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A steady flow of a vapor in a half space condensing onto a plane condensed phase of the vapor at
incidence is considered in the case where another gas that neither evaporates nor cdtitenses
noncondensable gads present near the condensed phase. The behavior of the vapor and
noncondensable gas is investigated on the basis of kinetic theory under the assumption that the
molecules of the noncondensable gas are mechanically identical with those of the vapor. In
particular, the relation, among the parameters of the vapor at infthigypressure, temperature, and

flow velocity of the vapoy, those related to the condensed phike temperature of the condensed
phase and the corresponding saturation pressure of the )vapod the amount of the
noncondensable gas, that admits a steady solution is obtained numerically by the use of a model
Boltzmann equation proposed by Gawdoal. [Phys. Fluids AL, 380(1989]. The present analysis

is the continuation of an earlier work by Soseeal. [Transp. Theory Stat. Phy21, 297 (1992],

where the case in which the vapor flow is condensing perpendicularly onto the condensed phase is
investigated exclusively. The case with subsonic condensation is discussed in the preseith@aper
case with supersonic condensation is left to the subsequent) p&e2003 American Institute of
Physics. [DOI: 10.1063/1.1539476

I. INTRODUCTION shaped boundaries, consisting of the condensed phase of the
vapor, on which strong evaporation or condensation is taking

The half-space problem of strong evaporation and conplace. To be more specific, the half-space problem corre-
densation, more specifically, steady flows of a vapor consponds to the Knudsen-layer problem in this case, and the
densing onto or evaporating from a plane condensed phase @flations among the parameters mentioned above provide the
the vapor with a high evaporation or condensation rate, halsoundary conditions for the fluid-dynamic equatidgtie Eu-
been one of the important subjects in kinetic theory of gaseker set of equations for a perfect gatSee Refs. 2 and 8.
in the following aspects. The fact mentioned ifi) was clarified and the parameter

(i) In spite of the fact that it appears to be the simplestrelations, together with the behavior of the physical quanti-
boundary-value problem of the full Boltzmann equation, theties, were obtained by means of intensive numerical analysis
behavior of the solution is not obvious at all. For example,(Refs. 4 and 5 for evaporation and Refs. 6, 7, and 5 for
there is a steady solution only when the parameters of theondensationbased on the Bhatnagar—Gross—KrgBIGK)
vapor at infinity(the pressure, temperature, and flow velocitymodef—1° of the Boltzmann equation. Some analytical re-
of the vapoy and those associated with the condensed phasgults based on the Boltzmann equation as well as the BGK
(the temperature of the condensed phase and the correspondedel are also available for slow evaporation and
ing saturation pressure of the vapsatisfy certain relations. condensatioh™ and for transonic condensatiéh? We refer
Furthermore, the relations are qualitatively different dependto Ref. 13 as a pioneering work and note that numerical
ing on whether the vapor is evaporating or condensing, anthethods other than using the BGK model have also been
furthermore, whether it is condensing with a supersonicemployed to obtain the aforementioned relati¢eg., Refs.
speed or a subsonic speéBee Refs. 1 and R. 14-17%. In addition, it should be mentioned that the entropy

(i) The half-space problem also plays an important roleénequality (or the H-theoremwas used recently to estimate
in the continuum limit(i.e., the limit where the mean free the relations rigorousl§?*°The reader is referred to Refs. 1,
path of the vapor molecules or the Knudsen number of th€, and 18 for the review on this problem. These numerical
system goes to zeyofor vapor flows around arbitrarily and analytical results have induced mathematicians’ interest

in the rigorous mathematical treatment of the problem. In
aE| o . . fact, several successful results on the half-space problem cor-
ectronic mail: aoki@aero.mbox.media.kyoto-u.ac.jp

bpermanent address: Department of Aeronautics and Astronautics, Gradud@SPonding to the case of evaporation and condensation have
School of Engineering, Kyoto University, Kyoto 606-8501, Japan. been reported so fde.g., Refs. 20-23
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The numerical analysis of the half-space problem ofcondensed phase at incidence in the presence of a honcon-
strong condensation was extended to the case where anotldgnsable gas. We are going to investigate the problem nu-
component that does not participate in evaporation or conmerically on the basis of kinetic theory, following Ref. 24. In
densation(say, noncondensable gas present near the con- this reference, the case where the molecules of the noncon-
densed phas#:?® The effect of the noncondensable gas ondensable gas are mechanically identical with those of the
the vapor flows, especially on the relation among the paramvapor is considered. In this case, as discussed in Ref. 24, we
eters allowing a steady solution, is clarified in these refercan successfully decompose the problem into two problems:
ences. one is a nonlinear problem for the total mixture and the other

The half-space problem of strong condensation in thds a linear and homogeneous problem for the noncondensable
presence of a noncondensable gas was revisited recently g@s. In particular, since the former problem is equivalent to
connection with the continuum limit of the vapor flows the half-space problem of strong condensation for a pure
around the boundary, consisting of the condensed phase gépor, we can exploit the rich knowledge and resources ac-
the vapor, in the case where a small amount of the noncorsumulated so far. In addition, this decomposition not only
densable gas is contained in the system. In Ref. 26, a simpleduces the necessary amount of computation dramatically,
one-dimensional problem, i.e., a vapor flow caused hbybut also provides a clear understanding of the features of the
evaporation and condensation between two parallel plangolution. This situation is the same in the present problem
condensed phases was investigated, and it was pointed owthere the vapor is condensing obliquely.
that the noncondensable gas with an infinitesimal average In the present paper, therefore, we consider the same
concentration has a significant effect on the vapor flow in thesituation in which the molecules of the noncondensable gas
continuum limit. The physical reasoning of this seeminglyare mechanically identical with those of the vapor. Further-
paradoxical effect is as follows. The infinitesimal amount ofmore, as in Refs. 24 and 25, we employ a model Boltzmann
the noncondensable gas is concentrated in the thicklesfuation for a gas mixture proposed by Gargantos, and
Knudsen layer on the condensing surface by the vapor flowBrey [the Garze-Santos—Brey{GSB) model,** rather than
so that its local number density on the surface becomes higtiie original Boltzmann equation, in the actual numerical
enough(comparable to that of the vapao affect the vapor computation. In this papét), we consider the case in which
flow. The method of analysis employed in Ref. 26 is thethe speed of condensation is subsonic, more precisely, the
systematic asymptotic analysis of the Boltzmann equatiogase where the Mach number based on the component of the
for small Knudsen numbers developed by Soegy., Refs. flow velocity of the vapor at infinity normal to the boundary
27-31, and 3; see Refs. 2 and 32 for the summary of thés less than unity. The case in which the speed of condensa-
asymptotic theory Recently, the analysis of Ref. 26 was tion is supersonic will be considered in the forthcoming pa-
extended to the case of general geom&tjhe continuum  per.
limit in this situation is outlined as follows. The vapor flow is
free from the noncondensable gas except in the Knudsem FORMULATION OF THE PROBLEM
layer on the boundary where condensation is taking placeA Problem
Therefore, the fluid-dynamic equations and their boundary ™
condition on the boundary where evaporation is taking place  Consider a vapor in a half spa¢g >0 bounded by a
are the same as those in the case without the noncondensabtationary plane condensed phase of the vapor located at
gas® more specifically, the equations are the Euler set ofX;=0, whereX; is a rectangular coordinate system. There is
equations for a perfect gas. The thickless Knudsen layer oa uniform vapor flow at infinity toward the condensed phase
the condensing boundary may contain the noncondensableith velocity (V.1, Vw2, 0) (v21<0, v,,2,=0), temperature
gas, as mentioned above. Such Knudsen layer is described By,, and pressurep,, (or molecular number density,,
the half-space problem under consideration, i.e., that ofp./kT,, wherek is the Boltzmann constantThe con-
strong condensation in the presence of the noncondensaldensed phase is kept at a constant and uniform temperature
gas. Then, the relation among the parameters allowing th€,,. Steady condensation of the vapor is taking place on the
steady solution in the half-space problem, together with the&eondensed phase, and another gas neither condensing nor
continuity equation of the flow of the noncondensable gasvaporating on the condensed phase, which we call the non-
along the boundaryinside the thickless Knudsen layer condensable gas, is confined near the condensed phase by the
gives the boundary condition for the Euler set on the concondensing vapor flow(See Fig. 1. We investigate the
densing boundary. Therefore, the analysis of the half-spacgteady behavior of the vapor and the noncondensable gas on
problem in Refs. 24 and 25 gives important information alscthe basis of kinetic theory, under the following assumptions:
in practical point of view. However, these references deali) the behavior of the vapor and the noncondensable gas is
exclusively with the case where the vapor flow is condensinglescribed by the Boltzmann equation for a binary mixture
on the condensed phase perpendicularly. In order to obtaifthe GSB modél* will be employed for numerical computa-
the boundary condition for the Euler set for the general getion); (ii) the vapor molecules leaving the condensed phase
ometry, we need to extend the results of Refs. 24 and 25 tare distributed according tGhe part corresponding to the
the case where the vapor is condensing onto the condensézhving molecules 9fthe Maxwellian distribution describing
phase at incidence. the saturated equilibrium state at rest at temperakyre(iii )

