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A flow of a rarefied gas caused by a discontinuous wall temperature is investigated on the basis of
kinetic theory in the following situation. The gas is confined in a two-dimensional square container,
and the left and right halves of the wall of the container are kept at different uniform temperatures,
so that the temperatures of the top and bottom walls are discontinuous at their respective middle
points. External forces are assumed to be absent. The steady flow of the gas induced in the container
by the effect of the discontinuities is analyzed numerically on the basis of the Bhatnagar–Gross–
Krook model of the Boltzmann equation and the diffuse reflection boundary condition by means of
an accurate finite-difference method. The features of the flow are clarified for a wide range of the
Knudsen number. In particular, it is shown that, as the Knudsen number becomes small~i.e., as the
system approaches the continuum limit!, the maximum flow speed tends to approach a finite value,
but the region with appreciable flow shrinks to the points of discontinuity; thus, the overall flow in
the container vanishes nonuniformly in the continuum limit. The behavior of the molecular velocity
distribution function is also investigated in detail. ©2001 American Institute of Physics.
@DOI: 10.1063/1.1389283#
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I. INTRODUCTION

Let us consider an ideal gas around solid boundarie
rest with arbitrary but steady temperature distributions.
assume that there is no external force in the field and
that the gas is at rest and its pressure is uniform at infi
when an infinite domain is considered. If we investigate
steady behavior of the gas on the basis of the~compressible!
Navier–Stokes system~i.e., the conservation equations
mass, momentum, and energy with Newton’s law of str
and Fourier’s law of heat flow and the boundary condition
nonslip or nonjump type!, we find thatv50 andp5const,
wherev is the flow velocity andp is the pressure, are th
obvious solution of the continuity and momentum equatio
satisfying the nonslip boundary condition for the veloci
Then the temperature field is determined by the energy e
tion, which reduces to the steady heat-conduction equa
for the temperature, and the nonjump boundary condit
This fact indicates that for any temperature distribution
the boundaries, no flow is induced in the gas. The Navi
Stokes system is generally accepted as the correct syste
describe the behavior of a gas in the continuum limit wh
the Knudsen number vanishes. Here, the Knudsen numb
the ratio of the mean free path of the gas molecules to
characteristic length of the system. Therefore, it is conclu
that no steady flow is induced by the temperature field in
continuum limit. This conclusion, drawn from the Navier
Stokes system, is correct in spite of the fact that the Navi
Stokes system has a serious defect in describing the beh
of a gas even in the continuum limit. We will come back
this point at the end of this section.
2641070-6631/2001/13(9)/2645/17/$18.00
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In contrast, in a rarefied gas where the Knudsen num
is not vanishingly small, the situation is different. The tem
perature field can cause a steady flow of the gas without
help of external forces. Such flows have extensively be
investigated on the basis of kinetic theory for a wide range
the Knudsen number.1–22 In particular, in the case of sma
Knudsen numbers~i.e., the case near the continuum limit!,
the features of the flow have been understood systematic
To be more specific, for small Knudsen numbers, a gen
theory ~asymptotic theory!23–30 that describes the steady b
havior of the gas around arbitrarily shaped boundaries
means of a system of fluid-dynamic-type equations and
boundary conditions~and the Knudsen layer correction ne
the boundary! has been established by a systema
asymptotic analysis of the Boltzmann equation and its
netic boundary condition. According to the theory, the flo
induced by the temperature field is classified into the follo
ing three types:~i! thermal creep flow,1–7 ~ii ! thermal stress
slip flow,24,8–11 and ~iii ! nonlinear thermal stress flow.12,13

The flow ~i! is induced along the boundary from the cold
part to the hotter when the temperature of the boundary is
uniform. The flow~ii ! is induced along the boundary whe
the temperature gradient normal to the boundary in the ga
not uniform along the boundary. The flow~iii ! is induced in
the gas when the space between isothermal surfaces v
along the surfaces. The flow speed, divided by a quantity
the order of the sound speed, is of the order of the Knud
number for the flows~i! and ~iii ! and the Knudsen numbe
squared for the flow~ii !. In the systems where the deviatio
from an equilibrium state at rest is small, the flow~iii ! is
5 © 2001 American Institute of Physics

 license or copyright, see http://pof.aip.org/pof/copyright.jsp



th
ea
o

th
ge
e
on
at

t
al
o
in
te
ee
ra
an
h
he
gr
f
u

e
-

e
th

is
e
a
.

n
da
o
no
in

se
t
o
re
na
an

he
on
e
m
a
m

of
vio
n
ry

th

it.
e

on,
t-

ture
at
re-
e

of
, it

the
self
efs.
for

o-

top
dle
to
ced

he
er,
as

K

on-

2646 Phys. Fluids, Vol. 13, No. 9, September 2001 Aoki et al.
negligibly small compared to the flows~i! and ~ii !.
The asymptotic theory mentioned above is based on

assumption that the local Knudsen number, the local m
free path divided by the local length scale of variation
physical quantities, is uniformly small. This means that
radius of curvature of the boundary should be much lar
than the mean free path, and the boundary condition sp
fied on the boundary should be smooth enough. If this c
dition is not fulfilled, therefore, there is a possibility th
flows other than the above three types are caused by
temperature field even when the Knudsen number is sm

Such an example is given in Refs. 31 and 32. Let us n
consider a flat plate placed in a rarefied gas in a conta
kept at a uniform temperature and suppose that the pla
heated or cooled uniformly. Then, although the thermal cr
flow @the flow ~i!# is absent because of the uniform tempe
ture of the plate and of the container, a rather strong
localized flow is induced around the edges of the plate. T
is due to the following fact. Although the temperature of t
plate itself is uniform, there arises a steep temperature
dient in the gas along the plate near the edges because o
presence of the edges. The temperature gradient then ca
a flow by the same mechanism as the thermal creep flow~see
Refs. 28–30!. This new type of flow was first found by th
numerical computations31,32 by the use of the direct simula
tion Monte Carlo ~DSMC! method33,34 and then verified
experimentally.32 A rough estimate in Ref. 32 shows that th
local flow speed near the edges, divided by a quantity of
order of the sound speed, is likely to be of the order of Kn1/2

for small Kn, where Kn is the overall Knudsen number. Th
fact was confirmed35 with a reasonable accuracy in a subs
quent finite-difference analysis based on the Bhatnag
Gross–Krook~BGK! model36–38of the Boltzmann equation
Therefore, the flow has a stronger effect than the flows~i!–
~iii !.

