HTML AESTRACT * LINKEES

THE JOURNAL OF CHEMICAL PHYSICSL122 194108(2005

Iterative CI general singles and doubles (ICIGSD) method for calculating
the exact wave functions of the ground and excited states
of molecules

Hiroshi Nakatsuiji®

Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto
University, Katsura, Nishikyou-ku, Kyoto 615-8510, Japan and Fukui Institute for Fundamental Chemistry,
Kyoto University, 34-4 Takano-Nishihiraki-cho, Sakyo-ku, Kyoto 606-8103, Japan

Masahiro Ehara
Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering,
Kyoto University, Katsura, Nishikyou-ku, Kyoto 615-8510, Japan

(Received 8 February 2005; accepted 7 March 2005; published online 19 May 2005

The iterative configuration-interaction general singles and doull#&SD) method was applied to
various closed- and open-shell electronic states of molecules within finite basis sets and was shown
to give the exact results that are identical to the full Cl ones. The structure of the ICIGSD is unique
among the ICI formalisms, that is, the singularity problem intrinsic to atomic and molecular
Hamiltonians can be avoided. The convergence of the ICIGSD method was fairly good regardless
of the characters of the electronic states and the qualities of the basis sets; only several iterations
were enough for obtaining microhartree accuracy. These favorable properties are attributed to the
unigue GSD structure. The present method was shown to be applicable to various spin states and to
gquasidegenerate states appearing in bond dissociation process. We have also applied the ICIGSD-CI
method to calculate the excited states simultaneously. We have confirmed that the ICIGSD-CI
method is accurate for calculating the excited states the symmetries of which are not only similar to
but also different from that of the ground state.2005 American Institute of Physics
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I. INTRODUCTION tive conclusiorf. He further considered this subject and
showed that the CCGSD is not guaranteed to be exact, again,

Establishing a method for solving the Schrodinger equabut its possibility was not excluded because of its highly
tion (SE) is a central theme in theoretical chemiét@or this  nonlinear naturé.Nevertheless, this possibility has received
purpose, we have studied the structure of the exact wave lot of interest by many authot&:*8
functio® and proposed the iterative configuration-  The true solution of the SE is accessible only with an
interaction (ICl) method® and the simplest extreme analytical method. In a finite-basis approximation, FCI is
coupled-clustetSECQ method as the methods to generate the best possible solution but it is far from the true solution
the functions having the structure of the exact wave functionof the SE because of the basis-set incompleteness. Neverthe-
When the variables included in these functions are optimizetkss, we call even the FCI solution as exact, since it is tradi-
by the variational principle, it gives the exact energy and theionally done so. In the analytical approach, a problem in
exact wave function that are the solution of the SE. Foratomic and molecular calculations was the singularity prob-
finite-basis approximation, the same method gives the resultem caused by the Coulombic potential involved in the
identical to the full CI(FCI). Such exactness has been con-Hamiltonian®® To circumvent this problem, we proposed the
firmed numerically in both analytical and basis-set expansioiinverse SE and the scaled SEIn particular, the latter ap-
approaches for harmonic oscillatot and atomic and mo- proach was quite successful in developing a general method
lecular system&:® of solving the SE in an analytical forfh.

Historically, Horn and Weinstein, Kosloff and Tal-Ezer, In the finite-basis approximation, the singularity problem
Cioslowski, and others considered to solve the timehecomes a bit vague because when you have a Hamiltonian
dependent SE on the imaginary time akigluanget al’®  matrix H, defined within the basis-set space, you can calcu-
proposed the surplus function method for the variationalate H" essentially to an arbitrary order, though this is im-
Monte Carlo calculations. Nooijéhconsidered to solve the possible if the basis is complete because tHet);
coupled cluster with general singles and doubles variables(i|H"j) and the integral in the right-hand side can diverge
(CCGSD with the density equatidf that is equivalent with  whenn= 38 When the basis is far from complete, the calcu-
the SE. The present author considered independently a pPoggtion may proceed without much difficulfybut it is due to
sibility of the exactness of the CCGSD and reached a negahe incompleteness of the basis set. We have already shown
that by introducing the inverse Hamiltonfaand the scaled
IFAX: +81-75-383-2739; Electronic mail: hiroshi@sbchem.kyoto-u.ac.jp Hamiltonian® the singularity problem can be eliminated.
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The purpose of this paper is to show a special merit of =Nl afa 4 S ners oot
the ICIGSD method for calculating the exact wave function. Tn % Coardp %S CrePr 827, ©)
The merit is twofold: one is the dissolution of the singularity r s . )