For this reason, in the present study, we consider a unithe noncondensable-gas molecules leaving the condensed
form vapor flow in a half-space condensing onto a planephase are distributed according(tbe part corresponding to
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Here,l,, is the mean free path of the vapor molecules in the
equilibrium state at rest with temperature and pressurg.,
(see Appendix A for example,l..=[v2m7(d*)?n, ] for
hard-sphere molecules, wheié is the diameter of a vapor
molecule[Eq. (A9b)], and|..= (2/\/7) (2kT.. /m*) YK %n,,
for the GSB model, wher&”” is a constant(see App-
endix B).

Then, the Boltzmann equation for a binary mixture in the
present steady and spatially one-dimensional problem is

FIG. 1. Uniform flow of a vapor condensing onto its plane condensed phaswritten as

at incidence in the presence of a noncondensable gas.

the leaving molecules pfthe Maxwellian distribution with

temperatureT,, and flow velocity 0, and there is no net par-

ticle flow across the condensed phasiéfuse reflection;

(iv) the molecules of the noncondensable gas are mecha
cally identical with those of the vapofthis assumption,
which will be introduced in Sec. lll, is not used in the for-

mulation of the problem in Sec.)ll

For later use, we introduce the following notatiqm; is
the saturated pressure of the vapor at temperafyreand
n, is the corresponding molecular number density, (
=p,/kT,). In the following, we assign the labdl to the
vapor (it will also be calledA component and B to the
noncondensable gdg will also be calledB component

B. Basic equation

We first introduce the basic notatior:is the molecular
velocity, F* the velocity distribution function of ther com-
ponent @=A corresponds to the vapor and=B to the
noncondensable gas“ is the molecular number densipy;
the mass densityT“ the temperature p* the pressure and
vi’=(v7,v3,0) the flow velocity of thew componentn is
the molecular number densitythe mass densityl, the tem-
peraturep the pressure, ang,=(v4, v, 0) the flow veloc-

ity of the total mixture;m® is the mass of a molecule of the
a component. Then we introduce the dimensionless variables

(X, &, Fe, A9, pe, T9 p, of, 0, p, T, P, ;) corre-
sponding to K;, &, F% n% p% T% p% v, n, p, T, p,
v;) by the following relations:

X; &

Xi:(\/;T)Iwa gi:(szw/mA)l ’ (la)

. (2KT./m")%?

Ff=—F¢, (1b)
noo

. nd ~ pCY " T[I

na:n_' pa:mAn " Ta:T_’ (10

"a:p_a na_ Uia (1d)

b= U T kT, Im

L . p . T

A= p=rr— T=T_' (le

. P A Ui

p_aa vi_(szw/mA)lZ' (1f)

aF« o
= > JPYFPEY
0X1  g=AB

{1 (a=A,B), 2

whereJ?(FA E®) is the dimensionless form of the collision
term that expresses the effect of molecular collisions be-

[fween molecules of the and 8 components on the change

of F¢. Its explicit form is given in Appendix AEq. (A1)].
The boundary condition on the condensed phase is given
by

Ny [ T | ¥2 T
EA— 32 W| > 2
ol 2] e - i) s
B B\ 3/2 3/2 B
cp_ 3w M) T M T
F a n.. mA TW ex mA TW gl ’ (3b)
for ¢;>0, at x;=0,
where
B B\ 1/2 1/2
Oy m T, f .
—==2yml —=| |=— FBd3¢, 4
=2V o (m) RSN @
with d3/=dZ, d¢, dZ5. The condition at infinity is
U i 2
p( (g' 2kT,. /m* (
FB_0, (5b)

as Xl—>oc,

wherev..,;=(v.1, V2, 0). For convenience of the later use,
we introduce the normal and tangential Mach numbers
M (>0) andM,, (=0) at infinity,

T UVUw1 Vw2
Mpp=——=, Mp=F—F——. (6)
" BKT,3mA v BKT,3mA

Then, the dimensionless velocity,; / 2k T, /m* in Eq. (5a)
is written as

U i 5
SN ESE ) @

Here, we have given the basic equations and boundary con-
ditions in a dimensionless form. The corresponding dimen-

sional form is readily obtained by the use of E¢ka—(1f)

and the relations relevant to the collision integrals summa-

rized in Appendix A.
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As is seen from Eqgs(2)—(7), the parameters imposed The integration of Eq(2) over the whole/; space leads
externally, that isT,,, ny, Te, N., vy, andv.,, appear to A“07=const because the right-hand side vanishes in the
as the following set: integration. For the noncondensable ga®;?=0 holds on

T N o the condensed phase because of the diffuse refleCgion

My, My, —, —w(or =, (8)  and(4) or at infinity because of E¢(5h). Therefore, A7

Tw' Nyl Pw =0 or¥=0 holds identically forx,=0.

in the nondimensionalized boundary-value problgnote
that Eq.(2) does not contain these paramete@®n the other

hand, it is physically obvious that we need to specify a paj||, MECHANICALLY IDENTICAL MOLECULES
rameter related to the amount of the noncondensable gas to

single out a solution. In Ref. 24, the followigis used as Following Ref. 24, we now introduce the assumption
this parameter: that the molecules of the vapor and those of the noncondens-
able gas are mechanically identical. Then, we have
2 1 © ©
r=— f nBdX =f ABdx;. 9 mf=mB (or m*=1), (123
\/; nwloc o 1 0 1 ( )
JPUFPE)=J(FPF9), (12b

It corresponds to the total number of molecules of the non-
condensable gas per unit area of the condensed phase. wherea, =A, B, andJ is given in Eq.(A10). The discus-
sion in this section is essentially the same as that given in
C. Macroscopic gquantities Ref. 24. The only difference is that the casg,=0 (or
M.=0) is considered there. But, we will repeat it for the
reader’s convenience. The words such as the unique solution
will be used in the physical sense, not in the rigorous math-

The macroscopic quantitigs®, p*, v, p%, Te A, p,
0i, P, andT are defined as follows:

~ ematical sense.
ﬁ"‘=f Fed®z,  pr=mnc, (109
A. Preliminary transformation
1 . N
5iazﬁf LFed3, (10b) Let F be the(dimensionlessvelocity distribution func-
n tion of the total mixture defined by
.2 . E_FALEB
r)a:ﬁa-l-azg'* af (gi_aia)ZFad3§, (100) F=F"+F". (13)

Then, we can transform the boundary-value probi@n-

EA FB ¢ [B PRI

. 25 13 . ~BEB 43 (5b) for (F”, F®) to the problem for F, F®), which is
n fB_A’B FFd®, p J'ﬁ_EA'B MPEAA™, (100 mmarized as follows: the equations are

