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Vapor flows condensing at incidence onto a plane condensed phase
in the presence of a noncondensable gas. I. Subsonic condensation
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A steady flow of a vapor in a half space condensing onto a plane condensed phase of the vapor at
incidence is considered in the case where another gas that neither evaporates nor condenses~the
noncondensable gas! is present near the condensed phase. The behavior of the vapor and
noncondensable gas is investigated on the basis of kinetic theory under the assumption that the
molecules of the noncondensable gas are mechanically identical with those of the vapor. In
particular, the relation, among the parameters of the vapor at infinity~the pressure, temperature, and
flow velocity of the vapor!, those related to the condensed phase~the temperature of the condensed
phase and the corresponding saturation pressure of the vapor!, and the amount of the
noncondensable gas, that admits a steady solution is obtained numerically by the use of a model
Boltzmann equation proposed by Garzo´ et al. @Phys. Fluids A1, 380 ~1989!#. The present analysis
is the continuation of an earlier work by Soneet al. @Transp. Theory Stat. Phys.21, 297 ~1992!#,
where the case in which the vapor flow is condensing perpendicularly onto the condensed phase is
investigated exclusively. The case with subsonic condensation is discussed in the present paper~the
case with supersonic condensation is left to the subsequent paper!. © 2003 American Institute of
Physics. @DOI: 10.1063/1.1539476#
on
on
se
h
se

es
h
le
th
ity
a
o

.
nd
an
ni

ol
e
th

f the
ing
rre-
the
the

r
ti-

ysis
for

e-
GK
nd

cal
een

py
e
,

cal
rest
In
cor-
havedu
I. INTRODUCTION

The half-space problem of strong evaporation and c
densation, more specifically, steady flows of a vapor c
densing onto or evaporating from a plane condensed pha
the vapor with a high evaporation or condensation rate,
been one of the important subjects in kinetic theory of ga
in the following aspects.

~i! In spite of the fact that it appears to be the simpl
boundary-value problem of the full Boltzmann equation, t
behavior of the solution is not obvious at all. For examp
there is a steady solution only when the parameters of
vapor at infinity~the pressure, temperature, and flow veloc
of the vapor! and those associated with the condensed ph
~the temperature of the condensed phase and the corresp
ing saturation pressure of the vapor! satisfy certain relations
Furthermore, the relations are qualitatively different depe
ing on whether the vapor is evaporating or condensing,
furthermore, whether it is condensing with a superso
speed or a subsonic speed.~See Refs. 1 and 2.!

~ii ! The half-space problem also plays an important r
in the continuum limit~i.e., the limit where the mean fre
path of the vapor molecules or the Knudsen number of
system goes to zero! for vapor flows around arbitrarily
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shaped boundaries, consisting of the condensed phase o
vapor, on which strong evaporation or condensation is tak
place. To be more specific, the half-space problem co
sponds to the Knudsen-layer problem in this case, and
relations among the parameters mentioned above provide
boundary conditions for the fluid-dynamic equations~the Eu-
ler set of equations for a perfect gas!. ~See Refs. 2 and 3.!

The fact mentioned in~i! was clarified and the paramete
relations, together with the behavior of the physical quan
ties, were obtained by means of intensive numerical anal
~Refs. 4 and 5 for evaporation and Refs. 6, 7, and 5
condensation! based on the Bhatnagar–Gross–Krook~BGK!
model8–10 of the Boltzmann equation. Some analytical r
sults based on the Boltzmann equation as well as the B
model are also available for slow evaporation a
condensation1,11 and for transonic condensation.1,12 We refer
to Ref. 13 as a pioneering work and note that numeri
methods other than using the BGK model have also b
employed to obtain the aforementioned relations~e.g., Refs.
14–17!. In addition, it should be mentioned that the entro
inequality ~or the H-theorem! was used recently to estimat
the relations rigorously.18,19The reader is referred to Refs. 1
2, and 18 for the review on this problem. These numeri
and analytical results have induced mathematicians’ inte
in the rigorous mathematical treatment of the problem.
fact, several successful results on the half-space problem
responding to the case of evaporation and condensation
been reported so far~e.g., Refs. 20–23!.

ate
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The numerical analysis of the half-space problem
strong condensation was extended to the case where an
component that does not participate in evaporation or c
densation~say, noncondensable gas! is present near the con
densed phase.24,25 The effect of the noncondensable gas
the vapor flows, especially on the relation among the par
eters allowing a steady solution, is clarified in these re
ences.

The half-space problem of strong condensation in
presence of a noncondensable gas was revisited recen
connection with the continuum limit of the vapor flow
around the boundary, consisting of the condensed phas
the vapor, in the case where a small amount of the nonc
densable gas is contained in the system. In Ref. 26, a sim
one-dimensional problem, i.e., a vapor flow caused
evaporation and condensation between two parallel p
condensed phases was investigated, and it was pointed
that the noncondensable gas with an infinitesimal aver
concentration has a significant effect on the vapor flow in
continuum limit. The physical reasoning of this seeming
paradoxical effect is as follows. The infinitesimal amount
the noncondensable gas is concentrated in the thick
Knudsen layer on the condensing surface by the vapor fl
so that its local number density on the surface becomes
enough~comparable to that of the vapor! to affect the vapor
flow. The method of analysis employed in Ref. 26 is t
systematic asymptotic analysis of the Boltzmann equa
for small Knudsen numbers developed by Sone~e.g., Refs.
27–31, and 3; see Refs. 2 and 32 for the summary of
asymptotic theory!. Recently, the analysis of Ref. 26 wa
extended to the case of general geometry.33 The continuum
limit in this situation is outlined as follows. The vapor flow
free from the noncondensable gas except in the Knud
layer on the boundary where condensation is taking pla
Therefore, the fluid-dynamic equations and their bound
condition on the boundary where evaporation is taking pl
are the same as those in the case without the nonconden
gas,3 more specifically, the equations are the Euler set
equations for a perfect gas. The thickless Knudsen laye
the condensing boundary may contain the noncondens
gas, as mentioned above. Such Knudsen layer is describe
the half-space problem under consideration, i.e., that
strong condensation in the presence of the noncondens
gas. Then, the relation among the parameters allowing
steady solution in the half-space problem, together with
continuity equation of the flow of the noncondensable g
along the boundary~inside the thickless Knudsen layer!,
gives the boundary condition for the Euler set on the c
densing boundary. Therefore, the analysis of the half-sp
problem in Refs. 24 and 25 gives important information a
in practical point of view. However, these references d
exclusively with the case where the vapor flow is condens
on the condensed phase perpendicularly. In order to ob
the boundary condition for the Euler set for the general
ometry, we need to extend the results of Refs. 24 and 2
the case where the vapor is condensing onto the conde
phase at incidence.

For this reason, in the present study, we consider a
form vapor flow in a half-space condensing onto a pla
Downloaded 04 Jun 2007 to 130.54.110.22. Redistribution subject to AIP
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condensed phase at incidence in the presence of a non
densable gas. We are going to investigate the problem
merically on the basis of kinetic theory, following Ref. 24.
this reference, the case where the molecules of the non
densable gas are mechanically identical with those of
vapor is considered. In this case, as discussed in Ref. 24
can successfully decompose the problem into two proble
one is a nonlinear problem for the total mixture and the ot
is a linear and homogeneous problem for the noncondens
gas. In particular, since the former problem is equivalent
the half-space problem of strong condensation for a p
vapor, we can exploit the rich knowledge and resources
cumulated so far. In addition, this decomposition not on
reduces the necessary amount of computation dramatic
but also provides a clear understanding of the features of
solution. This situation is the same in the present probl
where the vapor is condensing obliquely.

In the present paper, therefore, we consider the sa
situation in which the molecules of the noncondensable
are mechanically identical with those of the vapor. Furth
more, as in Refs. 24 and 25, we employ a model Boltzma
equation for a gas mixture proposed by Garzo´, Santos, and
Brey @the Garzo´ –Santos–Brey~GSB! model#,34 rather than
the original Boltzmann equation, in the actual numeric
computation. In this paper~I!, we consider the case in whic
the speed of condensation is subsonic, more precisely,
case where the Mach number based on the component o
flow velocity of the vapor at infinity normal to the bounda
is less than unity. The case in which the speed of conde
tion is supersonic will be considered in the forthcoming p
per.