problem and the other is the rapid convergence. In th&'here "C, and "Cy, are the variables associated to the
ICIGSD method, we start from the second-quantized HamilSingles and doubles operators. Ty, only the totally sym-
tonian and introduce the GSD number of variables in the ICfetric one- and Ewgs-glectron operators were included. The
formalism. This makes it possible to formulate the ICIGSD Variables'C, and"Cy, in T, are determined by solving the
method to be free from the singularity problem. We haveSecular equation,

shown in the previous paﬂeuhat when we perform the sim- (W] H-E)|¥,y =0, (7a)
plest ICI(SICI) and ICI3, where the numbers of the variables
are one and three, respectively, the convergence to the exact (y . I(H - E)a,Tap|\Ifn> =0, (7b)
wave function is slow; 30-40 iterations for minimal basis
and 40-70 iterations for double-zeta basis for getting the (Wl (H - E)a;ra;raqapl‘l’n)=0, (70)

energy correct to eight decimal figures. In the ICIGSD pre-
sented here, the convergence is much faster than in the Sl@iith the size of the general singles and doubl&sSD).
and ICI3 given before. When the convergence is achieved, the ICIGSD wave func-
Another purpose of this paper is to show the applicatiortion satisfies Eqs(3) and (4), and therefore it is exact. We
of the ICIGSD method to molecular excited states, whichcall the above formulation of the GSD method integral-
was not done in the former calculations with the SICI andfree algorithm since no molecular integrals are included in
ICI3 methods’. We have proposed in Papef three methods  the T,, operator. Note that ICI satisfies size consistency be-
of calculating the excited states based on the ICI formalisntause it is exad.
and these methods were applied to the harmonic oscifiator. A slightly different formulation of the ICIGSD is pos-
In this paper, we apply the method B proposed previdusly ~ sible based on the general definition of the ICI thebirythe
molecular systems and calculate the excited states having tigeneral context of the ICIND theofywhere ND stands for
symmetries not only similar to but also different from that of the number of division of the Hamiltonian, we first divide the
the ground states. Hamiltonian into the GSD parts and define the variable op-
erator S by assigning a variable to each divided element.
Namely, referring to the second-quantized Hamiltonian given
in Eq. (1), we define the variable operatBras

Il. METHOD
A. ICIGSD with integral-free and integral- Si=> ”c;)u;)a:ap+ > nCLSqW;)Sqa:a;raqap (8)
including algorithms pr pars

First we briefly review the ICIGSD methdd Origi- ~ and define the ICIGSD theory by
nglly, the ICI method was _introduced in the .GSIZ? forrr_1a|ism Vo= (1+S)V,. (9)
given below? The Hamiltonian of the system is written in the
Second_quantized form as The secular equation for this ICIGSD is

H= 2 U;)a:ap + E ersqa:alaqap, (1) <q,n+1|(H - E)|\Pn> = 0, (103)

pr pars
(Wl (H - E)opala /W, = 0, (10b)