ﬁi=i 4 mPEA d3¢, (100 Lo =R F), (143
P B=AB 1

A PR 2 AND A BR 3 al&B_’\ = EB

p=nT=§f (&i—0y) BZEA,B MmPFA d3¢, (10f) 51_(9)(1 =J(F, F®), (14b)

where*=1 andm®=m®/m*. The domain of integration the boundary conditions on the condensed phase are

of the integrals with respect t in Egs.(1039—(10f) is the . _apMo [ To 32 T. ,
whole space of;. The same rule applies to all the integrals ~ F=7 " =| 3| exp — {7}, (15a
. . . . o w w
with respect toZ; in this paper unless the contrary is stated.
The macroscopic quantities for the total mixture are ex- . S Te [T\ 32 Te
i - divi FB=m 22| =] exp — —¢7 (15b)
pressed in terms of those for individual components as N\ Ty TooH)
A= > A8 p= > PP pbi= > pPOP, for £,>0, at x;=0,
B=A,B B=A,B B=AB -
(113 with
5 No=ny+ o2, (163
p= 2 |pP+3pfaf-0)?|. (11b) o8 T2 )
e = -2\ = f PP, (16b)
N TW {1<0

It should be noted that in the literature, the presfuffeand
temperatureT® of each component are often defined in aand the conditions at infinity are

different way, i.e., by Eq(100 with o;" replaced by; of Eq. 2
(10e. Then, the pressung of the total mixture becomes the E_m3Rexd —| 7.— Ui ) )
8 kT

simple sum ofp* and p® rather than Eq(11b).
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EB_0 (17b)
as X;— >,

Here, Eq. (149, which is the Boltzmann equation for a
single-component gas, is obtained by adding @y with «
=A andB and by taking into account the bilinearity of
Equation(14b) is Eq. (2) (with a=B) with FA being elimi-
nated by the use of Eq13). Equations(158 and (173 are,
respectively, the sum of Eq§3a and (3b) and that of Egs.
(5a) and (5b).

B. Half-space problem for a pure vapor

Now, let us suppose that, (or ng/n..) in Eq. (159 is a
given parameter. Then, Eg€l4a, (159, and (1738 form a

boundary-value problem equivalent to the half-space con-

densation problem for a pure vapor, namely, E§$-(5b)

with FB=0, which has been studied comprehensively in

Vapor flows condensing at incidence onto a plane 693

direct simulation Monte Carl@DSMC) method>*®by Sone
and Sasaki’ The result is quite close to that for the BGK
model.

C. Half-space problem in the presence of a
noncondensable gas

Let us suppose that we have obtained the solufion
corresponding to a given value of, (or the parameter
ng/n.). Then, Eqs(14b), (15b), (16b), and(17b) reduce to a
linear and homogeneous boundary-value problem FBr
Therefore, a solution multiplied by an arbitrary constant is
also a solution. The unique solution is determined by speci-
fying I' [Eq. (9)]. Let us denote bﬁf andI', the solution
and the value of corresponding to the case,=n, in Eq.
(15b). Sincel is linear in EB [see Eqgs(9) and (109], the
solution for an arbitraryl” is expressed in terms cﬁff and

*

Refs. 1, 5-7, 11, and 1E andn, correspond, respectively, FB=(T/T,)FE. (20)
to the (dimensionlessvelocity distribution function of the .
; . Then, Eq.(1 I
vapor and to the saturation number density of the vapor at en, Bq.(16b) yields
temperaturel,,. Then, this problem is characterized by the aS‘V:(F/F*)nO, (22

following set of parameters:

which together with Eq(163 gives the relationship between

T. n., P.. n,, andng or that betweem,, andpy:
Mrver Mo 0 n_o<°r E)’ 9 n=a-rmon, (229
wherepy=kngT,,, which corresponds to the saturation va- pw=(1-T/T,)po- (22b)

por pressure at temperatufeg, .

According to the references quoted above, there is a sci-
lution only when these parameters satisfy the following rela-°

tion:

poo Too

_:Fs MnocyMtooaT_ (Mnoo<1)1 (19@
pO w

P k1 .M T Mp=1 19b
_2 — =

pO S - tooi-l—w ( nee )1 ( )
pOO TOO

—>Fp| Mpe, Mioo, =—|  (Mp.>1). (199
pO TW

The functionsFg andF,, have been constructed numerically

in Refs. 7(for M,,=0) and 5, using the BGK model. Ac-
cording to these result§,s andF,, have the following prop-
erties. (i) Both functions are weakly dependent bh., and
T./T,. (ii) For any fixedM,,, andT. /T, Fgis a mono-
tonically increasing function iM .., wheread=,, is a mono-
tonically decreasing function inM,... (iii) F¢0,0,1)
=F40, ,M,, T../T)=1 and F(1_,M,,T./Ty)
=Fp(1,, M., T, /T,) (see, e.g., Ref.)1
Equations(199—(19¢ indicate that in order to obtain a
unique solution to Eqg14a), (153, and(173, one needs to
specify three parameters, shly,.., M., andT,,/T,,, out of
the four parameters in EqL8) whenM,,.,<1 (subsonic con-
densatiomnand all the four parameters satisfying the inequa
ity (19b) or (199 whenM,..=1 (supersonic condensatipn
It should be mentioned thdtg (with M,,=0) has also

To summarize, we first obtain a solutiénto the prob-
m (149, (158, and(17g that corresponds to a giver (or
ng/n.). Then we solve the problerii4b), (15b), and(17b
for 02=n, (or ¢B/n.=ny/n.) to obtainF2 , from which
we computel’, using Egs.(9) and(10a. Then, for a given
T, we obtainF8 from Eq.(20) andF* from Eq.(13). TheFA
and F® thus obtained solve the original problef®)—(5b)
with Egs. (123 and(12b) for theI" and the saturation num-
ber densityn,, given by Eq.(229. Sincen,, is not negative
physically, Eq.(229 yields

o=rI'srT,. (23

That is,I', is the maximum for a givenF.

One might think that the above scheme for the solution
is practically inconvenient because specifying the artificial
parametemn,. /ny rather than the physically inherent param-
etern, /n,, of the system seems to be crucial. In the case of
subsonic condensation, however, the inconvenience does not

arise because the solutidh and F® can be determined by
specifyingM .., M., T../T,,, andT" only, that is, we do

not need to specify.. /ng or n../n,, (see Sec. lll . On the
other hand, the scheme gives a clear understanding of the
relationship among the parameters which admits a solution
even in the case of supersonic condensafsae Ref. 24

|.D. Existence range of a solution: Subsonic
condensation

Now we return to the original problem. In the present

been computed for hard-sphere molecules by means of thgaper, we restrict ourselves to the case wihepn,<1. The
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case ofM,..=1 will be discussed in the subsequent paper.+EB coincides with the Boltzmann equatiafida for a
Then, if we speciiM .., M., andT,, /T, the solutionF single-component gas, i.e., the equation in the case where
to Egs.(14a, (159, and (179 is determined together with FA=F andFB=0. Although several model Boltzmann equa-
the value ofp../po [Eq. (193] or n../no=(p../p)(Tw/T=).  tions have been proposed for gas mixtu¥e¥ *only the

We use the inverse of../n, thus obtained fory/n.. in Eq.  GSB model(and the model in Ref. 40 under some restric-
(15b) to obtain IEE and thenl’, from Eq. (9). The IEE and tions satisfies this property. Since it plays an essential role in
I', depend onM,.., M,.., and T../T,, through E in Eq. the present approach, we adopt the GSB model. In addition,
(14b) andng/n.. in Eq. (15b). Thus, we may write explicity ~ Ed. (14a for this model reduces to the BGK mod@ppen-
Te(Mps, My, T /T,,). If we eliminatep, from Eqs.(198  dix B). Therefore, for the solutioR to Egs.(14a), (158, and

and (22b), we obtain the desired relation among the param{17g and the functiori in Eq. (25), we can use the detailed
eters that admits a solution in the present problem, i.e.,  data given in Refs. 7 and 5. We just need to solve the linear
system (14b) [with Eq. (B6)], (15b (with ¢®=n,), and

