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The kinetics of the shrinking of polymer gels induced by ultracentrifugal fields is investigated. A
theory is proposed to describe the diffusion process of polymer networks under centrifugal fields.
The initial shrinking rate is proportional to the ratio of the centrifugal force to the frictional force of
networks. The shrinking attains the stationary state as a result of the balance between the centrifugal
force and the swelling force of networks. The characteristic time for shrinking is of the order of
a2/D wherea andD are the stationary displacement and diffusion constant, respectively. We also
present the experimental data for the shrinking of the poly~acrylamide! ~PAAm! gels under
ultracentrifugal fields. The shrinkage increases linearly with time in the initial stage whereas it
reaches the steady state in the long time limit as expected by the theory. Each of longitudinal elastic
modulus and friction coefficient of the PAAm gels is evaluated from the data on the basis of the
theory. © 2005 American Institute of Physics.@DOI: 10.1063/1.1835912#

I. INTRODUCTION

The kinetics of swelling and shrinking of polymer net-
works in solvents~gels! has been analyzed on the basis of
diffusion models of networks.1–6 As is pointed out in Ref. 7,
the diffusion models without considering a stress-diffusion
coupling effect cannot provide the exact solution for the time
dependence of swelling and shrinking. However, the diffu-
sion models still have the advantage that the mathematical
treatments for the kinetics of swelling and shrinking are fa-
cilitated whereas the models yield a solution with practically
sufficient accuracy. On the basis of the diffusion models, the
characteristic time for swelling and shrinking is of the order
of d2/D, whered and D are the final dimension of the gel
and the diffusion constant of the network, respectively. The
constantD is governed by the elastic and frictional charac-
teristics of networks asD5L/ f , whereL and f are the lon-
gitudinal elastic modulus and friction coefficient between
network and solvent, respectively. The elastic moduli such as
Young’s modulus and shear modulus can be easily measured
by conventional mechanical testing. By contrast, there exist
only a few studies1,8,9 on the measurements off due to the
limited experimental methods.

The dynamics of swelling and shrinking of gels has been
investigated under no external field1–4 as well as under static
strains7,10–15 or dynamic loads.16 The present study focuses

on the shrinking behavior of gels under constant ultracen-
trifugal fields which has not been reported before. A theory
based on the diffusion model is proposed to describe the
kinetics of the shrinking of gels driven by centrifugal fields.
The theory shows that the characteristic time for shrinking is
proportional toa2/D wherea is the displacement in the sta-
tionary state, and that the initial shrinking rate is determined
by the ratio of the centrifugal force to the frictional force
acting on networks whereas the stationary state of shrinking
is achieved in the long time limit by the balance between the
centrifugal force and the swelling force of networks. We also
present the experimental data for the shrinking behavior of
polyacrylamide gels in water under ultracentrifugal fields.
The whole shrinking process of the gels observed is com-
pared by the theoretical prediction. Each of longitudinal
modulus and friction coefficient of the network is evaluated
from the stationary shrinkage and initial shrinking rate, re-
spectively.

II. THEORY

A. Basic equations

According to the diffusion model introduced by Tanaka
et al.,1 the equation of motion for a unit volume element in
the network with densityrN under an external field is gen-
erally written in the Cartesian coordinates (O2x1x2x3) as
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whereu is the displacement vector representing the displace-
ment of a point from the initial position att50, andf is the
volume fraction of the network. When the motion is de-
scribed in terms of the rotating system of coordinates, the
equation generally becomes complicated. However, if the ro-
tation occurs around a fixed axis~for example, thex3-axis
being the fixed one! with a constant angular velocity, the
equation has a rather simple form:

frN

]2u

]t2
5¹•s2 f

]u

]t
1F. ~1b!

Here,F denotes the apparent force: the sum of the centrifu-
gal and Coriolis forces. The term on the left-hand side of the
equation can be neglected when the motion of the volume
element is sufficiently slow in the time scale concerned: The
time scale treated here is still longer than the really short
time region where the inertia term becomes significant. On
the basis of the linear elasticity theory, in the Cartesian co-
ordinates,s in the above equations is related tou as17
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where Kos and G are the osmotic bulk modulus and shear
modulus of the network alone, respectively.