A similar localized and steep temperature gradient alo
the boundary arises when the temperature of the boun
changes abruptly along it, as in the case of a discontinu
temperature distribution. Also in this case, a flow that can
be covered by the asymptotic theory is expected to be
duced along the boundary even when the overall Knud
number is small and the boundary is geometrically smoo
In the present study, we are going to investigate such a fl
i.e., a flow induced by a discontinuous wall temperatu
More specifically, we consider a gas in a two-dimensio
square container, the wall of which has a discontinuous
sectionally uniform temperature distribution~see Sec. II A
for the details!. We investigate the steady behavior of t
gas, especially the flow induced around the point of disc
tinuity, numerically for a wide range of the Knudsen numb
with special interest in the behavior for small Knudsen nu
bers. Making use of the BGK model of the Boltzmann equ
tion and the diffuse reflection condition as our basic syste
we carry out an accurate numerical analysis by means
finite-difference method that is able to describe the beha
of the discontinuity in the molecular velocity distributio
function introduced by the discontinuity in the bounda
temperature~see Sec. III!.

We conclude this section with a brief discussion on
Downloaded 04 Jun 2007 to 130.54.110.22. Redistribution subject to AIP
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validity of the Navier–Stokes system in the continuum lim
A recent study26 based on kinetic theory showed that, in th
situation considered in the first paragraph of this secti
though v50 and p5const are correct, the steady hea
conduction equation does not give the correct tempera
field even in the continuum limit. This is due to the fact th
gas flows of the order of the Knudsen number, which the
fore vanish in the continuum limit, give a finite effect on th
temperature distribution in this limit. Since it is an effect
the flows that do not exist in the continuum fluid dynamics
was termed theghost effect.39,22 This effect is particularly
important because it reveals the fatal defect contained in
Navier–Stokes system for a gas. The effect manifests it
in a wide class of problems. The reader is referred to R
29, 30, and 40–44 in addition to Refs. 26, 39, and 22
further information.

II. FORMULATION OF THE PROBLEM

A. Problem

Let us consider a rarefied gas confined in a tw
dimensional square container2L/2<X1<L/2, 2L/2<X2

<L/2, whereXi is a rectangular coordinate system~Fig. 1!.
The left half (X1,0) and the right half (X1.0) of the wall
of the container are kept at different uniform temperaturesT1

andT2 , respectively. Therefore, the temperatures of the
and bottom walls are discontinuous at their respective mid
points (X150, X256L/2). External forces are assumed
be absent. We investigate the steady flow of the gas indu
in the container by the effect of the discontinuities of t
wall temperature, for a wide range of the Knudsen numb
on the basis of kinetic theory. Our basic assumptions are
follows: ~i! the behavior of the gas is described by the BG
model36–38of the Boltzmann equation;~ii ! the gas molecules
are reflected diffusely on the wall of the container.

FIG. 1. A rarefied gas in a two-dimensional square container with a disc
tinuous wall temperature.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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2647Phys. Fluids, Vol. 13, No. 9, September 2001 Rarefied gas flow caused by a discontinuous wall temperature
B. Basic equation

The BGK model of the Boltzmann equation in th
present steady and spatially two-dimensional problem
written as28,45

j1

] f

]X1
1j2

] f

]X2
5Acr~ f e2 f !, ~1!

f e5
r

~2pRT!3/2
expS 2

~j i2v i !
2

2RT D , ~2!

r5E f dj, ~3a!

v i5
1

rE j i f dj, ~3b!

T5
1

3RrE ~j i2v i !
2f dj, ~3c!

where j i is the molecular velocity,dj5dj1 dj2 dj3 ,
f (X1 ,X2 ,j i) is the velocity distribution function of the ga
molecules, r(X1 ,X2) is the density of the gas,v i

5(v1(X1 ,X2),v2(X1 ,X2),0) is its flow velocity,T(X1 ,X2)
is its temperature,R is the gas constant per unit mass, andAc

is a constant (Acr is the collision frequency of a gas mo
ecule!. The domain of integration with respect toj i in Eqs.
~3a!–~3c! and in Eqs.~9b! and~9c! below is its whole space

The boundary condition on the wall of the container
written as follows:28,45

f 5
rw

~2pRTw!3/2
expS 2

j i
2

2RTw
D ~j jnj.0!, ~4!

rw52S 2p

RTw
D 1/2E

j j nj ,0
j jnj f dj, ~5!

whereni is the unit vector normal to the wall pointing int
the gas, and

Tw55
T1 for S 2

L

2
<X1,0, X256

L

2D
or S X152

L

2
, 2

L

2
,X2,

L

2D ,

T2 for S 0,X1<
L

2
, X256

L

2D
or S X15

L

2
, 2

L

2
,X2,

L

2D .

~6!

The problem is symmetric with respect to theX1 axis.
Therefore, we can analyze the problem only in the lower h
(2L/2<X2<0) of the container by imposing the specul
reflection condition on theX1 axis, namely,

f ~X1 ,0,j1 ,j2 ,j3!5 f ~X1 ,0,j1 ,2j2 ,j3!

for j2,0, S 2
L

2
,X1,

L

2D . ~7!

Then, the solution in the upper half (0,X2<L/2) is
given by
Downloaded 04 Jun 2007 to 130.54.110.22. Redistribution subject to AIP
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f ~X1 ,X2 ,j1 ,j2 ,j3!5 f ~X1 ,2X2 ,j1 ,2j2 ,j3!

for S 2
L

2
<X1<

L

2
, 0,X2<

L

2D ,

~8!

in terms of that in the lower half.
The pressurep(X1 ,X2), stress tensorpi j (X1 ,X2) (p13

5p2350), and heat-flow vectorqi(X1 ,X2) (q350) are ex-
pressed as

p5RrT, ~9a!

pi j 5E ~j i2v i !~j j2v j ! f dj, ~9b!

qi5
1

2E ~j i2v i !~j j2v j !
2f dj. ~9c!

C. Dimensionless variables

Let us now introduce the following dimensionless va
ables:

xi5
Xi

L
, z i5

j i

~2RT1!1/2
,

f̂ 5
~2RT1!3/2

rav
f , r̂5

r

rav
,

~10!

v̂ i5
v i

~2RT1!1/2
, T̂5

T

T1
, p̂5

p

RravT1
,

p̂i j 5
pi j

RravT1
, q̂i5

qi

~rav/2!~2RT1!3/2
,

whererav is the average density of the gas in the contain
Then, the BGK equation, Eqs.~1!–~3c!, is written in the
following dimensionless form:

z1

] f̂

]x1
1z2

] f̂

]x2
5

2

p1/2Kn
r̂~ f̂ e2 f̂ !, ~11!

f̂ e5
r̂

~pT̂!3/2
expS 2

~z i2 v̂ i !
2

T̂
D , ~12!

r̂5E f̂ dz, ~13a!

v̂ i5
1

r̂
E z i f̂ dz, ~13b!

T̂5
2

3r̂
E ~z i2 v̂ i !

2 f̂ dz, ~13c!