PelPu=Fs(Mnes Moo T/ Tw, T, 24 (17b) numerically to obtairF2 and the corresponding, .
where We solve this problem by means of a finite-difference
FsMp, My, To/Ty, ) method. In both systems, Eqg€l4a, (153, and (178 and

Egs.(14b), (15b), and(17b), the model collision terms allow

—[1- r -t us to eliminate the molecular-velocity variablés and {5

I's(Mpe, My, T /Ty) from the systems, as in the case of the BGK model for a
single-component g4<. That is, by multiplying the equa-
XFs(Mnzy Mez, Teo/Tw). 29 tions and boundary conditions by 4;, and {3+ {3 and by

It should be stressed that the functional formZ&fwith integrating the respective results over the whole rangé, of
respect td is explicit. If we exploit the comprehensive nu- and{sz, we obtain the equations and boundary conditions of
merical data foF ¢ obtained by using the BGK model in Ref. the respective setsd,, Hy, Hc) and (HS, , Hp, , HE,) of
5, our remaining task is to compuk€ andT', for various marginal velocity distribution functions defined by
values of the setN!,.., M., T../T,,), using a model colli-
sion term that is consistent with the BGK model. In other 3, 7 7= Jx - (1, &, 2+ OFdE,des,
words, we can construct the functidfy of four variables by —o) —w
constructing the functiol’, of three variables. This fact (269
reduces the amount of necessary computation dramatically.

As described in Sec. |, a steady flow of a vapor around , 8 B B._ |77 2, .2
the boundary, consisting of the condensed phase of the vap%rﬁ'a* + Ho s Tee) = f ffoc(l’ b2, £2%43)
is described by the Euler set of equations in the continuum ~
limit when a small amount of a noncondensable gas is con- XF3 dg,dds. (26b)
tained in the system. The relatid@4), with the numerical
data forZ, given in Sec. IV B, gives the essential part of the The solution method for the system fok{, Hy, H,) is
boundary condition for the Euler set on the condensinglescribed in detail in Ref. 5, and that for the systerEy(,
boundary in this situatiofwhen the speed of condensation is Hbx » Hex) is €ssentially the same as the former. Therefore,
subsonig. The reader is referred to Ref. 33 for the details. We avoid the description of the methods for conciseness.

—0o0

B. Existence range of a solution

IV NUMERICAL ANALYSIS AND RESULTS In this section, we show some of the numerical results
In this section, we carry out actual numerical analysis tdfor the existence range of a solution already discussed in Sec.

obtain 'EE andT’, , which gives the solutiof® and BB of IIID, namely the numerical data for the function

the original problem. Since the numerical technique is essen}g-:ltse('\:é‘gd 'It\(/l)t;rlelzrllz—?h,erciazg E?aﬁzddfl)“ For this purpose,
tially the same as that used in the case of a single-compone * .
ary . ! n9 P The data forF¢ have already been given in Ref. 5. That

system in Refs. 7 and 5, where the detailed description of the . . .
method is given, we omit it here giving some remarks in Sec'™ Fig. 3 and Tables |-V in Ref. 5 show the numerical data
IV A and concentrate on the results of analysis. InformationOf Fs(Mn, Mo, To./Ty) fOr T./T,,=0.5, 1, 1.5, _and 2.1In
about the accuracy of the computation is given in Appendi . present study, we recomputed all .the cases in Ref. 5 and
C. confirmed the accuracy of the data given there. To be more
precise, in Tables 1I-1V of Ref. 5, the last figure should be

changed by one in several data, and in Table | there, the last
figure should be changed by one in about 20 dataMgqy,

As in Refs. 24 and 25, we employ the GSB mdtiédr  <0.9 and by two to seven in the data fbt,..=0.99. We
Eq. (2). The model collision term is given in Appendix B. also made additional computations to supplement these data.
The original Boltzmann equation has the property that, whersome of the results are shown in Table |, the more compre-
the molecules of thé& component are mechanically identical hensive data being given in Tables I-IV in Ref. 42. The

with those of theB component, the equation fdE=F”  numerical results fol’, (Mpe, Moo, T /T,,) Obtained in

A. Some remarks on numerical analysis
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TABLE I. F¢(M,,. ,M..,T../T,) as a function oM,,.., M., andT./T,,.

T./T,=05 T ITe=1
M \M . 0 1 2 3 0 1 2 3
0.01 1.0205 1.0229 1.0300 1.0418 1.0197 1.0230 1.0330 1.0495
0.1 1.2294 1.2527 1.3220 1.4354 1.2201 1.2522 1.3470 1.5007
0.2 1.5251 1.5744 1.7213 1.9645 1.5025 1.5693 1.7677 2.0941
0.3 1.9126 1.9933 2.2352 2.6375 1.8692 1.9778 2.3021 2.8401
0.4 2.4288 2.5492 2.9104 3.5123 2.3517 2.5127 2.9949 3.7974
0.5 3.1309 3.3023 3.8169 4.6749 2.9965 3.2244 3.9081 5.0475
0.6 41102 43492 5.0663 6.2621 3.8742 41891 5.1344 6.7105
0.7 5.5228 5.8538 6.8472 8.5035 5.0958 5.5262 6.8179 8.9721
0.8 7.6548 8.1168 9.5033 11.815 6.8457 7.4328 9.1951 12.134
0.9 11.096 11.756 13.736 17.039 9.4506 10.258 12.681 16.722
0.95 13.693 14.494 16.898 20.907 11.253 12.205 15.064 19.832
0.99 16.484 17.431 20.271 25.009 13.046 14.139 17.417 22.885
1 17.304 18.292 21.258 26.205 13.549 14.680 18.074 23.734
T./Ty=15 T /Ty=2
M \M.. 0 1 2 3 0 1 2 3
0.01 1.0203 1.0244 1.0366 1.0566 1.0212 1.0259 1.0399 1.0629
0.1 1.2249 1.2636 1.3770 1.5598 1.2328 1.2767 1.4053 1.6117
0.2 1.5106 1.5902 1.8262 2.2131 1.5253 1.6155 1.8820 2.3180
0.3 1.8788 2.0077 2.3924 3.0293 1.9000 2.0457 2.4797 3.1973
0.4 2.3593 2.5499 3.1208 4.0700 2.3864 2.6014 3.2447 4.3138
0.5 2.9950 3.2642 4.0717 5.4170 3.0254 3.3285 42375 5.7513
0.6 3.8484 4.2191 5.3315 7.1861 3.8756 4.2920 5.5415 7.6245
0.7 5.0142 5.5174 7.0280 9.5474 5.0229 5.5860 7.2765 10.096
0.8 6.6396 7.3189 9.3583 12.760 6.5955 7.3508 9.6189 13.402
0.9 8.9647 9.8828 12.639 17.236 8.7902 9.8008 12.836 17.898
0.95 10.509 11.579 14.791 20.149 10.212 11.381 14.893 20.752
0.99 11.993 13.205 16.843 22.912 11.552 12.867 16.817 23.407
1 12.401 13.651 17.270 23.666 11.916 13.270 17.337 24.123

the present study are shown in Table I, the more detailedrom Eq.(25), F, is an increasing function d¥l,,.. (see Fig.
tables being given as Tables V-VIII in Ref. 42. 2). Numerical results show th&,—1 andI’, —~ asM.
With these data, we can construct the functign The — 0, andF andI", approach finite values a4,..— 1. The
result for T.,/T,=1 is shown in Fig. 2, wheres versus  values ofF¢ andI', atM,.=1 in Tables | and Il(and in
M. is shown for variousl' at four values ofM., i.e.,  Tables I-IV and V=VIII in Ref. 42 are the values obtained
M.=0, 1, 2, and 3. The similar figures far./T,,=0.5, by extrapolation, in which many additional data that are not
1.5, and 2 are given as Figs. 1, 3, and 4 in Ref(FB. 2in  included in the tables have also been used. Let us set
Ref. 42 is the same as Fig. 2 hgr&he 7 is an increasing
function of M,,,, and its curve moves upward with the in- o i
crease ofl’. TheT'. in the figures is a critical value df, FC( Mt T_w) = lim T’y
depending orM,.. and T../T,,, introduced by Eq(27) be- M=

