connect-
ing space with a slope of potential energy between the vapor

FIG. 1. Schematic figure of unit cell and potential profile within the cell.
The full potential energy in FPF attenuates in PBF to vanish at the border.
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phase and the pore space@potential buffering field~PBF!#.
Some of molecules escaping from the FPF may reach the
border plane if they have sufficient kinetic energy to over-
come the slope in the PBF. With a perfect reflecting condi-
tion at the border, the frequency reached by the molecules
must be a direct measure of the vapor pressure in bulk that is
in equilibrium with the given adsorbed phase. The equilib-
rium vapor phase pressure can then be calculated by count-
ing the number of rebounds at the border over a certain pe-
riod of time.

The fluid employed is a truncated and shifted LJ fluid
modelled on methane (e f f /k5148.1 K, s f f50.381 nm),
with the cut-off distance of 5s f f , which is felt to be large
enough to represent particles with the full LJ potential. The
mass is 2.664310226kg. The structureless 10-4-3 potential
for graphite27,28 was employed for each pore wall. Lorentz–
Berthelot combining rules were applied to obtain parameters
for the methane–carbon interactions. The pore widthH was
from 5.5s f f to 10.0s f f . The potential energy in the pore
space~FPF!, c, was calculated as the sum of the contribution
from the two walls:c(x)5f(H/22x)1f(H/21x). The
length of the wall 2l y was 7H, which is long enough to
accommodate thick condensates. The PBF was set to a length
of 13.12s f f ~5 nm!, in which c was attenuated linearly to-
wards zero at the border of the imaginary gas phase. The
z-direction size of the cell was 10s f f , under period boundary
conditions. The number of particlesN for a given pore width
was chosen to be sufficient for making a condensate with a
thickness of'10 nm ('26s f f).

The first run was started for a givenN from an initial
configuration arranged as a liquidlike phase at a higher tem-
perature. The duration of each run was decided so that the
number of particles reaching the border plane was about 500
or more, which resulted in a typical simulation time of 10–
150 ns. The last configuration, at a higher temperature, was
the initial configuration at a lower temperature. Since the
system automatically traces the gas–liquid coexistence in the
pores, the freezing point in this sequenceis the triple point
for a given pore size. The freezing points in the pores were
determined from discrete changes in the density and arrange-
ment of particles at various temperatures. For further details
about the calculation, please refer to our previous paper.21

As for the hysteresis, different transition temperatures in
the cooling/heating sequence inevitably occur in this simula-
tion cell, but to a much smaller extent than in GCMC simu-
lations. Furthermore, as reported earlier,14,21 the freezing
branch was considered closer to the true transition point than
was the melting sequence. In this study, we are mainly inter-
ested in the freezing points in the cooling sequence.

III. RESULTS AND DISCUSSION

A. Liquid–solid phase transition
of critical condensate

Figure 2 shows a typical side view of LJ-methane in
graphite pores ofH* 59.5 at various temperatures. It is
worth noting that the condensed phase stays within the lim-
ited portion of the pore space that has full potential energy
~FPF!, and the gas phase coexists with the condensed phase

in FPF. The system maintains the critical condensation con-
dition. At a higher temperature@Fig. 2~a!#, the pore fluid
exhibits a liquidlike structure with a small degree of layer-
ing. This is typically observed for capillary condensate in a
pore with a width of a few nanometers. Note that thex-scale
of each figure is expanded in order to more easily recognize
the layers. At 105.8 K, the degree of layering becomes more
recognizable@Fig. 2~b!#, but some molecules still exist be-
tween the inner layers. Only a slight cooling down to 105.0
K, a 0.8 K reduction, brings about the solidlike state seen in
Fig. 2~c!, where the discrete distribution can be clearly rec-
ognized.

The above difference between Fig. 2~b! and Fig. 2~c!
might appear subtle, but in-plane snapshots of the innermost
layer show a definite difference between the two states, as
shown in Fig. 3. A liquidlike structure of random nature at
105.8 K becomes a completely ordered structure with a hex-
agonal array at 105.0 K. Note that the contact layer adjacent
to the pore wall does not participate in the phase transition.
Rather, it maintains its hexagonal order before and after the
change. This is similar to the behavior observed in GCMC
for systems under equilibrium with saturated vapor.14

The transition is quantitatively examined with the over-
all densityr* of the adsorbate. For the condition in which
the pore fluid freezes, a slight amount of melted phase inevi-
tably exists around the edges of the frozen phase due to the
somewhat parallel case of so-called ‘‘surface melting.’’ The
density of a central portion of the FPF~CFPF! that has a

FIG. 2. Snapshots of critical condensates within a pore ofH/s f f59.5: ~a!
T5111.4 K, ~b! T5105.8 K, ~c! T5105.0 K.

