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A rarefied gas flow caused by a discontinuous wall temperature
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A flow of a rarefied gas caused by a discontinuous wall temperature is investigated on the basis of
kinetic theory in the following situation. The gas is confined in a two-dimensional square container,
and the left and right halves of the wall of the container are kept at different uniform temperatures,
so that the temperatures of the top and bottom walls are discontinuous at their respective middle
points. External forces are assumed to be absent. The steady flow of the gas induced in the container
by the effect of the discontinuities is analyzed numerically on the basis of the Bhatnagar—Gross—
Krook model of the Boltzmann equation and the diffuse reflection boundary condition by means of
an accurate finite-difference method. The features of the flow are clarified for a wide range of the
Knudsen number. In particular, it is shown that, as the Knudsen number becomeg.emalé the
system approaches the continuum limihe maximum flow speed tends to approach a finite value,
but the region with appreciable flow shrinks to the points of discontinuity; thus, the overall flow in
the container vanishes nonuniformly in the continuum limit. The behavior of the molecular velocity
distribution function is also investigated in detail. 01 American Institute of Physics.
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I. INTRODUCTION In contrast, in a rarefied gas where the Knudsen number
ail? not vanishingly small, the situation is different. The tem-

. . o erature field can cause a steady flow of the gas without the
rest with arbitrary but steady temperature distributions. W{ y gas \

. . . elp of external forces. Such flows have extensively been
assume that there is no external force in the field and also

. . ) . ... _.Investigated on the basis of kinetic theory for a wide range of
that the gas is at rest and its pressure is uniform at |nf|n|t){he Knudsen numbér22 In particular. in the case of small
when an infinite domain is considered. If we investigate th ' P '

steady behavior of the gas on the basis ofwmpressiblg eKnudsen numbers$i.e., the case near the continuum Ilmlt
Navier—Stokes systerfi.e., the conservation equations of the features of the flow have been understood systematically.

mass, momentum, and energy with Newton's law of stresd© P& more specific, for small Knudsen numbers, a general
and Fourier’s law of heat flow and the boundar diti theory (asymptotic theon?>~*’that describes the steady be-

y condition of " "=~ At /
nonslip or nonjump type we find thatv=0 and p=const, havior of the gas arounq arbltran_ly shaped bqundanes py
wherev is the flow velocity andp is the pressure, are the Means of a system of fluid-dynamic-type equations and slip
obvious solution of the continuity and momentum equationd0undary conditiongand the Knudsen layer correction near
satisfying the nonslip boundary condition for the velocity. the boundary has been established by a systematic
Then the temperature field is determined by the energy equ&Symptotic analysis of the Boltzmann equation and its ki-
tion, which reduces to the steady heat-conduction equatiof€tic boundary condition. According to the theory, the flow
for the temperature, and the nonjump boundary conditioninduced by the temperature field is classified into the follow-
This fact indicates that for any temperature distribution ofing three types(i) thermal creep flow;” (ii) thermal stress
the boundaries, no flow is induced in the gas. The Navier-slip flow*®~** and (iii) nonlinear thermal stress flo%:'*
Stokes system is generally accepted as the correct system t®e flow (i) is induced along the boundary from the colder
describe the behavior of a gas in the continuum limit wheredart to the hotter when the temperature of the boundary is not
the Knudsen number vanishes. Here, the Knudsen number iiform. The flow(ii) is induced along the boundary when
the ratio of the mean free path of the gas molecules to théhe temperature gradient normal to the boundary in the gas is
characteristic length of the system. Therefore, it is concludediot uniform along the boundary. The flofiii ) is induced in
that no steady flow is induced by the temperature field in théhe gas when the space between isothermal surfaces varies
continuum limit. This conclusion, drawn from the Navier— along the surfaces. The flow speed, divided by a quantity of
Stokes system, is correct in spite of the fact that the Navierthe order of the sound speed, is of the order of the Knudsen
Stokes system has a serious defect in describing the behavioumber for the flowsi) and (iii) and the Knudsen number
of a gas even in the continuum limit. We will come back to squared for the flowii). In the systems where the deviation
this point at the end of this section. from an equilibrium state at rest is small, the fldiii) is

Let us consider an ideal gas around solid boundaries
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negligibly small compared to the flow® and (ii). X2
The asymptotic theory mentioned above is based on the
assumption that the local Knudsen number, the local mean
free path divided by the local length scale of variation of L/2
physical quantities, is uniformly small. This means that the
radius of curvature of the boundary should be much larger T T
than the mean free path, and the boundary condition speci-
fied on the boundary should be smooth enough. If this con- X1
dition is not fulfilled, therefore, there is a possibility that -L/2 0 L/2
flows other than the above three types are caused by the
temperature field even when the Knudsen number is small.
Such an example is given in Refs. 31 and 32. Let us now
consider a flat plate placed in a rarefied gas in a container -L/2
kept at a uniform temperature and suppose that the plate is &
heated or cooled uniformly. Then, although the thermal creep
flow [the flow (i)] is absent because of the uniform tempera-
ture of the plate and of the container, a rather strong angg_ 1. A rarefied gas in a two-dimensional square container with a discon-
localized flow is induced around the edges of the plate. Thisinuous wall temperature.
is due to the following fact. Although the temperature of the
plate itself is uniform, there arises a steep temperature gra-
dient in the gas along the plate near the edges because of the
presence of the edges. The temperature gradient then cau
a flow by the same mechanism as the thermal creep (Bew
Refs. 28—30 This new type of flow was first found by the
numerical computatioi$>2 by the use of the direct simula-
tion Monte Carlo(DSMC) method®3* and then verified
experimentally*? A rough estimate in Ref. 32 shows that the
local flow speed near the edges, divided by a quantity of th
order of the sound speed, is likely to be of the order of'Kn
for small Kn, where Kn is the overall Knudsen number. This
fact was confirme® with a reasonable accuracy in a subse-
quent finite-difference analysis based on the Bhatnagar
Gross—KrookBGK) modef®~3 of the Boltzmann equation.
Therefore, the flow has a stronger effect than the flGyws

2

%/%ﬁidity of the Navier—Stokes system in the continuum limit.
A recent stud$? based on kinetic theory showed that, in the
situation considered in the first paragraph of this section,
though v=0 and p=const are correct, the steady heat-
conduction equation does not give the correct temperature
field even in the continuum limit. This is due to the fact that
%as flows of the order of the Knudsen number, which there-
fore vanish in the continuum limit, give a finite effect on the
temperature distribution in this limit. Since it is an effect of
the flows that do not exist in the continuum fluid dynamics, it
was termed theghost effect®?? This effect is particularly
important because it reveals the fatal defect contained in the
Navier—Stokes system for a gas. The effect manifests itself

(if). in a wide class of problems. The reader is referred to Refs.