low. WhenT'<I'¢, F; takes a finite value al.=1. BUt,  The properties ofF, described in the preceding paragraph
when I'=T'c, Fs becomes infinitely large adln.. ap-  follow immediately from Eqs(25) and(27) and the fact that
proaches a critical valudl. (<1) that de_pends O'Mt“.’ T, is a decreasing function o ... That is, wherl' <T',
T./Ty, andl' (Mc=1 whenl'=I";). That is,M.=MciS  the /T, in Eq.(25) is less than unity and thus, remains
the asymptote of the curve. Therefore, wHerT';, there is  finite in the whole range of €M .<1. WhenT'>T, (or
no solution in the intervaM .<M,,,<1. More detailed in- r=r,), the I'/T, in Eg. (25 becomes unity at an
formation abouf’, and M will be given below. _ M. (<1) (or atM,..=1). We denote this value ofl .. by
Because the dependence ff and I, on My, is oty (M =1 for T=T,). Then, % increases indefinitely as
strong, the function”; does not depend much oM, . M,.. approaches.. The T (M., T../T,) versusM,. is
Therefore, the features aof; are essentially the same as ghown in Fig. 3, wherel', versus M. is plotted for
those described in Refs. 24 and 25 for the cadd gf=0. In T./T,=05, 1, 1.5, and 2. Th& (M., T../T,,.T"), which
particular, forM,, smaller than around 1 and .. smaller i the solution of
than around 0.5F; is almost independent dfl,.,. The de-
pendence off; on T, /T,, is also weak in generdkee Figs. I',(M¢,M.,T../T,)—T=0, (28)
1-4 in Ref. 42. The F4 is an increasing function df1 ..,
whereadl’, is its decreasing function. Therefore, as is seeris shown in Fig. 4, wher® . versusM,,, atT.,/T,,=0.5, 1,

Te
an!MtomT_)- (27)
w
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TABLE IIl. T', (M. , M., T../T,) as a function oM., M., andT. /T, .

T./T,=0.5 T.ITy=1
M \M . 0 1 2 3 0 1 2 3
0.01 106.72 106.70 106.64 106.55 107.51 107.49 107.43 107.33
0.05 19.302 19.246 19.080 18.814 19.923 19.857 19.663 19.353
0.1 8.5549 8.4862 8.2895 7.9896 9.0326 8.9466 8.7033 8.3404
0.2 3.3822 3.3197 3.1492 2.9103 3.6851 3.6013 3.3785 3.0791
0.3 1.7822 1.7344 1.6085 1.4428 1.9850 1.9177 1.7471 1.5349
0.4 1.0496 1.0151 0.927 01 0.816 44 1.1902 1.1398 1.0166 0.87209
0.5 0.651 74 0.627 82 0.567 87 0.49517 0.752 04 0.71570 0.629 26 0.53233
0.6 0.414 66 0.398 49 0.35855 0.31125 0.487 91 0.462 37 0.402 92 0.33841
0.7 0.265 32 0.254 68 0.228 65 0.198 27 0.31998 0.302 45 0.262 25 0.219 61
0.8 0.168 01 0.16125 0.144 78 0.125 69 0.209 67 0.197 93 0.17126 0.143 35
0.9 0.103 31 0.099 232 0.089 285 0.077 745 0.135 74 0.12812 0.110 87 0.092 918
0.95 0.079 409 0.076 331 0.068 811 0.060 058 0.108 27 0.102 23 0.088 546 0.074 293
0.99 0.063 353 0.060 950 0.055 061 0.048 175 0.089 791 0.084 822 0.073 549 0.061 788
1 0.059 725 0.057 473 0.051 952 0.045 488 0.085 603 0.080 878 0.070 154 0.058 957
T./T,=15 T, ITy=2
M \M . 0 1 2 3 0 1 2 3
0.01 107.87 107.85 107.78 107.68 108.08 108.06 108.00 107.89
0.05 20.213 20.141 19.931 19.597 20.391 20.315 20.093 19.742
0.1 9.2609 9.1647 8.8948 8.4975 9.4019 9.2986 9.0105 8.5902
0.2 3.8333 3.7368 3.4842 3.1529 3.9257 3.8203 3.5475 3.1956
0.3 2.0858 2.0069 1.8108 1.5745 2.1490 2.0619 1.8487 1.5973
0.4 1.2614 1.2013 1.0579 0.895 88 1.3063 1.2393 1.0825 0.909 49
0.5 0.803 92 0.759 77 0.657 86 0.548 27 0.836 99 0.78732 0.67499 0.557 41
0.6 0.526 79 0.495 18 0.424 01 0.350 31 0.551 92 0.51595 0.436 77 0.357 20
0.7 0.349 89 032771 0.278 70 0.229 31 0.369 54 0.34396 0.288 80 0.23503
0.8 0.233 24 0.217 99 0.184 70 0.151 74 0.249 02 0.23113 0.19312 0.156 82
0.9 0.154 78 0.144 53 0.122 29 0.100 48 0.167 77 0.155 48 0.12959 0.10515
0.95 0.12555 0.117 23 0.099 204 0.081 544 0.137 46 0.127 35 0.106 08 0.086 078
0.99 0.105 87 0.098 873 0.083 702 0.068 840 0.117 04 0.108 42 0.090 305 0.073281
1 0.101 41 0.094 710 0.080 190 0.065 962 0.112 40 0.104 12 0.086 727 0.070 380

1.5, and 2 is plotted for various values I6f M. is taken as  shown in(a) and that forM,,=3 in (b). In these figures, the

the abscissa for easy comparison with Figa@d Figs. 1-4 dimensional quantities listed in the beginning of Sec. || B are

in Ref. 42. used rather than their dimensionless counterparts, and the
In the present analysis, we have taken full advantage ofiotationa,.= (5kT../3m”)'? has been introduced. It is seen

the case where the molecules of the noncondensable gas drem Eqs.(109—(100 with =B and withﬁ'f=0 (see the

mechanically the same as those of the vapor, and furthermotast part of Sec. Il € that A%, A%5, and @B:ﬁBﬁ-B are

we have used the GSB model to obtain the numerical resultgyear in FB. Therefore, because of the forni20),

such as shown in Fig. 2. A preliminary numerical analysis of

IT)AB, 55, T8, and [, /T)p®, i.e., (O, /T)(n®/n.),

the present problem using the DSMC method has also beez%Ef(Zk)T ml])Az)l/z /T (F;nd )(19 /F)(pE(‘l;S ) );re ind)e—
carried out for hard-sphere molecules in a more general ca ndentonI‘ It should ge noted tﬁat o v ”T andp of

where the molecules of the two components are notidenticgl. o1 it e are the same @ UA le -?-}x éndpA for
mechanically[Aoki, Takata, and Fujimotqunpublishedl]. T'=0, respectively PoLe vz e

The res_ult suggests that the relation _of th_e faa) wijth Fs T’he noncondensable gas extends far away viep is
dgpendmg om®/m" andd®/d* holds in this cased" is the small (over 50,, whenM,.,=0.1; see Fig. Bbut is confined
gﬁg}gt;r grt:]% /mgl_eczzu;sddo; /?f_cfrinsp:;gm QSF?; S):n in a narrower region wheM ., is large. For largeM,.., the