FIG. 3. In-plane snapshots for the innermost layer in a pore ofH/s f f

59.5: the left figure corresponds to Fig. 2~b!, and the right to Fig. 2~c!.
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length of 10s f f and is free of melted molecules is calculated
in a manner similar to that used in the previous study,21

r* 5rs f f
3 : r5

^N&
V

and V5H310s f f310s f f , ~2!

where ^N& is the ensemble average of the number of par-
ticles in the CFPF.V is the volume of the CFPF between the
nuclei of the carbon atoms on the wall surface and includes
some dead space near the wall, which methane cannot pen-
etrate. For smaller pores, this region forms a larger fraction
of the total volume, thus giving a smaller apparent density.
Figure 4 shows variation of overall density in CFPF versus
temperature for various pore sizes. In the higher temperature
range, the density shows a gradual increase upon cooling. At
triple points, a discrete change in density occurs, which must
be attributed to the rearrangement of the molecules. Below
this temperature, almost no variation in density is observed
with further cooling.

These observations clearly demonstrate that the discrete
changes are associated with the liquid–solid phase transition.
Furthermore, though not shown here, we calculated the in-
plane pair correlation functions and the static structure fac-
tors for the individual layers. All results support the idea that
the steplike changes versus temperature are transitions from
a disordered liquidlike state to an ordered solidlike state.
These functions show a manner of change quite similar to
that observed when freezing pore fluid is in equilibrium with
saturated vapor in the bulk phase.14 Since the system auto-
matically traces the gas–liquid coexistence curve for pore
fluid, the observed freezing point is the triple point for a
given pore size.

The obtained data series are plotted on ap–T diagram
together with the bulk phase coexistence curves in Fig. 5 for
a pore of H* 59.5 as an example.~The figure also plots
phase coexistence curves for pore fluid, which will be ex-
plained in the next section.! Thus, the triple point was deter-
mined to beT5105.0 K, p/ps50.326 (p50.186 atm) for
this pore size, as compared to that for bulk fluid,T
5101 K, p50.41 atm. The obtained triple-point temperature
for this pore is not significantly different from that for bulk
fluid. As shown previously,14 the freezing point for pore fluid

in equilibrium with saturated vapor in bulkis around 110 K,
which is elevated from the bulk value by the compression
effect of the pore-wall attraction potential. This effect, how-
ever, is considered to be cancelled out to a certain extent by
the depressing effect originating from the tensile condition in
the capillary condensate. The pressure at the triple point,
however, is significantly different from that of the bulk fluid.

B. Simple model

As mentioned earlier, the authors proposed a model of
solid–liquid coexistence under tensile condition~with the
condition of p/ps,1).21 In addition, a series of studies by
the authors proposed a model of vapor–liquid coexistence
~capillary condensation! in nanopores,22–26 whose character-
istics were nonuniform in the curvature of the gas-
condensate interface, as explained below. For the sake of
convenience, we call this the nonuniform curvature~NUC!
model. The simultaneous application of the two models
should give the triple point for comparison with the simula-
tion results. The concept and brief descriptions of the models
are provided below.

In the NUC model, the attractive potential from the pore
walls is included as a contribution to the condensation equi-
librium. This is in addition to the Young–Laplace effect. The
basic equation of the condensation model is as follows:

kT ln
p

ps
5Dc~x!2vL

ggl

r~x!
, ~3!

wherek is the Boltzmann constant andvL the volume per
molecule of the condensate, which can be approximated
from that for bulk liquid. r(x) is the local radius of the
curvature of the gas-condensate interface at positionx in the
pore space~taken as a positive value!. ggl(r) is the surface
tension of the liquid, which is treated as a function of the
curvature. The relation given by the Gibbs–Tolman–
Koenig–Buff equation29–32 is used for the dependence.
Dc(x) is the contribution of the attractive potential energy
from pore walls, which must be expressed as an ‘‘excess’’
amount compared with the potential energy that a molecule
would feel if the pore walls consisted of the same molecules
as the adsorbate. The curvature becomes location-dependent
and nonuniform because of this contribution by the pore-wall

FIG. 4. Overall density of critical condensates on cooling. Stepwise changes
in density at the tabulated temperatures indicate the transition.