A similar localized and steep temperature gradient anngZ9 30. and 40—44 in addition to Refs. 26. 39. and 22 for
the boundary arises when the temperature of the boundal% r’ther,information e

changes abruptly along it, as in the case of a discontinuous

temperature distribution. Also in this case, a flow that cannot

be covered by the asymptotic theory is expected to be in-

duced along the boundary even when the overall Knudsen

number is small and the boundary is geometrically smoothy. FORMULATION OF THE PROBLEM

In the present study, we are going to investigate such a flowA Problem

i.e., a flow induced by a discontinuous wall temperature. ™

More specifically, we consider a gas in a two-dimensional Let us consider a rarefied gas confined in a two-

square container, the wall of which has a discontinuous andimensional square containerL/2<X;<L/2, —L/2<X,

sectionally uniform temperature distributidsee Sec. Il A <L/2, whereX; is a rectangular coordinate systéFig. 1).

for the detail. We investigate the steady behavior of the The left half (X;<<0) and the right half X,>0) of the wall

gas, especially the flow induced around the point of disconef the container are kept at different uniform temperatdres

tinuity, numerically for a wide range of the Knudsen numberandT,, respectively. Therefore, the temperatures of the top

with special interest in the behavior for small Knudsen num-and bottom walls are discontinuous at their respective middle

bers. Making use of the BGK model of the Boltzmann equa-points (X;=0, X,==*L/2). External forces are assumed to

tion and the diffuse reflection condition as our basic systembe absent. We investigate the steady flow of the gas induced

we carry out an accurate numerical analysis by means of m the container by the effect of the discontinuities of the

finite-difference method that is able to describe the behaviowall temperature, for a wide range of the Knudsen number,

of the discontinuity in the molecular velocity distribution on the basis of kinetic theory. Our basic assumptions are as

function introduced by the discontinuity in the boundary follows: (i) the behavior of the gas is described by the BGK

temperaturdsee Sec. I modef®—38of the Boltzmann equatioriii) the gas molecules
We conclude this section with a brief discussion on theare reflected diffusely on the wall of the container.
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B. Basic equation

The BGK model of the Boltzmann equation in the

present steady and spatially two-dimensional problem is

written ag®4°
of of
51(9—X1+§2(9—X2=Acp(fe—f). (1)
P (fi_vi)2
e:(szn3/2eXp<_ 2RT ) @
p=f f d¢, (3a
1
UF;J &f d§, (3b)
1
T= ﬁf (&—v)?f d§, (30

where & is the molecular velocity,dé=d¢; dé, dés,

f(X1,X5,&;) is the velocity distribution function of the gas

molecules, p(X.,X,) is the density of the gasy;

:(U 1(X1,X2),U2(X1,X2),0) iS |tS ﬂOW Velocity,T(Xl,Xz)

is its temperatureR is the gas constant per unit mass, @nd

is a constant A.p is the collision frequency of a gas mol-

eculg. The domain of integration with respect &in Egs.

(38—(3¢) and in Egs(9b) and(9c¢) below is its whole space.
The boundary condition on the wall of the container is

written as follows?®4°

Pw glz
'~ 2T, >3fzeXp(_2RTW) (Gm=0. @
20 1/2

wheren; is the unit vector normal to the wall pointing into
the gas, and

( L L
T, for _§SX1<O' Xz—iz
or [x.— L « L
Tz T2
Tu= ] ] ®)
T, for <0<x1s§, Xzziz)
or X —L I_<X <
\ o 272 ma)

The problem is symmetric with respect to the axis.
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F(X1,X2,81,85,83) =1(X1,—X5,61,— &5,&3)
L

for 5

0<X,=

®

=X;<2

2

in terms of that in the lower half.

The pressurgd(X;,X;), stress tensop;;(X1,Xz) (P13
=p,3=0), and heat-flow vectog;(X;,X,) (q3=0) are ex-
pressed as

p=RpT, (93

pij:j (&—vi)(§—v)f dg (9b)
1

Qizif (fi_vi)(gj_vj)zf dé. (90

C. Dimensionless variables

Let us now introduce the following dimensionless vari-
ables:

Xi &
=7, L= _——15
L (2RTy)Y?
. (2RTY? . p
f:—fy p:_y
Pav Pav
10
~ Uj _,|\_ T - P (19
v-:—l :_1 :—1
' (2RTy)2 T P ReaTs
f)--= Pij a: Qi
YU RpaTi T (pa/2)(2RT,)?

wherep,, is the average density of the gas in the container.
Then, the BGK equation, Eq$1)—(3c), is written in the
following dimensionless form:

Therefore, we can analyze the problem only in the lower half

(—L/2<X,=<0) of the container by imposing the specular
reflection condition on th&; axis, namely,

f(xlaoagll§21§3):f(xllol§11_§2!§3)

|
2 2/ @

Then, the solution in the upper half {X,<L/2) is
given by

for £,<0, ( <X;<

ot ot 2 L
51(9—)(1+§2&—X2—mp(fe—f), (11)
R p (&i—vi)?
fezmex% — T) y (12)
p= J fdg (133
.~ 1 ~
Uizrj &if dg, (13b

p
N PP
T= 3ZJ (gi—vy)f dg, (1309
Kn=2(2RT,/m) YA Apal) *=11/L,

(14)

d{=d¢, dg, d{s,

where Kn is the Knudsen number, ahdis the mean free
path of the gas molecules in the equilibrium state at rest with
temperaturel; and densityp,,. The domain of integration
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with respect toZ; in Egs. (139—(13c¢ and Egs.(19b) and

(199 below is its whole space. On the other hand, the di-

mensionless form of the boundary conditi¢d)—(6) re-
stricted in the lower half of the container is

Pw

2
= e ] ano. ~
R 2771/2 R
with
1 for (—3<x,<0, X,=—3)

A or (Xlz_%,—%<X2<0),

T,= 17)
Y| ToITL for (0<xg=<Lxo=—1)
or (Xlz%,_%<X2<0),

and that of the conditiof7) is
’f(xlioigl1§21§3):f(X1101§11_§2=§3)
for £,<0, (—3<x;<3). (18