Kn52~2RT1 /p!1/2~AcravL !215 l 1 /L,
~14!

dz5dz1 dz2 dz3 ,

where Kn is the Knudsen number, andl 1 is the mean free
path of the gas molecules in the equilibrium state at rest w
temperatureT1 and densityrav. The domain of integration
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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with respect toz i in Eqs. ~13a!–~13c! and Eqs.~19b! and
~19c! below is its whole space. On the other hand, the
mensionless form of the boundary condition~4!–~6! re-
stricted in the lower half of the container is

f̂ 5
r̂w

~pT̂w!3/2
expS 2

z i
2

T̂w
D ~z jnj.0!, ~15!

r̂w52
2p1/2

T̂w
1/2 Ez j nj ,0

z jnj f̂ dz, ~16!

with

T̂w55
1 for ~2 1

2<x1,0, x252 1
2!

or ~x152 1
2,2

1
2,x2,0!,

T2 /T1 for ~0,x1< 1
2,x252 1

2!

or ~x15 1
2,2

1
2,x2,0!,

~17!

and that of the condition~7! is

f̂ ~x1 ,0,z1 ,z2 ,z3!5 f̂ ~x1 ,0,z1 ,2z2 ,z3!

for z2,0, ~2 1
2,x1, 1

2!. ~18!

The dimensionless forms of Eqs.~9a!–~9c! are given by

p̂5 r̂T̂, ~19a!

p̂i j 52E ~z i2 v̂ i !~z j2 v̂ j ! f̂ dz, ~19b!

q̂i5E ~z i2 v̂ i !~z j2 v̂ j !
2 f̂ dz. ~19c!

D. Further transformation

By means of a standard method,46 we can eliminate the
x3 component,z3 , of the molecular velocity from the sys
tem, Eqs.~11!–~18!. That is, if we multiply Eqs.~11!, ~15!,
and~18! by 1 andz3

2 and integrate the respective results ov
the whole range ofz3 , we obtain two simultaneous integro
differential equations and their boundary conditions. To su
marize the result, we first introduce the following~nondi-
mensional! marginal velocity distribution functions
ĝ(x1 ,x2 ,z1 ,z2) and ĥ(x1 ,x2 ,z1 ,z2) and column vector
F(x1 ,x2 ,z1 ,z2) composed ofĝ and ĥ:

F5F ĝ

ĥ
G5E

2`

` F 1

z3
2G f̂ dz3 . ~20!

The simultaneous equations forF, derived from Eq.~11!,
are given by

z1

]F

]x1
1z2

]F

]x2
5

2

p1/2Kn
r̂~Fe2F!, ~21!

Fe5
r̂

2p
expS 2

~z12 v̂1!21~z22 v̂2!2

T̂
D F2T̂21

1
G , ~22!
Downloaded 04 Jun 2007 to 130.54.110.22. Redistribution subject to AIP
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r̂5E
2`

` E
2`

`

ĝ dz1 dz2 , ~23a!

v̂ i5
1

r̂
E

2`

` E
2`

`

z i ĝ dz1 dz2 ~ i 51,2!, ~23b!

T̂5
2

3r̂
E

2`

` E
2`

`

$@~z12 v̂1!21~z22 v̂2!2#ĝ1ĥ%

3dz1dz2 . ~23c!

The boundary condition on the wall of the container, deriv
from Eq. ~15!, is

F5
r̂w

2p
expS 2

z1
21z2

2

T̂w
D F2T̂w

21

1
G ~z1n11z2n2.0!,

~24!

r̂w52
2p1/2

T̂w
E

z1n11z2n2,0
~z1n11z2n2!ĝ dz1 dz2 ,

~25!

whereT̂w is defined in Eq.~17!, and the symmetry condition
on thex1 axis, derived from Eq.~18!, is

F~x1 ,0,z1 ,z2!5F~x1 ,0,z1 ,2z2!

for z2,0, ~2 1
2,x1, 1

2!. ~26!

The p̂i j ( p̂135 p̂2350) and q̂i (q̂350) in Eqs. ~19b! and
~19c! are written as

p̂i j 52E
2`

` E
2`

`

~z i2 v̂ i !~z j2 v̂ j !ĝ dz1 dz2 ~ i , j 51,2!,

~27a!

p̂3352E
2`

` E
2`

`

ĥ dz1 dz2 , ~27b!

q̂i5E
2`

` E
2`

`

~z i2 v̂ i !$@~z12 v̂1!21~z22 v̂2!2#ĝ1ĥ%

3dz1 dz2 ~ i 51,2!. ~27c!

III. NUMERICAL ANALYSIS

We analyze Eqs.~21!–~26! numerically by a finite-
difference method. One of the difficulties in the numeric
analysis arises from the fact that the velocity distributi
function is discontinuous in the gas. In this section, we fi
discuss it briefly and then give an outline of the numeri
method.

A. Discontinuity in velocity distribution function

If the velocity distribution function at a point in space
sayXi

(0) , is discontinuous at a certain molecular velocity, s
j i

(0) , then the discontinuity propagates in the direction
j i

(0) from Xi
(0) ~i.e., along the characteristic of the Boltzman

equation!.47 Such a propagation of discontinuity is com
monly observed in the gas around a convex bound
namely, the velocity distribution function is generally disco
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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2649Phys. Fluids, Vol. 13, No. 9, September 2001 Rarefied gas flow caused by a discontinuous wall temperature
tinuous there. In the present problem, the discontinu
boundary condition causes the discontinuity in the veloc
distribution function in the gas, as seen below. For a gen
discussion on the discontinuity, including its relation to t
Knudsen layer and Sone layer48 for small Knudsen numbers
the reader is referred to Ref. 47~a brief discussion is also
found in Ref. 39!. The propagation of discontinuity is als
discussed in the framework of propagation phenomena a
ciated with the Boltzmann equation in a recent paper
Cercignani.49

Let us consider the velocity distribution function of th
gas molecules leaving the bottom wall (X252L/2 or x2

521/2) in the present problem. At the point of discontinu
of the wall temperature (x150, x2521/2), the limit from
the left @F(02 ,21/2,z1 ,z2)# is prescribed by the boundar

condition~24! and~25! (n150, n251) with T̂w51, whereas
the limit from the right@F(01 ,21/2,z1 ,z2)# is prescribed

by Eqs. ~24! and ~25! (n150, n251) with T̂w5T2 /T1 .
~Here we are considering the dimensionless marginal ve
ity distribution functionsF, but the situation is essentiall

the same for the original velocity distribution functionf̂ or
f.! Therefore, these two limits, in general, do not coinci
@F(02 ,21/2,z1 ,z2)ÞF(01 ,21/2,z1 ,z2)# for any fixed
molecular velocity (z1 , z2) (z2.0). This discontinuity
propagates in the gas in the direction of (z1 , z2), i.e., along
the characteristic of Eq.~21!. Therefore, at a point (x1 , x2)
in the gas, the velocity distribution function is generally d
continuous in the directionz1 /z25x1 /(x211/2) in thez1z2

plane. It is easily shown that the discontinuity attenua
over the distance of the order of the molecular free path in
propagation because of the effect of molecular collision47

These properties are essentially the same as those of the
continuity originating from the leading and trailing edges
the case of a rarefied gas flow past a~thickless! flat plate.50

In the present problem, the velocity distribution function
(x1 , x2) is also discontinuous in the directionz1 /z2

5x1 /(x221/2) because of the presence of the discontinu
in the temperature of the top wall atx150, x251/2. In the
framework of the boundary-value problem, Eqs.~21!, ~24!,
and ~26!, in the lower half of the container, the second d
continuity corresponds to the discontinuity propagating
the directionz1 /z25x1 /(2x211/2) from the middle point
of the bottom wall (x150, x2521/2), reflected on the
specularly reflecting boundary (x250), and reaching the
point (x1 , x2) (x2,0). The discontinuity point of the
boundary temperature is also a singular point for the ma
scopic variables in the sense that their limiting values at
point are different depending on the direction of approa
~see Ref. 50!.