II. FORMULATION OF THE PROBLEM

A. Problem

Consider a vapor in a half spaceX1.0 bounded by a
stationary plane condensed phase of the vapor locate
X150, whereXi is a rectangular coordinate system. There
a uniform vapor flow at infinity toward the condensed pha
with velocity (v`1 , v`2 , 0) (v`1,0, v`2>0), temperature
T` , and pressurep` ~or molecular number densityn`

5p` /kT` , wherek is the Boltzmann constant!. The con-
densed phase is kept at a constant and uniform tempera
Tw . Steady condensation of the vapor is taking place on
condensed phase, and another gas neither condensing
evaporating on the condensed phase, which we call the n
condensable gas, is confined near the condensed phase b
condensing vapor flow.~See Fig. 1.! We investigate the
steady behavior of the vapor and the noncondensable ga
the basis of kinetic theory, under the following assumptio
~i! the behavior of the vapor and the noncondensable ga
described by the Boltzmann equation for a binary mixtu
~the GSB model34 will be employed for numerical computa
tion!; ~ii ! the vapor molecules leaving the condensed ph
are distributed according to~the part corresponding to th
leaving molecules of! the Maxwellian distribution describing
the saturated equilibrium state at rest at temperatureTw ; ~iii !
the noncondensable-gas molecules leaving the conde
phase are distributed according to~the part corresponding to
 license or copyright, see http://pof.aip.org/pof/copyright.jsp



r-

a

r-

e
bl

the

r

he
is

n
be-
e

iven

e,
ers

con-
en-

a-

a

691Phys. Fluids, Vol. 15, No. 3, March 2003 Vapor flows condensing at incidence onto a plane
the leaving molecules of! the Maxwellian distribution with
temperatureTw and flow velocity 0, and there is no net pa
ticle flow across the condensed phase~diffuse reflection!;
~iv! the molecules of the noncondensable gas are mech
cally identical with those of the vapor~this assumption,
which will be introduced in Sec. III, is not used in the fo
mulation of the problem in Sec. II!.

For later use, we introduce the following notation:pw is
the saturated pressure of the vapor at temperatureTw , and
nw is the corresponding molecular number density (nw

5pw /kTw). In the following, we assign the labelA to the
vapor ~it will also be calledA component! and B to the
noncondensable gas~it will also be calledB component!.

B. Basic equation

We first introduce the basic notations:j i is the molecular
velocity, Fa the velocity distribution function of thea com-
ponent (a5A corresponds to the vapor anda5B to the
noncondensable gas!; na is the molecular number density,ra

the mass density,Ta the temperature, pa the pressure, and
v i

a5(v1
a , v2

a , 0) the flow velocity of thea component;n is
the molecular number density,r the mass density,T the tem-
perature,p the pressure, andv i5(v1 , v2 , 0) the flow veloc-
ity of the total mixture;ma is the mass of a molecule of th
a component. Then we introduce the dimensionless varia
(xi , z i , F̂a, n̂a, r̂a, T̂a, p̂a, v̂ i

a , n̂, r̂, T̂, p̂, v̂ i) corre-
sponding to (Xi , j i , Fa, na, ra, Ta, pa, v i

a , n, r, T, p,
v i) by the following relations:

xi5
Xi

~Ap/2!l `

, z i5
j i

~2kT` /mA!1/2, ~1a!

F̂a5
~2kT` /mA!3/2

n`
Fa, ~1b!

n̂a5
na

n`
, r̂a5

ra

mAn`
, T̂a5

Ta

T`
, ~1c!

p̂a5
pa

p`
, v̂ i

a5
v i

a

~2kT` /mA!1/2, ~1d!

n̂5
n

n`
, r̂5

r

mAn`
, T̂5

T

T`
, ~1e!

p̂5
p

p`
, v̂ i5

v i

~2kT` /mA!1/2. ~1f!

FIG. 1. Uniform flow of a vapor condensing onto its plane condensed ph
at incidence in the presence of a noncondensable gas.
Downloaded 04 Jun 2007 to 130.54.110.22. Redistribution subject to AIP
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Here,l ` is the mean free path of the vapor molecules in
equilibrium state at rest with temperatureT` and pressurep`

~see Appendix A!; for example, l `5@&p(dA)2n`#21 for
hard-sphere molecules, wheredA is the diameter of a vapo
molecule@Eq. ~A9b!#, andl `5(2/Ap)(2kT` /mA)1/2/KAAn`

for the GSB model, whereKAA is a constant~see App-
endix B!.

Then, the Boltzmann equation for a binary mixture in t
present steady and spatially one-dimensional problem
written as

z1

]F̂a

]x1
5 (

b5A,B
Ĵba~ F̂b,F̂a! ~a5A,B!, ~2!

whereĴba(F̂b,F̂a) is the dimensionless form of the collisio
term that expresses the effect of molecular collisions
tween molecules of thea andb components on the chang
of F̂a. Its explicit form is given in Appendix A@Eq. ~A1!#.

The boundary condition on the condensed phase is g
by

F̂A5p23/2
nw

n`
S T`

Tw
D 3/2

expS 2
T`

Tw
z i

2D , ~3a!

F̂B5p23/2
sw

B

n`
S mB

mAD 3/2S T`

Tw
D 3/2

expS 2
mB

mA

T`

Tw
z i

2D , ~3b!

for z1.0, at x150,

where

sw
B

n`
522ApS mB

mAD 1/2S T`

Tw
D 1/2E

z1,0
z1F̂B d3z, ~4!

with d3z5dz1 dz2 dz3 . The condition at infinity is

F̂A→p23/2expS 2S z i2
v` i

A2kT` /mAD 2D , ~5a!

F̂B→0, ~5b!

as x1→`,

wherev` i5(v`1 , v`2 , 0). For convenience of the later us
we introduce the normal and tangential Mach numb
Mn` (.0) andMt` (>0) at infinity,

Mn`5
2v`1

A5kT`/3mA
, Mt`5

v`2

A5kT`/3mA
. ~6!

Then, the dimensionless velocityv` i /A2kT` /mA in Eq. ~5a!
is written as

v` i

A2kT` /mA
5A5

6
~2Mn` , Mt` , 0!. ~7!

Here, we have given the basic equations and boundary
ditions in a dimensionless form. The corresponding dim
sional form is readily obtained by the use of Eqs.~1a!–~1f!
and the relations relevant to the collision integrals summ
rized in Appendix A.

se
 license or copyright, see http://pof.aip.org/pof/copyright.jsp



d

pa
s

on

ls
d

ex

a

e

the

on
ens-

in

e
tion
th-

692 Phys. Fluids, Vol. 15, No. 3, March 2003 Taguchi, Aoki, and Takata
As is seen from Eqs.~2!–~7!, the parameters impose
externally, that is,Tw , nw , T` , n` , v`1 , andv`2 , appear
as the following set:

Mn` , Mt` ,
T`

Tw
,

n`

nw
S or

p`

pw
D , ~8!

in the nondimensionalized boundary-value problem@note
that Eq.~2! does not contain these parameters#. On the other
hand, it is physically obvious that we need to specify a
rameter related to the amount of the noncondensable ga
single out a solution. In Ref. 24, the followingG is used as
this parameter:

G5
2

Ap

1

n`l `
E

0

`

nB dX15E
0

`

n̂B dx1 . ~9!

It corresponds to the total number of molecules of the n
condensable gas per unit area of the condensed phase.

C. Macroscopic quantities

The macroscopic quantitiesn̂a, r̂a, v̂ i
a , p̂a, T̂a, n̂, r̂,

v̂ i , p̂, andT̂ are defined as follows:

n̂a5E F̂a d3z, r̂a5m̂an̂a, ~10a!

v̂ i
a5

1

n̂a E z i F̂
a d3z, ~10b!

p̂a5n̂aT̂a5
2

3
m̂aE ~z i2 v̂ i

a!2F̂a d3z, ~10c!

n̂5E (
b5A,B

F̂b d3z, r̂5E (
b5A,B

m̂bF̂b d3z, ~10d!

v̂ i5
1

r̂ E z i (
b5A,B

m̂bF̂b d3z, ~10e!

p̂5n̂T̂5
2

3 E ~z i2 v̂ i !
2 (

b5A,B
m̂bF̂b d3z, ~10f!

wherem̂A51 andm̂B5mB/mA. The domain of integration
of the integrals with respect toz i in Eqs.~10a!–~10f! is the
whole space ofz i . The same rule applies to all the integra
with respect toz i in this paper unless the contrary is state
The macroscopic quantities for the total mixture are
pressed in terms of those for individual components as

n̂5 (
b5A,B

n̂b, r̂5 (
b5A,B

r̂b, r̂ v̂ i5 (
b5A,B

r̂bv̂ i
b ,

~11a!

p̂5 (
b5A,B

F p̂b1
2

3
r̂b~ v̂ i

b2 v̂ i !
2G . ~11b!