The dimensionless forms of Eq®@a)—(9¢) are given by

Aoki et al.
=] | anaz, (23
N O N .
vs;f_m _4i9d4d (=12, (23D

~ 2 @ o0 R R A A
= gjxfw{[(§1_01)2+(§2—v2)2]g+ hY

XdZ,dgs. (230

The boundary condition on the wall of the container, derived
from Eq.(15), is

~ 2 2 -1

p {1t 43)| 2T
(I): ﬁex% - _,I\_ 1W (§1n1+ §2n2>0),

w
(24
- 2712 A
Pw=" "% f (£1n1+Eonz)g dy dis,
Ty Jng+2n,<0

(25

whereT,, is defined in Eq(17), and the symmetry condition
on thex; axis, derived from Eq(18), is

(I)(Xl iogligZ) =(I)(X1,0,€1 T §2)

L for £,<0, (—3<x;<3). (26)
p=pT, (199 S o .
The pj; (pP13=pP23=0) andq; (g3=0) in Egs.(19b and
- ~ Az 190 are written as
bi=2 (a-o0(5-opt g sy (199
) o E>ij=2f7 f (G=v)(g—v)g drde (1,j=1.2),
Qi:f (&Gi—v)(¢—v?f dg (199 (279
D. Further transformation 533=2f7 B h d¢; dgs, (27b
By means of a standard meth&fdwe can eliminate the
X3 components, of the molecular velocity from the sys- A:jm fm o 24 (E— 00210+ h
tom, Eqs.(1)-(18). That is, if we multiply Eqs(1D), (15, ). ) (G vllGmvn)™ (&mvo)"lg +hy
2 . .
and(18) by 1 and{3 and integrate the respective results over xdf, de, (i=1.2). (279

the whole range of;, we obtain two simultaneous integro-
differential equations and their boundary conditions. To sum-

marize the result, we first introduce the followirigondi-
mensional marginal velocity distribution functions

9(X1,%2,41,¢,) and h(xq,%,,{1,{,) and column vector
®(X,,X,,41,4,) composed ofy andh:

1
&
The simultaneous equations fdr, derived from Eq.(11),
are given by

®= ﬁ :fw f dis. (20)

L p(De— P 21
1 The g = i PP P, (21)
P — 0124 (Ly—0)2) | 2T
@eziexp(—(gl v+ (2mv2) 2
2@ T 1

IlI. NUMERICAL ANALYSIS

We analyze Eqs(21)—(26) numerically by a finite-
difference method. One of the difficulties in the numerical
analysis arises from the fact that the velocity distribution
function is discontinuous in the gas. In this section, we first
discuss it briefly and then give an outline of the numerical
method.

A. Discontinuity in velocity distribution function

If the velocity distribution function at a point in space,
sayX(? | is discontinuous at a certain molecular velocity, say
&9 then the discontinuity propagates in the direction of
&9 from X( (i.e., along the characteristic of the Boltzmann
equation.*’ Such a propagation of discontinuity is com-
monly observed in the gas around a convex boundary,
namely, the velocity distribution function is generally discon-
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tinuous there. In the present problem, the discontinuouthose caused by the discontinuities of the wall temperature.
boundary condition causes the discontinuity in the velocity(Note that the discontinuities ip,, at the corners disappear
distribution function in the gas, as seen below. For a generalhen the velocity distribution of incident molecules there is
discussion on the discontinuity, including its relation to theisotropic and that the velocity distribution approaches a local
Knudsen layer and Sone laéfor small Knudsen numbers, Maxwellian near each corner for small Knudsen numbers.
the reader is referred to Ref. 4@ brief discussion is also Finally, we make a brief comment on mathematical
found in Ref. 39. The propagation of discontinuity is also theory for the propagation of discontinuities. The above dis-
discussed in the framework of propagation phenomena assgussion about the behavior of the discontinuities is based on
ciated with the Boltzmann equation in a recent paper bythe assumption that the gain term of the collision integral of
Cercignani?? the Boltzmann equation is continuous inside the gas region
Let us consider the velocity distribution function of the (in the case of the BGK model, this is equivalent to assuming
gas molecules leaving the bottom walK{=—L/2 or X,  that the density, flow velocity, and temperature are continu-
= —1/2) in the present problem. At the point of discontinuity ous therg Although it is plausible, to show this continuity
of the wall temperaturexq=0, x,=—1/2), the limit from  rigorously is a difficult mathematical problem even for the
the left[®(0_,—1/2{1,{5)] is prescribed by the boundary BGK model that is much simpler than the original Boltz-
condition(24) and(25) (n;=0, n,=1) with T,,=1, whereas mann equation. In time-dependent problems, discontinuities
the limit from the right{®(0, ,—1/2¢,,,)] is prescribed (or, more generally, singularitiezontained in the velocity
by Egs.(24) and (25 (n;=0, n,=1) with '”rW:TZ/Tl_ distribution function at the initial time also propagate in the
(Here we are considering the dimensionless marginal velocddas, attenuating because of molecular collisions, as time goes
ity distribution functions®, but the situation is essentially On. Reference 51 deals with such propagation successfully
the same for the original velocity distribution functinor ~ With mathematical rigor on the basis of the Boltzmann equa-
f.) Therefore, these two limits, in general, do not coincidelion: However, it shows that the propagating singularities can
[D0_,—1/271,0,) #®(0. ,—1/2¢,,¢,)] for any fixed be discriminated only from a sllghtly_less s_mg_u_lar _remamder.
molecular velocity ¢, ¢,) ({,>0). This discontinuity Iq Ref. '52, on the other hand, the d|scpnt|nU|t|es mdgced by
propagates in the gas in the direction ¢f ( &,), i.e., along discontinuous boundary data are studied mathematically for