We now consider a simple case illustrated in Fig. 1. A
polymer gel~polymer network swollen in solvent! confined
in a rectangular cell is placed on a rotating axis (x1-axis!
which is hereafter renamed as ther-axis. The cell rotates at a
constant angular frequencyv. Namely, the system consid-
ered here is that a gel~in an actual case, the sample cell!
moves on an orbit. When the interface between gel and side
wall of the cell is a slip boundary, the network is deformable
only in the r-direction while no deformation occurs in the
other directions. As a result this shrinking process can be
treated as the one-dimensional~1D! motion of network,
which gives the following equation from Eqs.~1b! and ~2!,

]u~r ,t !
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]2u~r ,t !

]r 2
1

fDrv2

f
r . ~3!

Here, the inertia term is eliminated. The constantD is de-
fined byD5(K14G/3)/ f 5L/ f with L being the longitudi-
nal elastic modulus. In Fig. 1, the center of rotation, the gel
surface in the initial state and the bottom of the cell corre-
spond tor 50, r 5r 1 , and r 5r 2 , respectively. The second
term in the right-hand side of Eq.~3! originates from a cen-

trifugal field. The centrifugal force acting on the element at
distancer from the origin is proportional torv2, the volume
fraction of networkf, and the difference in densityDr be-
tween polymer network and solvent.

B. Solution

The initial condition to solve Eq.~3! is given by

u~r ,0!50 at t50. ~4!

The boundary conditions at the surface (r 5r 1) and bottom
(r 5r 2) of the cell may be, respectively, given by

]u~r 1 ,t !

]r
50 at r 5r 1 ~5!

and

u~r 2 ,t !50 at r 5r 2 . ~6!

Equation~5! originates from that the stress normally acting
on the gel surface~moving surface! is zero.2 The solution of
Eq. ~3! satisfying the initial and boundary conditions is

u~r ,t !5 (
n51

`
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wherea5r 22r 1 . In Eq. ~7a!, tL is the longest characteristic
time defined by

tL5
4a2

p2D
. ~8!

The termu(r ,`) in Eq. ~7a! is the stationary value ofu in
the long time limit,

u~r ,`!5
fDrv2

6L
~r 2

313r 1
2r 23r 1

2r 22r 3!. ~9!

In particular, the displacement of the moving surface in the
stationary stateu(r 1 ,`) is given by

u~r 1 ,`!5
fDrv2

6L
~2r 1

323r 1
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3!. ~10!

Equations~9! and ~10! indicate that the shrinkage in the
steady state is determined by the balance between the cen-
trifugal force and the swelling force. Meanwhile, in the ini-
tial stage of shrinking att/tL!1, u(r 1 ,t) is approximated
only by a linear term oft in a series expansion of Eq.~7!
aroundt50 as

u~r 1 ,t !5
fDrr 1v2

f
t for t/tL!1. ~11!

Equation~11! shows that the initial shrinking rate is propor-
tional to the ratio of the centrifugal force to the frictional

FIG. 1. Schematic for a gel under centrifugal fields. The gray part indicates
a gel confined in a cell. Each ofr 1 andr 2 corresponds to the position of the
moving boundary~gel surface! and immobile bottom wall of the cell.
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force. Thus the shrinking behavior in the short or long time
limit strongly reflects the frictional or elastic property of
gels, respectively.

Figure 2 illustratesu(r ,t)/u(r 1 ,`) as a function ofr /r 2

at various reduced timest/tL , i.e., the displacement distri-
bution of a gel during shrinking. In the calculation,r 156
31022 m andr 25731022 m; both of which are close to the
experimental condition in present study, were employed. In
the initial statet50, u(r ,0)50. The profile of the stationary
displacement is given by a cubic function ofr of Eq. ~9!.