It should be mentioned that the discontinuity of the v
locity distribution function is also caused by the four corne

of the container. At these points, the limit ofr̂w @Eq. ~25!#
from the bottom or the top wall is generally different fro
that from the side wall because the domain of integration
well as the integrand in Eq.~25! is different. Therefore, the
boundary condition~24! is discontinuous there. These di
continuities also propagate into the gas. However, the
continuities caused by the corners are much smaller t
Downloaded 04 Jun 2007 to 130.54.110.22. Redistribution subject to AIP
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~Note that the discontinuities inr̂w at the corners disappea
when the velocity distribution of incident molecules there
isotropic and that the velocity distribution approaches a lo
Maxwellian near each corner for small Knudsen numbers!

Finally, we make a brief comment on mathematic
theory for the propagation of discontinuities. The above d
cussion about the behavior of the discontinuities is based
the assumption that the gain term of the collision integral
the Boltzmann equation is continuous inside the gas reg
~in the case of the BGK model, this is equivalent to assum
that the density, flow velocity, and temperature are conti
ous there!. Although it is plausible, to show this continuit
rigorously is a difficult mathematical problem even for th
BGK model that is much simpler than the original Bolt
mann equation. In time-dependent problems, discontinui
~or, more generally, singularities! contained in the velocity
distribution function at the initial time also propagate in t
gas, attenuating because of molecular collisions, as time g
on. Reference 51 deals with such propagation success
with mathematical rigor on the basis of the Boltzmann eq
tion. However, it shows that the propagating singularities c
be discriminated only from a slightly less singular remaind
In Ref. 52, on the other hand, the discontinuities induced
discontinuous boundary data are studied mathematically
a simple one-speed linear transport equation which ha
similar structure to the linearized BGK model, and it
proved that the gain term is continuous and the discontin
ties can be separated from a continuous remainder.
mathematical results obtained for this simple transport eq
tion are consistent with the situation described in the sec
paragraph in this subsection.53

B. Outline of numerical analysis

The finite-difference methods that are capable of
scribing the correct behavior of the discontinuity of the v
locity distribution function have been devised and develop
in Refs. 54–58, and 50 in various situations. The type
propagation of the discontinuity in the present problem
almost the same as that in Ref. 50, where a supersonic
efied gas flow past a flat plate is investigated. Therefore,
can exploit the finite-difference scheme developed there w
a slight modification. Since the detailed description of t
method is found in Ref. 50, we give only a brief outline
the method.

~i! For the numerical analysis, we restrict thez1z2 plane
to a finite domainuz1u<Z1 , uz2u<Z2 , whereZ1 andZ2 are
positive constants chosen in such a way thatF is negligibly
small atuz1u.Z1 and uz2u.Z2 . The discrete solutionF# of
F at the lattice points in the (x1 , x2 , z1 , z2) space is con-
structed as the limit of the sequenceF#

(n), whereF#
(n) de-

notes theF# at thenth step of iteration; theF#
(n) is obtained

as follows by the use of a finite-difference equation, cor
sponding to Eq.~21!, that gives a relation betweenF#

(n) and
F#

(n21). Let (z1
(k) , z2

( l )) denote the lattice points in thez1z2

plane. We choose appropriate initial distributionsF#
(0). Let

F#
(n21) be known. For eachz1

(k).0, F#
(n) is determined from

x1521/2 to 1/2 and fromx2521/2 to 0 ~or from x250 to
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 2. Schematic figure for the procedure of numerical computation.~a!
z1>0, ~b! z1,0.

FIG. 3. Flow induced in the lower half of the container forT2 /T152. ~a!
Kn55, ~b! Kn52, ~c! Kn50.5, ~d! Kn50.2. The arrow indicates the two
dimensional flow velocity vector (v1 , v2)/(2RT1)1/2 at its starting point.
The reference length of the arrow is shown in the right margin of e
figure. The symbols indicates the point with the maximum flow speed.
Downloaded 04 Jun 2007 to 130.54.110.22. Redistribution subject to AIP
21/2) by the use of the finite-difference equation, t
boundary condition on the left wall, and the boundary co
dition on the bottom wall~or the specular reflection cond
tion on x250) for all z2

( l )>0 ~or for all z2
( l ),0) @Fig. 2~a!#.

Similarly, for each z1
(k),0, F#

(n) is determined fromx1

51/2 to 21/2 and fromx2521/2 to 0 ~or from x250 to
21/2) by the use of the finite-difference equation, t
boundary condition on the right wall, and the boundary co
dition on the bottom wall~or the specular reflection cond
tion on x250) for all z2

( l )>0 ~or for all z2
( l ),0) @Fig. 2~b!#.

For z1
(k)50, F#

(n) is determined fromx2521/2 to 0 ~or from
x250 to 21/2) by the use of the finite-difference equatio
and the boundary condition on the bottom wall~or the specu-
lar reflection condition onx250) for all z2

( l )>0 ~or for all
z2

( l ),0).
~ii ! As explained in the preceding subsection,F is dis-

continuous in the gas. Here, we neglect the discontinui
caused by the four corners of the container~see the third
paragraph of Sec. III A; the discontinuities ofr̂w at the cor-

h

FIG. 4. Flow induced in the lower half of the container forT2 /T152. ~a!
Kn50.05, ~b! Kn50.02, ~c! Kn50.01, ~d! Kn50.005. See the caption o
Fig. 3.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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2651Phys. Fluids, Vol. 13, No. 9, September 2001 Rarefied gas flow caused by a discontinuous wall temperature
ners can be estimated from the numerical result, and it tu
out to be negligibly small for small Kn!. Then, for
(z1

(k) , z2
( l ))5(a, b) @or (z1

(k) , z2
( l ))5(a, 2b)] (a.0, b

.0), F is discontinuous along the linex25(b/a)x121/2
@or x252(b/a)x111/2], i.e., the boundary between the r
gions I and II~or II and III! in Fig. 2~a!. When we discretize
Eq. ~21!, we should not apply finite-difference approxim
tion to the derivative terms]F/]x1 and ]F/]x2 across the
discontinuity. Therefore, we need to make a local correct
in the finite-difference scheme. That is, we first separate
regions I and II1III ~or I1II and III! in Fig. 2~a! and then
use the same finite-difference equation as in~i! in each re-
gion. Since these two regions are disconnected, we nee
the boundary condition for the region II1III ~or III !, the
limiting value of F from the right along the line of discon
tinuity in the process of determiningF#