the characteristic of Eq21). Therefore, at a pointx;, ) a s@mple one-speed Iinegr tra_nsport equation which _ha_s a
in the gas, the velocity distribution function is generally dis-Similar structure to the linearized BGK model, and it is
continuous in the directiot; /¢,=x, /(x,+ 1/2) in thelyZ, proved that the gain term is contlnuoys and the dI.SCOHtII’IUI-
plane. It is easily shown that the discontinuity attenuatedi®S can be separated from a continuous remainder. The
over the distance of the order of the molecular free path in it§nathematical results obtained for this simple transport equa-
propagation because of the effect of molecular collisfBns. tion are consstgnt with thg situation described in the second
These properties are essentially the same as those of the dR@ragraph in this subsectidh.
continuity originating from the leading and trailing edges in
the case of a rarefied gas flow pasttlaickless flat plate®
In the present problem, the velocity distribution function at  The finite-difference methods that are capable of de-
(X1, Xp) is also discontinuous in the directiod;/{,  scribing the correct behavior of the discontinuity of the ve-
=X1/(x,— 1/2) because of the presence of the discontinuitylocity distribution function have been devised and developed
in the temperature of the top wall 2=0, x,=1/2. In the  in Refs. 54—58, and 50 in various situations. The type of
framework of the boundary-value problem, E®1), (24),  propagation of the discontinuity in the present problem is
and(26), in the lower half of the container, the second dis-almost the same as that in Ref. 50, where a supersonic rar-
continuity corresponds to the discontinuity propagating inefied gas flow past a flat plate is investigated. Therefore, we
the direction;/{,=x,/(—x,+1/2) from the middle point can exploit the finite-difference scheme developed there with
of the bottom wall &;=0, x,=—1/2), reflected on the a slight modification. Since the detailed description of the
specularly reflecting boundaryx{=0), and reaching the method is found in Ref. 50, we give only a brief outline of
point (Xy, X») (X»,<0). The discontinuity point of the the method.
boundary temperature is also a singular point for the macro- (i) For the numerical analysis, we restrict thg, plane
scopic variables in the sense that their limiting values at theo a finite domain¢;|<Z,, |{,|<Z,, whereZ, andZ, are
point are different depending on the direction of approactpositive constants chosen in such a way Was negligibly
(see Ref. 50 small at|¢;|=2Z, and|{,|=Z,. The discrete solutio® of

It should be mentioned that the discontinuity of the ve-® at the lattice points in thex(, x,, {;, {,) space is con-
locity distribution function is also caused by the four cornersstructed as the limit of the sequendé[‘), where(I)g“) de-
of the container. At these points, the limit pf, [Eq. (25)] notes the®, at thenth step of iteration; th@g‘) is obtained
from the bottom or the top wall is generally different from as follows by the use of a finite-difference equation, corre-
that from the side wall because the domain of integration asponding to Eq(21), that gives a relation betweeh,&”) and
well as the integrand in Edq25) is different. Therefore, the ®{" Y. Let (£{, £)’) denote the lattice points in th& ¢,
boundary condition24) is discontinuous there. These dis- plane. We choose appropriate initial distributicfbﬁo). Let
continuities also propagate into the gas. However, the dis®{"~ ") be known. For eacti{>0, ®{" is determined from
continuities caused by the corners are much smaller thar;=—1/2 to 1/2 and fromx,= —1/2 to 0 (or from x,=0 to

B. Outline of numerical analysis
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—0.5

—1/2) by the use of the finite-difference equation, the
boundary condition on the left wall, and the boundary con-
dition on the bottom wallor the specular reflection condi-
; tion onx,=0) for all £’=0 (or for all £{’<0) [Fig. 2@)].
—0.5 Jrizaiiiiina gt 1001 Similarly, for each{9<0, ®{" is determined fromx;
—la @ Ign o X/E b =1/2 to —1/2 and fromx,=—1/2 to 0 (or from x,=0 to
o —1/2) by the use of the finite-difference equation, the

X»/L

ot

PEEIISIIIiIIIIIIIIIIIIIIIIIIIINIIIGD boundary condition on the right wall, and the boundary con-

dition on the bottom wallor the specular reflection condi-
XL R tion onx,=0) for all ¢"=0 (or for all ¢)<0) [Fig. 2(b)].

For 690, () is determined fromt,~ —1/2 1o 0(or rom

HE ety e Xp=0 to —1/2) by the use of the finite-difference equation

Q.5 LIIIIIIEIIIIIIIAIIIIII L o and the boundary condition on the bottom walt the specu-
-0.5 0 x,/I 05 lar reflection condition orx,=0) for all {§’=0 (or for all

(d) Kn=0.2 $<0).
FIG. 3. Flow induced in the lower half of the container fb5/T,=2. (a) (i) As explained in the preceding subsectidn,is dis-
Kn=5, (b) Kn=2, (c) Kn=0.5, (d) Kn=0.2. The arrow indicates the wo-  continuous in the gas. Here, we neglect the discontinuities

dimensional flow velocity vectoru( , v,)/(2RT,)Y? at its starting point. . .
The reference length of the arrow is shown in the right margin of eachCaused by the four corners of the contaitigee the third

figure. The symboDD indicates the point with the maximum flow speed.  paragraph of Sec. Il A; the discontinuities ;ﬁ, at the cor-
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FIG. 5. Flow near the point of discontinuity fdr, /T,= 2. Magnified figure

_ _ -~ ; -0.5 0 XL 0.5
of the range—0.1<X;/L<0.1, —0.5<X,/L<-0.4 of Fig 4.(a) Kn (d) Kn = 0.005 1
=0.05, (b) Kn=0.02, (c) Kn=0.01, (d) Kn=0.005. See the caption !
of Fig. 3. FIG. 6. Isolines of the density foT,/T,=2. (8 Kn=5 (p/pa=0.875
+0.025m; m=0, 1, ..., 10),(b) Kn=0.5 (p/p,,=0.8+0.05m; m=0, 1,
.., 9), (©) Kn=0.05 (p/pay=0.8+0.1m; m=0, 1, ..., 6), (d) Kn
=0.005 (p/p,=0.8+0.Im; m=0, 1, ..., 6).

ners can be estimated from the numerical result, and it turns
out to be negligibly small for small Kn Then, for
(0, =(ab) [or (. )=(a,~b)] (a>0, b
>0), @ is discontinuous along the line,=(b/a)x;—1/2

[or x,=—(b/a)x,;+1/2], i.e., the boundary between the re- Eq. (21) along(the right-hand side ¢fthe discontinuity line.
gions | and ll(or Il and Ill) in Fig. 2a). When we discretize The treatment for £, 9)=(a’,b’) [or (¢, )