/s - - . .
the caseM,. =0 andT../T,—1. The qualitative feature of temperature near the condensed phase increases because of

the i ie th that of Fid. 2 the strong friction. But the temperature rise is smaller for
€ figure 1s the same as that ot F1g. <. largerM ., because the heated gas near the condensed phase
. . is removed by the strong condensation. These features are
C. Macroscopic quantities

the same as those discussed in Ref§obl"=0) and 24(for
In this section, we give some results for the macroscopidvl,..=0). The acceleration of the vapor toward the con-

guantities. Figures 6—8 show the profiles of the macroscopidensed phase is larger for lardebecause,, /p.. is smaller,
quantities forT,,/T,=1 and for three different values of i.e., the suction effect on the condensed phase is stronger. As
M., i.e., Fig. 6 forM,.,,=0.1, Fig. 7 forM,.,=0.5, and discussed in Ref. 24, becauseudf=0, F& does not accom-
Fig. 8 forM,.=0.9. In each figure, the result fM.=1 is  modate toF”, which is close to the equilibrium distribution
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FIG. 2. F(M.. , M., T /T, ,I') versusM,, for variousI" and M,

(T./Ty=1). (@ M.=0, (b) M..=1, (c) M(.=2, (d) M.,=3. The dotted
lines in the figures indicate the asymptotéd (=M_.) of the curves for

I'=0.2, 0.5, and 1. The value df. in each figure is as follows(a)
0.059 725,(b) 0.057 473,(c) 0.051 952,(d) 0.045 488.

with velocity (.1, v, 0), even in the far field whene® is
small. In consequenceg and T® do not approach .., and

Vapor flows condensing at incidence onto a plane 697

0.12 . . : |

0.1

v 0.08

0.06

0.04 : : : :
Mtoo

FIG. 3. T’ versusM,,, for T,./T,=0.5, 1, 1.5, and 2.

As is seen from Figs. 6—8, there is a macroscopic mo-
tion of the noncondensable gas along the condensed phase
(i.e., in theX, direction when the vapor flow at infinity has
a transversal componefite., v..,>0). Let us denote by;
the dimensional total particle flugper unit width inX5 and
per unit time of the noncondensable gas in tke direction

and by \ its dimensionless counterpart defined by

Ni=INm) [Nl (2K T, /™) Y21 71N (29
Then,Nf is expressed as
NfzfmﬁBf)zdel: wa LHFB A3z |dx,. (30)
0 0

If we use Eq.(20) in Eq. (30) and denote by\;, the A;
corresponding t(fFff , then we have

Ni=(TIT )N, (3D)
We recall thatlif depends oM., My,,, andT../T,,, SO
thatﬂ/f* , aswell ad’", , is a function of these three param-
eters. Therefore, setting=\;, /T, , we can write

Ni=TG(M,.., M., T.IT,). (32
The relation(32), or more generally, thé\; as the function

of M., M., T, /T,,, andT, is required as a part of the
boundary condition for the Euler set in the continuum limit
in the situation described in Sec. | and in the end of Sec.
D (see Ref. 33 for the detajlsSome of the numerical
results forG are given in Fig. 9, wherg versusM,,, is
plotted for typicalM,, and T../T,,, and in Table Il (see
Tables IX—XIl in Ref. 42 for more detailed data he values

of G at M,,=1 in Table Ill (and in Tables IX-XIl in Ref.
42) are those obtained by extrapolation using the data for
M,.<1 in the tables and many additional data not shown

T.., respectively(the gradients of these quantities may notthere. As is seen from Fig. 9 and the tablgss almost linear

vanish at infinity; see Ref. 24

in M. and weakly dependent dl .. .
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FIG. 4. M versusM,,, for variousI'. (& T../T,=0.5,(b) T../T,=1,(c) T../T,=1.5,(d) T../T,=2. M, is taken as the abscissa for easy comparison with
Fig. 2 (and Figs. 1-4 in Ref. 42In (c) and(d), the curve forl'=0.1 intersectdV.=1 atM.=0.43 and 1.26, respectively.

V. COMMENT ON THE CASE OF EVAPORATION we inject an amount of a noncondensable gas suddenly near
In this paper, we have exclusively considered the case qﬁqaﬁf_zor;iinslte :js ?ﬂiiﬁ/;ndog&gsuuse t:‘: ttﬁrgeefgoéfggs |r\1/;_he
condensation;.., 0. Here, we give a short comment on the or flgw sWee S awa t)éle noncondensable 23 to igﬁnit
case of evaporation, i.e., the boundary-value prob(gjm P ps away ) 0l€ gas . Y,
(5b) with v..,>0. and the latter gas disappears in the long-time limit. This sug-

Let us first consider the following time-dependent half- gests that the steady boundary-value problem, Ejs(5b),

. sl B_ .
space problem: there is a steady flow of a vapor evaporatin hould have the solutiof=®=0 uniquely whenv..;>0.

from the plane condensed phase and flowing toward infinity; NUS the problem is reduced to that of evaporation of a pure
vapor. On the other hand, this conclusion is not obvious

mathematically from the equation and boundary conditions.

T However, if we consider the case of Maxwellian molecules
for both component§i.e., the case where the intermolecular
force is proportional ta > with r being the distance be-
tween two moleculesor the GSB model, it can be shown
easily.

Let us consider E¢2) with =B. Integrating the equa-
tion multiplied by ¢, over the whole space df yields

15

> e o

10

Fs
| N B B B B S B E B B R |

aixl f (285 ¢ = f LIPBER, BB, (33

0 ————— becausel®8(FB, FB) vanishes in the integration. For Max-
Moo wellian molecules, the right-hand side of E@3) can be

FIG. 5. DSMC result ofF; for hard-sphere molecules. Tifg versusM .. expressed in terms of the macroscopic quantitiesses, for
is shown in the case®m*=2 andd®d*=1 (M,,,=0 andT../T,=1). example, Refs. 34, 40, and 45

The dotted lines in the figure indicate the asymptotes of the curveF for

=0.1, 0.2, 0.5, and 1. The symbd®s [J, 4, andA indicate the numerical JAB/EA EB\43s— ABAAAB ~A_ ~B

data, which are connected by spline curves. f {I7(FT, BR)d¥ = k""A"0" (07 —07), (34

—_
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FIG. 6. Profiles of the macroscopic quantities fdr,.=0.1 andT./T,=1. (@ M..=1, (b) M,,,=3. Here,a..= (5kT../3m*)*? is the sound speed at
temperaturdl,, . The macroscopic quantities of the total mixture are given by those of the vapbBefor The profiles of [, /T')(n®/n..), vglax , TBIT.,,
and (U, /T')(p®/p..) are independent df.

where kB is a positive constant depending on the constant  Most of the model equations for multicomponent mix-

in the intermolecular force law and gi*® defined in Eq. tures, such as proposed in Refs. 34, 38—40, are designed in
(A2b). Sincef/f>0 and ﬁBﬁfzo (see the last part of Sec. such a way that the model collision terms reproduce the mo-
[1C), the right-hand side of Eq(33) is strictly positive. mentum and energy transport between different species for
Therefore [ £2Fd®;=0 is a monotonically increasing func- Maxwellian molecules. Therefore, they satisfy the relation
tion of x;. On the other hand, it should vanish at infinity (34) with an appropriate constant corresponding ®.
because of the conditio®b). This is possible only wheR®  Thus,FB=0 is also true for these model equations.

is identically zero. In connection with the above conclusion, it should be
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FIG. 7. Profiles of the macroscopic quantities My,..=0.5 andT../T,,=1. (8 M..=1, (b) M,,=3. See the caption of Fig. 6.

mentioned that unsteady evaporation into a half-space indemonstrated that, if the initial number density of the non-
tially filled with a uniform noncondensable gas is investi- condensable gas is larger than the saturation number density
gated numerically using the GSB model in Refs. 43 and 44of the vapor, the evaporation stops finally, and the mixture
It is demonstrated that, if the initial number density of theapproaches an equilibrium state at rest in the entire half-
noncondensable gas is smaller than the saturation numbspace.