(n) from x1521/2 to
1/2 in the procedure~i!. This limiting value is obtained sepa
rately with the aid of another finite-difference equation f

FIG. 5. Flow near the point of discontinuity forT2 /T152. Magnified figure
of the range20.1<X1 /L<0.1, 20.5<X2 /L<20.4 of Fig 4. ~a! Kn
50.05, ~b! Kn50.02, ~c! Kn50.01, ~d! Kn50.005. See the caption
of Fig. 3.
Downloaded 04 Jun 2007 to 130.54.110.22. Redistribution subject to AIP
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Eq. ~21! along~the right-hand side of! the discontinuity line.
The treatment for (z1

(k) , z2
( l ))5(a8, b8) @or (z1

(k) , z2
( l ))

5(a8, 2b8)] (a8,0, b8.0) is essentially the same. Tha
is, we decompose the original domain into two regions8
and II81III 8 ~or I81II 8 and III8) in Fig. 2~b! by the discon-
tinuity line x25(b8/a8)x121/2 @or x252(b8/a8)x111/2]
and apply the same finite-difference equation as in~i! in each
region. In this case, we need, as the boundary condition
the region II81III 8 ~or III 8), the limiting value ofF from
the left along the line of discontinuity in the process of d
termining F#

(n) from x151/2 to 21/2 in the procedure~i!.
This limiting value is obtained separately with the aid of
finite-difference equation for Eq.~21! along ~the left-hand
side of! the discontinuity line.

FIG. 6. Isolines of the density forT2 /T152. ~a! Kn55 (r/rav50.875
10.025m; m50, 1, . . . , 10),~b! Kn50.5 (r/rav50.810.05m; m50, 1,
. . . , 9), ~c! Kn50.05 (r/rav50.810.1m; m50, 1, . . . , 6), ~d! Kn
50.005 (r/rav50.810.1m; m50, 1, . . . , 6).
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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IV. RESULTS OF NUMERICAL ANALYSIS

The computation has been carried out for a fixed te
perature ratioT2 /T152 and for various values of the Knud
sen number in the range 0.005<Kn<5. In this section, we
show and discuss the results of the computation.

A. Flow induced in the gas

The flow velocity field in the lower half of the containe
in the case ofT2 /T152 is shown in Figs. 3 and 4 for variou
values of Kn in its descending order, i.e., for Kn55, 2, 0.5,
and 0.2 in Figs. 3~a!–3~d! and for Kn50.05, 0.02, 0.01, and
0.005 in Figs. 4~a!–4~d!. The arrow in the figures indicate
the two-dimensional flow velocity vector (v1 , v2) normal-

FIG. 7. Isolines of the temperature forT2 /T152. ~a! Kn55 (T/T151.2
10.1m; m50, 1, . . . , 5),~b! Kn50.5 (T/T151.110.1m; m50, 1, . . . ,
7), ~c! Kn50.05 (T/T151.110.1m; m50, 1, . . . , 8), ~d! Kn50.005
(T/T151.110.1m; m50, 1, . . . , 8).
Downloaded 04 Jun 2007 to 130.54.110.22. Redistribution subject to AIP
-

ized by (2RT1)1/2, and its length corresponding to 0.00
0.0025, 0.01, or 0.02 is shown in the right margin of ea
figure ~note the difference in the scale of the arrow!; the
point at which the flow speed takes the maximum is in
cated bys. Recall that the wall temperature is discontinuo
at X1 /L50, X2 /L520.5.

For all Kn in Figs. 3 and 4, a counterclockwise circula
ing flow is observed. The flow, which is very weak at K
55, is intensified as Kn decreases~Fig. 3!. But, as Kn de-
creases to 0.05 and to 0.02@Figs. 4~a! and 4~b!#, though the
flow near the point of discontinuity of the wall temperatu
remains of the same order of magnitude, the flow in the ot
part becomes weaker. With further decrease of Kn@Figs. 4~c!
and 4~d!#, the region where the flow is appreciable shrinks
the close neighborhood of the point of discontinuity, and

FIG. 8. Isolines of the pressure forT2 /T152. ~a! Kn55 (p/RravT151.3
10.025m; m50, 1, . . . , 10),~b! Kn50.5 (p/RravT151.3510.025m; m
50, 1, . . . , 6),~c! Kn50.05 (p/RravT151.3810.02m; m50, 1, . . . , 8),
~d! Kn50.005 (p/RravT151.4210.01m; m50, 1, . . . , 9).
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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2653Phys. Fluids, Vol. 13, No. 9, September 2001 Rarefied gas flow caused by a discontinuous wall temperature
flow itself seems to be weakened. When Kn is relativ
large (Kn55 and 2), a flow toward the left is observed o
the bottom wall in the parts near the side walls, and it
duces two weak clockwise circulating flows at both botto
corners. Although the leftward flow is seen for all Kn,
becomes weaker and thus the two circulating flows beco
weaker and smaller as Kn becomes small. The maxim
speed is attained on the wall far from the point of discon
nuity ~i.e., in the leftward flow! for Kn55, whereas it is
attained in the gas near the point of discontinuity for oth
Kn. As Kn becomes small, the point with the maximu
speed approaches the point of discontinuity.

In order to see the local structure of the flow field of F
4 near the point of discontinuity, we show in Figs. 5~a!–5~d!
the magnified figures of the part20.1<X1 /L<0.1, 20.5
<X2 /L<20.4 of Figs. 4~a!–4~d!. For Kn50.005 @Fig.

FIG. 9. Distributions of the density along the linesX2 /L5const for
T2 /T152. ~a! Kn55, ~b! Kn50.5, ~c! Kn50.05, ~d! Kn50.005.
Downloaded 04 Jun 2007 to 130.54.110.22. Redistribution subject to AIP
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5~d!#, the flow is very localized even in this small region an
almost vanishes on the outer edge of the region. Howe
the flow speed in the vicinity of the discontinuity point is n
slow in comparison with that for other Kn@Figs. 5~a!–5~c!#.

In the case of free-molecular gas (Kn5`), where the
effect of collisions between gas molecules is neglected,
flow is induced in the gas. This fact was proved by Sone59,60

in a very general situation~arbitrary shape, arrangement, an
temperature distribution of the boundary, the Maxwell-ty
diffuse-specular reflection condition with an accommodat
coefficient varying along the boundary, etc.!. On the other
hand, as mentioned in Sec. I, no flow is induced by
temperature field in the continuum limit (Kn501). How-

FIG. 10. Distributions of the temperature along the linesX2 /L5const for
T2 /T152. ~a! Kn55, ~b! Kn50.5, ~c! Kn50.05, ~d! Kn50.005.
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ever, one should note that this conclusion, which is dra
from the Navier–Stokes system, is validated by t
asymptotic theory26 and that the latter theory cannot be a
plied to the present problem because of the discontinu
temperature distribution. Therefore, the situation in the c
tinuum limit is not obvious, though the flow is likely to van
ish intuitively. We will discuss this point later.