It should be noted that in the literature, the pressurep̂a and
temperatureT̂a of each component are often defined in
different way, i.e., by Eq.~10c! with v̂ i

a replaced byv̂ i of Eq.
~10e!. Then, the pressurep̂ of the total mixture becomes th
simple sum ofp̂A and p̂B rather than Eq.~11b!.
Downloaded 04 Jun 2007 to 130.54.110.22. Redistribution subject to AIP
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The integration of Eq.~2! over the wholez i space leads
to n̂av̂1

a5const because the right-hand side vanishes in
integration. For the noncondensable gas,n̂Bv̂1

B50 holds on
the condensed phase because of the diffuse reflection~3b!
and ~4! or at infinity because of Eq.~5b!. Therefore,n̂Bv̂1

B

50 or v̂1
B50 holds identically forx1>0.

III. MECHANICALLY IDENTICAL MOLECULES

Following Ref. 24, we now introduce the assumpti
that the molecules of the vapor and those of the noncond
able gas are mechanically identical. Then, we have

mA5mB ~or m̂a51!, ~12a!

Ĵba~ F̂b,F̂a!5 Ĵ~ F̂b,F̂a!, ~12b!

wherea, b5A, B, andĴ is given in Eq.~A10!. The discus-
sion in this section is essentially the same as that given
Ref. 24. The only difference is that the casev`250 ~or
Mt`50) is considered there. But, we will repeat it for th
reader’s convenience. The words such as the unique solu
will be used in the physical sense, not in the rigorous ma
ematical sense.

A. Preliminary transformation

Let F̂ be the~dimensionless! velocity distribution func-
tion of the total mixture defined by

F̂5F̂A1F̂B. ~13!

Then, we can transform the boundary-value problem~2!–
~5b! for (F̂A, F̂B) to the problem for (F̂, F̂B), which is
summarized as follows: the equations are

z1

]F̂

]x1
5 Ĵ~ F̂, F̂ !, ~14a!

z1

]F̂B

]x1
5 Ĵ~ F̂, F̂B!, ~14b!

the boundary conditions on the condensed phase are

F̂5p23/2
n0

n`
S T`

Tw
D 3/2

expS 2
T`

Tw
z i

2D , ~15a!

F̂B5p23/2
sw

B

n`
S T`

Tw
D 3/2

expS 2
T`

Tw
z i

2D , ~15b!

for z1.0, at x150,

with

n05nw1sw
B , ~16a!

sw
B

n`
522ApS T`

Tw
D 1/2E

z1,0
z1F̂B d3z, ~16b!

and the conditions at infinity are

F̂→p23/2expS 2S z i2
v` i

A2kT` /mAD 2D , ~17a!
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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693Phys. Fluids, Vol. 15, No. 3, March 2003 Vapor flows condensing at incidence onto a plane
F̂B→0, ~17b!

as x1→`.

Here, Eq. ~14a!, which is the Boltzmann equation for
single-component gas, is obtained by adding Eq.~2! with a

5A and B and by taking into account the bilinearity ofĴ.
Equation~14b! is Eq. ~2! ~with a5B) with F̂A being elimi-
nated by the use of Eq.~13!. Equations~15a! and ~17a! are,
respectively, the sum of Eqs.~3a! and ~3b! and that of Eqs.
~5a! and ~5b!.

B. Half-space problem for a pure vapor

Now, let us suppose thatn0 ~or n0 /n`) in Eq. ~15a! is a
given parameter. Then, Eqs.~14a!, ~15a!, and ~17a! form a
boundary-value problem equivalent to the half-space c
densation problem for a pure vapor, namely, Eqs.~2!–~5b!

with F̂B50, which has been studied comprehensively
Refs. 1, 5–7, 11, and 12;F̂ andn0 correspond, respectively
to the ~dimensionless! velocity distribution function of the
vapor and to the saturation number density of the vapo
temperatureTw . Then, this problem is characterized by t
following set of parameters:

Mn` , Mt` ,
T`

Tw
,

n`

n0
S or

p`

p0
D , ~18!

wherep05kn0Tw , which corresponds to the saturation v
por pressure at temperatureTw .

According to the references quoted above, there is a
lution only when these parameters satisfy the following re
tion:

p`

p0
5FsS Mn` , Mt` ,

T`

Tw
D ~Mn`,1!, ~19a!

p`

p0
>FsS 12 , Mt` ,

T`

Tw
D ~Mn`51!, ~19b!

p`

p0
.FbS Mn` , Mt` ,

T`

Tw
D ~Mn`.1!. ~19c!

The functionsFs andFb have been constructed numerica
in Refs. 7~for Mt`50) and 5, using the BGK model. Ac
cording to these results,Fs andFb have the following prop-
erties.~i! Both functions are weakly dependent onMt` and
T` /Tw . ~ii ! For any fixedMt` and T` /Tw , Fs is a mono-
tonically increasing function inMn` , whereasFb is a mono-
tonically decreasing function inMn` . ~iii ! Fs(0, 0, 1)
5Fs(01 , Mt` , T` /Tw)51 and Fs(12 , Mt` , T` /Tw)
5Fb(11 , Mt` , T` /Tw) ~see, e.g., Ref. 1!.

Equations~19a!–~19c! indicate that in order to obtain
unique solution to Eqs.~14a!, ~15a!, and~17a!, one needs to
specify three parameters, sayMn` , Mt` , andT` /Tw , out of
the four parameters in Eq.~18! whenMn`,1 ~subsonic con-
densation! and all the four parameters satisfying the inequ
ity ~19b! or ~19c! whenMn`>1 ~supersonic condensation!.

It should be mentioned thatFs ~with Mt`50) has also
been computed for hard-sphere molecules by means o
Downloaded 04 Jun 2007 to 130.54.110.22. Redistribution subject to AIP
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direct simulation Monte Carlo~DSMC! method35,36 by Sone
and Sasaki.37 The result is quite close to that for the BG
model.

C. Half-space problem in the presence of a
noncondensable gas

Let us suppose that we have obtained the solutionF̂
corresponding to a given value ofn0 ~or the parameter
n0 /n`). Then, Eqs.~14b!, ~15b!, ~16b!, and~17b! reduce to a
linear and homogeneous boundary-value problem forF̂B.
Therefore, a solution multiplied by an arbitrary constant
also a solution. The unique solution is determined by spe
fying G @Eq. ~9!#. Let us denote byF̂

*
B andG* the solution

and the value ofG corresponding to the casesw
B5n0 in Eq.

~15b!. SinceG is linear in F̂B @see Eqs.~9! and ~10a!#, the
solution for an arbitraryG is expressed in terms ofF̂

*
B and

G* as

F̂B5~G/G* !F̂
*
B . ~20!

Then, Eq.~16b! yields

sw
B5~G/G* !n0 , ~21!

which together with Eq.~16a! gives the relationship betwee
nw andn0 or that betweenpw andp0 :

nw5~12G/G* !n0 , ~22a!

pw5~12G/G* !p0 . ~22b!

To summarize, we first obtain a solutionF̂ to the prob-
lem ~14a!, ~15a!, and~17a! that corresponds to a givenn0 ~or
n0 /n`). Then we solve the problem~14b!, ~15b!, and~17b!
for sw

B5n0 ~or sw
B/n`5n0 /n`) to obtain F̂

*
B , from which

we computeG* using Eqs.~9! and ~10a!. Then, for a given
G, we obtainF̂B from Eq.~20! andF̂A from Eq.~13!. TheF̂A

and F̂B thus obtained solve the original problem~2!–~5b!
with Eqs.~12a! and ~12b! for the G and the saturation num
ber densitynw given by Eq.~22a!. Sincenw is not negative
physically, Eq.~22a! yields

0<G<G* . ~23!

That is,G* is the maximumG for a givenF̂.
One might think that the above scheme for the solut

is practically inconvenient because specifying the artific
parametern` /n0 rather than the physically inherent param
etern` /nw of the system seems to be crucial. In the case
subsonic condensation, however, the inconvenience does
arise because the solutionF̂ and F̂B can be determined by
specifyingMn` , Mt` , T` /Tw , and G only, that is, we do
not need to specifyn` /n0 or n` /nw ~see Sec. III D!. On the
other hand, the scheme gives a clear understanding of
relationship among the parameters which admits a solu
even in the case of supersonic condensation~see Ref. 24!.