Eq. (21), we should not apply finite-difference approxima- =(a’, —b')] (a’'<0, b’>0) is essentially the same. That
tion to the derivative termg®/dx, and ®/dx, across the is, we decompose the original domain into two regiohs |
discontinuity. Therefore, we need to make a local correctiorand II' + 111" (or I’ +11" and IIl") in Fig. 2(b) by the discon-

in the finite-difference scheme. That is, we first separate th@nuity line x,=(b’/a")x;—1/2 [or x,=—(b'/a’")x; + 1/2]
regions | and W1l (or I+11 and 1ll) in Fig. 2(a) and then and apply the same finite-difference equation as)im each
use the same finite-difference equation agijnn each re- region. In this case, we need, as the boundary condition for
gion. Since these two regions are disconnected, we need, &g region Il +111" (or 1lI"), the limiting value of® from

the boundary condition for the regionHlll (or Ill), the the left along the line of discontinuity in the process of de-
limiting value of ® from the right along the line of discon- termining (I)&“) from x,=1/2 to —1/2 in the proceduréi).
tinuity in the process of determinir@g‘) fromx;=—1/2to  This limiting value is obtained separately with the aid of a
1/2 in the proceduré). This limiting value is obtained sepa- finite-difference equation for Eq21) along (the left-hand
rately with the aid of another finite-difference equation for side of the discontinuity line.

Downloaded 04 Jun 2007 to 130.54.110.22. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



2652 Phys. Fluids, Vol. 13, No. 9, September 2001
0
X3/ L 1.5 1.7
—0.5 t
-0.5 0 X,/L 0.5
(a) Kn=5
- I
0 X,/L 0.5
(b) Kn=0.5
0
X,/L 1.5 1.9
T
T 1.1
—0.5
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FIG. 7. Isolines of the temperature fd, /T,=2. (8 Kn=5 (T/T,=1.2

+0.dm; m=0, 1, ..., 5),(b) Kn=0.5 (T/T;=1.1+0.1m; m=0, 1, ...,
7), (© Kn=0.05 (T/T;=1.1+0.1m; m=0, 1, ..., 8),(d) Kn=0.005
(T/IT,=1.1+0.1m; m=0, 1, ..., 8).

IV. RESULTS OF NUMERICAL ANALYSIS

The computation has been carried out for a fixed tem
perature ratiol,/T;=2 and for various values of the Knud-
sen number in the range 0.08Kn=<5. In this section, we
show and discuss the results of the computation.

A. Flow induced in the gas

The flow velocity field in the lower half of the container
in the case off,/T,=2 is shown in Figs. 3 and 4 for various
values of Kn in its descending order, i.e., for ¥8, 2, 0.5,
and 0.2 in Figs. @-3(d) and for Kn=0.05, 0.02, 0.01, and
0.005 in Figs. 4a)—4(d). The arrow in the figures indicates
the two-dimensional flow velocity vectow(, v,) normal-
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(a) Kn=5
0
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—0.5 0 X./L 0.5
(b) Kn = 0.5
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Xa/L /
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P
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RpuTh
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Xs/L
p
— =145 1.48
RpeT1 \Q/
—0.5 f
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FIG. 8. Isolines of the pressure far, /T;=2. (a) Kn=5 (p/Rp,T;=1.3
+0.025m; m=0, 1, ..., 10),(b) Kn=0.5 (p/Rp4,T;=1.35+0.025n; m
=0,1, ..., 6),(c) Kn=0.05 (p/Rp4T;=1.38+0.02m; m=0, 1, ..., 8),
(d) Kn=0.005 (/Rp4T,=1.42+0.0Im; m=0, 1, ..., 9).

ized by (RT,)¥2 and its length corresponding to 0.001,
0.0025, 0.01, or 0.02 is shown in the right margin of each
figure (note the difference in the scale of the arjpwihe
point at which the flow speed takes the maximum is indi-
cated byO. Recall that the wall temperature is discontinuous
atX,;/L=0, X,/L=-0.5.

For all Kn in Figs. 3 and 4, a counterclockwise circulat-
ing flow is observed. The flow, which is very weak at Kn
=5, is intensified as Kn decreas@sg. 3). But, as Kn de-
creases to 0.05 and to 0.0Rigs. 4a) and 4b)], though the
flow near the point of discontinuity of the wall temperature
remains of the same order of magnitude, the flow in the other
part becomes weaker. With further decrease of Kigs. 4c)
and 4d)], the region where the flow is appreciable shrinks to
the close neighborhood of the point of discontinuity, and the
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FIG. 9. Distributions of the density along the lines,/L=const for (d) Kn = 0.005

T,/T,;=2.(a) Kn=5, (b) Kn=0.5, (c) Kn=0.05, (d) Kn=0.005.
FIG. 10. Distributions of the temperature along the lidgdL = const for
T,/T,;=2.(a) Kn=5, (b) Kn=0.5, (c) Kn=0.05, (d) Kn=0.005.
flow itself seems to be weakened. When Kn is relatively
large (Kn=5 and 2), a flow toward the left is observed on
the bottom wall in the parts near the side walls, and it in-
duces two weak clockwise circulating flows at both bottom5(d)], the flow is very localized even in this small region and
corners. Although the leftward flow is seen for all Kn, it almost vanishes on the outer edge of the region. However,
becomes weaker and thus the two circulating flows becomthe flow speed in the vicinity of the discontinuity point is not
weaker and smaller as Kn becomes small. The maximurslow in comparison with that for other Kirigs. 5a)—5(c)].
speed is attained on the wall far from the point of disconti-  In the case of free-molecular gas (¥re), where the
nuity (i.e., in the leftward flow for Kn=5, whereas it is effect of collisions between gas molecules is neglected, no
attained in the gas near the point of discontinuity for otherflow is induced in the gas. This fact was proved by Sof&
Kn. As Kn becomes small, the point with the maximum in a very general situatiotarbitrary shape, arrangement, and
speed approaches the point of discontinuity. temperature distribution of the boundary, the Maxwell-type
In order to see the local structure of the flow field of Fig. diffuse-specular reflection condition with an accommodation
4 near the point of discontinuity, we show in Figgas-5(d)  coefficient varying along the boundary, ¢tcOn the other
the magnified figures of the part0.1<X,;/L=<0.1, —0.5 hand, as mentioned in Sec. I, no flow is induced by the
<X,/L=-0.4 of Figs. 4a—4(d). For Kn=0.005 [Fig.  temperature field in the continuum limit (kn0,). How-
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FIG. 12. Distributions of theX, component of the flow velocity along the

linesX,/L=const forT,/T,;=2.(a) Kn=5, (b) Kn=0.5, (c) Kn=0.05, (d)
Kn=0.005.

