TITLE:
Direct observation and reactions of Cl-3 radical

AUTHOR(S):
Enami, S; Yamanaka, T; Hashimoto, S; Kawasaki, M; Aloisio, S; Tachikawa, H

CITATION:

ISSUE DATE:
2006-10-07

URL:
http://hdl.handle.net/2433/39772

RIGHT:
Copyright 2006 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.
Direct observation and reactions of Cl₃ radical

Shinichi Enami, Takashi Yamanaka, Satoshi Hashimoto, and Masahiro Kawasaki

Department of Molecular Engineering, Kyoto University, Kyoto 615-8510, Japan

Simone Aloisio
California State University, Channel Islands, One University Drive, California 93010

Hiroto Tachikawa
Department of Materials Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan

(Received 14 April 2006; accepted 30 May 2006; published online 4 October 2006)

The broad absorption of Cl₃ radical was observed between 1150 and 1350 nm using cavity ring-down spectroscopy at 213–265 K and 50–200 Torr with He, N₂, Ar, or SF₆ diluents. The absorption intensity of Cl₃ increased at lower temperature and higher pressure. SF₆ was the most efficient diluent gas. The temperature dependent equilibrium constants for Cl₃ formation from Cl+Cl₂ were theoretically calculated at the MP4SDQ/6-311+G(d) level. Observed decay time profiles of Cl₃ and the pressure dependence of Cl₃ formation are explained by the equilibrium reaction and a decay reaction of Cl+Cl₃. © 2006 American Institute of Physics. [DOI: 10.1063/1.2217440]

INTRODUCTION

Trihalogens have been proposed to explain halogen atom recombination reactions.¹⁻¹³ Crossbeam scattering experiments by Lee and co-workers¹⁻⁸ suggested the existence of bound trihalogens in the gas phase reactions. Fluorine containing trihalogens were observed and characterized in rare gas matrices using infrared (IR) absorption and Raman spectroscopy.⁹⁻¹³

Hutton and Wright³ proposed a formation mechanism of trichloride radical Cl₃ from Cl atom recombination in the presence of Cl₂:

Cl + Cl₂ + M → Cl₃ + M, (1a)

Cl + Cl₂ + M ← Cl₃ + M, (1b)

Cl₃ + Cl → 2Cl₂. (2)

Existence of Cl₃ was reported experimentally²⁻⁴,¹⁴⁻¹⁶ and theoretically.¹⁷⁻²³ Emission spectra attributable to Cl₃ were observed by Kawasaki et al.¹⁴ and Wright et al.¹⁵ These data were in reasonable agreement with each other. An IR spectrum of Cl₃ in a Kr matrix was reported by Nelson and Pimentel.²⁴ However, Wight et al.²⁵ indicated that the species they observed was not Cl₃ radical but Cl₃⁻ anion.

An ab initio study by Kaledin et al.²³ showed that the structure in the global minimum of the Cl₃ radical is linear ¹Π₂ with a bond dissociation energy Dₑ(Cl²−Cl) of 280 cm⁻¹. Kaledin et al.²³ reported that the energies and transition moments of the low-lying excited states are not consistent with the experimental electronic ultraviolet and visible spectra that have been assigned to Cl₃. They also suggested that the low-lying doublet excited state is a bound symmetric ¹Π₂ state, and its potential minimum lies about 8700 cm⁻¹ above the van der Waals minimum. They concluded that the A–X transition is fully allowed.