D. Existence range of a solution: Subsonic
condensation

Now we return to the original problem. In the prese
paper, we restrict ourselves to the case whenMn`,1. The
 license or copyright, see http://pof.aip.org/pof/copyright.jsp



e

m

-
f.

e

t
ll
n
p
u
o

he
in
is
.

t

e
ne
th
ec
io
di

.
e

al

here
a-

ic-
in

ion,

d
ear

ce

r a

f
of

re,
.

lts
Sec.
n

at
ta

and
ore
be
last

ata.
re-

he

694 Phys. Fluids, Vol. 15, No. 3, March 2003 Taguchi, Aoki, and Takata
case ofMn`>1 will be discussed in the subsequent pap
Then, if we specifyMn` , Mt` , andT` /Tw , the solutionF̂
to Eqs.~14a!, ~15a!, and ~17a! is determined together with
the value ofp` /p0 @Eq. ~19a!# or n` /n05(p` /p0)(Tw /T`).
We use the inverse ofn` /n0 thus obtained forsw

B/n` in Eq.
~15b! to obtain F̂

*
B and thenG* from Eq. ~9!. The F̂

*
B and

G* depend onMn` , Mt` , and T` /Tw through F̂ in Eq.
~14b! andn0 /n` in Eq. ~15b!. Thus, we may write explicitly
G* (Mn` , Mt` , T` /Tw). If we eliminatep0 from Eqs.~19a!
and ~22b!, we obtain the desired relation among the para
eters that admits a solution in the present problem, i.e.,

p` /pw5Fs~Mn` , Mt` , T` /Tw , G!, ~24!

where

Fs~Mn` , Mt` , T` /Tw , G!

5S 12
G

G* ~Mn` , Mt` , T` /Tw! D
21

3Fs~Mn` , Mt` , T` /Tw!. ~25!

It should be stressed that the functional form ofFs with
respect toG is explicit. If we exploit the comprehensive nu
merical data forFs obtained by using the BGK model in Re
5, our remaining task is to computeF̂

*
B andG* for various

values of the set (Mn` , Mt` , T` /Tw), using a model colli-
sion term that is consistent with the BGK model. In oth
words, we can construct the functionFs of four variables by
constructing the functionG* of three variables. This fac
reduces the amount of necessary computation dramatica

As described in Sec. I, a steady flow of a vapor arou
the boundary, consisting of the condensed phase of the va
is described by the Euler set of equations in the continu
limit when a small amount of a noncondensable gas is c
tained in the system. The relation~24!, with the numerical
data forFs given in Sec. IV B, gives the essential part of t
boundary condition for the Euler set on the condens
boundary in this situation~when the speed of condensation
subsonic!. The reader is referred to Ref. 33 for the details

IV. NUMERICAL ANALYSIS AND RESULTS

In this section, we carry out actual numerical analysis
obtain F̂

*
B and G* , which gives the solutionF̂A and F̂B of

the original problem. Since the numerical technique is ess
tially the same as that used in the case of a single-compo
system in Refs. 7 and 5, where the detailed description of
method is given, we omit it here giving some remarks in S
IV A and concentrate on the results of analysis. Informat
about the accuracy of the computation is given in Appen
C.

A. Some remarks on numerical analysis

As in Refs. 24 and 25, we employ the GSB model34 for
Eq. ~2!. The model collision term is given in Appendix B
The original Boltzmann equation has the property that, wh
the molecules of theA component are mechanically identic
with those of theB component, the equation forF̂5F̂A
Downloaded 04 Jun 2007 to 130.54.110.22. Redistribution subject to AIP
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1F̂B coincides with the Boltzmann equation~14a! for a
single-component gas, i.e., the equation in the case w
F̂A5F̂ andF̂B50. Although several model Boltzmann equ
tions have been proposed for gas mixtures,34,38–40only the
GSB model~and the model in Ref. 40 under some restr
tions! satisfies this property. Since it plays an essential role
the present approach, we adopt the GSB model. In addit
Eq. ~14a! for this model reduces to the BGK model~Appen-
dix B!. Therefore, for the solutionF̂ to Eqs.~14a!, ~15a!, and
~17a! and the functionFs in Eq. ~25!, we can use the detaile
data given in Refs. 7 and 5. We just need to solve the lin
system ~14b! @with Eq. ~B6!#, ~15b! ~with sw

B5n0), and
~17b! numerically to obtainF̂

*
B and the correspondingG* .

We solve this problem by means of a finite-differen
method. In both systems, Eqs.~14a!, ~15a!, and ~17a! and
Eqs.~14b!, ~15b!, and~17b!, the model collision terms allow
us to eliminate the molecular-velocity variablesz2 and z3

from the systems, as in the case of the BGK model fo
single-component gas.41 That is, by multiplying the equa-
tions and boundary conditions by 1,z2 , andz2

21z3
2 and by

integrating the respective results over the whole range oz2

andz3 , we obtain the equations and boundary conditions
the respective sets (Ha , Hb , Hc) and (Ha*

B , Hb*
B , Hc*

B ) of
marginal velocity distribution functions defined by

~Ha , Hb , Hc!5E
2`

` E
2`

`

~1, z2 , z2
21z3

2!F̂ dz2 dz3 ,

~26a!

~Ha*
B , Hb*

B , Hc*
B !5E

2`

` E
2`

`

~1, z2 , z2
21z3

2!

3F̂
*
B dz2 dz3 . ~26b!

The solution method for the system for (Ha , Hb , Hc) is
described in detail in Ref. 5, and that for the system (Ha*

B ,
Hb*

B , Hc*
B ) is essentially the same as the former. Therefo

we avoid the description of the methods for conciseness

B. Existence range of a solution

In this section, we show some of the numerical resu
for the existence range of a solution already discussed in
III D, namely the numerical data for the functio
Fs(Mn` , Mt` , T` /Tw , G) in Eq. ~24!. For this purpose,
we need to present the data forFs andG* .

The data forFs have already been given in Ref. 5. Th
is, Fig. 3 and Tables I–IV in Ref. 5 show the numerical da
of Fs(Mn` , Mt` , T` /Tw) for T` /Tw50.5, 1, 1.5, and 2. In
the present study, we recomputed all the cases in Ref. 5
confirmed the accuracy of the data given there. To be m
precise, in Tables II–IV of Ref. 5, the last figure should
changed by one in several data, and in Table I there, the
figure should be changed by one in about 20 data forMn`

<0.9 and by two to seven in the data forMn`50.99. We
also made additional computations to supplement these d
Some of the results are shown in Table I, the more comp
hensive data being given in Tables I–IV in Ref. 42. T
numerical results forG* (Mn` , Mt` , T` /Tw) obtained in
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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TABLE I. Fs(Mn` ,Mt` ,T` /Tw) as a function ofMn` , Mt` , andT` /Tw .

Mn`\Mt`

T` /Tw50.5 T` /Tw51

0 1 2 3 0 1 2 3

0.01 1.0205 1.0229 1.0300 1.0418 1.0197 1.0230 1.0330 1.0
0.1 1.2294 1.2527 1.3220 1.4354 1.2201 1.2522 1.3470 1.5
0.2 1.5251 1.5744 1.7213 1.9645 1.5025 1.5693 1.7677 2.0
0.3 1.9126 1.9933 2.2352 2.6375 1.8692 1.9778 2.3021 2.8
0.4 2.4288 2.5492 2.9104 3.5123 2.3517 2.5127 2.9949 3.7
0.5 3.1309 3.3023 3.8169 4.6749 2.9965 3.2244 3.9081 5.0
0.6 4.1102 4.3492 5.0663 6.2621 3.8742 4.1891 5.1344 6.7
0.7 5.5228 5.8538 6.8472 8.5035 5.0958 5.5262 6.8179 8.9
0.8 7.6548 8.1168 9.5033 11.815 6.8457 7.4328 9.1951 12.1
0.9 11.096 11.756 13.736 17.039 9.4506 10.258 12.681 16.7
0.95 13.693 14.494 16.898 20.907 11.253 12.205 15.064 19.8
0.99 16.484 17.431 20.271 25.009 13.046 14.139 17.417 22.8
1 17.304 18.292 21.258 26.205 13.549 14.680 18.074 23.7

Mn`\Mt`

T` /Tw51.5 T` /Tw52

0 1 2 3 0 1 2 3

0.01 1.0203 1.0244 1.0366 1.0566 1.0212 1.0259 1.0399 1.0
0.1 1.2249 1.2636 1.3770 1.5598 1.2328 1.2767 1.4053 1.6
0.2 1.5106 1.5902 1.8262 2.2131 1.5253 1.6155 1.8820 2.3
0.3 1.8788 2.0077 2.3924 3.0293 1.9000 2.0457 2.4797 3.1
0.4 2.3593 2.5499 3.1208 4.0700 2.3864 2.6014 3.2447 4.3
0.5 2.9950 3.2642 4.0717 5.4170 3.0254 3.3285 4.2375 5.7
0.6 3.8484 4.2191 5.3315 7.1861 3.8756 4.2920 5.5415 7.6
0.7 5.0142 5.5174 7.0280 9.5474 5.0229 5.5860 7.2765 10.0
0.8 6.6396 7.3189 9.3583 12.760 6.5955 7.3508 9.6189 13.4
0.9 8.9647 9.8828 12.639 17.236 8.7902 9.8008 12.836 17.8
0.95 10.509 11.579 14.791 20.149 10.212 11.381 14.893 20.7
0.99 11.993 13.205 16.843 22.912 11.552 12.867 16.817 23.4
1 12.401 13.651 17.270 23.666 11.916 13.270 17.337 24.1
ile
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the present study are shown in Table II, the more deta
tables being given as Tables V–VIII in Ref. 42.