Figures 6–8 show the isolines of the density, tempe
ture, and pressure in the lower half of the container in
case ofT2 /T152 for four values of the Knudsen numbe
Kn55, 0.5, 0.05, and 0.005. The isolines concentrate on
point of discontinuity of the wall temperature. This mea
that the point is a singular point at which the values of

FIG. 11. Distributions of theX1 component of the flow velocity along the
linesX2 /L5const forT2 /T152. ~a! Kn55, ~b! Kn50.5, ~c! Kn50.05, ~d!
Kn50.005.
Downloaded 04 Jun 2007 to 130.54.110.22. Redistribution subject to AIP
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macroscopic quantities are not determined uniquely, nam
their limiting values are different depending on the way
approach to the point. For smaller Kn, isodensity and isoth
mal lines of wider ranges concentrate on the point. The p
sure tends to become uniform for small values of Kn@Figs.
8~c! and 8~d!#. In Figs. 9–12, we show the distributions o
the density, the temperature, and theX1 andX2 components
of the flow velocity along the bottom wall and the line
parallel to it for Kn55, 0.5, 0.05, and 0.005. As is unde
stood from the concentration of the isolines in Figs. 6–8,
distributions on the wall in Figs. 9–12 exhibit a discontinui
at the singular point. The fact that theX1 componentv1 of
the flow velocity on the bottom wall (X2 /L520.5) does not
vanish on the side walls (X1 /L560.5) in Figs. 11~a! and

FIG. 12. Distributions of theX2 component of the flow velocity along the
linesX2 /L5const forT2 /T152. ~a! Kn55, ~b! Kn50.5, ~c! Kn50.05, ~d!
Kn50.005.
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2655Phys. Fluids, Vol. 13, No. 9, September 2001 Rarefied gas flow caused by a discontinuous wall temperature
11~b! @see also Figs. 3~a! and 3~b!# might seem to be un
physical. However, as is seen from the discussions in S
III A, the four corners of the container are also singu
points at which the macroscopic quantities are not de
mined uniquely, i.e., their limiting values there are differe
depending on the way of approach. In Figs. 9–12 as wel
in Figs. 3 and 4, the limiting values along the bottom w
@X1 /L56(0.520), X2 /L520.5] are shown as the value
at the corners. Therefore, the nonzerov1 appears there. This
does not contradict the condition that there is no net m
flow across the wall of the container because the limit
values of the flow velocity at the corners are finite thou
they are not unique~note that if a point is a source or sink o
the mass, the flow speed should be infinite there!.

Figure 13~a! illustrates the variation with Kn of the flow
speed of the gas at five fixed points on the lineX2 /L
520.495 near the point of discontinuity, i.e
(X1 /L, X2 /L)5(0,20.495), (0.005,20.495), (0.02,
20.495), (0.05,20.495), and (20.05,20.495), and at two
points (X1 /L, X2 /L)5(20.3,20.4) and (0.3,20.4),
whereas Fig. 13~b! illustrates that at five points the position
of which change depending on Kn but are the same in

FIG. 13. Flow speed at various points in the gas vs the Knudsen numbe
T2 /T152. ~a! The flow speeduv i u at (X1 /L, X2 /L)5(0,20.495) is shown
by s, (0.005,20.495) byh, (0.02,20.495) byL, (0.05,20.495) byn,
(20.05,20.495) bym, (20.3,20.4) by., and (0.3,20.4) by,. ~b! The
flow speeduv i u at (X1 / l 1 ,(X210.5L)/ l 1)5(0.5,0.5) is shown bys, (1,1)
by h, (5,5) byL, (2,1) byn, and (5,1) by,; the symbold indicates
the maximum speed in the domain. In each figure, the same symbol
joined by straight lines.
Downloaded 04 Jun 2007 to 130.54.110.22. Redistribution subject to AIP
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scale of the mean free pathl 1 relative to the point of discon-
tinuity, i.e. (X1 / l 1 , (X210.5L)/ l 1)5(0.5, 0.5), (1, 1),
(5, 5), (2, 1), and (5, 1). The maximum speed in the flo
field is also shown in Fig. 13~b!. It is seen from Fig. 13~a!
that, as the Knudsen number decreases from 5 to 0.005
flow speed at each fixed point first increases, reaches
maximum, and then decreases. The maximum is attaine
smaller Kn for the point closer to the point of discontinuit
On the other hand, in Fig. 13~b!, the speed at each point a
well as the maximum speed in the flow field tends to a
proach a finite value as the Knudsen number vanishes.
fact indicates that the flow field near the point of discontin
ity for small Kn exhibits a similarity in the sense that th
structure of the field expressed in the scale of the mean
path approaches a limiting field as Kn tends to zero. This
also supported by Fig. 14, where the isolines of the dens
temperature, and flow speed near the point of discontinuit
Kn50.05, 0.02, 0.01, and 0.005 are shown in the coor
nates normalized byl 1 . To summarize, the numerical resul
presented so far, in particular, Figs. 13 and 14, support
following conclusion for the behavior of the flow induced
the gas in the continuum limit. As the limit is approache

for

re

FIG. 14. Isolines of the density, temperature, and flow speed near the p
of discontinuity at small Knudsen numbers forT2 /T152. ~a! Density, ~b!
temperature,~c! flow speed. Here, the dotted line indicates the result
Kn50.05, the dot-dashed line for Kn50.02, the dashed line for Kn
50.01, and the solid line for Kn50.005. The coordinates are normalized b
the mean free pathl 1 .
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FIG. 15. Dimensionless margina

velocity distribution functionĝ @Eq.
~28!# at six points in the gas for Kn
55 andT2 /T152. ~a! (X1 /L, X2 /L)
5(0.101,20.5), ~b! (0.101,
20.442), ~c! (0.101,20.250), ~d!
(0.101, 0), ~e! (0.25,20.349), ~f!
(20.25,20.349).
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the region where the flow is appreciable shrinks and c
verges to the singular point where the wall temperature
discontinuous. That is, as Kn tends to zero, the flow vanis
at all the points except this singular point. In this way, t
flow induced in the container vanishes nonuniformly in t
continuum limit.