FIG. 11. Distributions of theX; component of the flow velocity along the
lines X, /L=const forT,/T,;=2. (a) Kn=5, (b) Kn=0.5, (c) Kn=0.05, (d)
Kn=0.005.

macroscopic quantities are not determined uniquely, namely,

ever, one should note that this conclusion, which is drawrtheir limiting values are different depending on the way of
from the Navier—Stokes system, is validated by theapproach to the point. For smaller Kn, isodensity and isother-
asymptotic theors? and that the latter theory cannot be ap- mal lines of wider ranges concentrate on the point. The pres-
plied to the present problem because of the discontinuousure tends to become uniform for small values of [IKigs.
temperature distribution. Therefore, the situation in the con8(c) and &d)]. In Figs. 9-12, we show the distributions of
tinuum limit is not obvious, though the flow is likely to van- the density, the temperature, and heand X, components
ish intuitively. We will discuss this point later. of the flow velocity along the bottom wall and the lines

Figures 6—8 show the isolines of the density, temperaparallel to it for Kn=5, 0.5, 0.05, and 0.005. As is under-
ture, and pressure in the lower half of the container in thestood from the concentration of the isolines in Figs. 6-8, the
case ofT,/T,=2 for four values of the Knudsen number distributions on the wall in Figs. 9—12 exhibit a discontinuity
Kn=5, 0.5, 0.05, and 0.005. The isolines concentrate on that the singular point. The fact that thg component, of
point of discontinuity of the wall temperature. This meansthe flow velocity on the bottom wall{, /L = —0.5) does not
that the point is a singular point at which the values of thevanish on the side wallsX;/L==*=0.5) in Figs. 11a) and
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FIG. 13. Flow speed at various points in the gas vs the Knudsen number for
T,/T,=2.(a) The flow speedv;| at (X, /L, X,/L)=(0,—0.495) is shown

by O, (0.005;-0.495) by[], (0.02,-0.495) by ¢, (0.05;-0.495) byA, FIG. 14. Isolines of the density, temperature, and flow speed near the point
(—0.05-0.495) byA, (—0.3,-0.4) by ¥, and (0.3;-0.4) by V. (b) The of discontinuity at small Knudsen numbers f65/T,=2. (a) Density, (b)

flow speeduv;| at (X;/1;,(X,+0.5.)/1;)=(0.5,0.5) is shown by, (1,1) temperature(c) flow speed. Here, the dotted line indicates the result for
by O, (5,5) by ¢, (2,1) byA, and (5,1) byV; the symbol® indicates Kn=0.05, the dot-dashed line for K0.02, the dashed line for Kn

the maximum speed in the domain. In each figure, the same symbols are 0.01, and the solid line for Kn0.005. The coordinates are normalized by
joined by straight lines. the mean free path, .

11(b) [see also Figs. (@ and 3b)] might seem to be un- scale of the mean free pakhrelative to the point of discon-
physical. However, as is seen from the discussions in Sedinuity, i.e. (X./l{, (X,+0.5.)/1,)=(0.5,0.5), (1,1),
[l A, the four corners of the container are also singular(5,5), (2,1), and (5,1). The maximum speed in the flow
points at which the macroscopic quantities are not deterfield is also shown in Fig. 18). It is seen from Fig. 1&)
mined uniquely, i.e., their limiting values there are differentthat, as the Knudsen number decreases from 5 to 0.005, the
depending on the way of approach. In Figs. 9—12 as well alow speed at each fixed point first increases, reaches the
in Figs. 3 and 4, the limiting values along the bottom wall maximum, and then decreases. The maximum is attained at
[X1/L==%=(0.5-0), X,/L=—0.5] are shown as the values smaller Kn for the point closer to the point of discontinuity.
at the corners. Therefore, the nonzeroappears there. This On the other hand, in Fig. 13), the speed at each point as
does not contradict the condition that there is no net maswell as the maximum speed in the flow field tends to ap-
flow across the wall of the container because the limitingproach a finite value as the Knudsen number vanishes. This
values of the flow velocity at the corners are finite thoughfact indicates that the flow field near the point of discontinu-
they are not uniquénote that if a point is a source or sink of ity for small Kn exhibits a similarity in the sense that the
the mass, the flow speed should be infinite there structure of the field expressed in the scale of the mean free
Figure 13a) illustrates the variation with Kn of the flow path approaches a limiting field as Kn tends to zero. This is
speed of the gas at five fixed points on the liKg/L also supported by Fig. 14, where the isolines of the density,
=-0.495 near the point of discontinuity, i.e. temperature, and flow speed near the point of discontinuity at
(X4/L, X5/L)=(0,—0.495), (0.005;-0.495), (0.02, Kn=0.05, 0.02, 0.01, and 0.005 are shown in the coordi-
—0.495), (0.05;-0.495), and {-0.05,—0.495), and attwo nates normalized bl; . To summarize, the numerical results
points (X;/L,X,/L)=(—0.3,-0.4) and (0.3;-0.4), presented so far, in particular, Figs. 13 and 14, support the
whereas Fig. 1®) illustrates that at five points the positions following conclusion for the behavior of the flow induced in
of which change depending on Kn but are the same in théhe gas in the continuum limit. As the limit is approached,
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@»

FIG. 15. Dimensionless marginal
velocity distribution functiong [Eq.
(28)] at six points in the gas for Kn
=5andT,/T,;=2. (a) (Xi/L, X,/L)
=(0.101,-0.5), (b) (0.101,
—0.442), (c) (0.101,—0.250), (d)
(0.101,0), () (0.25,—0.349), (f)
(—0.25,-0.349).