FIG. 5. MD results ofp–T relation for the pore ofH/s f f59.5 superim-
posed on bulk phase boundaries~broken lines!. Open circles show the liquid
state, and closed circles the solid state. Also drawn are estimated phase
boundaries for pore fluids~solid lines! explained in Sec. III B.
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potential. Based on Eq.~3!, the local curvature can be calcu-
lated for every position within the pore, and its geometrical
integration will determine the ‘‘core’’ size of the condensate,
which will give the pore size if summed with the thickness of
the adsorbed film on the interior surface of the pore.

For a fair examination of the model, the physical prop-
erties to be used in the model must be those for a LJ fluid
with the same cut-off distance employed in the simulation.
The surface tension and Tolman’s length are properties
known to be quite sensitive to the cut-off distance. We con-
ducted MD simulations of liquid slabs to obtain these prop-
erties as a function of temperature, the details of which are
described in the Appendix.

The other model describing solidification of tensile cap-
illary fluid with the bulk condition ofp/ps,1 was based on
the following concept:21

~i! Introducing an effective pressure for pore fluid,ppore,
the solid–liquid coexistence line with respect to this
pressure follows the Clapeyron equation, the slope of
which can be approximated by using that for bulk
fluid,

dppore

dT
5S Ds

Dv D
pore

>S Ds

Dv D
bulk

>const. ~4!

~ii ! The variation inppore relative to the starting point of
the solid–liquid coexistence line of pore fluid~freez-
ing point of pore fluid in equilibrium with saturated
vapor in bulk! is

Dppore>
kT

vL
ln

p

ps~T!
. ~5!

~iii ! The combination of the above two equations and
simple integration gives a relation describing the
solid–liquid coexistence linep5p(T),

p5ps~T!expF2S Ds

Dv D
bulk

vL

kT
~Ta2T!G , ~6!

whereTa is the freezing temperature of pore fluid in equilib-
rium with saturated vaporps(Ta) in bulk, which can be pre-
dicted by the equation proposed by Miyahara and Gubbins.14

Equation~6! gives solid–liquid coexistence (p,T) with un-
saturated vapor-phase pressure whenTa is given.

Using physical properties of bulk LJ fluid, the phase
boundaries for the pore fluid are calculated by the above two
models as described in Fig. 5. The dashed curves are coex-
istence lines of the LJ methane for the bulk phase that were
calculated from Kofke and Agrawal’s phase diagram.33,34

The solid lines are predictions from the NUC model and the
freezing model for tensile fluid. Note that the model predic-
tions do not include any fitting parameter. For the pore of
H/s f f59.5, e.g., the intersection of the two curves is located
at T5104.1 K,p/ps50.319 (p50.168 atm), and agrees well
with the MD simulation result.

Calculations for other pore sizes are conducted in the
same way. The results are shown in Figs. 6~a!–6~c!. Al-
though there are 1 or 2 K discrepancies in the triple-point
temperature, the model prediction quite successfully de-
scribes the behavior of the triple point on thep–T diagram.

As the result of the complicated influence both by the pore-
wall potential and the tensile effect, the triple point can be
higher or lower than the bulk triple point, and the triple-point
pressure becomes far lower than that of the bulk fluid. It is
surprising that the models with such a simple concept were
able to successfully express phase behavior in nanoscale
pores. This agreement would be proof of the usefulness of
the concept ofeffective pressure felt by the pore fluid, in
understanding the freezing phenomena in nanopores.

C. Relevance of the Gibbs–Thomson equation

The relevance of the Gibbs–Thomson equation is based
on the above models. Combining the two models, or Eqs.~3!
and~6!, we formally obtain an expression for the triple point
in pore,Tt

pore,

Tt
pore2Ta5S 2

ggl

r~x!
1

Dc

vL
D S Dv

DsD
bulk

. ~7!