density of the vapor corresponding to the wall temperature,

all the noncondensable gas is swept away to infinity by thé/|. CONCLUDING REMARKS

vapor, and the final steady state is the pure-vapor evapora- |n this paper, we have considered a flow of a vapor con-
tion, i.e., the solution to Eq$2)—(5b) with FB=0. Itis also  densing onto a plane condensed phase of the vapor at inci-
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FIG. 8. Profiles of the macroscopic quantities My..=0.9 andT../T,,=1. (8 M..=1, (b) M,,=3. See the caption of Fig. 6.

dence in the case where a noncondensable gas is present ngantially the same as that in Ref. 24. After formulating the
the condensed phase. The present study is a continuation pfoblem in Sec. I, we introduced the assumption that the
Ref. 24, where the vapor is assumed to be condensing pemolecules of the vapor and those of the noncondensable gas
pendicularly onto the condensed phase. Such an extensi@me mechanically identical in Sec. Ill. This assumption en-
was required in connection with the general thédtp de-  ables us to decompose the original problem into two prob-
scribe the vapor flow around an arbitrarily shaped condenselems, one for the total mixture, which is equivalent to the
phase in the continuum limit when a small amount of thehalf-space problem of strong condensation for a pure vapor,
noncondensable gas is contained in the system. and the other for the noncondensable gas. Taking advantage
The approach to the problem in the present paper is e®f this property, we discussed the general features of the
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FIG. 9. G versusM,,, for typical values ofM,,, andT../T,,. See Table IlI.
The dotted line indicates the result fdr,/T,=0.5, the solid line for
T../T,=1, the dashed line fof,, /T,,= 1.5, and the dotted—dashed line for
T.IT,=2.
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merical data of the relation provide the essential part of the
numerical boundary condition for the Euler set of equations
on the condensing boundary in the continuum Iififi-
nally, we considered the half-space problem of strong evapo-
ration in Sec. V and showed that the noncondensable gas
cannot be present when evaporation is taking place in the
case of Maxwellian molecules.

With the present numerical results incorporated as the
boundary condition, the Euler system derived in Ref. 33 is
now applicable to practical problems. Actually, such an ex-
ample is already contained in Ref. 33. That is, the Euler
system is applied to the analysis of the vapor flow evaporat-
ing from a plane condensed phase and condensing onto a
wavy condensed phase of sinusoidal shape in the continuum
limit, in the presence of a noncondensable gas of an infini-
tesimal average concentration. The result shows that such a
trace of the noncondensable gas has a significant effect on
the vapor flow. Further applications of the Euler system will
be treated in a forthcoming paper.

solution, in particular, the relation among the parameters that
admits a steady solutiofBec. Ill). Then, we carried out ac-
tual numerical computations using the GSB model to obtain
the numerical solution of the problem, in particular, the nu-

merical data for the relation to be satisfied by the parameter8PPENDIX A: COLLISION TERMS

(Sec. IV). In the present paper, we have restricted ourselves

to the case of subsonic condensation, leaving the case of The dimensionless collision ter@d® is given as fol-
supersonic condensation in the subsequent paper. The niews:

TABLE Ill. (M. ,M.,T../T,) as a function oM., M., andT,. /T, .

T./Ty=05 T Ty=1
M A\M .. 0 1 2 0 1 2 3
0.01 0 0.616 27 1.2326 1.8493 0 0.614 04 1.2282 1.8426
0.1 0 0.665 49 1.3341 2.0085 0 0.649 55 1.3033 1.9644
0.2 0 0.693 38 1.3932 2.1043 0 0.668 90 1.3464 2.0382
0.3 0 0.705 28 1.4199 2.1504 0 0.675 44 1.3635 2.0722
0.4 0 0.707 54 1.4270 2.1668 0 0.67387 1.3643 2.0818
0.5 0 0.703 78 1.4220 2.1649 0 0.666 98 1.3545 2.0757
0.6 0 0.696 12 1.4092 2.1513 0 0.656 52 1.3376 2.0592
0.7 0 0.685 80 1.3910 2.1294 0 0.64356 1.3157 2.0346
0.8 0 0.67357 1.3688 2.1009 0 0.628 75 1.2897 2.0033
0.9 0 0.659 87 1.3433 2.0668 0 0.61251 1.2603 1.9657
0.95 0 0.65257 1.3295 2.0479 0 0.603 93 1.2445 1.9446
0.99 0 0.646 54 1.3180 2.0319 0 0.596 88 1.2313 1.9267
1 0 0.645 00 1.3151 2.0278 0 0.595 10 1.2279 1.9221
T./Ty=15 T /Ty=2
M \M . 0 1 2 0 1 2 3
0.01 0 0.61305 1.2262 1.8397 0 0.61245 1.2250 1.8379
0.1 0 0.642 05 1.2890 1.9443 0 0.637 46 1.2803 1.9323
0.2 0 0.656 81 1.3236 2.0064 0 0.649 27 1.3095 1.9869
0.3 0 0.660 08 1.3348 2.0326 0 0.650 29 1.3166 2.0076
0.4 0 0.655 97 1.3312 2.0372 0 0.644 35 1.3099 2.0084
0.5 0 0.646 99 1.3181 2.0280 0 0.63382 1.2943 1.9967
0.6 0 0.634 70 1.2986 2.0095 0 0.620 19 1.2728 1.9767
0.7 0 0.620 10 1.2744 1.9836 0 0.604 39 1.2469 1.9498
0.8 0 0.603 76 1.2464 1.9510 0 0.586 97 1.2175 1.9164
0.9 0 0.586 07 1.2149 1.9118 0 0.568 27 1.1846 1.8763
0.95 0 0.576 79 1.1980 1.8898 0 0.558 52 1.1670 1.8538
0.99 0 0.569 20 1.1839 1.8711 0 0.550 56 1.1524 1.8346
1 0 0.567 28 1.1803 1.8663 0 0.54855 1.1487 1.8297
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Pe(t0)= [ [ 0ate) - 1(Ee@)]

x BP(|eVj|. Vi) dQ (e d®s, (A1)
where
~ Ba ~ Ba
’ M v ’ M {
gi:§i+W(ejVj)eiy g*izg*i_W(ejVj)eiv
(A2a)
5 2Mm*mP R N
o azw, m*=m*/'m~, (A2b)
\A/i:g*i_gi! dag*:dg*ldg*ng*B' (AZC)

Here, g; is a unit vector,/, ; is the variable of integration
corresponding td; , dQ(e;) is the solid angle element in the
direction ofe;, and Eﬁ“(|ej\7j|,|\7i|) are nonnegative func-
tions of |e;V;| and|V;| depending on the molecular model.
The domain of integration in EqA1) is the whole space of
Z,; and all directions of; .

We give further remarks on the functid®®. The di-
mensional counterpaB®®(|e;V,|,|V||) of BA¢, where

Vi=éi— &, &= (2KT./mMHY2, ., (A3)

is such that the collision frequenay’® of an @ molecule for
the collision with 8 molecules with the velocity distribution
function F# is expressed as

vhe= f BA(|ejVil I ViDFA(£, ) d0(e)d%, . (A4)

whered3¢, =dé¢, ; d¢, , dé, 53, the domain of integration is
the whole space ot,; and all directions ofe;, and the
arguments of # other than the molecular velocity are omit-
ted. Letv,, be the mean collision frequenéye., the inverse
of the mean free timeof the vapor molecules in the equilib-
rium state at rest with number density, and temperature
T.., which is related to the mean free pathby

vo= (2N m) (2K T.. Im™ ¥ . (A5)
Then, v,, is given by
1
Vu=rm f BAFO(&)FE(&,1)dQ(e)d3¢ a3, (A63)
2
FAE) = N exp — =——. (ABb)
e (27K T, /mP)32 2kT./mh)’

whered3¢=d¢, d¢, dé;, and the domain of integration is
the whole space of;, that of ¢, ;, and all directions og; .