With these data, we can construct the functionFs . The
result for T` /Tw51 is shown in Fig. 2, whereFs versus
Mn` is shown for variousG at four values ofMt` , i.e.,
Mt`50, 1, 2, and 3. The similar figures forT` /Tw50.5,
1.5, and 2 are given as Figs. 1, 3, and 4 in Ref. 42~Fig. 2 in
Ref. 42 is the same as Fig. 2 here!. TheFs is an increasing
function of Mn` , and its curve moves upward with the in
crease ofG. The Gc in the figures is a critical value ofG,
depending onMt` and T` /Tw , introduced by Eq.~27! be-
low. WhenG,Gc , Fs takes a finite value atMn`51. But,
when G>Gc , Fs becomes infinitely large asMn` ap-
proaches a critical valueMc (<1) that depends onMt` ,
T` /Tw , andG (Mc51 whenG5Gc). That is,Mn`5Mc is
the asymptote of the curve. Therefore, whenG.Gc , there is
no solution in the intervalMc<Mn`,1. More detailed in-
formation aboutGc andMc will be given below.

Because the dependence ofFs and G* on Mt` is not
strong, the functionFs does not depend much onMt` .
Therefore, the features ofFs are essentially the same a
those described in Refs. 24 and 25 for the case ofMt`50. In
particular, forMt` smaller than around 1 andMn` smaller
than around 0.5,Fs is almost independent ofMt` . The de-
pendence ofFs on T` /Tw is also weak in general~see Figs.
1–4 in Ref. 42!. The Fs is an increasing function ofMn` ,
whereasG* is its decreasing function. Therefore, as is se
Downloaded 04 Jun 2007 to 130.54.110.22. Redistribution subject to AIP
d
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from Eq. ~25!, Fs is an increasing function ofMn` ~see Fig.
2!. Numerical results show thatFs→1 andG* →` as Mn`

→ 0, andFs andG* approach finite values asMn`→1. The
values ofFs and G* at Mn`51 in Tables I and II~and in
Tables I–IV and V–VIII in Ref. 42! are the values obtaine
by extrapolation, in which many additional data that are n
included in the tables have also been used. Let us set

GcS Mt` ,
T`

Tw
D5 lim

Mn`→1
G* S Mn` ,Mt` ,

T`

Tw
D . ~27!

The properties ofFs described in the preceding paragra
follow immediately from Eqs.~25! and~27! and the fact that
G* is a decreasing function ofMn` . That is, whenG,Gc ,
the G/G* in Eq. ~25! is less than unity and thusFs remains
finite in the whole range of 0,Mn`,1. WhenG.Gc ~or
G5Gc), the G/G* in Eq. ~25! becomes unity at an
Mn` (,1) ~or atMn`51). We denote this value ofMn` by
Mc (Mc51 for G5Gc). Then,Fs increases indefinitely as
Mn` approachesMc . The Gc(Mt` , T` /Tw) versusMt` is
shown in Fig. 3, whereGc versus Mt` is plotted for
T` /Tw50.5, 1, 1.5, and 2. TheMc(Mt` ,T` /Tw ,G), which
is the solution of

G* ~Mc ,Mt` ,T` /Tw!2G50, ~28!

is shown in Fig. 4, whereMc versusMt` at T` /Tw50.5, 1,
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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TABLE II. G* (Mn` ,Mt` ,T` /Tw) as a function ofMn` , Mt` , andT` /Tw .

Mn`\Mt`

T` /Tw50.5 T` /Tw51

0 1 2 3 0 1 2 3

0.01 106.72 106.70 106.64 106.55 107.51 107.49 107.43 107.33
0.05 19.302 19.246 19.080 18.814 19.923 19.857 19.663 19.353
0.1 8.5549 8.4862 8.2895 7.9896 9.0326 8.9466 8.7033 8.340
0.2 3.3822 3.3197 3.1492 2.9103 3.6851 3.6013 3.3785 3.079
0.3 1.7822 1.7344 1.6085 1.4428 1.9850 1.9177 1.7471 1.534
0.4 1.0496 1.0151 0.927 01 0.816 44 1.1902 1.1398 1.0166 0.872
0.5 0.651 74 0.627 82 0.567 87 0.495 17 0.752 04 0.715 70 0.629 26 0.532
0.6 0.414 66 0.398 49 0.358 55 0.311 25 0.487 91 0.462 37 0.402 92 0.338
0.7 0.265 32 0.254 68 0.228 65 0.198 27 0.319 98 0.302 45 0.262 25 0.219
0.8 0.168 01 0.161 25 0.144 78 0.125 69 0.209 67 0.197 93 0.171 26 0.143
0.9 0.103 31 0.099 232 0.089 285 0.077 745 0.135 74 0.128 12 0.110 87 0.09
0.95 0.079 409 0.076 331 0.068 811 0.060 058 0.108 27 0.102 23 0.088 546 0.07
0.99 0.063 353 0.060 950 0.055 061 0.048 175 0.089 791 0.084 822 0.073 549 0.06
1 0.059 725 0.057 473 0.051 952 0.045 488 0.085 603 0.080 878 0.070 154 0.05

Mn`\Mt`

T` /Tw51.5 T` /Tw52

0 1 2 3 0 1 2 3

0.01 107.87 107.85 107.78 107.68 108.08 108.06 108.00 107.89
0.05 20.213 20.141 19.931 19.597 20.391 20.315 20.093 19.742
0.1 9.2609 9.1647 8.8948 8.4975 9.4019 9.2986 9.0105 8.590
0.2 3.8333 3.7368 3.4842 3.1529 3.9257 3.8203 3.5475 3.195
0.3 2.0858 2.0069 1.8108 1.5745 2.1490 2.0619 1.8487 1.597
0.4 1.2614 1.2013 1.0579 0.895 88 1.3063 1.2393 1.0825 0.909
0.5 0.803 92 0.759 77 0.657 86 0.548 27 0.836 99 0.787 32 0.674 99 0.557
0.6 0.526 79 0.495 18 0.424 01 0.350 31 0.551 92 0.515 95 0.436 77 0.357
0.7 0.349 89 0.327 71 0.278 70 0.229 31 0.369 54 0.343 96 0.288 80 0.235
0.8 0.233 24 0.217 99 0.184 70 0.151 74 0.249 02 0.231 13 0.193 12 0.156
0.9 0.154 78 0.144 53 0.122 29 0.100 48 0.167 77 0.155 48 0.129 59 0.105
0.95 0.125 55 0.117 23 0.099 204 0.081 544 0.137 46 0.127 35 0.106 08 0.08
0.99 0.105 87 0.098 873 0.083 702 0.068 840 0.117 04 0.108 42 0.090 305 0.07
1 0.101 41 0.094 710 0.080 190 0.065 962 0.112 40 0.104 12 0.086 727 0.070
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1.5, and 2 is plotted for various values ofG; Mc is taken as
the abscissa for easy comparison with Fig. 2~and Figs. 1–4
in Ref. 42!.

In the present analysis, we have taken full advantage
the case where the molecules of the noncondensable ga
mechanically the same as those of the vapor, and furtherm
we have used the GSB model to obtain the numerical res
such as shown in Fig. 2. A preliminary numerical analysis
the present problem using the DSMC method has also b
carried out for hard-sphere molecules in a more general
where the molecules of the two components are not iden
mechanically@Aoki, Takata, and Fujimoto~unpublished!#.
The result suggests that the relation of the form~24! with Fs

depending onmB/mA anddB/dA holds in this case (da is the
diameter of the molecules of thea component!. As an ex-
ample,Fs for mB/mA52 anddB/dA51 is shown in Fig. 5 in
the caseMt`50 andT` /Tw51. The qualitative feature o
the figure is the same as that of Fig. 2.