EXPERIMENT

The CRDS apparatus used in the present study has been described in detail elsewhere.²⁰,²¹ Cl atoms were generated by photodissociation of Cl₂ at 355 nm [Nd³⁺:YAG (yttrium aluminum garnet) laser, Spectra Physics, GCR-250]. A typical laser intensity was 80±5 mJ pulse⁻¹. The output from an optical parametric oscillation laser (Spectra-Physics, MOPSL, 0.2 cm⁻¹ spectral resolution) was used to obtain the desired probe wavelengths in the near-IR region. A dye laser (Lambda Physik ScanMate pumped by the second harmonic output from a Nd³⁺:YAG laser, Quantel, Brilliant β) with coumarin dye (480 nm or 440 nm) was also used to probe Cl₃ in the visible region. Cavity ring-down mirrors (II-VI or Research Electro Optics, 7.8 mm diameter and 1 m curvature) had a specified maximum reflectivity of >0.999 and were mounted 1.04 m apart. Light leaking from the end mirror was detected by a photodiode (Thorlabs, PDA255) or a photomultiplier tube (Hamamatsu Photonics, R212UH) through a proper cutoff filter. The ring-down signal of the light intensity was sampled by a digitizing oscilloscope (Tektronix, TDS-714L, 500 MHz, 8-bit resolution) and recorded in a personal computer (PC).

The decay of the leaked light intensity from the end mirror is represented by Eq. (3).
The reaction cell consisted of a Pyrex glass tube (21 mm inner diameter), which was evacuated by a combination of an oil rotary pump and a mechanical booster pump. The temperature of the gas flow region was controlled over the range 213–298 K by circulation of ethanol with a cooling circulator (Thomas, TRL 70 SLP). The difference between the temperature of the sample gas at the entrance and exit of the flow region was <1 K. Since the reaction region was located in the center 40 cm of the glass reactor, the temperature was uniform in the interaction region. The pressure in the cell was monitored by an absolute pressure gauge. The pressure in the interaction region was uniform in the interaction region. The pressure in the cell was monitored by an absolute pressure gauge.

Production of ClO were independently measured at 266 nm using Cl2/O3/O2 mixtures with photolysis of Cl2 at 355 nm. 31

All reagents were obtained from commercial sources, Cl2 (>99.999%, Japan Air Liquid Co.), N2 (>99.999%, Teisan Co.), He (>99.998%, Teisan Co.), Ar (>99.998%, Teisan Co.), and SF6 (>99.999%, Kanto Denka Kougyou Co.)

EXPERIMENTAL RESULTS

Absorption spectra

After 355 nm irradiation of a Cl2/N2 mixture, unstructured transient absorption appeared in the near-IR region of 1150–1350 nm at 213 K. Figure 1 shows the absorption spectrum at 0.1 ms after UV irradiation of the mixture of 4.5 × 1016 molecule cm−3 of Cl2 with 100 Torr total pressure of N2 diluent at 355 nm. The broad base line was measured without 355 nm irradiation. Its contribution to the spectra was subtracted from the raw absorption spectrum. No absorption appeared in the near-IR region by photolysis at 266 or 532 nm. To check for heterogeneous reactions or impurities, a variety of parts of the experimental setup, e.g., the reaction cell, glass bulbs, mass flow controllers, connectors, and o rings, were swapped for identical ones. We do not think that these were responsible for the absorption observed.

FIG. 1. Absorption spectrum obtained from the 355 nm irradiation of Cl2 at 213 K, 100 Torr total pressure of N2 diluent, and 0.1 ms after photolysis.

I(t) = I0 exp(−t/τ) = I0 exp(−t/τ0 − αnCL0d/L),

\[\tau = \frac{L}{c} \]

where \(I_0 \) and \(I(t) \) are the light intensities at times 0 and \(t \), respectively. \(\tau \) is the cavity ring-down time without photolysis laser light (about 1.5 μs at 1300 nm and 1.5 μs at 440 nm), \(L \) is the length of the reaction region (0.40±0.01 m), \(\alpha \) the measured cavity ring-down time with photolysis laser light, and \(c \) the velocity of light. \(n \) and \(\sigma \) are the concentration and absorption cross section of the species of interest, respectively. Each ring-down trace was digitized with a time resolution of 20 ns. The digitized traces were transferred to the PC and averaged over 32 or 64 runs to calculate the ring-down rate \(\tau^{-1} \). The validity of using cavity ring-down spectroscopy for kinetic studies derives from the fact that the lifetimes of the products generated by photolysis are much longer than the associated cavity ring-down times. 29