@»

@»

(©) (X1/L,X2/L) = (0.101, —0.250) (f) (X1/L,X2/L) = (—0.25,—0.349)

the region where the flow is appreciable shrinks and conthe figures(a)—(c) in Figs. 17 and 18 are the results at the
verges to the singular point where the wall temperature ipoints almost on the lin&X;/L=0.1, the figure(a) being

discontinuous. That is, as Kn tends to zero, the flow vanisheghose on the bottom wall. On the boundary, the velocity dis-
at all the points except this singular point. In this way, thetribution function is, in general, discontinuous along the mo-
flow induced in the container vanishes nonuniformly in thejecular velocities that are tangent to the boundary. As de-

continuum limit. scribed in Sec. Il A, in the present problem, the velocity
S ) distribution function in the gas is also discontinuous in the
B. Velocity distribution function two directions, &,/&=X,/(X,+L/2) (for &>0) and

Next, we show the behavior of the velocity distribution &1/&,=X;/(X,—L/2) (for £,<0), in the ¢, ¢, plane, origi-
function. The dimensionless marginal velocity distribution nating from the discontinuity of the temperature of the bot-
functioné introduced in Sec. I D, i.e., tom wall and that of the top wall, respectively. In Fig. 15,
. where the Knudsen number is relatively large &®), the
Q(X1,X2.§1,§2):f f(Xq,%,,4)d 5 discontinuities in the two directions are large for all the fig-

- ures. In Fig. 18), which shows the velocity distribution on
ORT, (* the bottom wall, the discontinuity on the right originates
= f f(X1,X5,&)dés, (28)  from the temperature discontinuity on the top wall, whereas
Pav J—e that on the left is due to the discrepancy between the velocity
at various points in the gas in the caselgf T, =2 is shown distributions of impinging and re-emitted molecules. The
in Figs. 15—18 as a function d@f, [=&,/(2RT,)¥?] and ¢, sharp decay of the discontinuities in the neighborhood of the
[=&,/(2RT,)Y?]; Figs. 15-18 correspond to the case oforigin (¢;,¢,)=(0,0) is due to the fact that slow molecules
Kn=5, 0.5, 0.05, and 0.005, respectively. The actual comhave more chances for collision. In Fig. 16, where Kn
putation has been performed by the use of the lattice lines-0.5, the discontinuities are smaller than those at the corre-
that are much denser than those drawn on the surfage of sponding spatial positions in Fig. 15 because the effect of
(see Sec. IV € The figures(a)—(d) in Figs. 15 and 16 and molecular collision is larger in the former. In Fig. 17, where
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»

() (X1/L,X,/L) = (0.101,-0.5) ) (Xi/L,X2/L) = (0.101,0)

FIG. 16. Dimensionless marginal
velocity distribution functiong [Eq.

(28)] at six points in the gas
for Kn=0.5 and T,/T;=2. (a

(X, /L, X,/L)=(0.101,—0.5),  (b)

(0.101,-0.442), (o) (0.101,

—0.250), (d) (0.101,0), (¢) (0.25,

—0.349), (f) (—0.25,—0.349).

»

@

(©) (X1/L,X»/L) = (0.101,—0.250) () (X1/L,X,/L) = (—0.25,—0.349)

Kn=0.05, the discontinuity in the gas originating from the =0.05), or 3.4X 10" 3Kn (Kn=<0.02) atx,= —1/2, and the
discontinuity of the wall temperature is appreciable only inmaximum interval is 1.2%¥10 2 (Kn=0.1), 6.0810 3
the close neighborhood of the point of discontinuiigs.  (Kn=0.05), or 5.6 10 3~6.61x 10" (Kn<0.02) atx,
17(d)-17(f)]. Figure 18 shows for Kn=0.005 at almost the =0. The molecular velocity spacey, {,) is restricted to a
same points as in Fig. 17. The discontinuity is fairly smallfinite domain—7.1<{;<7.1, —7.0<{,<7.0(.e.,Z;=7.1
even in the close neighborhood of the point of discontinuityandZ,=7.0), which is divided into 328320 (Kr=0.1) or
[Figs. 18d)-18{f)]. Except in the vicinity of the points of 160x 160 (Kn<0.05) nonuniform rectangular regions by
discontinuity on the top and bottom walls, the velocity dis-lattice lines. For{;, the minimum lattice interval is 4.44
tribution is close to the local Maxwellian, so that the discon-x 10° (Kn=0.1) or 8.8% 10 ° (Kn=<0.05) at{,;=0, and

tinuity is invisible even on the wallFig. 18a)]. the maximum interval is 1.7610 ! (Kn=0.1) or 3.48
x 10! (Kn=<0.05) at{;=+7.1. For{,, the minimum lat-
C. Data on numerical computation tice interval is 4.55%10°° (Kn=2), 4.39x10 * (0.1<Kn

Finally we give some data on our numerical computa-<1), or 8.89<10"* (Kn<0.05) at{,=0, and the maximum
tion. Here we use the dimensionless space coordinates ( interval is 1.30<10°* (Kn=0.1) or 2.5810°* (Kn
X5) and molecular velocity {;, ¢,). The lower half of the =0.05) atf,=*7.0.
container— 1/2<x;<1/2, —1/2<x,=<0 is divided into 160 The lattice systems are chosen carefully on the basis of
%80 (Kn=0.1) or 320<160 (Kn<0.05) nonuniform rect- various numerical tests. An example of such tests is the ob-
angular regions by lattice lines. Fry, the minimum lattice ~ servation of the change in macroscopic quantities when a
interval is 4.6 10”4 (Kn=0.1), 1.9% 10 * (Kn=0.05),  coarser(or finen lattice system is used. Ldt, andI', de-
or 3.42x10 %Kn (Kn=<0.02) atx;=0 (and also atx; note, respectively, the standard lattice systenxin ,) and
=+1/2 for Kn=0.05; for Kn<0.02, the lattice interval at thatin ({,, {,) described in the preceding paragraph énd
x;=+1/2 is 2.1%10°%), and the maximum interval is T, are different depending on Knlet I'{*¥ andT{*% de-
1.20x10 2 (Kn=0.1), 6.06<10 % (Kn=0.05), or 6.73 note, respectively, coarser lattice system with about one-
X103 (Kn=0.02) atx,=+1/4. Forx,, the minimum lat- fourth lattice points corresponding t6, and that corre-
tice interval is 3.8%10°* (Kn=0.1), 1.75¢10* (Kn  sponding toT, (i.e., I'¥ and I'*¥ are obtained by
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g
i 0.4 o .
X y i o FIG. 17. Dimensionless marginal
i . N A
g 5 'ﬂ‘.}}i\m‘“ o3 g velocity distribution functiong [Eq.
il ! 0.2 (28)] at six points in the
i 01 gas for Kn=0.05 andT,/T;=2. (3
G (X1/L, X,/L)=(0.101,—0.5), (b
0 (0.101,—0.442), (o) (0.101,
2 Co —0.250), (d) (0.005,—0.497), (e
(0, —0.497),(f) (—0.005,—0.497).
0.4
03 g g
2 ‘:\\\\‘:‘-‘ \ ,
i 0.
9 0.1
G i
2 C2
(¢) (X1/L,X,/L)=(0.101,-0.250) (f) (X1/L,X,/L) = (—0.005,—0.497)