The BA* in Eqg. (A1) has been normalized as
BA(leVi[,IVih) = (n../v.)BP (g Vil [ViD. (A7)

For Maxwellian moleculegsee the second paragraph in Sec.
V), B is a function of|e;V;|/|V;| only; for hard-sphere
moleculesBA“ is given explicitly by

BA=(1/8)(dP+d*)?e;V], (A8)

whered® is the diameter of a molecule @f component. In
the latter casey.., |.., andB?® are, respectively, obtained as
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V=22 (2K T, /m™) Y4 d*)?n., (A9a)
l.=[v2m(d*?n.,] %, (A9b)
. 1 [dP+d*\? |
BF¥=—=es| ———| |&V||. A9c

4\/; 2dA | ] J| ( )

When the molecule oA component is mechanically
identical with that ofB component, we havéh*=1 and

Bf*=B, whereB is independent ofx and B. Then, J#«
reduces to the following:

3= [ 1o~ 1ze@)]
XB(|eV|,|VihdQ(e)d3¢, (A10)

with
J=6+Vpe, =L~ (gV)e.

Note thatJ(f, f ) is the(dimensionlesscollision term of the
Boltzmann equation for a single-component gas.

(A1)

APPENDIX B: MODEL FOR COLLISION TERMS

In this appendix, we summarize the model collision term
proposed by Garzet al3* To be consistent with Eq2), we
show it in the dimensionless form. The dimensionless colli-
sion termJ?*(F2, %) in Eq. (2) is replaced by the follow-
ing term:

JPFP, F)=KPepP(FPa—F9), (B1)
where
~a 3/2 Aar s A2
I’iﬁa:wfs/zﬁa m_ ex _m (é’l Ul) )
T T
me | TRe-T 2me
X 1+27(Ui “—vi)(gi—vi)-l- — +—T
T 3T
P ~ N2
m*({;—0; 3
X (0F~;)? L')—— : (B2a)
T 2
e Mo &+ mPp P o
L (820
?3“——mamﬁ m + m Teqy 278
T (A2 P e
2 ABna_ ~B\2
+§m (o{"=0oP)7|, (B20)
KBa=KBaKAA (B2d)

andKA“ are constants. The collision frequenef of the «
molecules for their collisions with th@ molecules is given
by v#*=KPn#, and therefore, the mean free pdth is
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given by |..=(2/\/m)(2kT./mY)Y3KAn,.. The A%, T¢, cases forM,=3 of Tables V and VIl there. In general,

e, T, andd, in Egs.(B1)—(B20) are defined by Eq$108— accurate computation becomes more difficult Mg, in-
(10f). creases. Although the lattice systems used in Ref. 5 are suf-
When the molecule of the vapor and that of the nonconficient for obtaining #a, Hy, He) [cf. Eq. (263] and Fs
densable gas are mechanically identical, we have accurately, we need higher accuracy to obtain accurate re-
. sults for (15, , Hp, , HE,) [cf. Eq.(26D)] andT, .
me=1, KA*=1, (B3) As in Ref. 5, the conservation laws were also used for

In this case, therefore, if we use E&1) in Eq.(2), then Eq. checking the accuracy. Let us set

(143 becomes the BGK model, that &(F, F) in Eq. (143 .
reduces to % ) a (11, 1o, 13, To)= [ £2(1, {1, oy §j2)Fd3§. (Cla
JF,F)=n(F.—F), B4 .
(F, F)=n(F.~F) (B4) |§:J ¢ EB s (C1b
where
. o The  n.(2kT./mM»¥2,,  2p.l,, 2p.l;, and
Y LU (&i—01) (B53) P..(2kT../m™ Y2, are, respectively, the number of mol-
¢ T3/2 T ' ecules, theX; component of the momentum, ¥, compo-
nent, and the energy of the total mixture transported in the
. 1 " . . . .
a_ 3 A _T 23 positive X; direction across a unit area of the plaXe
: f Fd%, oi=g f GFds, (B5D) =const per unit timen..(2kT.,./m*) Y22 is the molecular

5 flux of the noncondensable gas corresponding to
:I—Z_Af (¢i—51)2F d3¢. (B50) noo(2l_<Tx/mA)1’2I1. It was shown in Sec. IIC thdt?zg).
3n The integration of Eq(14a multiplied by (1, {1, {2, &)

Correspondinglyﬁ(f: IEB) in Eq. (14b) reduces to with respect toZ; over its whole space, under the condition

“ A A R (179, yields
J(F, FB)=R(We—F"), (B6) |_=constl., (m=1,2,3 4, (C2)
where wherel .. are thel ,, at infinity and are given by
@e:fﬁe[ L @m0D(E—0) E{ A lo= — (510" My,  15.=[(5/3MZ,+1]/2,
A T 2 3 7 | 3= — (5/6)M oM. (C3
i (§i—ai)2_§H_ . 4= — (5162 (M2, + M2+ 3).
T T 2 Because of numerical errok,, do not satisfy Eq(C2) ex-

actly andl? does not vanish exactly. The deviations of the

If the definitions offi®, 57, and T®, e, Eqs.(109—(109  numerical values of,— 1. andl, from zero, wherd?$, is
with a=B, are used, it turns out thalt . is linear inF®. thel® with FB=F® (see the first paragraph in Sec. Il),@re
estimated as follows:
APPENDIX C: DATA ON NUMERICAL COMPUTATION (=) /L] @nd 18,71,
The lattice systems used here are essentially the same as 0.30x10* (Mp.=0.01),

those used in Ref. tsee Appendix A of Ref. b But, in the
present computation, the higher accuracy is attained basi- .
cally by using wider computational regions, more lattice 0.22<107> (0.1sM,,<0.3),
points, and smaller lattice intervals. The details of the lattice 0.32x10° % (0.4<M,..),
systems are omitted here. )

The accuracy of the computation was checked in variougOr aIIlTillTW_aond_ M‘F]C. (M‘“’_ghls equuded form—”3 t()je—
ways. For many cases included in Tables V—=VIII in Ref. 42¢8US€ ol I:th |sbcas¢ o € es|t|mate r(;altura_ y hete-
(the cases in Tables -1V in Ref. 42 are all included in Tables{j'orates_ or smalivine, gcaulswl““ 32, @ndly. In the
V-VIII there), we carried out computation with finer lattice enominator are proportional ¥ . .
systems with double lattice points eithern or in {; and
confirmed that the values dfs and I‘* in Tables | and |l Y. Sone, “Kinetic theoretical studies of the half-space pro(blemoof evapo-

_ ; ; i ration and condensation,” Transp. Theory Stat. Pi2gs.227 (2000.

(ar|1|d Tables | .VIH Ln Re;f' A}Edld T]Ot cf;]an?(e. More SfpeCIfI 2Y. Sone Kinetic Theory and Fluid Dynamic$lodeling and Simulation in

cally, concerning the, lattices, t I§ chec Was.per Orme.d Science, Engineering and Technolo@irkhauser, Boston, 2002

for all M., and forM.,,=0 and 3 in the cases included in 3K. Aoki and Y. Sone, “Gas flows around the condensed phase with strong

Tables V-VIII in Ref. 42. The same check was also per- evag_o_ration ohr gond?nsatioré—hFl_LJid d)I/‘nan_]ic eqlrn:ion and itstoundary
; : condition on the interface and their application—,"Aglvances in Kinetic

zogm:dffor P]nlanyl Other Caﬁes II’? Tibles Vi Vlf’ and (\:I/If” n Eef' Theory and Continuum Mechanjosdited by R. Gatignol and Soubbara-

. s-ort el lattices, the chec was performed for a OUt  mayer(Springer-Verlag, Berlin, 1991p. 43.
one third of the cases of Table VI in Ref. 42 and several*y. Sone and H. Sugimoto, “Strong evaporation from a plane condensed

0.11x10"% (0.03=<M,.,<0.07),
(C4
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