wherea! and a, are the creation and annihilation operators,
respectively, ang, g, r, s run over all occupied and unoc- _ s .t _
cupied orbitals. The integrals, andwj;, represent one- and (Wnual (H = Eywpearasagag ¥ = 0. (100
two-electron integrals. The energy associated to the wavghe latter formulation differs from the former one simply in
function ¥ is defined by the presence of the integralg, and wiy, in the one- and
(W|H - E[¥) = 0. 2 two-e!ectron parts. These integrals_c_an be take_n off without
affecting the result, simply by redefining the variable opera-
It was shown previousfythat the wave functionV is exact tors as”CL:”crvr and ”CLS :”c;)SqWLSq and by dividing Egs.
when the following equations are satisfied for all the indices(10b) and (100 by UL and W[qu' respectively. The difference
p,q,r,s, of these two formulations is thus very small, but as will be
(W|(H —E)aIap|\If>:O, 3) seen IaFer, the effect is very big numencally in the_ actual
calculations. We therefore call this latter formulation as
WI(H-BEla'ala.a ¥ =0. 4 mtegral-mcludmg algorithm in contrast to the mtegral—'free
(el( )a;as3q p| ) @) algorithm based on Eq¢5) and(6). Since the integrals given
Based on this theorem, the ICIGSD method was introin Egs. (10b) and (100 include three-time products of the
duced in Paper’lfor calculating the exact wave function. It integralsv,, and wy,, respectively, the singularity problem

is defined in a recursion form as may appearand cause a difficulty in the integral-including
algorithm.
=1+
Wne = (14T W, ® Finally, we note that the integral-free formulation is pos-
whereT, is the GSD operator given by, sible only for the GSD case based on the second-quantized
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Hamiltonian given in Eq(1). In the general ICIND method TABLE I. ICIGSD and FCI for GH, with the minimal basis sét.
based on the ordinary Hamiltonian in the coordinate repre=

sentation, only the integral-including formulation is possible. Fcl ICIGSD
Hartree—Fock
energy Energy Energy
(a.u) Dim. (a.u) Iter. Dim. (a.u)

B. ICIGSD-CI for excited states
-77.826602 107952  -77.991647 1 125  -77.978734

465 -77.991152
532 -77.991627
532 —-77.991645
532 -77.991647

Next, we explain the ICI-CI method, which is the
method for calculating the excited states simultaneously with
the ground state. This method was called method B in Paper
11° and the calculated excited states are not guaranteed to be
exact, though they satisfy some necessary conditions of tH&ciGsp is due to the integral-free algorithm.
excited states. On the other hand, method A gives the “exact”
ﬁxcited state, though only one solution is calculated at & petails of calculations
ime.

When we obtain the exact ground-state wave function In the ICIGSD and ICIGSD-CI calculations, the basic
W, by the ICIGSD method, we have at the same time thevave functions were expanded by the Slater determinants,
GSD numbei(Ngsp) of good basis functions for the excited and in each iteration, we calculated the functions

a s~ wnN

states, which we designate #B,}, {alay|y),alalagay/y)} and the Hamiltonian matrix ele-
oy ot _ ments between them. The Knowles—Handy algorfﬁmas
{®} ={ara Vo) arasaga) Wy}  (K=1,...,Ngsp), useful. The present algorithm may be summarized as fol-
(11 lows:
whereK represent®, r andp, q, r, s. EqQ. (7) implies that (1) An appropriate initial guessy) is chosen. It was
these excited functions satisfy the Brillouin-orthogonality mostly Hartree—Fock.
with the exact ground state, (2) {alay|yn),aalaqay|y,)} are calculated for the operators

with {u[),w[fq} in the Hamiltonian nonzero.

<\P9|(H_E)|®K>=O' (12) (3) The Hamiltonian and overlap matrices for the basis
and this relation means that the functidds} constitute the fundionsﬂ’ﬂn)’a:ap|¢n>!a:a;aqap| Y} are calculated.
basis of the excited staté$Then, we expand our excited (4) The ICIGSD secular equation given by Eg) or (10)
state by a linear combination of these functions as is diagonalized.
N (5) The convergence is checked.
GSD
V= 2_: AP, (13 After obtaining the ground-state ICIGSD wave function, the
K=t ICIGSD-CI wave functions and the secular equation were
which is written in a more explicit form as constructed and solved.
- bt Most calculations were done by the integral-free algo-
W= (2 diafa, + > dpqafasaqap)qu' (14)  rithm, except when remarked. We also carried out the calcu-
pr pars