FIG. 6. Comparison of triple points observed in simulations~keys! and the
estimates by the two models of solid–liquid and gas–liquid phase coexist-
ence for each pore size~solid lines!. The intersection of the two coexistence
lines should give the triple point.~a! H/s f f55.5; ~b! H/s f f57.5; ~c!
H/s f f510.0.
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An important feature of the above equation is that it agrees
with the Gibbs–Thomson equation only for large pore sizes,
where the effect of the pore-wall potential disappears. With
this condition ofDc50, the freezing point in equilibrium
with saturated vapor,Ta , will drop to the triple point for
bulk phaseTt

bulk . Moreover, curvaturer will remain constant
and equal to 2/H. Then Eq.~7! reduces to

Tt
pore2Tt

bulk52
2

H~Ds!bulk
~Dv !bulkggl . ~8!

On the other hand, the Gibbs–Thomson equation@Eq.
~1!# can be rewritten as

Tf
pore2Tf

bulk52
2

H~Ds!bulk
~vs!bulkgsl cosu. ~9!

Eventually, the two equations give almost identical results.
This is because the portions dealing with molar volume and
interfacial tension, which may look different, produce quite
similar figures in most cases due to the often encountered
relations of Dv>0.1vs , gsl>0.1– 0.2ggl, and cosu>0.5–
1.0. This agreement and the success of present model at the
nanoscale level show that the Gibbs–Thomson equation may
hold true for larger pores but NOT nanoscale pores, where
the compression effect of the pore-wall potential and the
strong capillary tensile effect produced by the equilibrium
vapor-phase pressure have considerable effect on the freez-
ing phenomena.

IV. CONCLUSION

Triple points in nanopores were examined by employing
a MD technique that was able to maintain the vapor–liquid
coexistence condition at the specified bulk equilibrium pres-
sure. This technique successfully determined the triple points
in nanopores located on the bulk phase diagram. The triple-
point temperatures can be higher or lower than the bulk triple
point depending on the pore size, which was thought to have
resulted from the complicated influence of both the elevating
effect produced by the strongly attractive pore-wall potential
energy and the depressing effect that originates from the ten-
sile condition in the capillary condensate. Because of the
cancellation, the deviation of the triple-point temperature
from the bulk was not significant, staying within 10 K. The
pressure of the triple point, however, exhibited significant
difference from the bulk.

A simple model to describe triple points was derived by
combining condensation and freezing models described by
the authors in previous studies. The model showed good
agreement with the MD results and proved to be reliable.
The importance of the two factors in nanoscale pore was
emphasized, which cannot be described by the classic
Gibbs–Thomson equation.

APPENDIX: PHYSICAL PROPERTIES
OF THE MODEL FLUID

To test the present model, some physical properties of
the model adsorbate employed in the simulations must be
known. These properties include the saturated vapor pres-
sure, the volume per molecule, the freezing point, the gas–

liquid surface tension, and the distance between the equimo-
lar dividing surface and the surface of tension,d ~Tolman’s
length or dividing thickness! within the interfacial region—
all for the bulk liquid state of LJ-methane with a cut-off
distance of 5s f f . Tolman’s length and the surface tension
are quite sensitive to the cut-off distance and temperature.
Therefore, using the MD method, we simulated a liquid film
consisting of an adsorbate fluid in a rectangular cell.

We set up a system of 7000 particles in a box of dimen-
sions Lx3Ly3Lz520.0s f f352.5s f f320.0s f f following
the literature.35–39 Similar to simulations in a pore, a border
plane with an imaginary gas phase was placed vertically at
each the end of the cell with sufficient distance from the
liquid film. The run consisted of 1.23106 integration steps of
10 fs. The saturated vapor pressure was determined by the
particle counting method.

The local surface tension was calculated for a slice spac-
ing of Lx30.0262s f f3Lz with the following statistical me-
chanical expression:

g5
1

2LxLz
K (

iÞ j

r i j
2 23yi j

2

r i j

du~r i j !

dri j
L . ~A1!

The surface tension was a half of summation of the local
surface tension over the interfacial region.36

Each property was determined by a running average of
23105 to 1.23106 steps. The local density and the local
surface tension are shown in Fig. 7. Figure 8 shows two
properties related to surface tension versus temperature. Us-
ing these properties, the curvature-dependent surface tension
employed in the NUC model for condensation can be calcu-
lated with the following equation~where r is a positive
value!,

FIG. 7. Local density and local surface tension of liquid film at 109.7 K.

FIG. 8. Dependencies of two properties on temperature: closed circles show
surface tension and open circles Tolman’s length.
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ggl~r!5g`~11d/r!. ~A2!

The temperature–pressure–density relation was con-
firmed to be almost identical to that of Kofke’s phase
diagram23,24 with a slight difference of 3%.
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