B. Velocity distribution function

Next, we show the behavior of the velocity distributio
function. The dimensionless marginal velocity distributi
function ĝ introduced in Sec. II D, i.e.,

ĝ~x1 ,x2 ,z1 ,z2!5E
2`

`

f̂ ~x1 ,x2 ,z i !dz3

5
2RT1

rav
E

2`

`

f ~X1 ,X2 ,j i !dj3 , ~28!

at various points in the gas in the case ofT2 /T152 is shown
in Figs. 15–18 as a function ofz1 @5j1 /(2RT1)1/2# andz2

@5j2 /(2RT1)1/2#; Figs. 15–18 correspond to the case
Kn55, 0.5, 0.05, and 0.005, respectively. The actual co
putation has been performed by the use of the lattice li
that are much denser than those drawn on the surfaceĝ
~see Sec. IV C!. The figures~a!–~d! in Figs. 15 and 16 and
Downloaded 04 Jun 2007 to 130.54.110.22. Redistribution subject to AIP
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the figures~a!–~c! in Figs. 17 and 18 are the results at th
points almost on the lineX1 /L50.1, the figure~a! being
those on the bottom wall. On the boundary, the velocity d
tribution function is, in general, discontinuous along the m
lecular velocities that are tangent to the boundary. As
scribed in Sec. III A, in the present problem, the veloc
distribution function in the gas is also discontinuous in t
two directions, j1 /j25X1 /(X21L/2) ~for j2.0) and
j1 /j25X1 /(X22L/2) ~for j2,0), in thej1j2 plane, origi-
nating from the discontinuity of the temperature of the b
tom wall and that of the top wall, respectively. In Fig. 1
where the Knudsen number is relatively large (Kn55), the
discontinuities in the two directions are large for all the fi
ures. In Fig. 15~a!, which shows the velocity distribution on
the bottom wall, the discontinuity on the right originate
from the temperature discontinuity on the top wall, where
that on the left is due to the discrepancy between the velo
distributions of impinging and re-emitted molecules. T
sharp decay of the discontinuities in the neighborhood of
origin (z1 ,z2)5(0,0) is due to the fact that slow molecule
have more chances for collision. In Fig. 16, where K
50.5, the discontinuities are smaller than those at the co
sponding spatial positions in Fig. 15 because the effec
molecular collision is larger in the former. In Fig. 17, whe
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 16. Dimensionless margina

velocity distribution functionĝ @Eq.
~28!# at six points in the gas
for Kn50.5 and T2 /T152. ~a!
(X1 /L, X2 /L)5(0.101,20.5), ~b!
(0.101,20.442), ~c! (0.101,
20.250), ~d! (0.101, 0), ~e! (0.25,
20.349), ~f! (20.25,20.349).
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Kn50.05, the discontinuity in the gas originating from th
discontinuity of the wall temperature is appreciable only
the close neighborhood of the point of discontinuity@Figs.
17~d!–17~f!#. Figure 18 showsĝ for Kn50.005 at almost the
same points as in Fig. 17. The discontinuity is fairly sm
even in the close neighborhood of the point of discontinu
@Figs. 18~d!–18~f!#. Except in the vicinity of the points o
discontinuity on the top and bottom walls, the velocity d
tribution is close to the local Maxwellian, so that the disco
tinuity is invisible even on the wall@Fig. 18~a!#.

C. Data on numerical computation

Finally we give some data on our numerical compu
tion. Here we use the dimensionless space coordinatesx1 ,
x2) and molecular velocity (z1 , z2). The lower half of the
container21/2<x1<1/2, 21/2<x2<0 is divided into 160
380 (Kn>0.1) or 3203160 (Kn<0.05) nonuniform rect-
angular regions by lattice lines. Forx1 , the minimum lattice
interval is 4.6131024 (Kn>0.1), 1.9331024 (Kn50.05),
or 3.4231023Kn (Kn<0.02) at x150 ~and also atx1

561/2 for Kn>0.05; for Kn<0.02, the lattice interval a
x1561/2 is 2.1931024), and the maximum interval is
1.2031022 (Kn>0.1), 6.0631023 (Kn50.05), or 6.73
31023 (Kn<0.02) atx1561/4. Forx2 , the minimum lat-
tice interval is 3.8731024 (Kn>0.1), 1.7531024 (Kn
Downloaded 04 Jun 2007 to 130.54.110.22. Redistribution subject to AIP
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50.05), or 3.4231023Kn (Kn<0.02) atx2521/2, and the
maximum interval is 1.2131022 (Kn>0.1), 6.0831023

(Kn50.05), or 5.6931023;6.6131023 (Kn<0.02) atx2

50. The molecular velocity space (z1 , z2) is restricted to a
finite domain27.1<z1<7.1, 27.0<z2<7.0 ~i.e., Z157.1
andZ257.0), which is divided into 3203320 (Kn>0.1) or
1603160 (Kn<0.05) nonuniform rectangular regions b
lattice lines. Forz1 , the minimum lattice interval is 4.44
31025 (Kn>0.1) or 8.8931025 (Kn<0.05) atz150, and
the maximum interval is 1.7631021 (Kn>0.1) or 3.48
31021 (Kn<0.05) atz1567.1. Forz2 , the minimum lat-
tice interval is 4.5531025 (Kn>2), 4.3931024 (0.1<Kn
<1), or 8.8931024 (Kn<0.05) atz250, and the maximum
interval is 1.3031021 (Kn>0.1) or 2.5831021 (Kn
<0.05) atz2567.0.

The lattice systems are chosen carefully on the basi
various numerical tests. An example of such tests is the
servation of the change in macroscopic quantities whe
coarser~or finer! lattice system is used. LetGx and Gz de-
note, respectively, the standard lattice system in (x1 , x2) and
that in (z1 , z2) described in the preceding paragraph (Gx and
Gz are different depending on Kn!; let Gx

(1/4) and Gz
(1/4) de-

note, respectively, coarser lattice system with about o
fourth lattice points corresponding toGx and that corre-
sponding to Gz ~i.e., Gx

(1/4) and Gz
(1/4) are obtained by
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 17. Dimensionless margina

velocity distribution functionĝ @Eq.
~28!# at six points in the
gas for Kn50.05 andT2 /T152. ~a!
(X1 /L, X2 /L)5(0.101,20.5), ~b!
(0.101,20.442), ~c! (0.101,
20.250), ~d! (0.005,20.497), ~e!
(0, 20.497), ~f! (20.005,20.497).
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removing every second lattice line inGx and Gz , respec-
tively!; and letGz

(4) be a finer lattice system with about fou
times more lattice points corresponding toGz . For Kn
50.5, the difference between the result based on (Gx , Gz)
and that on (Gx , Gz

(1/4)) is less than 1.6331026 in r̂, 4.85
31027 in v̂1 , 4.5131027 in v̂2 , and 8.4831027 in T̂, and
the difference between (Gx , Gz

(1/4)) and (Gx
(1/4) , Gz

(1/4)) is less
than 3.3031024 in r̂, 1.0131024 in v̂1 , 6.1631025 in v̂2 ,
and 8.9431025 in T̂. For Kn50.05, the difference betwee
the result based on (Gx , Gz) and that on (Gx

(1/4) , Gz) is less
than 2.3131024 in r̂, 3.0231024 in v̂1 , 4.5831025 in v̂2 ,
and 2.6631024 in T̂, and the difference betwee
(Gx