lations by the integral-including algorithm to see the differ-

This wave function gives a good approximation of the ex-€nce from the calculations with the integral-free algorithm.
cited states. Comparing E(L4) with Eq. (5), you will see, The coding was done rather straightforwardly and was not
however, that these excited states are nothing but the high@fmed to be efficient.
solutions of the converged ICIGSD solutiochEg. (14) has a
realistic meaning when the symmetry of the excited states i§|. RESULTS
different from that of the ground state. For example, we can . ) . .
generate triplet excited states using Ed) from the singlet A. Integral-iree versus mtegral-mcludmg algorithms
L . and the convergence behavior

ground state¥g. Similarly, we can generate ionized and
electron-attached states by replacing the GSD excitation op- First, we performed the ICIGSD calculations for the sin-
erators{Ri}:{aIap,aIagaqap} with the ionization operators glet ground state using minimal STO-6G ba3&nd double-
{Ri}:{ar,afaqap} and the electron-attachment operatfRs  zeta basié* The minimal basis calculations were done for
={a,alalay}, respectively. H,O, BH, N, HCN, acetylene (C,H,), ethylene

You find a close similarity of the above formulation with (C,H,), CH;F, HCHO, CQ, and G and the double-zeta cal-
that of the symmetry-adapted-cluster configuration-culations were done for Be, LiH, BHS and I states of
interaction (SAC-Cl) method for the excited statd$; CH*, and HF. In the minimal basis calculations, the 1s orbit-
ICIGSD corresponds to SK€and ICIGSD-CI to SAC-CI?  als of the second-row atoms were kept as frozen cores. These
Further, we can get more accurate wave functions by usingystems were studied in the previous SICI and ICI3 works
the ICIGSD-CI generaR method® in which triple and and so a direct comparison with the previous result is pos-
higher operators are included in tReoperators in addition sible. Note, however, that the dimension here is the number
to Eq. (14). This approach was called method C in Papgr Il of the Slater determinants, and that of the previous ﬁaper
and corresponds to the SAC-CI geneRatnethod? was the number of the symmetry-adapted configurations.
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TABLE II. ICIGSD with integral-including and integral-free algorithms. Eq. (5). The energy of the second iteration was slightly
Numbers in parenthesis indicate powers of N&. means that the diagonal- worse by about X107 a.u. than that of the singles
ization of ICIGSD failed. . o '
doubles, triples, and quadruples (SDTQ-CI). After several
Molecule iteration Integral-including algorithm Integral-free algorithm Iterations, .the IC_IGSD dimension becomes a C_OnStar_]tv 1.,
the GSD dimension. In the ethylene case, the dimension be-
came 532 after the third iteration. The ICIGSD energy rap-

O3 (minimal basi$

Haiag ~1.24-6)--3.344) ~1.041)--5.402) idly converges to the FCI one; only five iterations were nec-

1 ~223.638944 ~223.638944 essary for obtaining the microhartré®0 6 a.u) accuracy.

2 -223.677392 -223.677406 .

3 593 679863 993 679870 The convergence behaviors of the IC_IGSD for other systems

4 993 679968 223 679980 were almqst the same as those of this example, as far as we

5 —293.679979 —223.679983 used the integral-free algorithm.

6 NA —223.679983 Now, we compare the ICIGSD calculations due to the

7 NA -223.679984Conv) integral-free algorithm and the integral-including algorithm.
CH (double zeta We used the Householder bisection and the inverse iteration

Haiag 1.541)--5.514) -1.632)-2.481) method with double-precision accuracy in the diagonaliza-
1 —37.965931 —37.965931 tion step of each iteration. In Table Il we gave the iteration
2 —37.969372 —37.969374 processes of these two algorithms fog, @H, HF, H,S, and
3 ~37.96939%6 ~37.96939(Conv) PH,. The basis sets are minimal for;0OH,S, and PH and
g _37_936222?(3306”\/) double zeta for CH and HF. In the integral-including algo-