Figure 3 displays the displacement of the moving surface
u(r 1 ,t) at various centrifugal accelerationsa (5r 1v2/g
whereg is the acceleration of gravity! as a function of re-
duced timet/tL . The calculation was performed withr 1

5631022 m, r 25731022 m, L533104 Pa, f 51
31014Ns/m4, f5231022, and Dr54.483102 kg/m3. As

a increases, each of the initial shrinking rate and the station-
ary shrinkage increases as expected from Eqs.~10! and~11!,
respectively.

Although the exact solution ofu(r ,t) is a multiexponen-
tial function shown by Eq.~7!, the solution is well approxi-
mated by a single exponential function just with the leading
term for n51: The contributions of the high-order terms
(n>2) proportional to 1/(2n21)3 are negligibly small rela-
tive to that forn51. Thus the expression ofu(r 1 ,t) is rea-
sonably simplified as

u~r 1 ,t !'
16a2

p4

fDrv2

L
~2a2pr 2!expS 2

t

tL
D

1u~r 1 ,`!. ~12!

It is seen in Fig. 4 that there exists no noticeable difference
in the whole time dependence ofu(r 1 ,t) given by Eqs.~7!
and ~12!.

III. EXPERIMENT

Poly~acrylamide! ~PAAm! gels were prepared by radical
copolymerization of acrylamide monomer and methylenebi-
sacrylamide~crosslinker! employing ammoniumpersulfate as
an initiator. The mixtures were dissolved in water. The
monomer concentration was 3.00 wt. %, and the molar ratio
@monomer#/@crosslinker# was 100. After the reactant solution
was poured into an optical cell for the ultracentrifugal mea-
surement, the cell was maintained at 5 °C for 24 h for cross-
linking reactions.

Measurements were made using an analytical ultracen-
trifuge ~Beckman, Model E! with a light of Hg e-line~546
nm! at 25 °C. A single-sector 12-mm cell with quartz glass
window was employed. The centerpiece of the cell is made
of poly~trifluorochloroethylene! to minimize the friction be-
tween the cell wall and the gel. The initial dimension of the

FIG. 2. The displacement distribution of a gel during shrinking. The relative
position u(r ,t)/u(r 1 ,`) is displayed as a function ofr /r 2 at various re-
duced timet/tL . In the calculation,r 15631022 m andr 25731022 m are
employed.

FIG. 3. The shrinking behavior of a gel at various centrifugal accelerations
~a!. The calculation is performed withr 15631022 m, r 25731022 m, L
533104 Pa, f 5131014 Ns/m4, f5231022, Dr54.483102 kg/m3.

FIG. 4. The comparison ofu(r ,t) given by Eqs.~7! and ~12!. The time is
scaled bytL . The former is calculated by summing the terms up ton
51000. No appreciable difference is present between the two curves over
the whole time region. The curves are calculated witha54.53104 G and
the same parameter values as Fig. 3.
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gel in the centrifugal direction is'9 mm, and the thickness
and width, both of them are unchanged under centrifugal
fields, are'12 and 4 mm, respectively. The measurements
were carried out at the rotor speed of 1.803104 or 6.00
3104 rpm. The Schlieren diagrams photographed were read
on a contour projector~Nippon Kogaku, L-16! to the accu-
racy of 60.001 mm.

As the value ofrN for PAAm networks is unknown, the
density of amorphous linear PAAm (r51.4453103 kg/m3)
was employed asrN needed for the evaluation ofDr. The
density of the linear PAAm withMw51.03104 g/mol was
evaluated from the densities of the aqueous solutions with
various PAAm concentrations assuming the additivity for
volume.