C. Macroscopic quantities

In this section, we give some results for the macrosco
quantities. Figures 6–8 show the profiles of the macrosco
quantities forT` /Tw51 and for three different values o
Mn` , i.e., Fig. 6 forMn`50.1, Fig. 7 forMn`50.5, and
Fig. 8 for Mn`50.9. In each figure, the result forMt`51 is
Downloaded 04 Jun 2007 to 130.54.110.22. Redistribution subject to AIP
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shown in~a! and that forMt`53 in ~b!. In these figures, the
dimensional quantities listed in the beginning of Sec. II B a
used rather than their dimensionless counterparts, and
notationa`5(5kT`/3mA)1/2 has been introduced. It is see
from Eqs.~10a!–~10c! with a5B and with v̂1

B50 ~see the
last part of Sec. II C! that n̂B, n̂Bv̂2

B , and p̂B5n̂BT̃B are
linear in F̂B. Therefore, because of the form~20!,
(G* /G)n̂B, v̂2

B , T̂B, and (G* /G) p̂B, i.e., (G* /G)(nB/n`),
v2

B/(2kT` /mA)1/2, TB/T` , and (G* /G)(pB/p`), are inde-
pendent ofG. It should be noted thatn, v1 , v2 , T, andp of
the total mixture are the same asnA, v1

A , v2
A , TA, andpA for

G50, respectively.
The noncondensable gas extends far away whenMn` is

small ~over 50l ` whenMn`50.1; see Fig. 6! but is confined
in a narrower region whenMn` is large. For largeMt` , the
temperature near the condensed phase increases beca
the strong friction. But the temperature rise is smaller
largerMn` because the heated gas near the condensed p
is removed by the strong condensation. These features
the same as those discussed in Refs. 5~for G50) and 24~for
Mt`50). The acceleration of the vapor toward the co
densed phase is larger for largerG becausepw /p` is smaller,
i.e., the suction effect on the condensed phase is stronge
discussed in Ref. 24, because ofv1

B50, FB does not accom-
modate toFA, which is close to the equilibrium distribution
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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with velocity (v`1 , v`2 , 0), even in the far field wherenB is
small. In consequence,v2

B andTB do not approachv`2 and
T` , respectively~the gradients of these quantities may n
vanish at infinity; see Ref. 24!.

FIG. 2. Fs(Mn` ,Mt` ,T` /Tw ,G) versus Mn` for various G and Mt`

(T` /Tw51). ~a! Mt`50, ~b! Mt`51, ~c! Mt`52, ~d! Mt`53. The dotted
lines in the figures indicate the asymptotes (Mn`5Mc) of the curves for
G50.2, 0.5, and 1. The value ofGc in each figure is as follows:~a!
0.059 725,~b! 0.057 473,~c! 0.051 952,~d! 0.045 488.
Downloaded 04 Jun 2007 to 130.54.110.22. Redistribution subject to AIP
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As is seen from Figs. 6–8, there is a macroscopic m
tion of the noncondensable gas along the condensed p
~i.e., in theX2 direction! when the vapor flow at infinity has
a transversal component~i.e., v`2.0). Let us denote byNf

the dimensional total particle flux~per unit width inX3 and
per unit time! of the noncondensable gas in theX2 direction
and byN̂f its dimensionless counterpart defined by

N̂f5~2/Ap!@n`l `~2kT` /mA!1/2#21Nf . ~29!

Then,N̂f is expressed as

N̂f5E
0

`

n̂Bv̂2
B dx15E

0

` S E z2F̂B d3z Ddx1 . ~30!

If we use Eq.~20! in Eq. ~30! and denote byN̂f* the N̂f

corresponding toF̂
*
B , then we have

N̂f5~G/G* !N̂f* . ~31!

We recall thatF̂
*
B depends onMn` , Mt` , andT` /Tw , so

that N̂f* , as well asG* , is a function of these three param
eters. Therefore, settingG5N̂f* /G* , we can write

N̂f5GG~Mn` , Mt` , T` /Tw!. ~32!

The relation~32!, or more generally, theN̂f as the function
of Mn` , Mt` , T` /Tw , andG, is required as a part of the
boundary condition for the Euler set in the continuum lim
in the situation described in Sec. I and in the end of S
III D ~see Ref. 33 for the details!. Some of the numerica
results forG are given in Fig. 9, whereG versusMn` is
plotted for typicalMt` and T` /Tw , and in Table III ~see
Tables IX–XII in Ref. 42 for more detailed data!. The values
of G at Mn`51 in Table III ~and in Tables IX–XII in Ref.
42! are those obtained by extrapolation using the data
Mn`,1 in the tables and many additional data not sho
there. As is seen from Fig. 9 and the tables,G is almost linear
in Mt` and weakly dependent onMn` .

FIG. 3. Gc versusMt` for T` /Tw50.5, 1, 1.5, and 2.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 4. Mc versusMt` for variousG. ~a! T` /Tw50.5, ~b! T` /Tw51, ~c! T` /Tw51.5, ~d! T` /Tw52. Mc is taken as the abscissa for easy comparison w
Fig. 2 ~and Figs. 1–4 in Ref. 42!. In ~c! and ~d!, the curve forG50.1 intersectsMc51 at Mt`50.43 and 1.26, respectively.
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V. COMMENT ON THE CASE OF EVAPORATION

In this paper, we have exclusively considered the cas
condensation,v`1,0. Here, we give a short comment on th
case of evaporation, i.e., the boundary-value problem~2!–
~5b! with v`1.0.

Let us first consider the following time-dependent ha
space problem: there is a steady flow of a vapor evapora
from the plane condensed phase and flowing toward infin

FIG. 5. DSMC result ofFs for hard-sphere molecules. TheFs versusMn`

is shown in the casemB/mA52 anddB/dA51 (Mt`50 andT` /Tw51).
The dotted lines in the figure indicate the asymptotes of the curves foG
50.1, 0.2, 0.5, and 1. The symbolsd, h, l, andn indicate the numerical
data, which are connected by spline curves.
Downloaded 04 Jun 2007 to 130.54.110.22. Redistribution subject to AIP
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we inject an amount of a noncondensable gas suddenly
the condensed phase and pursue the time evolution in
half-space. It is intuitively obvious that the evaporating v
por flow sweeps away the noncondensable gas to infin
and the latter gas disappears in the long-time limit. This s
gests that the steady boundary-value problem, Eqs.~2!–~5b!,
should have the solutionF̂B50 uniquely whenv`1.0.
Thus, the problem is reduced to that of evaporation of a p
vapor. On the other hand, this conclusion is not obvio
mathematically from the equation and boundary conditio
However, if we consider the case of Maxwellian molecu
for both components~i.e., the case where the intermolecul
force is proportional tor 25 with r being the distance be
tween two molecules! or the GSB model, it can be show
easily.

Let us consider Eq.~2! with a5B. Integrating the equa-
tion multiplied byz1 over the whole space ofz i yields

]

]x1
E z1

2F̂B d3z5E z1ĴAB~ F̂A, F̂B!d3z, ~33!

becauseĴBB(F̂B, F̂B) vanishes in the integration. For Max
wellian molecules, the right-hand side of Eq.~33! can be
expressed in terms of the macroscopic quantities as~see, for
example, Refs. 34, 40, and 45!

E z1ĴAB~ F̂A, F̂B!d3z5kABn̂An̂B~ v̂1
A2 v̂1

B!, ~34!
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 6. Profiles of the macroscopic quantities forMn`50.1 andT` /Tw51. ~a! Mt`51, ~b! Mt`53. Here,a`5(5kT`/3mA)1/2 is the sound speed a
temperatureT` . The macroscopic quantities of the total mixture are given by those of the vapor forG50. The profiles of (G* /G)(nB/n`), v2

B/a` , TB/T` ,
and (G* /G)(pB/p`) are independent ofG.
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wherekAB is a positive constant depending on the const
in the intermolecular force law and onm̂AB defined in Eq.
~A2b!. Sincev̂1

A.0 and n̂Bv̂1
B50 ~see the last part of Sec

II C!, the right-hand side of Eq.~33! is strictly positive.
Therefore,*z1

2F̂Bd3z>0 is a monotonically increasing func
tion of x1 . On the other hand, it should vanish at infini
because of the condition~5b!. This is possible only whenF̂B

is identically zero.
Downloaded 04 Jun 2007 to 130.54.110.22. Redistribution subject to AIP
t Most of the model equations for multicomponent mi
tures, such as proposed in Refs. 34, 38–40, are designe
such a way that the model collision terms reproduce the m
mentum and energy transport between different species
Maxwellian molecules. Therefore, they satisfy the relati
~34! with an appropriate constant corresponding tokAB.

Thus,F̂B50 is also true for these model equations.
In connection with the above conclusion, it should
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 7. Profiles of the macroscopic quantities forMn`50.5 andT` /Tw51. ~a! Mt`51, ~b! Mt`53. See the caption of Fig. 6.
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mentioned that unsteady evaporation into a half-space
tially filled with a uniform noncondensable gas is inves
gated numerically using the GSB model in Refs. 43 and
It is demonstrated that, if the initial number density of t
noncondensable gas is smaller than the saturation num
density of the vapor corresponding to the wall temperatu
all the noncondensable gas is swept away to infinity by
vapor, and the final steady state is the pure-vapor evap
tion, i.e., the solution to Eqs.~2!–~5b! with F̂B50. It is also
Downloaded 04 Jun 2007 to 130.54.110.22. Redistribution subject to AIP
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demonstrated that, if the initial number density of the no
condensable gas is larger than the saturation number de
of the vapor, the evaporation stops finally, and the mixt
approaches an equilibrium state at rest in the entire h
space.

VI. CONCLUDING REMARKS

In this paper, we have considered a flow of a vapor c
densing onto a plane condensed phase of the vapor at
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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FIG. 8. Profiles of the macroscopic quantities forMn`50.9 andT` /Tw51. ~a! Mt`51, ~b! Mt`53. See the caption of Fig. 6.
t
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tage
the
dence in the case where a noncondensable gas is presen
the condensed phase. The present study is a continuatio
Ref. 24, where the vapor is assumed to be condensing
pendicularly onto the condensed phase. Such an exten
was required in connection with the general theory33 to de-
scribe the vapor flow around an arbitrarily shaped conden
phase in the continuum limit when a small amount of t
noncondensable gas is contained in the system.

The approach to the problem in the present paper is
Downloaded 04 Jun 2007 to 130.54.110.22. Redistribution subject to AIP
near
of

er-
ion

ed

s-

sentially the same as that in Ref. 24. After formulating t
problem in Sec. II, we introduced the assumption that
molecules of the vapor and those of the noncondensable
are mechanically identical in Sec. III. This assumption e
ables us to decompose the original problem into two pr
lems, one for the total mixture, which is equivalent to t
half-space problem of strong condensation for a pure va
and the other for the noncondensable gas. Taking advan
of this property, we discussed the general features of
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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solution, in particular, the relation among the parameters
admits a steady solution~Sec. III!. Then, we carried out ac
tual numerical computations using the GSB model to obt
the numerical solution of the problem, in particular, the n
merical data for the relation to be satisfied by the parame
~Sec. IV!. In the present paper, we have restricted ourse
to the case of subsonic condensation, leaving the cas
supersonic condensation in the subsequent paper. The

FIG. 9. G versusMn` for typical values ofMt` andT` /Tw . See Table III.
The dotted line indicates the result forT` /Tw50.5, the solid line for
T` /Tw51, the dashed line forT` /Tw51.5, and the dotted–dashed line fo
T` /Tw52.
Downloaded 04 Jun 2007 to 130.54.110.22. Redistribution subject to AIP
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merical data of the relation provide the essential part of
numerical boundary condition for the Euler set of equatio
on the condensing boundary in the continuum limit.33 Fi-
nally, we considered the half-space problem of strong eva
ration in Sec. V and showed that the noncondensable
cannot be present when evaporation is taking place in
case of Maxwellian molecules.

With the present numerical results incorporated as
boundary condition, the Euler system derived in Ref. 33
now applicable to practical problems. Actually, such an e
ample is already contained in Ref. 33. That is, the Eu
system is applied to the analysis of the vapor flow evapo
ing from a plane condensed phase and condensing on
wavy condensed phase of sinusoidal shape in the contin
limit, in the presence of a noncondensable gas of an infi
tesimal average concentration. The result shows that su
trace of the noncondensable gas has a significant effec
the vapor flow. Further applications of the Euler system w
be treated in a forthcoming paper.

APPENDIX A: COLLISION TERMS

The dimensionless collision termĴba is given as fol-
lows:
26
44
82
22
18
57
92
46
33
57
46
67
21

79
23
69
76
84
67
67
98
64
63
38
46
97
TABLE III. G(Mn` ,Mt` ,T` /Tw) as a function ofMn` , Mt` , andT` /Tw .

Mn`\Mt`

T` /Tw50.5 T` /Tw51

0 1 2 3 0 1 2 3

0.01 0 0.616 27 1.2326 1.8493 0 0.614 04 1.2282 1.84
0.1 0 0.665 49 1.3341 2.0085 0 0.649 55 1.3033 1.96
0.2 0 0.693 38 1.3932 2.1043 0 0.668 90 1.3464 2.03
0.3 0 0.705 28 1.4199 2.1504 0 0.675 44 1.3635 2.07
0.4 0 0.707 54 1.4270 2.1668 0 0.673 87 1.3643 2.08
0.5 0 0.703 78 1.4220 2.1649 0 0.666 98 1.3545 2.07
0.6 0 0.696 12 1.4092 2.1513 0 0.656 52 1.3376 2.05
0.7 0 0.685 80 1.3910 2.1294 0 0.643 56 1.3157 2.03
0.8 0 0.673 57 1.3688 2.1009 0 0.628 75 1.2897 2.00
0.9 0 0.659 87 1.3433 2.0668 0 0.612 51 1.2603 1.96
0.95 0 0.652 57 1.3295 2.0479 0 0.603 93 1.2445 1.94
0.99 0 0.646 54 1.3180 2.0319 0 0.596 88 1.2313 1.92
1 0 0.645 00 1.3151 2.0278 0 0.595 10 1.2279 1.92

Mn`\Mt`

T` /Tw51.5 T` /Tw52

0 1 2 3 0 1 2 3

0.01 0 0.613 05 1.2262 1.8397 0 0.612 45 1.2250 1.83
0.1 0 0.642 05 1.2890 1.9443 0 0.637 46 1.2803 1.93
0.2 0 0.656 81 1.3236 2.0064 0 0.649 27 1.3095 1.98
0.3 0 0.660 08 1.3348 2.0326 0 0.650 29 1.3166 2.00
0.4 0 0.655 97 1.3312 2.0372 0 0.644 35 1.3099 2.00
0.5 0 0.646 99 1.3181 2.0280 0 0.633 82 1.2943 1.99
0.6 0 0.634 70 1.2986 2.0095 0 0.620 19 1.2728 1.97
0.7 0 0.620 10 1.2744 1.9836 0 0.604 39 1.2469 1.94
0.8 0 0.603 76 1.2464 1.9510 0 0.586 97 1.2175 1.91
0.9 0 0.586 07 1.2149 1.9118 0 0.568 27 1.1846 1.87
0.95 0 0.576 79 1.1980 1.8898 0 0.558 52 1.1670 1.85
0.99 0 0.569 20 1.1839 1.8711 0 0.550 56 1.1524 1.83
1 0 0.567 28 1.1803 1.8663 0 0.548 55 1.1487 1.82
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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Ĵba~ f ,g!5E @ f ~z
* i8 !g~z i8!2 f ~z* i !g~z i !#

3B̂ba~ uejV̂j u,uV̂i u!dV~ei !d
3z* , ~A1!

where

z i85z i1
m̂ba

m̂a ~ejV̂j !ei , z
* i8 5z* i2

m̂ba

m̂b ~ejV̂j !ei ,

~A2a!

m̂ba5
2m̂am̂b

m̂a1m̂b , m̂a5ma/mA, ~A2b!

V̂i5z* i2z i , d3z* 5dz* 1 dz* 2 dz* 3 . ~A2c!

Here, ei is a unit vector,z* i is the variable of integration
corresponding toz i , dV(ei) is the solid angle element in th
direction ofei , and B̂ba(uejV̂j u,uV̂i u) are nonnegative func
tions of uejV̂j u and uV̂i u depending on the molecular mode
The domain of integration in Eq.~A1! is the whole space o
z* i and all directions ofei .

We give further remarks on the functionB̂ba. The di-
mensional counterpartBba(uejVj u,uVi u) of B̂ba, where

Vi5j* i2j i , j* i5~2kT` /mA!1/2z* i , ~A3!

is such that the collision frequencynba of ana molecule for
the collision withb molecules with the velocity distribution
function Fb is expressed as

nba5E Bba~ uejVj u,uVi u!Fb~j* i !dV~ei !d
3j* , ~A4!

whered3j* 5dj* 1 dj* 2 dj* 3 , the domain of integration is
the whole space ofj* i and all directions ofei , and the
arguments ofFb other than the molecular velocity are om
ted. Letn` be the mean collision frequency~i.e., the inverse
of the mean free time! of the vapor molecules in the equilib
rium state at rest with number densityn` and temperature
T` , which is related to the mean free pathl ` by

n`5~2/Ap!~2kT` /mA!1/2/ l ` . ~A5!

Then,n` is given by

n`5
1

n`
E BAAFe

A~j i !Fe
A~j* i !dV~ei !d

3j d3j* , ~A6a!

Fe
A~j i !5

n`

~2pkT` /mA!3/2expS 2
j i

2

2kT` /mAD , ~A6b!

whered3j5dj1 dj2 dj3 , and the domain of integration i
the whole space ofj i , that of j* i , and all directions ofei .
The B̂ba in Eq. ~A1! has been normalized as

B̂ba~ uejV̂j u,uV̂i u!5~n` /n`!Bba~ uejVj u,uVi u!. ~A7!

For Maxwellian molecules~see the second paragraph in Se
V!, Bba is a function of uejVj u/uVj u only; for hard-sphere
molecules,Bba is given explicitly by

Bba5~1/8!~db1da!2uejVj u, ~A8!

whereda is the diameter of a molecule ofa component. In
the latter case,n` , l ` , andB̂ba are, respectively, obtained a
Downloaded 04 Jun 2007 to 130.54.110.22. Redistribution subject to AIP
.

n`52A2p~2kT` /mA!1/2~dA!2n` , ~A9a!

l `5@&p~dA!2n`#21, ~A9b!

B̂ba5
1

4A2p
S db1da

2dA D 2

uejV̂j u. ~A9c!

When the molecule ofA component is mechanically
identical with that ofB component, we havem̂a51 and
B̂ba5B̂, where B̂ is independent ofa and b. Then, Ĵba

reduces to the followingĴ:

Ĵ~ f ,g!5E @ f ~z
* i8 !g~z i8!2 f ~z* i !g~z i !#

3B̂~ uejV̂j u,uV̂i u!dV~ei !d
3z* , ~A10!

with

z i85z i1~ejV̂j !ei , z
* i8 5z* i2~ejV̂j !ei . ~A11!

Note thatĴ( f , f ) is the~dimensionless! collision term of the
Boltzmann equation for a single-component gas.

APPENDIX B: MODEL FOR COLLISION TERMS

In this appendix, we summarize the model collision te
proposed by Garzo´ et al.34 To be consistent with Eq.~2!, we
show it in the dimensionless form. The dimensionless co
sion termĴba(F̂b, F̂a) in Eq. ~2! is replaced by the follow-
ing term:

Ĵba~ F̂b, F̂a!5K̂ban̂b~ F̂ba2F̂a!, ~B1!

where

F̂ba5p23/2n̂aS m̂a

T̂
D 3/2

expS 2
m̂a~z i2 v̂ i !

2

T̂
D

3H112
m̂a

T̂
~ v̂ i

ba2v̂ i !~z i2v̂ i !1F T̂ba2T̂

T̂
1

2

3

m̂a

T̂

3~ v̂ i
ba2 v̂ i !

2G F m̂a~z i2 v̂ i !
2

T̂
2

3

2G J , ~B2a!

v̂ i
ba5

m̂av̂ i
a1m̂bv̂ i

b

m̂a1m̂b , ~B2b!

T̂ba5
m̂am̂b

~m̂a1m̂b!2 F S m̂a

m̂b 1
m̂b

m̂aD T̂a12T̂b

1
2

3
m̂b~ v̂ i

a2 v̂ i
b!2G , ~B2c!

K̂ba5Kba/KAA, ~B2d!

andKba are constants. The collision frequencynba of thea
molecules for their collisions with theb molecules is given
by nba5Kbanb, and therefore, the mean free pathl ` is
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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given by l `5(2/Ap)(2kT` /mA)1/2/KAAn` . The n̂a, T̂a,

v̂ i
a , T̂, andv̂ i in Eqs.~B1!–~B2c! are defined by Eqs.~10a!–

~10f!.
When the molecule of the vapor and that of the nonc

densable gas are mechanically identical, we have

m̂a51, K̂ba51. ~B3!

In this case, therefore, if we use Eq.~B1! in Eq. ~2!, then Eq.
~14a! becomes the BGK model, that is,Ĵ(F̂, F̂) in Eq. ~14a!
reduces to

Ĵ~ F̂, F̂ !5n̂~ F̂e2F̂ !, ~B4!

where

F̂e5p23/2
n̂

T̂3/2
expS 2

~z i2 v̂ i !
2

T̂
D , ~B5a!

n̂5E F̂ d3z, v̂ i5
1

n̂ E z i F̂ d3z, ~B5b!

T̂5
2

3n̂ E ~z i2 v̂ i !
2F̂ d3z. ~B5c!

Correspondingly,Ĵ(F̂, F̂B) in Eq. ~14b! reduces to

Ĵ~ F̂, F̂B!5n̂~Ĉe2F̂B!, ~B6!

where

Ĉe5
n̂B

n̂
F̂eH 12

~ v̂ i2 v̂ i
B!~z i2 v̂ i !

T̂
2

1

2
F 12

2

3

~ v̂ i2 v̂ i
B!2

T̂

2
T̂B

T̂
G F ~z i2 v̂ i !

2

T̂
2

3

2G J . ~B7!

If the definitions ofn̂B, v̂ i
B , and T̂B, i.e., Eqs.~10a!–~10c!

with a5B, are used, it turns out thatĈe is linear in F̂B.

APPENDIX C: DATA ON NUMERICAL COMPUTATION

The lattice systems used here are essentially the sam
those used in Ref. 5~see Appendix A of Ref. 5!. But, in the
present computation, the higher accuracy is attained b
cally by using wider computational regions, more latti
points, and smaller lattice intervals. The details of the latt
systems are omitted here.

The accuracy of the computation was checked in vari
ways. For many cases included in Tables V–VIII in Ref.
~the cases in Tables I–IV in Ref. 42 are all included in Tab
V–VIII there!, we carried out computation with finer lattic
systems with double lattice points either inx1 or in z1 and
confirmed that the values ofFs and G* in Tables I and II
~and Tables I–VIII in Ref. 42! did not change. More specifi
cally, concerning thex1 lattices, this check was performe
for all Mn` and for Mt`50 and 3 in the cases included
Tables V–VIII in Ref. 42. The same check was also p
formed for many other cases in Tables V, VI, and VIII in Re
42. As for thez1 lattices, the check was performed for abo
one third of the cases of Table VI in Ref. 42 and seve
Downloaded 04 Jun 2007 to 130.54.110.22. Redistribution subject to AIP
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cases forMt`53 of Tables V and VIII there. In genera
accurate computation becomes more difficult asMt` in-
creases. Although the lattice systems used in Ref. 5 are
ficient for obtaining (Ha , Hb , Hc) @cf. Eq. ~26a!# and Fs

accurately, we need higher accuracy to obtain accurate
sults for (Ha*

B , Hb*
B , Hc*

B ) @cf. Eq. ~26b!# andG* .
As in Ref. 5, the conservation laws were also used

checking the accuracy. Let us set

~ I 1 , I 2 , I 3 , I 4!5E z1~1, z1 , z2 , z j
2!F̂ d3z, ~C1a!

I 1
B5E z1F̂B d3z. ~C1b!

The n`(2kT` /mA)1/2I 1 , 2p`I 2 , 2p`I 3 , and
p`(2kT` /mA)1/2I 4 are, respectively, the number of mo
ecules, theX1 component of the momentum, itsX2 compo-
nent, and the energy of the total mixture transported in
positive X1 direction across a unit area of the planeX1

5const per unit time;n`(2kT` /mA)1/2I 1
B is the molecular

flux of the noncondensable gas corresponding
n`(2kT` /mA)1/2I 1 . It was shown in Sec. II C thatI 1

B[0.
The integration of Eq.~14a! multiplied by ~1, z1 , z2 , z j

2)
with respect toz i over its whole space, under the conditio
~17a!, yields

I m5const5I m` ~m51, 2, 3, 4!, ~C2!

whereI m` are theI m at infinity and are given by

I 1`52~5/6!1/2Mn` , I 2`5@~5/3!Mn`
2 11#/2,

I 3`52~5/6!Mn`Mt` , ~C3!

I 4`52~5/6!3/2Mn`~Mn`
2 1Mt`

2 13!.

Because of numerical error,I m do not satisfy Eq.~C2! ex-
actly andI 1

B does not vanish exactly. The deviations of t
numerical values ofI m2I m` andI 1*

B from zero, whereI 1*
B is

the I 1
B with F̂B5F̂

*
B ~see the first paragraph in Sec. III C!, are

estimated as follows:

u~ I m2I m`!/I m`u and uI 1*
B /I 1`u

,5
0.3031024 ~Mn`50.01!,

0.1131024 ~0.03<Mn`<0.07!,

0.2231025 ~0.1<Mn`<0.3!,

0.3231026 ~0.4<Mn`!,

~C4!

for all T` /Tw and Mt` (Mt`50 is excluded form53 be-
causeI 35I 3`50 in this case!. The estimate naturally dete
riorates for smallMn` becauseI 1` , I 3` , and I 4` in the
denominator are proportional toMn` .
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