(1/4) , Gz) and (Gx
(1/4) , Gz

(4)) is less than 2.9931026 in r̂,
2.5931026 in v̂1 , 1.6531026 in v̂2 , and 3.5431026 in T̂.
For Kn50.005, the difference between the result based
(Gx , Gz) and that on (Gx

(1/4) , Gz8), whereGz8 is a lattice sys-
tem with the same number of lattice points asGz but with
slightly different lattice intervals, is less than 5.4731024 in
r̂, 5.6231024 in v̂1 , 2.5831024 in v̂2 , and 7.1831024 in
T̂, and the difference between (Gx

(1/4) , Gz8) and
(Gx

(1/4) , Gz8
(4)) is less than 6.6031025 in r̂, 7.8231026 in

v̂1 , 6.0931026 in v̂2 , and 1.1731024 in T̂.
A convenient measure of the numerical error is provid
Downloaded 04 Jun 2007 to 130.54.110.22. Redistribution subject to AIP
n

d

by the conservation laws. Let us consider a rectangular
main, 2r 1<x1<r 1 , 20.5<x2<20.51r 2 , in contact with
the bottom wall. Let the bottom side (2r 1<x1<r 1 , x2

520.5) be denoted by side I, the top side (2r 1<x1<r 1 ,
x2520.51r 2) by side II, the left side (x152r 1 ,
20.5<x2<20.51r 2) by side III, and the right side
(x15r 1 , 20.5<x2<20.51r 2! by side IV. Further,

let rav(2RT1)1/2LM̂ (N), ravRT1LP̂i
(N) , and (rav/2)

3(2RT1)3/2LÊ(N) be, respectively, the mass, thexi compo-
nent of the momentum, and the energy flowing out from
rectangular domain through the sideN (N5I, II, III, or IV !

~thus, M̂ (N), P̂i
(N) , and Ê(N) are the corresponding dimen

sionless quantities!. The sums of these quantities over th

all sides, M̂T5(N5I
IV M̂ (N), P̂iT5(N5I

IV P̂i
(N) , and ÊT

5(N5I
IV Ê(N), should vanish theoretically because of the co

servation of mass, momentum, and energy. However, th
do not vanish in the actual computation because of the
merical error. These nonzero values give a convenient m
sure of accuracy. For example, for Kn50.5, r 150.204, and

r 250.201, we have M̂T53.6531028 (M̂ (III) 525.40

31024 for reference!, P̂1T51.9831026 ( P̂1
(III) 522.80

31021), P̂2T523.7631027 ( P̂2
(II) 55.8431021), and ÊT

521.9131026 (Ê(III) 55.4431022); for Kn50.05, r 1
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 18. Dimensionless margina

velocity distribution functionĝ @Eq.
~28!# at six points in the gas for Kn
50.005 and T2 /T152. ~a!
(X1 /L, X2 /L)5(0.100,20.5), ~b!
(0.100,20.440), ~c! (0.100,
20.249), ~d! (0.005,20.497), ~e!
(0, 20.497), ~f! (20.005,20.497).
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50.204, and r 250.201, we have M̂T522.0531027

(M̂ (III) 521.0031023), P̂1T54.4331027 ( P̂1
(III) 522.92

31021), P̂2T521.4731026 ( P̂2
(II) 55.9331021), and ÊT

521.2731026 (Ê(IV) 529.9831023); and for Kn
50.005, r 150.200, andr 250.198, we haveM̂T521.00
31026 (M̂ (III) 521.9231024), P̂1T523.4931026 ( P̂1

(III)

522.9031021), P̂2T527.4231027 ( P̂2
(II) 55.8631021),

and ÊT521.5931026 (Ê(IV) 526.2031024).
The present computation was mainly carried out on C

ORIGIN 2000 computers at the Institute for Chemical R
search, Kyoto University.

V. DISCUSSIONS

We conclude this paper with some physical discussi
about the numerical results. Here we supposeT1,T2 as in
the numerical analysis.

Let us examine the situation near the point of discon
nuity of the wall temperature on the bottom wall for rel
tively small Kn. The gas in the upper right region with r
spect to the point of discontinuity is hotter than that in t
upper left region, as seen from Figs. 7 and 14~b!. Therefore,
a flow toward the right is induced in the gas by the sa
mechanism as the thermal creep flow.1–7 Here, we repeat the
explanation of the mechanism briefly~see Refs. 22 and 28–
Downloaded 04 Jun 2007 to 130.54.110.22. Redistribution subject to AIP
y
-

s
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e

30!. Let us suppose that the gas is at rest, and let us cons
the molecules incident on a point on the bottom wall near
point of discontinuity. Because the molecules impinging
the point possess the property of the gas in the region a
a mean free path apart from the point, the molecules from
upper right region are, on the average, faster than those f
the upper left region. Therefore, the incident molecules g
the leftward tangential momentum to the wall. Since t
molecules leaving the wall, which are isotropically distri
uted in the case of the diffuse reflection, do not contribute
the transport of the tangential momentum, the leftward t
gential momentum is transferred to the wall by the gas m
ecules. As the reaction, the gas undergoes a force in
rightward direction and moves in the same direction. T
speed of the gas motion is determined in such a way that
tangential momentum given to the wall by the gas mot
compensates the above-mentioned leftward momen
transferred by the impinging molecules.

Following Refs. 22 and 28–30, we can roughly estim
the speed of the gas motion to be proportional to the te
perature difference, sayDT, between two points that ar
about a mean free path apart in the horizontal direction
are located about a mean free path above the wall. This
timate applies to the general case with arbitrary tempera
distribution. In the case of the usual thermal creep fl
caused by an imposed temperature gradient]Tw /]Xw ,
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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where Tw is the temperature of the boundary andXw is a
coordinate along it, the temperature differenceDT is given
by l (]Tw /]Xw), where l is the reference mean free pat
The speed of the gas motionv is thus given asv
} l (]Tw /]Xw). Therefore, whenl goes to zero~the con-
tinuum limit!, the flow vanishes. In contrast, in the prese
problem with a discontinuous wall temperature, the tempe
ture field around the point of discontinuity is almost indepe
dent of l if it is described in the scale ofl @cf. Fig. 14~b!#.
Therefore, the temperature differenceDT and thus the spee
of the gas motionv are almost independent ofl. This means
that the flow does not vanish in the continuum limit. On t
other hand, becauseDT is appreciable only in the small re
gion over a few mean free paths around the point of disc
tinuity @cf. Fig. 14~b!#, the gas flow is driven only locally in
this region. Therefore, the region of the flow shrinks to t
point of discontinuity as the mean free path approaches z
In this way, the flow vanishes nonuniformly in the continuu
limit.

At small Knudsen numbers, the thermal stress s
flow24,8–11 of the order of Kn2 ~here we refer to the flow
speed normalized by the average molecular speed! and the
nonlinear thermal stress flow12,13 of the order of Kn, men-
tioned in Sec. I, should also be induced in the gas. Howe
the flow caused by the discontinuity of the wall temperatu
which is of the order of unity, has a dominant effect ev
though it is localized.
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