removing every second lattice line i, andI',, respec- by the conservation laws. Let us consider a rectangular do-
tively); and letl't" be a finer lattice system with about four main, —r,<x,;<r;, —0.5<Xx,<—0.5+T,, in contact with
times more lattice points corresponding 1. For Kn  the bottom wall. Let the bottom side—(;<x;=<r;, X,
=0.5, the difference between the result based by, (*,) =—0.5) be denoted by side I, the top side (;=<x;=<r,
and that on [, ['{") is less than 1.68107% in p, 4.85 X;=—0.5+r;) by side I, the left side X;=-—ry,
x10 7 in v, 45110 " inv,, and 8.4&10 7 in T, and —0.5sxp<—-0.5+r;) by side Ill, and the right side
the difference betweer(, T'"¥) and C{(*?, T{"") isless  (X1=T1, —0.5<x,<—05+rp) by side IV. Further,
than 3.30¢10°%in p, 1.01x10 #in o5, 6.16<10 %inv,,  let pa2RTYMAMW, p RTILPMY,  and  (a/2)
and 8.94 1075 in T. For Kn=0.05, the difference between X(2RT;)*LE™) be, respectively, the mass, tkecompo-
the result based orl(, T';) and that on e, T,) is less nent of the momentum, and the energy flowing out from the
than 2.3%<1074 in p, 3.02<10°%in v,, 4.58<10 5inp,,  rectangular domain through the sidé(N=1, I, i, or IV)
and 2.66<10°% in T, and the difference between (thus,M™, P& andE™ are the corresponding dimen-
(Fim)’ r,) and (F§(1’4), F({“)) is less than 2.9810°% in p, sionless quantitigs The sums of these quantities over the
- ~ ~ ; 7 —SIV gV D _vIV BpW) F

2.59x10 % in 0y, 1.65¢10 % in 0,, and 3.5410 6inT. @l sides, M=%y MY, Pir=2y P, and E;
For Kn=0.005, the difference between the result based orF =\ E“Y, should vanish theoretically because of the con-
(T'y,T,) and that on e, I'%), wherel'} is a lattice sys- servation of mass, momentum, and energy. However, these
tem with the same number of lattice points 3s but with do not vanish in the actual computation because of the nu-
slightly different lattice intervals, is less than 5470 “ in merical error. These nonzero values give a convenient mea-
p, 5.62x10 % in v,, 2.58<10 % in v,, and 7.1&10 4 in  sure of accuracy. For eanmpIe, for Ki0).5, r= 0.204, and
T, and the difference between I'**”,T'}) and r2=0.201, we have M;=3.65x 10° (M"W=-540
(I, T®) is less than 6.610°° in p, 7.82<10°¢in X 10°* for referencg Pi;=1.98<10"° (P{")=-2.80
01, 6.09<107% in 0,, and 1.1K 10 % in T. x10°1), Ppr=—3.76x10"7 (P}"=5.84x10""), andE;

A convenient measure of the numerical error is provided= —1.91x10° ¢ (E(" =5.44x1072); for Kn=0.05, r,
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FIG. 18. Dimensionless marginal
velocity distribution function@ [Eq.
(28)] at six points in the gas for Kn
=0.005 and T,/T;=2. (3
(X, /L, X,/L)=(0.100,—0.5),  (b)
(0.100,-0.440), (c)  (0.100,
—0.249), (d) (0.005,—0.497), (e)
(0, —0.497), (f) (—0.005,—0.497).

@»

@»

(¢) (X1/L,X/L) = (0.100,—0.249)

(f) (X1/L,Xs/L) = (—0.005,—0.497)

30). Let us suppose that the gas is at rest, and let us consider
the molecules incident on a point on the bottom wall near the
point of discontinuity. Because the molecules impinging on
the point possess the property of the gas in the region about

=0.204, and r,=0.201, we have M;=-2.05x10""’
MV =—-1,00¢10"%), P;;=4.43x10"7 (P{"=-2.92
X107Y), Pyr=—1.47x10° (PY=593x10""), and Et

=-127x10°% (EMM=-998x10"%; and for Kn
=0.005, r;=0.200, andr,=0.198, we havel\7IT=—1.00
X106 (MU =—1.92x10"%), Pyr=—3.49x10 ¢ (P{"
=—2.90x10Y), Pyr=—7.42x10"7 (P{" =5.86x10"}),

a mean free path apart from the point, the molecules from the
upper right region are, on the average, faster than those from
the upper left region. Therefore, the incident molecules give
the leftward tangential momentum to the wall. Since the

and ET: —1.59x10°6 (E(IV) =-6.20x10"%). molecules leaving the wall, which are isotropically distrib-

The present computation was mainly carried out on CrathEd in the case of the diffuse reflection, do not contribute to

ORIGIN 2000 computers at the Institute for Chemical Re-the transport of the tangential momentum, the leftward tan-
search, Kyoto University. gential momentum is transferred to the wall by the gas mol-

ecules. As the reaction, the gas undergoes a force in the
rightward direction and moves in the same direction. The
speed of the gas motion is determined in such a way that the

We conclude this paper with some physical discussiongangential momentum given to the wall by the gas motion
about the numerical results. Here we suppdse T, as in  compensates the above-mentioned leftward momentum
the numerical analysis. transferred by the impinging molecules.

Let us examine the situation near the point of disconti-  Following Refs. 22 and 28—-30, we can roughly estimate
nuity of the wall temperature on the bottom wall for rela- the speed of the gas motion to be proportional to the tem-
tively small Kn. The gas in the upper right region with re- perature difference, sa)T, between two points that are
spect to the point of discontinuity is hotter than that in theabout a mean free path apart in the horizontal direction and
upper left region, as seen from Figs. 7 andb)4Therefore, are located about a mean free path above the wall. This es-
a flow toward the right is induced in the gas by the samedimate applies to the general case with arbitrary temperature
mechanism as the thermal creep floWwHere, we repeat the distribution. In the case of the usual thermal creep flow
explanation of the mechanism brieflyee Refs. 22 and 28— caused by an imposed temperature gradiém,/dX,,,

V. DISCUSSIONS
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