After 355 nm irradiation of a Cl2/N2 mixture, unstructured transient absorption appeared in the near-IR region of 1150–1350 nm at 213 K. Figure 1 shows the absorption spectrum at 0.1 ms after UV irradiation of the mixture of 4.5 × 1016 molecule cm−3 of Cl2 with 100 Torr total pressure of N2 diluent at 355 nm. The broad base line was measured without 355 nm irradiation. Its contribution to the spectra was subtracted from the raw absorption spectrum. No absorption appeared in the near-IR region by photolysis at 266 or 532 nm. To check for heterogeneous reactions or impurities, a variety of parts of the experimental setup, e.g., the reaction cell, glass bulbs, mass flow controllers, connectors, and o-rings, were swapped for identical ones. We do not think that these were responsible for the absorption observed.

FIG. 2. A typical decay time profile of the absorption intensity of Cl3 at 1250 nm at 213 K and 100 Torr total pressure of N2 diluent. The inset shows the semilogarithm plots. [Cl2]=1.0×1017 molecule cm⁻³. The solid line is a simulation result. See text for details.

FIG. 3. Photolysis laser intensity dependence of the absorption of Cl3 at 213 K and 100 Torr total pressure of N2 diluent. [Cl2]=1.9×1016 molecule cm⁻³ and 0.1 ms after photolysis.

FIG. 3. Photolysis laser intensity dependence of the absorption of Cl3 at 213 K and 100 Torr total pressure of N2 diluent. [Cl2]=1.9×1016 molecule cm⁻³ and 0.1 ms after photolysis.

\[\text{Intensity of photolysis laser (mJ pulse)} \]

\[\text{Optical Density (10^{-3} cm^{-1})} \]

\[\text{Intensity of photolysis laser (mJ pulse)} \]

\[\text{Optical Density (10^{-3} cm^{-1})} \]
We also checked the possibility of formation of aerosols from photolysis of chlorine gas. A mixture of 4.5 \times 10^{16} \text{ molecule cm}^{-3} of Cl_2 and 100 Torr of N_2 was introduced into the reaction cell in batch system and photoirradiated at 355 nm (120 mJ pulse^{-1}, 10 Hz) for 15–30 s at 213 K. We could not find any difference between before and after photoirradiation in the ring-down signal. These results indicate that aerosols which survive for longer than seconds were not formed in our experimental conditions. Considering all of these results, we conclude that the absorption appearing in the Cl_2/N_2 mixture with 355 nm irradiation is attributed to the reaction product Cl_3.

We also attempted to detect transient photoabsorption at 430–450 and 460–500 nm. Chlorine concentration [Cl_2] was varied in the range from 9.0 \times 10^{15} to 1.1 \times 10^{17} molecule cm^{-3} for these experiments in 100 Torr total pressure of N_2 diluent at 213 K. Unfortunately, we could not obtain the quantitative experimental evidence of the absorption of Cl_3 at these wavelength regions because of the significant absorption of Cl_2 itself.