IV. RESULTS AND DISCUSSION

Figure 5 displays the Schlieren patterns during the
shrinking of the PAAm gel at the centrifugal acceleration of
a52.263104 G. In these patterns, each position of air–
solvent and solvent–gel interfaces is evidently recognizable
as the point where the concentration gradient diverges. Att
56.003102 s, the air–solvent and solvent–gel interfaces are
not distinguishable because the rotation time is too short to
yield a finite shrinking. Att59.383104 s ~'1 day!, an ap-
preciable shift of the solvent–gel interface toward the cell
bottom ~i.e., shrinking! is visible, while the air–solvent in-
terface is immobile due to the incompressibility of the sol-
vent. After sufficiently long time to achieve the stationary
state (t56.953105 s), the length of the gel decreases to less
than a half of the initial length. It should be noticed in the
last column in Fig. 5 that the position of the solvent–gel
interface shifted by the centrifugal force slowly returns to the
original position after stopping the rotation. This indicates
that the deformation induced by centrifugal forces is recov-
erable; that no irreversible structural change in the gel is
caused by the centrifugal forces. A finite concentration gra-
dient observed between the air–solvent interface and the cell
bottom primarily stems from the unreacted monomers which
is originally present inside the gel. The time course of the
change in the concentration gradient may reflect the sedi-
mentation process of the unreacted monomers inside the gel,
but it is beyond the scope of the present study to enter into
the details.

Part ~a! of Fig. 6 illustrates the position of the moving
surface of the gels~i.e., the gel–solvent interface! as a func-
tion of time ata5r iv

2/g52.263104 or 2.573105 G. The
value of r at t50 (r i) corresponds to the initial distance of
the gel surface from the rotation center before applying the
centrifugal force. In the case ofa52.263104 G, the shrink-
ing proceeds linearly with time in the short time region,
while the steady state of shrinking is achieved in the long
time region~after'6 days!. The extrapolation from the data
in the short time region tot50 slightly deviates from the
data att50, resulting from the fact that a finite time~'7
min! is required to reach the constant rotation speed in the
experiments. Thus we employ the intercept att50 in the
linear extrapolation asr i for further analysis. At the higher
centrifugal acceleration ofa52.573105 G, the shrinkage
also increases linearly with time, and the shrinking rate is

about 1 order of magnitude larger than that ata52.26
3104 G. Meanwhile, the true value of stationary shrinking is
not attainable ata52.583105 G, because the high centrifu-
gal force yields such a large shrinking that the shift of the gel
surface stops due to the presence of the bottom wall~located
at r 571.76 mm).

FIG. 5. The Schlieren patterns in the shrinking process of a PAAm gel at the
centrifugal accelerationa52.263104 G as a function of time. The last col-
umn shows an example of the patterns sufficiently long after stopping the
rotation.
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According to Eqs.~10! and ~11!, the modulusL and the
friction coefficient f can be evaluated from the stationary
shrinkage and the initial shrinking rate, respectively. For the
calculations,r 156.24031022 m andr 257.17431022 m for
a52.263104 G; r 156.39531022 m, and r 257.176
31022 m for a52.573105 G were used together withf
52.0931022 andDr5rN2rwater54.483102 kg/m3. From
Eq. ~11! and the linear regression for the data in the short
time region ata52.263104 and 2.583105 G, f is estimated
to be 1.0431014 and 1.1031014Ns/m4, respectively. The
data at differenta yield almost the same value off, indicat-

ing that the initial shrinking rate is proportional toa as ex-
pected from the theory. Thesef values are also close tof
51.531014Ns/m4 obtained by a frictional measurement8 of
the PAAm gel with the same concentrations of monomer and
crosslinker as the PAAm gel in the present study. This agree-
ment indicates the validity of the theory in the present study,
and it also assures that the effect of the friction between the
cell wall and the gel on shrinking is negligibly small. From
Eq. ~11! with r `56.82031022 m at a52.263104 G, L is
evaluated to be 1.643104 Pa. These values off andL yield
D51.57310210m2/s.

Part~b! of Fig. 7 displays the result of the curve fit based
on Eq. ~12! to the whole time dependence of the data ata
52.263104 G. In the fitting,tL andL were used as adjust-
able parameters while other parameter values were the same
as aforementioned values. The theoretical curve satisfactorily
fits the data, although each of the initial shrinking rate and
stationary shrinkage in the fitted curve is slightly larger than
that in the data. The fitted values oftL and L are 2.16
3105 s and 1.503104 Pa, respectively. These yieldf 59.17
31013Ns/m4 andD51.64310210m2/s. Each value ofL, f,
and D obtained in the curve fitting well accords with that
evaluated from the stationary shrinkage and initial shrinking
rate as mentioned above, respectively.