HF (double zeth ' ’ rithm, the basis functionﬂ%),v;,afapwn),vyfqa;‘alaqapwn)}

Hyag 7.241)-—7.074) —2.232)-4.501) were used. As seen from Table II, the diagonal elements of
1 NA -100.154141 the Hamiltonian matrices in the integral-including algorithm
2 NA ~100.160063 widely range from the order of 10a.u. to theorder of
3 NA -100.160282 10* a.u. for themolecules including up to first-row atoms
4 NA -100.160287 and from the order of 16 a.u. to theorder of 10 a.u. for
5 NA -100.160289Conv) the molecules including up to second-row atoms. For this

H,S (minimal basis reason, the ICIGSD diagonalization of the integral-including

Haiag —3.27-6)--2.747) ~3.981)--1.643) algorithm failed for most of the molecules shown in Table II.
1 NA 397.386385 For CH, the convergence of the integral-including algorithm
2 NA -397.387004Conv) . .

- . was reached later than the integral-free algorithm. On the

PH; (minimal basig . . .

Hy —8.06-6)——1.857) -3.491)——1.443) other hand, in the integral-free algorithm, the ranges of the
1 ’ NA _341.357283 diagonal elements of the Hamiltonian matrices were much
2 NA -341.359218 moderate; 16- 107 a.u. for themolecules including first-row
3 NA -341.359239Conv) atoms and 16 10° a.u. for themolecules including second-

row atoms. Therefore, no singularity problem occurs in this
case, and the ICIGSD calculations rapidly converge to the
Table | shows the ICIGSD energies and the dimension$-Cl.

in each iteration of gH, with the minimal basis set. This Now that we have demonstrated how important it is to

calculation is due to the integral-free algorithm. The dimen-use the ICIGSD method with the integral-free algorithm, we
sion and the energy at the first iteration are identical to thoswill perform hereafter the calculations with only the integral-

of the conventional SDCI since the deexcitation operatordree algorithm.

applied to the Hartree—Fock function vanish identically in Table 11l summarizes the ICIGSD results, together with

TABLE lIl. ICIGSD and FCI for the ground states of ten molecules with the minimal basig sets.

FCI ICIGSD

Active Hartree—Fock

space energy Energy Energy
Molecule  occ.X unocc. (a.u) Dim. (a.u) Dim. Iter. (a.u)
H,O 4X2 -75.676507 37 =75.727911 37 2 =75.727911
BH 3X3 -25.001486 104 -25.059317 53 3 -25.059317
N, 5X3 -108.541824 396  -108.700217 119 4 -108.700217
HCN 5xX4 -92.573460 4076 -92.741207 345 6 -92.741207
C,H, 5X5 -76.602406 8152 —76.775867 289 6 -76.775867
C,H, 6X6 —-77.826602 107952 -77.991647 532 5 —77.991647
CHzF X4 -138.472331 54692 -138.570669 993 5 -138.570669
HCHO 6Xx4 -113.440285 11148 -113.584518 494 8 -113.584518
CcO, 8X4 —-186.852493 30901 —-187.065936 506 9 -187.065936
O3 9% 3 —-223.415852 12126 —-223.679984 884 7 —-223.679984

4CIGSD is due to the integral-free algorithm.
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99.0 L

idly converge to the FCI ones. The numbers of iterations for
convergence were quite small, about two to five iterations to
get a 108 a.u. accuracy, and even less than the minimal
basis case, though the GSD dimensions became larger here.
From these results, we may conclude that the convergence of
the ICIGSD calculations are quite fast, irrespective of the
quality of the basis set and the size of systems, as far as we
take the integral-free algorithm. This result is very encourag-
ing in comparison with the previous SICI and ICI3 calcula-
tions. The iteration numbers for convergence would be re-
CoHy — lated to the numbers of the electrons of the system, since in

‘ the Nth iteration 2\-electron excitations are generated in the
present method.

99.2

99.4

Ecorr (%

99.6 4 HCN

99.8

1004

B. Open-shell higher-spin states

0 1 2 3 4 5 6 7 We have applied the ICIGSD method to various spin
Iteration multiplicities. Table V shows the results for the doublet to
) . ) ___quintet states of Mwith the limited active spacfive occu-
FIG. 1. Convergence behaviors of ICIGSD calculations with the minimal _. . . . .
basis sets. pied and five unoccupied molecular orbitdldOs)] using
double-zeta basis set withtype Rydberg functiof® The

] ground state of each spin multiplicity was calculated. Since
the FCI results, for the ten molecules calculated with thgpe T, operator given in Eq(5) is totally symmetric, we
minimal basis sets. In the table, the ICIGSD dimension wagimply used the initial-guess function of the target spin-space
given for the final iteration, and the FCI dimension shows thesymmetry for obtaining the ICIGSD wave function of the
number of the Slater determinants involved. Thezd'me”S'Ori‘jesired symmetry. We adopted single dominant spin-adapted
of the present ICIGSD is in the order dN/2)°xX(M  ¢onfiguration as an initial guess for the doublet to quintet

2
—N/2),” whereN and M are the numbers of electrons and gycited states. Again, the ICIGSD method converged to the
orbitals, respectively, and the difference from the FCI dimen+c results after four to six iterations. The ICIGSD dimen-

sion becomes remarkable for large systems. The numbet§ons of different spin symmetries were almost the same,

of iterations for obtaining the accuracy  of sjnce the ICIGSD operators are determined by the structure
107® a.u(0.0006 kcal/mal were three to nine, which were o the Hamiltonian.
much smaller than those of the SICI and ICI3 reported  Thys, the ICIGSD method for open-shell and higher-spin

: 7
previously. _ multiplicities are as easy as for the closed-shell ground state.
The convergence behaviors of the ICIGSD method were

shown in Fig. 1 for the minimal basis calculations. Since :

. . . - C. Quasidegenerate states

each iteration of ICI is variational, the energy decreases

monotonically and converges to the FCI energy from above. The performance of the method to the bond dissociation

This trend was also observed in the previous SICI and ICI3r quasidegenerate states is an important issue. The present

calculations’ It should be noted that the fast convergencemethod was applied to the ground state of CO along the bond

was also obtained for Othe ground state of which has a dissociation process, and the result is given in Table VI. As

quasidegenerate biradical character. In the SICI and ICI3een from the Hartree—Fock weight, the Hartree—Fock domi-

cases, the convergence of @as slow in the initial stage of nant character is lost quickly as the CO length increases. The

iterations’ weight changes as 91.0, 52.1, and 0.8%Ifer,, 1.5Xr,,
Table IV shows the results for the molecules calculatecand 2.0<r,, respectively. The ICIGSD calculations were

with the double-zeta basis. Again the ICIGSD energies rapperformed using the same quality of basis sets and active

TABLE IV. ICIGSD and FCI for the double-zeta basis séts.

FCI ICIGSD

Active Hartree-Fock

space energy Energy Energy
Molecule  occ.X unocc. (a.u) Dim. (a.u) Dim. Iter. (a.u)
Be 2X2 -14.568534 36 -14.582693 20 2 -14.582693
LiH 2x10 -7.981094 1428 -8.008682 417 2 —-8.008682
BH 3%X9 -25.113743 12936 -25.187657 1164 3 -25.187657
CH*(13) 3X9 -37.885843 12936 -37.969397 1146 3 -37.969397
CH+(1H) 3X9 -37.761931 12064 -37.853620 1144 3 -37.853620
HF 5X7 -100.021970 157984 -100.160289 1176 5 -100.160289

4CIGSD is due to the integral-free algorithm.
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TABLE V. ICIGSD and FCI for the doublet ionized, doublet electron-attached, triplet, quartet, and quintet
states of N with double-zeta basis s&t.

FCl ICIGSD
Hartree—Fock
energy Energy Energy

State (a.u) Dim. (a.u) Dim. Iter. (a.u)
Doublet(ionized

225 -107.992338 6716 -108.214908 289 6 -108.214908
Doublet (electron-attached

z -108.472335 6716 -108.641658 289 6 -108.641658
Triplet

°m, -108.326615 5612 -108.426040 289 6 -108.426040
Quartet

a3 -107.804890 3120 -107.949326 289 5 -107.949326
Quintet

5Hu -108.078228 1792 -108.140790 288 4 -108.140790

4ICIGSD is due to the integral-free algorithm.

space as in the calculations of,Nin isoelectronic molecule. the excitation levels; the deviations were less thar® &0
Although the initial guess of the present ICIGSD calcula-for one-electron processes, and the errors for two-electron
tions was the ground-state Hartree—Fock in all cases, six tprocesses were within I®au at most. It is remarkable that
eight iterations were enough for obtaining the convergence tthe ICIGSD method with general singles and doubles opera-
FCI. We understand this result because the ICIGSD methotbrs described well the two-electron processes. Further im-
achieves the quality of the SDTQ-CI at the second iterationprovement is, of course, possible by using the ICIGSD-CI

generalR method, in which triples and higher operators are
D. ICI-CI calculations of the excited states added to the GSD operators in the ICI-Cl stage for describ-
ing the excited states. For other systems calculated in the
present study, the accuracy and the performance of the
ICIGSD-CI method were almost the same as those of this
xample.

Finally, we examine the ICIGSD-CI method for calcu-
lating the excited states. Table VII shows the ICIGSD-CI
results for the'S and 11 excited states of CHin compari-
son with the FCI results. The excitation level denotes the®
number of electrons involved in the excitation process. Th
ICI-CI wave functions were calculated using the ICIGSD‘?V' SUMMARY
ground-state wave function converged with the®artree The ICIGSD method lies in a unique position among the
accuracy. Method B of Paper Il explained above wasCl formalisms based on the basis-set expansion algorithm.
adopted, and therefore the excited states were described hdrean ordinary ICl method, it is impossible to formulate the
within the general singles and doubles operators applied tmtegral-free algorithm; it is possible only in the GSD case is
the ICIGSD wave function of the ground state. As explainedt possible since the second-quantized Hamiltonian consists
in the previous section, th excited states, whose symme- of the GSD terms, and therefore we can eliminate the ele-
try is the same as that of the ground state, correspond to thraents of the integrals dfi® that may lead to a divergence
higher solutions of the converged GSD diagonalizationdue to the singularity of the Coulombic potential of the
while the I excited states were calculated, following the Hamiltonian. This makes the ICIGSD method free from the
ICIGSD-CI formalism given in Eq(13) or (14), because the singularity problem that originates from the integralsHbt
symmetry of these excited states is different from that of theThis was demonstrated by performing the integral-including
ground state. Note that only a single diagonalization is necealculations as a contrast, where the calculations became im-
essary in the ICI-CI method; no iteration step is involved agpossible due to the existence of too large matrix elements
in the SAC-CI method. within the double-precision accuracy. Another merit of the

As shown in Table VII, the ICIGSD-CI method repro- ICIGSD is that the number of the variables is GSD, i.e.,
duced the FCI energies in excellent accuracy regardless ohoderately large in contrast to the SICI or ICI3 performed

TABLE VI. ICIGSD? and FCI for the ground state of CO iatr,, 1.5Xr,, and 2.0<r,.

FCI ICIGSD
Hartree—Fock
energy HF weight Energy Energy
Rco (a.u) (%) Dim. (a.u) Dim. Iter. (a.u)
le -112.334141 91.0 16304 —112.482772 538 6 —112.482772
1.5Xr, -111.997532 52.1 16304 -112.295416 538 8 -112.295416
2.0Xrg -111.867560 0.8 16304 -112.150999 538 6 —-112.150999

4CIGSD is due to the integral-free algorithm.
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TABLE VII. ICIGSD-CI and FCI for the'S and I excited states of CH The ICIGSD-CI method was also examined for calculat-
ing molecular excited states simultaneously with Method B
ICIGSD-CI reported in Paper . We examined both one- and two-
Excitation FCI energy Energy A? electron excited states and confirmed that the ICIGSD-CI
State level Character  (a.u) (a.u) (a.u) method reproduces the FCI results in good accuracy.
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