Kinetic study

Figure 2 shows a typical decay time profile of the Cl_3 absorption intensity at 1250 nm, [Cl_2]=1.0 \times 10^{17} molecule cm^{-3}, and 100 Torr N_2 diluent. As shown in Fig. 3, the absorption intensity at 1250 nm and 0.1 ms after UV irradiation increased linearly with the photolysis laser intensity at 355 nm. Figure 4 shows the absorption intensity of Cl_3 as a function of Cl_2 concentration at 0.1 ms delay. It is apparent that [Cl_2] dependency is nonlinear. This behavior indicates that the production rate of Cl_3 is proportional to both [Cl] and [Cl_2], since formation of Cl_3 is an equilibrium reaction. These results indicate that the observed absorption is not attributable to the ClM complex (M=N_2, Ar, and He) proposed by Baer et al. in high total pressure conditions (1–1000 bars). Figure 5 shows the buffer pressure dependence of the absorption intensity of Cl_3 at 213 K with N_2 diluent at 0.1 ms delay. The concentration of Cl_2 was 9.1 \times 10^{15} molecule cm^{-3}. Production of Cl_3 increased with total pressure. He, Ar, and SF_6 were also used as buffer gases to examine the third-body efficiency on the formation of Cl_3. The order of the third-body efficiency was SF_6 > N_2 = Ar > He as shown in Table I. Figure 6 shows a negative temperature dependence of the absorption intensities of Cl_3 at 1160, 1200, and 1250 nm, which are normalized to the absorption intensity at 230 K. The absorption intensity at 1250 nm and 0.1 ms after UV irradiation increased linearly with the photolysis laser intensity at 355 nm.

Table I. Relative buffer gas effects on the absorption intensity of Cl_3 at 1250 nm and T=213 K.

<table>
<thead>
<tr>
<th>Buffer gas</th>
<th>Relative absorption of Cl_3 at 50 Torr (normalized to N_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>He</td>
<td>0.7±0.3</td>
</tr>
<tr>
<td>N_2</td>
<td>1.0</td>
</tr>
<tr>
<td>Ar</td>
<td>0.8±0.3</td>
</tr>
<tr>
<td>SF_6</td>
<td>1.8±0.7</td>
</tr>
</tbody>
</table>

Total pressure of He was 200 Torr.

Reaction of Cl_3 with CH_4

We tried to check whether the time profiles of the absorption intensity of Cl_3 will change or not when we added CH_4 to the reaction cell.

![Image](https://example.com/image1.png)

FIG. 2. A typical decay time profile of the Cl_3 absorption intensity at 1250 nm, [Cl_2]=1.0 \times 10^{17} molecule cm^{-3}, and 100 Torr N_2 diluent. As shown in Fig. 3, the absorption intensity at 1250 nm and 0.1 ms after UV irradiation increased linearly with the photolysis laser intensity at 355 nm. Figure 4 shows the absorption intensity of Cl_3 as a function of Cl_2 concentration at 0.1 ms delay. It is apparent that [Cl_2] dependency is nonlinear. This behavior indicates that the production rate of Cl_3 is proportional to both [Cl] and [Cl_2], since formation of Cl_3 is an equilibrium reaction. These results indicate that the observed absorption is not attributable to the ClM complex (M=N_2, Ar, and He) proposed by Baer et al. in high total pressure conditions (1–1000 bars). Figure 5 shows the buffer pressure dependence of the absorption intensity of Cl_3 at 213 K with N_2 diluent at 0.1 ms delay. The concentration of Cl_2 was 9.1 \times 10^{15} molecule cm^{-3}. Production of Cl_3 increased with total pressure. He, Ar, and SF_6 were also used as buffer gases to examine the third-body efficiency on the formation of Cl_3. The order of the third-body efficiency was SF_6 > N_2 = Ar > He as shown in Table I. Figure 6 shows a negative temperature dependence of the absorption intensities of Cl_3 at 1160, 1200, and 1250 nm, which are normalized to the absorption intensity at 230 K. The absorption intensity at 1250 nm and 0.1 ms after UV irradiation increased linearly with the photolysis laser intensity at 355 nm.

Table I. Relative buffer gas effects on the absorption intensity of Cl_3 at 1250 nm and T=213 K.

<table>
<thead>
<tr>
<th>Buffer gas</th>
<th>Relative absorption of Cl_3 at 50 Torr (normalized to N_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>He</td>
<td>0.7±0.3</td>
</tr>
<tr>
<td>N_2</td>
<td>1.0</td>
</tr>
<tr>
<td>Ar</td>
<td>0.8±0.3</td>
</tr>
<tr>
<td>SF_6</td>
<td>1.8±0.7</td>
</tr>
</tbody>
</table>

Total pressure of He was 200 Torr.

Reaction of Cl_3 with CH_4

We tried to check whether the time profiles of the absorption intensity of Cl_3 will change or not when we added CH_4 to the reaction cell.

Table I. Relative buffer gas effects on the absorption intensity of Cl_3 at 1250 nm and T=213 K.

<table>
<thead>
<tr>
<th>Buffer gas</th>
<th>Relative absorption of Cl_3 at 50 Torr (normalized to N_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>He</td>
<td>0.7±0.3</td>
</tr>
<tr>
<td>N_2</td>
<td>1.0</td>
</tr>
<tr>
<td>Ar</td>
<td>0.8±0.3</td>
</tr>
<tr>
<td>SF_6</td>
<td>1.8±0.7</td>
</tr>
</tbody>
</table>

Total pressure of He was 200 Torr.

Reaction of Cl_3 with CH_4

We tried to check whether the time profiles of the absorption intensity of Cl_3 will change or not when we added CH_4 to the reaction cell.

Table I. Relative buffer gas effects on the absorption intensity of Cl_3 at 1250 nm and T=213 K.

<table>
<thead>
<tr>
<th>Buffer gas</th>
<th>Relative absorption of Cl_3 at 50 Torr (normalized to N_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>He</td>
<td>0.7±0.3</td>
</tr>
<tr>
<td>N_2</td>
<td>1.0</td>
</tr>
<tr>
<td>Ar</td>
<td>0.8±0.3</td>
</tr>
<tr>
<td>SF_6</td>
<td>1.8±0.7</td>
</tr>
</tbody>
</table>

Total pressure of He was 200 Torr.

Reaction of Cl_3 with CH_4

We tried to check whether the time profiles of the absorption intensity of Cl_3 will change or not when we added CH_4 to the reaction cell.
The concentration of Cl₂ was 5.5 × 10⁻¹⁵ molecule cm⁻³. In the case of the bent form, the optimized parameters are: angle of Cl–Cl–Cl = 180.0°, where \(r_1 = 2.0365 \) Å, \(r_2 = 3.5988 \) Å, and \(\theta = 94.7° \). In both forms, one of the Cl–Cl distances of the Cl₃ radical are not significantly different from that of the other Cl–Cl distances. The optimized parameters for the linear form are: \(r_1 = 2.0374 \) Å, \(r_2 = 3.5988 \) Å, and \(\theta = 180.0° \), whereas for the bent form, \(r_1 = 2.0365 \) Å, \(r_2 = 3.4962 \) Å, and \(\theta = 94.7° \). The temperature dependence of the Cl₃ formation constant at 213 K is given in Fig. 8. The equilibrium constant decreases with increasing temperature; at 298 K, \(K = 1.38 \times 10^{-20} \) cm³ molecule⁻¹. The equilibrium constant for the bent form is calculated to be \(K = 1.12 \times 10^{-19} \) cm³ molecule⁻¹ at 213 K, which is about four times larger than that of the linear form. Similar calculations were carried out at the MP2/6-311+ +G(d,p) level. The equilibrium constants for the linear and bent forms are calculated to be \(K = 2.65 \times 10^{-20} \) and \(1.13 \times 10^{-19} \) cm³ molecule⁻¹ at 213 K. Furthermore, the equilibrium constant at 213 K is calculated using anharmonic frequencies of the Cl₃ radical obtained at the MP2/6-311+ +G(d,p) level. The values for the linear and bent forms are calculated to be \(K(\text{anharmonic}) = 2.70 \times 10^{-20} \) and \(2.15 \times 10^{-19} \) cm³ molecule⁻¹ at 213 K, respectively. Contribution of anharmonic effect increases the equilibrium constants for the bent form.

Hutton and Wright experimentally determined the lower limit value of the equilibrium constant, \(K > 2.0 \times 10^{-22} \) cm³ molecule⁻¹. Our present data are consistent with that of Hutton and Wright. Kaledin et al. predicted that

Harmonic vibrational frequencies of Cl₃ (in cm⁻¹) and zero-point energies (ZPEs in kcal/mol) calculated at the MP4SDQ/6-311+G(d) level.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Assignment</th>
<th>Cl₃ (linear)</th>
<th>Cl₃ (bent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_1)</td>
<td>Cl–Cl stretching</td>
<td>528⁺⁺</td>
<td>530⁺⁺</td>
</tr>
<tr>
<td>(r_2)</td>
<td>Cl–Cl stretching</td>
<td>41</td>
<td>50</td>
</tr>
<tr>
<td>(r_3)</td>
<td>Bending</td>
<td>25⁺</td>
<td>22⁺</td>
</tr>
<tr>
<td>Zero-point energy</td>
<td>0.89</td>
<td>0.86</td>
<td></td>
</tr>
</tbody>
</table>

The Cl–Cl stretching mode of free Cl₃ is calculated to be 529.0 cm⁻¹ (ZPE=0.76 kcal/mol).

Doubly degenerated mode (π-bending mode).

Theoretical calculations

All ab initio calculations were carried out using the Gaussian 03 program package. The structures and harmonic vibrational frequencies of Cl₃ and Cl₂ were calculated at the MP4SDQ/6-311+G(d) level. Two structural forms of the Cl₃ radical, linear and bent forms, are obtained by the geometry optimization. The optimized parameters are given in Table II. The structural parameters of the linear form of Cl₃ radical are calculated to be \(r_1 = 2.0374 \) Å, \(r_2 = 3.5988 \) Å, and \(\theta = 180.0° \), whereas for the bent form, \(r_1 = 2.0365 \) Å, \(r_2 = 3.4962 \) Å, and \(\theta = 94.7° \). In both forms, one of the Cl–Cl distances of the Cl₃ radical is significantly longer than the other (r₁), indicating that the Cl₃ radicals exist as a van der Waals complexes composed of a Cl₂ molecule and Cl atom, as predicted by Kaledin et al.23 Harmonic vibrational frequencies of the Cl₃ radicals are given in Table III. The frequencies are calculated to be 528, 41, and 25 cm⁻¹ for the linear form and 530, 50, and 22 cm⁻¹ for the bent form. The zero-point energies (ZPEs) are 0.89 kcal/mol for the linear form and 0.86 kcal/mol for the bent form. All vibrational frequencies show positive values, meaning that the optimized structures of the Cl₃ radicals are located in local minima. The binding energy of the Cl atom to the Cl₂ molecule is calculated to be 350 cm⁻¹ (without ZPE correction) and 300 cm⁻¹ (including ZPE correction) for the linear form and 370 cm⁻¹ (without ZPE correction) and 344 cm⁻¹ (including ZPE correction) for the bent form.

The equilibrium constant of the Cl₃ formation reaction [(1a) and (1b)] is estimated by

\[
K = \frac{Q(\text{Cl}_3)}{Q(\text{Cl}_3)Q(\text{Cl}_2)} \exp\left(-\frac{\Delta U}{k_B T}\right),
\]

where \(Q's \) are the molecular partition functions and \(\Delta U \) is the formation energy of Cl₃ expressed by Eq. (5). The harmonic approximation is assumed in the calculation of vibrational frequencies. The total partition function \(Q \) is expressed on the product of vibrational, rotational, translational, and electronic partition functions. To estimate the rotational partition function, classical behavior for the rotation of Cl₃ is assumed. The equilibrium constants at 213 K for the linear and bent forms are calculated to be \(2.49 \times 10^{-20} \) cm³ molecule⁻¹ at the MP4SDQ/6-311+G(d) level. The temperature dependence of \(K \) is given in Fig. 8. The equilibrium constant decreases with increasing temperature; at 298 K, \(K = 1.38 \times 10^{-20} \) cm³ molecule⁻¹. The equilibrium constant for the bent form is calculated to be \(K = 1.12 \times 10^{-19} \) cm³ molecule⁻¹ at 213 K, which is about four times larger than that of the linear form. Similar calculations were carried out at the MP2/6-311+ +G(d,p) level. The equilibrium constants for the linear and bent forms are calculated to be \(K = 2.65 \times 10^{-20} \) and \(1.13 \times 10^{-19} \) cm³ molecule⁻¹ at 213 K. Furthermore, the equilibrium constant at 213 K is calculated using anharmonic frequencies of the Cl₃ radical obtained at the MP2/6-311+ +G(d,p) level. The values for the linear and bent forms are calculated to be \(K(\text{anharmonic}) = 2.70 \times 10^{-20} \) and \(2.15 \times 10^{-19} \) cm³ molecule⁻¹ at 213 K, respectively. Contribution of anharmonic effect increases the equilibrium constants for the bent form.

Hutton and Wright experimentally determined the lower limit value of the equilibrium constant, \(K > 2.0 \times 10^{-22} \) cm³ molecule⁻¹. Our present data are consistent with that of Hutton and Wright. Kaledin et al. predicted that
the equilibrium constant at 295 K is 6.7×10^{-23} cm3 molecule$^{-1}$, which is significantly smaller than the experimental value. The difference may be caused by underestimation of ΔU in their calculation because the Cl–Cl bond length of the Cl$_3$ radical was fixed in the geometry optimization. If we used the K value reported by Kaledin et al., the concentration of Cl$_3$ should become too low to be detected experimentally.

DISCUSSION

Phototransition

Previous experimental observations of emission of Cl$_3$ were reported by two groups. Kawasaki et al. reported the excitation spectrum of Cl$_3$ at 415–427 nm with the use of laser induced fluorescence (LIF). Wright et al. also observed a broadband emission in the 370–440 nm regions at 400 Torr total pressure of N$_2$ diluent. These results support the existence of Cl$_3$. The present results show a new band at 1150–1350 nm.

Kaledin et al. reported that the low-lying doublet excited state is a bound linear symmetric 1$^3\Pi_g$ state (an excited state complex), and its potential minimum lies about 8700 cm$^{-1}$ above the van der Waals minimum. The vertical electronic transition point is a further 9000 cm$^{-1}$ higher in energy than the potential minimum of the excited state complex. Namely, the vertical excitation energy of Cl$_3$ is calculated to be 17700 cm$^{-1}$ from the van der Waals minimum. However, the van der Waals complex has a wide Franck-Condon region due to its structural flexibility, including the bent structure. Furthermore, the energy level of the excited state complex is significantly low (8700 cm$^{-1}$), while the relaxation energy from the vertical point to the excited state complex is large (9000 cm$^{-1}$). Therefore, absorption spectrum of Cl$_3$ would appear in the energy region 8700–17700 cm$^{-1}$. This excitation energy is consistent with that observed in the present experiment (7400–8710 cm$^{-1}$). Kaledin et al. also reported that the A-X transition is fully allowed. The absorption spectrum of Cl$_3$ observed in the present study could be assigned to be the A-X transition from the wide Franck-Condon region of the van der Waals complex.

Reaction mechanism of Cl$_3$ formation and decay

As shown in Fig. 6, Cl$_3$ formation has a negative temperature dependence. These results are similar to that of ClOO formation, which is considered as a weak van der Waals complex with the bond dissociation energy of 1640 cm$^{-1}$. Assuming only the equilibrium reactions (1a) and (1b), the following equation is obtained:

$$[\text{Cl}_3]_{eq} = K[\text{Cl}_2][\text{Cl}]_0/(1 + K[\text{Cl}_2]).$$

The solid curve in Fig. 4 is a best-fit curve for Eq. (6), which well approximates the concentration dependence of Cl$_3$ on [Cl$_2$]. However, the reaction of Cl$_3$ with Cl should be included to determine the concentration of Cl$_3$ correctly. The rate constants of reactions (1a) and (2) were obtained only from the decay time profiles of the absorption intensity of Cl$_3$ and the buffer pressure dependence of the absorption intensity of Cl$_3$ in chemical simulations that were performed using the IBM chemical kinetics simulator software package and the reactions listed in Table IV.

<table>
<thead>
<tr>
<th>Reactions</th>
<th>Rate constant (cm3 molecule$^{-1}$ s$^{-1}$ or s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl+Cl$_2$+M \rightarrow Cl$_3$+M</td>
<td>1.5×10^{-14}</td>
</tr>
<tr>
<td>Cl$_3$+M \rightarrow Cl+Cl$_2$+M</td>
<td>k_{1a}/K</td>
</tr>
<tr>
<td>Cl+Cl$_2$ \rightarrow 2Cl$_2$</td>
<td>$(2.5–4) \times 10^{-10}$</td>
</tr>
<tr>
<td>Diffusion</td>
<td>2500</td>
</tr>
</tbody>
</table>

Reaction mechanism of Cl$_3$ formation and decay provides the values $k_{1a}=1.5 \pm 0.6 \times 10^{-14}$ cm3 molecule$^{-1}$, $k_{1b}=5.7 \pm 2.3 \times 10^5$ s$^{-1}$, $k_{2}=2.5–4 \times 10^{-10}$ cm$^{-1}$ molecule$^{-1}$ s$^{-1}$, and $k_d=2500$ s$^{-1}$ as shown in Fig. 2. The decay shapes of Cl$_3$ were mostly sensitive to k_{1a}, k_{1b}, and k_d. Since k_2 was not sensitive, k_2 was determined from the pressure dependence as follows. With $K=9.9 \times 10^{-20}$ molecule cm$^{-3}$ for the bent Cl$_3$, the simulated curve was essentially the same using the kinetic parameters of Table IV.

A simulation with k_{1a}, k_{1b}, k_2, and k_d included was performed for the absorption intensity of Cl$_3$ as a function of Cl$_3$ concentration. As shown in Fig. 4, the results are essentially the same as approximated by a simple equilibrium Eq. (6).

Figure 5 shows the buffer pressure dependence of the absorption intensity of Cl$_3$. The production of Cl$_3$ increased experimentally with total pressure. A model calculation with reactions (1a), (1b), and (2) explains the tendency of this pressure dependence for both linear and bent structures of
Cl₃ as shown by the curves in Fig. 5. We used the chemical kinetic simulator software and the rate constants listed in Table IV. Hutton and Wright suggested the upper limit value of \(k_{(2)} \) to be \(2.8 \times 10^{-10} \) cm³ molecule⁻¹ s⁻¹ at 298 K. Although the experimental data have large error bars, it is safe to say that \(k_{(2)} \) is estimated to be in the order of the collisional cross section or \((2.5-4) \times 10^{-10} \) cm³ molecule⁻¹ s⁻¹.

There is another possibility that Cl₃ is formed by the “radical-complex” mechanism that includes the reactions of Cl+M → CI⁺M and CI⁺M+Cl₂ → Cl₃+M. This mechanism is similar to what was suggested by Troe for the O₂ and ClO₂ formation from corresponding atom and molecule under higher pressure experimental conditions up to 1000 bars. In the present work, we could not confirm the possibility of this radical-complex mechanism under the pressure range up to one quarter of a bar.

ACKNOWLEDGMENTS

The authors are grateful to Dr. A. J. Orr-Ewing of the University of Bristol for stimulating discussions. One of the authors (S.E.) thanks the JSPS Research Fellowship for Young Scientist.