Thus the experimental data on the shrinking of the
PAAm gel under ultracentrifugal fields are well explained by
the theory proposed here. Further, the present work has dem-
onstrated that the ultracentrifugal measurements of gels en-
able us to evaluate simultaneouslyf and L of polymer net-
works.

V. CONCLUSIONS

Ultracentrifugal fields induces the shrinking of gels. In
the short time region, the shrinking proceeds at a constant
rate, while the shrinking reaches the stationary state in the
long time limit. A theory is proposed to describe the diffu-
sion process of networks in the presence of centrifugal fields.
The theory demonstrates the following characteristics of the
shrinking behavior: The initial shrinking rate is dominated by
the ratio of the frictional force and the centrifugal force. The
stationary shrinkage is determined by the balance between
the swelling force and the centrifugal force. The whole
shrinking process substantially obeys a single exponential
relaxation whose characteristic time is proportional to the
ratio of the square of the stationary displacement and the
diffusion constant of networks. The whole shrinking process
of a polyacrylamide gel under ultracentrifugal fields ob-
served is satisfactorily described by the theory. The analysis
based on the theory enables us to evaluate the friction con-
stant as well as the longitudinal elastic modulus of the net-
work.

1T. Tanaka, L. O. Hocker, and G. B. Benedek, J. Chem. Phys.59, 5151
~1973!.

2T. Tanaka and D. J. Fillmore, J. Chem. Phys.70, 1214~1979!.
3A. Peters and S. J. Candau, Macromolecules21, 2278~1988!.
4Y. Li and T. Tanaka, J. Chem. Phys.92, 1365~1990!.
5A. Onuki, in Responsive Gels: Volume Transition I, edited by K. Dusek,
Adv. Polym. Sci. ~Springer-Verlag, Berlin and Heidelberg, 1993!, Vol.
109, p. 63.

FIG. 6. ~a! Position of the solvent–gel interface~the moving surface! of a
PAAm gel as a function of time at the centrifugal acceleration ofa52.26
3104 G. The inset shows the same plots for the data ata52.573105 G.
The straight lines represent the linear regression in the short time region.
The deviations of the data att50 from the linear extrapolations result from
the fact that a finite time~'7 min! is required to achieve each constant
rotation speed.~b! The comparison of the experimental data ata52.26
3104 G with the best-fitted curve of Eq.~12!. The fitted values oftL andL
are 2.163105 s and 1.503104 Pa, respectively.

024906-5 Kinetics of shrinking of polymer gels J. Chem. Phys. 122, 024906 (2005)

Downloaded 04 Jun 2007 to 130.54.110.22. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



6C. Wang, Y. Li, and Z. Hu, Macromolecules30, 4727~1997!.
7T. Yamaue and M. Doi, Phys. Rev. E69, 041402~2004!.
8M. Tokita and T. Tanaka, J. Chem. Phys.95, 4613~1991!.
9T. Takigawa, K. Uchida, K. Takahashi, and T. Masuda, J. Chem. Phys.
111, 2295~1999!.

10T. Takigawa, K. Urayama, Y. Morino, and T. Masuda, Polym. J.~Tokyo,
Jpn.! 25, 929 ~1993!.

11T. Takigawa, K. Urayama, and T. Masuda, Polym. Gels Networks2, 59
~1994!.

12K. Urayama, T. Takigawa, and T. Masuda, Rheol. Acta33, 89 ~1994!.
13A. Suzuki and H. Hara, J. Chem. Phys.114, 5012~2001!.
14S. Sasaki, J. Chem. Phys.120, 5789~2004!.
15S. Hirotsu, Macromolecules37, 3415~2004!.
16T. Takigawa, S. Nosaka, Y. Takakura, and K. Urayama, Polym. J.~Tokyo,

Jpn.! 35, 819 ~2003!.
17L. D. Landau and E. M. Lifshitz,Theory of Elasticity~Pergamon, Oxford,

1986!.

024906-6 Urayama et al. J. Chem. Phys. 122, 024906 (2005)

Downloaded 04 Jun 2007 to 130.54.110.22. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp


