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Vapor flows condensing at incidence onto a plane condensed phase
in the presence of a noncondensable gas. Il. Supersonic condensation
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This paper is the second part of the study of a steady flow of a vapor in a half space condensing onto

a plane condensed phase of the vapor at incidence in the presence of a noncondensable gas near the
condensed phase. The aim of the study is to clarify the behavior of the vapor and noncondensable
gas on the basis of kinetic theory under the assumption that the molecules of the noncondensable gas
are mechanically identical with those of the vapor. In the first frfTaguchiet al, Phys. Fluids

15, 689 (2003], the case of subsonic condensation, where the Mach number corresponding to the
flow-velocity component perpendicular to the condensed phase at infinity is less than unity, is
considered. In the present second part, the case of supersonic condensation is investigated in detail
on the same lines as the first part. Z004 American Institute of Physics.

[DOI: 10.1063/1.1630324

I. INTRODUCTION The importance of the present problem comes from the
following fact: the parameter relation mentioned in the first

We consider a steady flow of a vapor in a half spaceparagraph in the present section provides the boundary con-

condensing onto a plane condensed phase of the vapor dition for the Euler set of equations on the condensing sur-

incidence in the case where another gas that does not coface when a steady flow of a vapor around its condensed

dense(the noncondensable gas present near the con- phases is considered in the continuum litite limit where

densed phase. We investigate the behavior of the vapor ase mean free path of the vapor molecules vanisheshe

well as the noncondensable gas on the basis of kinetic theorgresence of a trace of a noncondensable gas. The reader is

Our main interest is to obtain the relation, among the paramreferred to Ref. 4 for the details. Since the numerically con-

eters of the vapor at infinitythe pressure, temperature, and structed parameter relation plays the role of the numerical

flow velocity of the vapoy, those related to the condensed boundary condition for the Euler set of equatidese Ref. 4

phase(the temperature of the condensed phase and the cdfer its application to a practical problemwe need to present

responding saturation pressure of the vapand the amount a large amount of numerical data. This is the reason why we

of the noncondensable gas contained in the system, that adplit the paper into two parts. In addition, as in Ref. 2, we

mits a steady solution. will make use of the Electronic Physics Auxiliary Publica-
This problem was investigated in detail in Ref. 1, wheretion Service(EPAPS to reduce the amount of the data con-

the case in which the vapor condenses perpendicularly to th@ined in the paper.

condensed phase was considered. The essential point of Ref.

1 is a skillful analysis, based on the assum_p'tlon t'hat th?|_ PROBLEM AND ASSUMPTION

noncondensable-gas molecules are mechanidditical

with the vapor molecules, which clarifies the structure of theA. Problem

solution and reduces the necessary amount of computation 1, begin with, we repeat the problem that is described in

dramatically. The same :_analysis was applied recently to thg ot 2 consider a vapor in a half spa¢e>0 bounded by a
case where the vapor is condensing onto the condenseghionary plane condensed phase of the vapor located at
phase at incidence in Ref. 2, where the necessity of cons@(lzo, whereX; is a rectangular coordinate system. There is

ering such a case is explained. In this reference, we restricteqd | hitorm vapor flow at infinity toward the condensed phase

oursglves to the case Whe.re the magnitude of the flowgii, Velocity (sq,042,0) (V21<0, v..,=0), temperature
velocity component perpendicular to the condensed phase gt

c . . », and pressurg... The condensed phase is kept at a
infinity is less than the sonic speed thésebsonic conden- constant and uniform temperatufg,. Steady condensation

sation. In the present paper, we investigate the same probss yhe vapor is taking place on the condensed phase, and
lem in the case where it is equal to or greater than the Sonig,qher gas neither condensing nor evaporating on the con-
speed (supersonic condensatipnAgain, the analysis is @ gensed phase, which we call the noncondensable gas, is con-
stralghtforward exte_ns!on of that of Refs. 1 and 3 to the cas@neq near the condensed phase by the condensing vapor
of condensation at incidence. flow. (See Fig. 1. We investigate the steady behavior of the
vapor and the noncondensable gas on the basis of kinetic
3E|ectronic mail: aoki@aero.mbox.media.kyoto-u.ac.jp theory.
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2 1 (=
vapor = — B

i ~—— r \/;nmleo n°=dXy, 3)
HONCORUCTEIE BAS T Z: wheren,,=p../kT,, is the molecular number density of the
0 X1 T (Vso1, Y03, 0) vapor at infinity, n® the molecular number density of the
noncondensable gas, ahdthe mean free path of the vapor

L T molecules in the equilibrium state at rest with temperature
condensed, phase e — - T, and number densityn,, (or pressurep.); €.9., l.

=[v2mw(d*)?n..] ! for the hard-sphere molecules, whele

FIG. 1. Uniform flow of a vapor condensing onto its plane condensed phas¢s the diameter of a vapor molecule, ard= (2/@)

at incidence in the presence of a noncondensable gas. X(2KT., /mA) 1/2/KAAnw for the GSB model, wherk®? is a
constant(see Appendix B of Ref.)2 The aim of the present
study is to investigate the relation to be satisfied by the five

Our basic assumptions are as followig:the behavior of ~parameters in Eq2) in the case of supersonic condensation.

the vapor and the noncondensable gas is described by

the Boltzmann equation for a binary mixtufthe Garze-

Santos—BreyGSB) modeP will be employed for numerical  1ll. MECHANICALLY IDENTICAL MOLECULES

computatior; (ii) the vapor molecules leaving the condensed

phase are distributed according to the corresponding part %at

the Maxwellian distribution describing the saturated equilib-

rium state at rest at temperaturd,,; (i) the

noncondensable-gas molecules leaving the condensed ph

are distributed according to the corresponding part of th

Maxwellian distribution with temperaturg,, and flow veloc-

ity 0, and there is no net particle flow across the condense

As described in Ref. 2, the assumpti@n) in Sec. Il A

the molecules of the noncondensable gas are mechani-
cally identical with those of the vapor simplifies the analysis
adsrgmatically. That is, the original problem of two coupled
gonlinear equations is decomposed into two single boundary-
value problems: a nonlinear problem for the total mixture
8nd a linear homogeneous problem for the noncondensable

phase(diffuse reflectiof; (iv) the molecules of the noncon- gas. This approach was originally introduced in Ref. 1 for the

densable gas are mechanically identical with those of th§2s€ OfM‘“%o' Since .the approach playg an 'mpofta”t role
vapor in the following analysis, we first summarize its outlif&ec.

Il A) and then investigate the relation among the parameters

B. Relevant parameters in the caseM .= 1 that was omitted in Ref. 2&Sec. Il B).

As in Ref. 2, we assign labél to the vapor(it will also A, Outline of analysis
be calledA-component and labelB to the noncondensable
gas(it will also be calledB-component throughout the pa-
per.

Let FA be the velocity distribution function of the vapor
and FB that of the noncondensable gas, and IEf,EB)

The explicit form of the basic equation and boundary:n;1(2kTw/m/_A)3/2(FA’FB) be their dimensionless counter-
condition for the present problem as well as the definition ofParts. The original problem is a boundary-value problem of
the macroscopic quantities is given in Ref. 2. To be morghe simultaneous nonlinear Boltzmann equations fef, (
specific, the basic equation and its boundary condition ar&8). We now introduce thédimensionlessvelocity distri-
given by Egs(2)—(5b) in Ref. 2, and the macroscopic quan- pution function of the total mixturé-=F~+F8 and trans-

tities are defined by Eq$10a—(10f) there. Therefore, we form the boundary-value problem foE¢, £8) to the prob-

omit them here for conciseness. lem for (IE, IEB). The result of the transformation is given by

Now, let p,, be the saturation pressure of the vapor atEqs. (14a—(17b) in Ref. 2. This transformation essentially

temperaturer,,, and letM,,, and M,,, be the normal and .
. o decomposes the problem into two separate problems, one for
tangential Mach numbers of the vapor at infinity, respec-.

tively: F and the other foF®, as described below.

The equation fo- [Eq. (14a in Ref. 2 is the Boltz-
Vot Vw2 mann equation for a single-component gas, and the boundary

Mpe=—"T7————, Mp=—F—7—7—7—7——, 1 . A . . .
" VBKT../3m* ‘ 5K T../3m* @) condition for F [Eqg. (159 in Fief. 2] contains a quantity
denoted byn, that depends ofr®. However, if we regard

wherek is the Boltzmann constant amd" is the mass of a hi h , ber density of th
molecule of the vapor, which is the same as that of the nont 'S No as the saturgnon nhumber density of the vapor at tem-
peratureT,,, or equivalentlyp,=knyT,, as the correspond-

condensable gas because of assumption According to ! i X
Ref. 2, the presendimensionlessboundary-value problem ing saturation pressure, then the equation and boundzi\ry con-
i.e., the half-space problem of condensation of a pure vapor
Mo, Meor TolTws Polpu, T @) (F plays the role of the velocity distribution function of the
wherel is the dimensionless parameter corresponding to thpure vapoy, which has been investigated by many authors
amount of the noncondensable gas contained in the systefa.g., Refs. 6—1)7 The problem is characterized by the fol-
and defined as follows: lowing four parameters:
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Mpw, My, To/Ty, Pe/Po. (4) Ref. 2(see Sec. lll D of the same referencdel”, turns out

to be a function of the three parametéts,., M., T../T,,,

and the relation among the parameters takes the following
orm:

where we have usep, rather thamn,. According to Refs.
6—9 and 12-14, there is a solution only when these para
eters satisfy a certain relation, which is expressed as follows:

0. T Pos I Pw=Fs(Mpoo s Myoo, T T, T'), (10
Do_F (Mnocthoo’T_W) (M <1), (5@  where

b. ) FMpw, My, T [Ty, T)

a>Fb(1,|\/|tw,T—W) (Mp.=1), (5b) (s r 1

0. T, (M., My, T /Ty

E>F (MnmyMtoo;T_W) (Mnoc>1) (50) XFs(an;MtocyToc/Tw) (11)

Comprehensive numerical data for the functishsandF,, ~ Comprehensive numerical data, based on the BGK model,
based on the Bhatnagar—Gross—Kr¢BIGK) modet®®are  for the functionF are available in Ref. @see also Ref.)2
obtained in Ref. 9. These data show the following propertiegvhile those for the functiod’, are constructed in Ref. 2

of the functionsF¢ and F,,: (i) both functions are weakly Using the GSB model that is compatible with the BGK
dependent oM, and T../T,,; (i) for any fixedM,,, and  model. Therefore, we now have the numerical data for the

T../T,. Fsis a monotonically increasing function ®,,.. , function F5. It should be noted that the dependenceérpbn

whereas F, is a monotonically decreasing function of I'is explicit.

My.; (i)  Fg0,0,1)=F40, M., T../T,)=1 and

Fo(l- M, T /Ty)=Fp(1M., T./T,) (see, e.g., Ref. B.Existence range of a solution: Supersonic

13). Thus, in order to have a solutidh one needs to specify condensation

three parameters out of the four parameters in(Egwhen Next, we investigate the relation among the parameters

M, ..<1 (subsonic condensatiprand all the four parameters M., M., T./Ty, P=/pPw, andI that allows a solution in

satisfying the inequality5b) or (5c) whenM..=1 (super- the case of supersonic condensatidh,(=1). The descrip-

sonic condensation tion below is essentially the same as that in Ref. 1. For the
Suppose that we have obtained the solufidior a given  problem of F, we can freely choose the parametéts., ,

value ofny. Then, the boundary-value problem foF [Eqs. M=, T../Ty, andp../p, satisfying the relatiori5b) or (50),

(14b), (15b), (16b), and(17b) in Ref. 2] reduces to a linear and hence the solutioR depends on these four parameters.

homogeneous boundary-value problem. Thus, a solifdn On the other hand, the problem féE contains the param-

multiplied by an arbitrary constant is also a solution. TheetersM,..., My.., T../T,,, andp../p throughlA: Therefore,

unique solution is determined by specifying the total amoungs and thusl", , which is obtained frorrFB are the func-

of the noncondensable gas or, equwalently, the paranFetertIons of M., th, T../T,, and p../po. Thus we may

[Eq (3)]. As in Ref. 2, we denote bE* the solution when  write Eq. (8) explicitly as
|n Eqg. (15b) of Ref. 2 is equal tag (this corresponds to

-1
the case ofp,,=0, i.e., the case where no vapor molecules p../py=|1— r
are emitted from the condensed phamed byI', the corre- v I (Moo ,\ Moo, Too /Ty, P2/ Po)
spondingI’. Then the solutiorF8 for an arbitraryl” is ex- X P/ Pos (12)
pressed apEq. (20) in Ref. 2|
. and Eq.(9) as

ce_ .

FP=TTOF,, A ®) o<I'sTl', (M. ,M., To. /Ty, P/ Po)- (13
and, therefore, the correspondifg is given by Now, let us suppose thdf, is a decreasing function of

IEAIIE_(F/F*“EE' @) P../pPo- (It is numerically confirmed in Ref. 1 thdt, is a

. ) monotonically decreasing function db../p, when M.
The FA and FB thus obtained solve the original boundary- =0.) This hypothesis will be confirmed numerically in Sec.

value problem with the saturation pressig given by IV A below. Then, for fixedM .., M., T../T,,, andI’, the
o range ofp../pg is from F, [Eq. (50)] to the value ofp../pg
Pw=(1=T/T)po, ®)  suchthaf", (M. .My, T../Ty.p.. /po) =T holds, sincd’,

in terms ofpg (the virtual saturation pressureSincep,, is  cannot be less thdn by Eq.(13). Whenp../pg ranges in this
non-negative physically, we obtain from E@) that interval, p./p, ranges from [1-T/T', (M.,

Miw, T/ Ty P /Po—Fp)] "1F, to infinity because the

right-hand side of Eq.(12) is an increasing function of
From Egs.(5a—(5c) and (8) and the structure of the p../pg.

solution, we can derive the fundamental property of the re- To summarize, in the case of supersonic condensation,

lation among the parameters that we are seeking. In the casieere exists a solution only when the parameters satisfy the

of subsonic condensation\(,.,<<1) which is considered in following relation:

osrI'sr,. 9
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pOQ 0.8 B T T T T T T T T
E>]:b(MnocthwaToo/TWaI‘)a (Mp.>1), (143 ‘E\E o0 Mpo=12 1

o A Muo=15 7

P A (M, ToITy. T), (Mo=1), (14b) = ol % P Muo=2 ]
Pw | B |
where L ”ﬁﬁé " _

Fo(Mnz Mis, To /Ty T) [ PBesageoge o 4 |

T -1 0O 10 20
—1- Poo/Po
Iy(Mpee, My, T Ty) (a) My = 0.4
XFp(Mp, My, T /Ty, (153 08 -
Tp(Mpie, M, T/ Ty,) -8 O Mpo=12 -
o & Mpyo=15 7
=I', (M, M, T/ Tyys P/ Po—Fp). (15b L o 0 M. —9
* o o0

As in the case of subsonic condensafidhwe exploit the = 041 2 )

comprehensive numerical data féf, based on the BGK | i

model given in Ref. 9, we just need to complitgfor vari- i % 0 i

ous values of the seM,,.., M., T./T,), making use of a i D”§88@§@090 ° g |

model Boltzmann equation compatible with the BGK model. . S

In this way, we can construct the functidf,. It should be Poo/Po

stressed that, since tHédependence ofF, is explicit, we (b) Mioo =

are able to construck, of four variables by obtaining the

function ', of three variables. This reduces the amount of 08— T

necessary computation dramatically. We will carry out the -8 0 Mpo=12 ]

actual numerical computation to obtaliy in the next sec- i A Mpp=15 ]

tion. . " 0 My =2 i

— 04r ':'D‘A .
F e, i
IV. NUMERICAL ANALYSIS AND RESULTS r 5 5% 7
. . . . i “S8RB8sgacgo o 1
In this section, we carry out actual numerical analysis to ob v oo T80 D 8

obtainT',. As in Refs. 1-3, we employ the GSB matlef 0 10 Poo/Po 20

the Boltzmann equation, which is summarized in Appendix

B of Ref. 2. We solve the problem by means of a finite- (¢) Mico = 1.5

difference method. Since the solution method is essentially 08— R

the same as that given in Ref. 9 for the case of a single- L o Mo =12 -

component system, we omit it here. See also Sec. IV A of ED A M"°°= 15 -

Ref. 2 for some remarks on numerical analysis. Information L g o M"°° _ i

about the accuracy of the present computation is given in the e 04F ° nee _

Appendix. LA i

£, ]
. . o

A. Existence range of a solution . u°§°§ Basgao 8000 g
In this section, we show some numerical results for the o0 %

existence range of a solution discussed in Sec. Il B. First, we Poo/Po0

confirm the assumption we made in Sec. llIB, namely, (d) Mioo = 2

I'n(Mye Moo, T /Ty, P /Po) iS @ decreasing function in
P../po (this has already been confirmed numerically in Ref.
1 for the caseM,,=0). Thel, versusp../py for various
values ofM,,.,, andM,., in the case ofl ,/T,,=1 are shown

in Fig. 2. Clearly, the functiod”, is decreasing ip../pg. It

is true also for other values af,. /T,,. Hence the discussion

FIG. 2.T, (M \ My, , T I Ty, ,Pos /Po) VS P / Pg fOr variousM ,,, andM,.,

in the case ofl,/T,=1. (a) M,,=0.4, (b) M.,=1, (c) M,,=1.5, and(d)
M,=2. The symbols in black represent the Ilimiting values of
Fe(Mpee Moo T /Ty, P /Po) @S P /po—Fp -

in Sec. Il B is valid, and the existence range of a solution isp_, /p,). However, since such an approach is not practical,

given by Eqs.(14a—(15b).

Once we have the data for the functidhgandI'y,, Eq.
(159 gives the functiorF, immediately. In principleF, can
be constructed by trying to obtain the solutibnfor many
sets of values of the parameterM (., M., T./T,,

Downloaded 04 Jun 2007 to 130.54.110.22. Redistribution subject to AIP

another indirect method was used in Ref. 9 to obtain numeri-
cal values of~,, which will be explained below. Now let us
suppose thaF, is known and recall thal',, is the limiting
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ward way to compute this limit is to obtain the solutidh,(  unity, however, it has been justified analytically in Ref. 12.
IEE) for several values op../p, close enough td&, and Althqugh M,=0 is a_ssumed in this reference, it is not es-
deduce the limit of", by extrapolation. However, gs./p, ~ S€ntial forAtrBle analysis there. _ _
approaches,, the computation for obtaining becomes Since F, vanishes at infinity in the subsonic solution,
increasingly difficult (note that there is no solution at thelimiting value offqn°dX; asp../po—Fp is equal to the
p../po=Fy). Therefore, such a method is not practical. Thisvalue calculated from the corresponding subsonic solution,
situation is the same as that in Ref. 1 for the cilgg=0, - the solution with the parametekd,, M., andT..
where a differentindirect method to obtair, is proposed. ~ (fhusp-) at infinity. Taking account of this fact, we obtain
We make use of the same method, which will be describeo‘(,rlo_rn Eq.(3) thatn.l.I';=n.|.I'y , wheren,,=p./kT, and
together with the method for obtainirig, , in the following. I, is the mean free path of the vapor in the equilibrium state
According to Refs. 7—9, the behavior Bf for M at rest with temperatur@’ and number densitp., . Since
M T T 0 /.IOo) " with 0./py  close "o Nell/n.l.=(TL/T..)"* holds for the GSB mode(see the
F;EOI\,/I = ,,\;l"tx ,M'i';/TW)w is summarized ;S follows. last paragraph of Sec. I)Bwe obtain the formula
(i) When p./py is sufficiently close 10 T (M. ,Mw, T../Ty)
Fo(Mpe .My, T../T,), the solutionF is described as fol- 1 1
lows: the part near the condensed phase is almost a subsonic :<Too) (Tw)

solution (a solution withM,,..<1), and this part is followed Tw Tw T (M Mo Tol T (19
by an almost entire profile of a standing shock, parallel to the . .
condensed phase, whose upstream state is the state at infinity F0M Eas.(16a—(160) and (18), we can obtairFy, im-
(P, To, Mp, My). As p../po approaches,, the posi- meo!lately for anyM ..., My, : andT, /T, by using the nu-
tion of the standing shock moves upstream, and the separdi€rical data ofs tabulated in Ref. 9see also Ref. 2and
tion between the subsonic-solution part and the standingntérpolation. In Ref. 9, however, for the purpose of present-
shock part becomes clearer. Ing accurate numengal values Bf, in a well-arranged way,
(ii) In the limit p../po— Fy, the position of the standing the subsonic solutioR for each set of M., M{.., T../T,,)
shock moves to upstream infinity, and thus the separatiofMn..<1) given by Egs(16a—(16¢) was recomputed to ob-
becomes complete. This means that the limiting solution is &inFs, from whichFy, was obtained by E¢18) without the
subsonic solution with a standing shock at infinity and thus id1elp of interpolation. More specifically, Fig. 7 and Tables
not a true supersonic solution. However, we can interpret iV—VIIl in Ref. 9 show the numerical data of
as the marginal supersonic solution. Therefore the limiting=b(Mne M., To./Ty) for T../T,=0.5, 1, 1.5, and 2 ob-

solution is the subsonic solution with the upstream paramtained in this way. In the present study, we have repeated the
eters M., M{., and T. [thus p., ~ same computation with higher accuracy and confirmed the

=poFs(M/..,M{., TLIT,)], whereM/.., M/,., andT, are  accuracy of the data given in Ref. 9. The results are as fol-
given by the standing shock relatioRankine—Hugoniot re- lows: in Tables VI-VIII in Ref. 9, the last figure should be

lation) from M,.., M., andT.. as follows: changed by one in several data, and in Table V there, the last
figure should be changed by one in five data Kbg,.=1.2
M/ .=(M2 +3)¥35M2 —1)"12 (163 and by at most six in the data fofl,.=1.1 and 1.01. We
also made additional computations to supplement these data.
LT\ TN T Some of the results are shown in Table I, the more compre-
th:(-r_w) (T_W) M, (16b hensive data being given in Tables -1V in Ref. 20.
Similarly, from Eqs.(16a—(16¢) and(19), we can obtain
T, (M2,+3)(5M2,—1) T, I'y, using the numerical values &, for subsonic solutions
7= 16M2 T (160  tabulated in Ref. 2 with the help of interpolation. But, in
w noo w

order to give accurate numerical data in a well-arranged way,
Equation(16b) indicates the continuity of the tangential ve- we recomputef:f that corresponds to the subsonic solution
locity component across the shock. Since the shock relatiof obtained above [i.e., the subsonic solution for
also gives (M. ,M{.., T./T,) given by Eqgs.(16a9—(160] and obtain

T, for this F2. Thus, we obtain accurate numerical values

’ 2
P _ M P= (17) of I'y, by Eq. (19) without using interpolation. Some of the

Po 4 Po’ results forl",, obtained in this way are shown in Table I, the

. _ . more comprehensive data being given in Tables V-VIII in

the F,, which corresponds tp../pg, is obtained as Ref. 20 P sV ng gvent S I
Fo(Mp. My, To /) The functionF, obtained with the help of the numerical

data forF, andIl'y, in the caseT,./T,,=1 is shown in Fig. 3.

In the figure,F,, versusM,., is shown for varioud™ at four

values ofM,,., i.e.,M,=0, 1, 2, and 3. Similar figures for

T,./T,=0.5, 1.5, and 2 are given in Figs. 1, 3, and 4 in Ref.
The behavior described above is based on physical cor0 (Fig. 2 in Ref. 20 is the same as Fig. 3 hefEhe 7, is a

sideration with some numerical evidertBor M., close to  decreasing function dfl ..., and its curve moves upward as

=5M2—_1FS(M$WM{WT;/TW)- (18
noe
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TABLE I. Fy(M ., ,My.,,T../T,) as a function oM., M., andT,. /T, .

T./T,=05 T IT,=1
M \M .. 0 1 2 3 0 1 2 3
1 17.304 18.292 21.258 26.205 13.549 14.680 18.074 23.734
1.005 16.652 17.604 20.460 25.223 13.118 14.212 17.494 22.970
1.01 16.025 16.941 19.691 24.278 12.702 13.760 16.935 22.232
1.05 12.117 12.811 14.893 18.364 10.000 10.825 13.300 17.429
11 9.0094 9.5220 11.060 13.626 7.7043 8.3293 10.205 13.334
1.2 5.5876 5.8975 6.8275 8.3784 5.0021 5.3916 6.5608 8.5108
1.3 3.8254 4.0304 4.6455 5.6712 3.5256 3.7876 4.5743 5.8863
1.4 2.7941 2.9381 3.3702 4.0907 2.6289 2.8149 3.3735 4.3050
15 2.1369 2.2426 2.5597 3.0884 2.0426 2.1801 2.5929 3.2814
16 1.6917 1.7719 2.0125 2.4136 1.6378 1.7426 2.0574 2.5823
1.7 1.3757 1.4382 1.6256 1.9381 1.3461 1.4281 1.6742 2.0845
1.8 1.1431 1.1928 1.3419 1.5906 1.1288 1.1942 1.3906 1.7180
2.0 0.82958 0.862 70 0.962 08 1.1278 0.83183 0.87560 1.0069 1.2259
25 0.45122 0.465 90 0.509 96 0.583 39 0.465 24 0.484 74 0.543 23 0.640 71
3.0 0.289 23 0.297 02 0.32041 0.359 39 0.304 28 0.314 65 0.345 77 0.397 60
T./T,=15 T.IT,=2
M \M .. 0 1 2 3 0 1 2 3

1 12.401 13.651 17.270 23.666 11.916 13.270 17.337 24.123
1.005 12.038 13.249 16.886 22.954 11.584 12.898 16.843 23.426
1.01 11.686 12.861 16.386 22.266 11.263 12.537 16.365 22.752
1.05 9.3645 10.291 13.074 17.715 9.1182 10.132 13.175 18.252
1.1 7.3326 8.0428 10.175 13.731 7.2088 7.9903 10.337 14.252
1.2 4.8647 5.3134 6.6605 8.9076 4.8453 5.3431 6.8378 9.3314
13 3.4771 3.7814 4.6950 6.2188 3.4929 3.8320 4.8505 6.5495
1.4 2.6188 2.8360 3.4878 45751 2.6468 2.8895 3.6184 4.8342
15 2.0505 2.2115 2.6948 3.5011 2.0820 2.2624 2.8039 3.7072
1.6 1.6542 1.7773 2.1467 2.7628 1.6860 1.8240 2.2384 2.9297
17 1.3666 1.4630 1.7523 2.2347 1.3972 1.5054 1.8303 2.3720
1.8 1.1510 1.2281 1.4592 1.8446 1.1799 1.2665 1.5262 1.9593
2.0 0.854 41 0.906 01 1.0609 1.3190 0.87970 0.937 74 1.11192 1.4023
25 0.484 24 0.507 28 0.576 38 0.691 54 0.502 59 0.528 53 0.606 34 0.736 03
3.0 0.319 75 0.33201 0.368 80 0.430 09 0.33380 0.347 62 0.389 06 0.458 10

I" increases. Thé'; in the figures, which depends ., Fo(lM. T /Ty =Fs(1_ M., T../T,), (203

andT../T,,, is a critical value of’, that is, wherl'<TI'., F,

takes a finite value aM,..=1, whereas whed'>T., F, Tp(AMi , T/ Ty) =T, (1_ M., T /Ty)

becomes infinitely large aMl,,. approaches a certain value

of M,,.. depending oM., T../T,,, andI’. We denote this =Ie(Mee T /Tw), (20D

value byM.. WhenI'=I"¢, 7y goes to infinity aMn.=1  \yhereT_ is the same as that used in Ref. 2. Analytical evi-
(henceM =1). In other wordsM .= M_ is the asymptote dence for the relatiori208 is found in Ref. 12. Then, the
of the curve. Consequently, there is no solution in the |nterpropert|es O'U:'b described in the preced|ng paragraph follow
val 1=<M,, <M. whenT'>T,. Further properties off,  immediately from Eqs(158 and(20b) and from the fact that
will be discussed in the next paragraph, where more detailefl, is an increasing function oM .. That is, whenT
information abouf’, and M, will also be given. <I'¢, theI'/T'y in Eq. (159 is less than unity and thus;
Because the dependence Bf andI', on M., is not  remains finite in the whole range bf,..=1. From Eqs(11),
strong, the function7, does not depend much oMl.,. (153, (209, and(20b), we have
Therefore the features o, are essentially the same as those
described in Refs. 1 and 3 foft,..= 0. In particular, forM,., Fo(ILMiee, Too /Ty, I) = Fo(1- My Too /Ty, 1), (2D)
smaller than around 17, is almost independent d¥l,., . s B .
The dependence of, onT.. /T, is also weak'see Figs. 1-4 It? this case. .Wheﬂf':rc (OEF_FC) ivfhefllrb |Ifn Eqa(lSa)
in Ref. 20. The F, is a decreasing function oM., ecomes unity at all (> 1) (or atMp,,=1). If we denote

whereasT, is its increasing function. Therefore, as is seenthis value ofM .. by M (Mc=1 for I'=I'¢), 7, increases

from Eq. (159, F;, is a decreasing function ol ... It fol-  indefinitely asM ., approaches!\/l The I'c, which is a
lows from Egs.(16a—(160), (18), and(19) that atM..=1, functlon of M, andT../T,,, is shown in Fig. 3 of Ref. 2.
the following relations hold: The M;(M,,,T../T,,I'), which is the solution of
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TABLE Il. T'y(M,. ,M.,T./T,) as a function oM., M., andT.. /T, .

T,./T,=05 T T,=1

M AM .. 0 1 2 3 0 1 2 3
1 0.059 725 0.057 473 0.051 952 0.045 488 0.085 603 0.080 878 0.070 154 0.058 957
1.005 0.061 829 0.059 494 0.053 770 0.047 069 0.088 071 0.083 214 0.072 187 0.060 667
1.01 0.063 971 0.061 552 0.055 621 0.048 679 0.090 569 0.085 580 0.074 246 0.062 399
1.05 0.081 764 0.078 654 0.071 025 0.062 088 0.11125 0.105 19 0.091 356 0.076 818
11 0.105 56 0.10155 0.091 706 0.080 132 0.13872 0.13129 0.114 24 0.096 179
1.2 0.157 68 0.151 82 0.13731 0.120 10 0.198 19 0.188 03 0.164 42 0.13891
1.3 0.21475 0.207 02 0.18773 0.164 56 0.262 48 0.249 68 0.21952 0.186 28
1.4 0.27570 0.266 13 0.242 10 0.212 83 0.33042 0.31513 0.278 64 0.237 61
15 0.33972 0.328 41 0.299 75 0.264 40 0.40113 0.38355 0.341 07 0.292 35
16 0.406 18 0.39323 0.360 15 0.318 82 0.473 94 0.454 29 0.406 21 0.350 06
1.7 0.474 60 0.460 13 0.422 87 0.37575 0.548 37 0.526 85 0.473 62 0.410 37
1.8 0.544 60 0.528 73 0.487 58 0.434 90 0.624 02 0.600 84 0.542 92 0.472 95
2.0 0.688 23 0.669 93 0.621 84 0.558 89 0.777 88 0.75197 0.685 99 0.603 87
2.5 1.0602 1.0377 0.976 93 0.893 67 1.1699 1.1398 1.0604 0.955 46
3.0 1.4408 1.4161 1.3480 1.2515 1.5642 1.5324 1.4465 1.3280

T./T,=15 T /Tu=2

VIRV Y 0 1 2 3 0 1 2 3
1 0.101 41 0.094 710 0.080 190 0.065 962 0.112 40 0.104 12 0.086 727 0.070 380
1.005 0.104 05 0.097 195 0.082 315 0.067 721 0.11515 0.106 69 0.088 906 0.072 166
1.01 0.106 72 0.099 705 0.084 464 0.069 500 0.117 93 0.109 29 0.091 105 0.073 969
1.05 0.128 80 0.120 48 0.10231 0.084 304 0.140 85 0.130 77 0.109 36 0.088 978
1.1 0.158 02 0.148 07 0.126 14 0.104 17 0.17112 0.159 23 0.13374 0.109 11
1.2 0.220 95 0.207 79 0.17828 0.147 97 0.236 09 0.22070 0.186 99 0.15348
1.3 0.288 56 0.272 36 0.23541 0.196 49 0.305 64 0.286 97 0.245 27 0.202 63
1.4 0.359 65 0.340 65 0.296 58 0.249 05 0.378 53 0.356 89 0.307 61 0.255 86
15 0.433 30 0.41177 0.361 06 0.305 09 0.453 66 0.429 56 0.37326 0.31262
1.6 0.508 87 0.485 08 0.428 25 0.364 16 0.530 99 0.504 32 0.441 61 0.372 45
17 0.585 84 0.560 06 0.497 66 0.425 87 0.609 38 0.580 67 051216 0.434 95
1.8 0.663 84 0.636 33 0.568 91 0.489 89 0.688 68 0.658 21 0.584 52 0.499 77
2.0 0.821 87 0.79156 0.71570 0.62372 0.848 97 0.81571 0.73340 0.635 25
25 1.2215 1.1873 1.0980 0.982 29 1.2526 1.2157 1.1201 0.997 71
3.0 1.6205 1.5851 1.4900 1.3608 1.6539 1.6161 1.5153 1.3794

Ty(M M T /T, =T, (22) (=knT) the pressure of the total mixturgn® has already
~ been introduced in Sec. Il in the sentence following &4.]
is shown in Fig. 4, wher# . versusMy.. atT../T,,=0.5, 1, The typical profiles of the macroscopic quantities for

1.5, and 2 is plotted for various valuesBf M. is taken as  T../T,=1 are shown in Figs. 5-7, i.e., Fig. 5 fo ..
the abscissa for easy comparison with FigaBd Figs. 1-4 =1.5 andp../po=2.593, Fig. 6 forM,,.=2 and p../p,

in Ref. 20. =4, and Fig. 7 forM ,.,,=1.05 andp../po=22. In each fig-
_ N ure, the result foM,,,=1 is shown in(a) and that forM,.,
B. Macroscopic quantities =2 in (b), and the notatiora.,= (5kT../3m*)¥2 has been

In this section, we show the behavior of the macroscopidntroduced. It should be noted thaf=0 in the whole region
quantities. In the case of supersonic condensatibh,( Of X;>0, and the quantities I{, /T)n® v3,
=1), we can freely choose the parametel,{, M., T°(=p®knP), and I, /T')p® are independent of (see
T./Ty, P»/pw, I) in the region(14a or (14b. However, it  Secs. IIC and IV C of Ref. 2 Then, vy, v,, T, andp for
is more convenient to arrange the results using the paranthe total mixture are the same a8, v?', v5, T, andp” for
eters My, My, T /Ty, P/pg, I) rather than the origi- I'=0, respectively.
nal parametersMl .., Miw, To/Ty, P=/Pw, I), since the Figure 5 demonstrates the profiles for the parameters
basic quantities®, F2) andT, , which give the solutions close to the boundary of the existence rari§e) [or Eq.
(FA, EB) for arbitrary I, are determined bM ., M., (143](note thatF,=2.1801 forM..=1 andF,=2.5929 for
T./T,, andp../py. We use the same notations for the mac-M.=2 in the caseM..=1.5 andT../T,=1). Since the
roscopic quantities as in Ref. 2f. Sec. IIB of Ref. 2 n*  parameters for Fig.(6) are very close to the boundary of the
denotes the molecular number densit§, the flow velocity, —existence range, the profile exhibits the features described in
T the temperatureand p*(=kn“T%) the pressureof thea  the fourth paragraph in Sec. IVA, that is, the profile is a
component &=A or B); n denotes the molecular number combination of a subsonic solution and a standing shock that
density, v; the flow velocity, T the temperature, ang are well separated from each other. The noncondensable gas
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20 ] 3 3
o E T'=01 0.2 0.3
< | ] ) Al
- ] 4 3
10F . i 1
B ] 0.42-]
E ] o T 2 T T 2
:F (8) Too/Tw = 0.5 ’ (¢) Too/ Ty =15 ’
0
1 1. 2
3 M, 3
oL
20 ] &
5 |
& ]
L ] 0 IR TR 2 T B 2
10 B M. M,
C ] (b) Tou/ T =1 {€) Too/To =2
; é FIG. 4. M, vs My, for variousT. (@ T./T,=0.5, (b) T../T,=1, (c)
N = T./T,=1.5, and(d) T../T,=2. M, is taken as the abscissa for easy com-
01 15 9 parison with Fig. 3(and Figs. 1-4 in Ref. 20In (c) and(d) the curve for
’ M, I'=0.1 intersectdl =1 atM,,,=0.42 andM,.= 1.25, respectively.
20 L— .
A . 9, shows the profiles for largp../py and M., close to 1
& F ] (note thatF,=10.825 forM,,,=1 andF,=13.300 forM,.,
r ] =2 in the caseM,=1.05 andT../T,,=1). Since the fea-
10F . tures of the macroscopic quantities demonstrated in Figs.
C ] 5-7 are essentially the same as those already discussed in
EF N Ref. 9 for the pure-vapor casé¢ €0) and Refs. 1 and 3 in
C the case oM, =0, we omit the repetition of the explana-
0 1 T S tions here.

’ As discussed in Ref. 1;,? andT® do not approach .,
andT., and may also have gradients at infinity. In any case,
v> and TB are not meaningful in the far field wheré be-

0 comes practically zero.
& f C. Particle flux of the noncondensable gas along the
. condensed phase
10F . . . . .
. As is seen from Figs. 5—7, there is a macroscopic motion
- of the noncondensable gas along the condensed ghase
5 in the X, direction when the vapor flow at infinity has a
oL transversal componen;..# 0). As in Ref. 2, we introduce
1 the following dimensionless quantity corresponding to the
(d) Myo =3 total particle flux of the noncondensable gas:
FIG. 3. A,(M o \My.. , T /Ty, ,I') vs M. for variousI” andM,. (T../T,, S AN1/27—1 * B. B
=1). (@ M,.=0, (b) M,=1, (¢) M,,.=2, and(d) M,.=3. The dotted lines M_(Z/\/;)[nwlx(ZKT“/m ) 2] fo n“vy dX;.
in the figures indicate the asymptoteM (,=M.) of the curves forl’ (23
=0.2, 0.3, and 0.5. The value df; in each figure is as follows(a)

particle flux of the noncondensable gas in the directioX pf
per unit width inX5 and per unit time. If we use the defini-
is confined only in the subsonic-solution part. Figure 6tion of the macroscopic quantities and the relation between
shows the profiles for the parameters well inside the exisdimensional and dimensionless quantities given in Ref. 2,
tence rangdé5c) [or Eq. (14a9)] (note thatF,=0.87560 for  Eq. (23) is written in terms ofFB as
M,=1 and F,=1.0069 forM,=2 in the caseM,,=2 ,
andT., /TW=1)_. These prqfiles are of the same type as Fig. = fﬁ (f 52ﬁ5d3§)dx1, (24)
11 of Ref. 9. Figure 7, which corresponds to Fig. 12 of Ref. 0 J
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15 T'=0 1 I 1
0.1 N r=0 1 ~
. n* /Moo 70578 15 0.1 12
g 0.3 | = g 0.2 nA/nco 105 5>
£ T, (= 0.32258) 2 £ 0.3 s
< 1 & & [ T(=034106) =)
(Tu/T)(n /) 1 & =
1 LI (/D)0 /noc)
1 1 1 0 1 1 1 1 1 0
3
L
T~
=
|
8 8 8
s = =
M T M
= = =
S &
S =L o~
i} < i}
[ =
T T T T T 2
3 1 7B
= 4 0 4=
S 11 &
(N - 1 B
~ S~
1 E\<(F*/ T)(p® /)
1 1 1 0 1 1 1 1 1 0
0 x/, 0 10 0 x/,
(a) Moo =1 (b) Moo =2

FIG. 5. Profiles of the macroscopic quantities fdy,,=1.5, T../T,,=1, andp., /p,=2.593. (&) M,=1 and(b) M, =2. Here,a..= (5kT../3m*)*? is the
sound speed at temperatufe . The macroscopic quantities of the total mixture are given by those of the vapdr=f@. The profiles of [, /T)
x(n®/n.), vla,, T®T., and C, /T)(p®/p.) are independent df.

wherex, = (2/\/7)1 X, is the dimensionless space coordi- andI" in the case of supersonic condensatidhjs written in
nate,; is the dimensionless molecular velocity nondimen-the following form:

sionalized by (RT../m*)Y2 and d3¢=d{,d{,d{5; here
and in what follows, the domain of integration with respect
to ¢; is the whole space aof; .

SinceF® is determined bW ..., My.., To./Tws Poe/Pus

-~ N Tw o}
M:M Mnm;Mtxv?’&’F ! (anzl) (25)
w pW
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FIG. 6. Profiles of the macroscopic quantities #My,..=2, T../T,=1, andp../po=4. (8) M.=1 and(b) M.=2. See the caption of Fig. 5.

According to Ref. 4, the functioiV;, along with the conti- (Table X in Ref. 20 is the same as Table III hergigure 8
nuity equation in the Knudsen layer, is required as a part of;howst versusM,,, for variousI’ and that versug® for
the boundary condition for the Euler set of equations in thevarious M., in the case ofM,.=1.2, T./T,=1, and
continuum limit. For this reason, we give some of the nu-p../p,=20 [(@] and of M..=2, T../T,=2, and p../py
merical data fot\; . Table Ill shows the data fol; in the  =10[(b)]. As is seen from Table IlI, thd/; depends weakly
caseT,/T,=1. The data forT../T,=0.5, 1.5, and 2 are onM,, andp../p,, (see also Tables IX-XIl in Ref. 2@&and
given in Tables IX, XlI, and Xll in Ref. 20, respectively increases wittM,,, andI" (see Fig. 8 The dependence on
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FIG. 7. Profiles of the macroscopic guantities fy,..=1.05,T../T,,=1, andp../pg=22. (8) M.=1 and(b) M,.=2. See the caption of Fig. 5.

T,/T, is also weak(see Tables IX-XIl in Ref. 20

If we denote by, the A corresponding td=2 , we
have[see Eq(31) in Ref. 2]

Ne=(TT )N, - (26)

SincelA:E depends oM., My.., T./T,,, andp../pg, the
quantityﬁff* , as well asI', , is a function of these four

parameters. The data in Table Ill have been computed in the
following way. We first solvep.,/py corresponding to the
given set M., M., T./Ty, P=/pw, I') from Eq. (12

with the help of interpolation based on the numerical data of
(M Mo, T /Ty, P /Pg). Next, we solve the half-
space problem for the total mixture numerically to obt&in

for the original values oM .., M., and T, /T,, and the
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TABLE III. M(Mnx M, T ITy,p /Py ,I') as a function oM., M., P /pw, andIl’ (T../T,=1). There is no solution fofF =0.1 in the caseM,,..
=1.2 andp../p,,=10.

M,.=12

pw/pw: 10 poc/pwzzo
MMy, 0 0.4 1 15 2 0 0.4 1 15 2
0 0 0 0 0 0 0 o0 0 0 0
0.0125 0 0.0028903  0.0073211  0.011183  0.015261 0 0.0028131 0.0071206 0.010868  0.014819
0.025 0 0.0058193  0.014 740 0.022516  0.030724 0 0.0056656  0.014 342 0.021891  0.029848
0.05 0 0.011 793 0.029 872 0.045628  0.062 250 0  0.011487 0.029 081 0.044389  0.060517
0.1 0  0.023590 0.059 725 0.091161  0.12425

M,.=15

p.. /py=10 P /py,=20
MMy, 0 0.4 1 15 2 0 0.4 1 15 2
0 0 0 0 0 0 0 0 0 0 0
0.025 0 0.0052962  0.013423 0.020525  0.028 054 0 0.0051723  0.013100 0.020015  0.027332
0.05 0 0.010 740 0.027 223 0.041626  0.056 886 0  0.010499 0.026 597 0.040643  0.055506
0.1 0 0.022 055 0.055 901 0.085467  0.116 75 0  0.021589 0.054 699 0.083590  0.11414
0.2 0 0.046 362 0.117 49 0.17957 0.245 14 0  0.045440 0.11512 0.17588 0.240 00

M,.=2

P../py=10 P=./py,=20
MM, 0 0.4 1 15 2 0 0.4 1 15 2
0 0 0 0 0 0 0 0 0 0 0
0.025 0 0.004 4024  0.011 159 0.017073  0.023370 0 0.0042989  0.010885 0.016630  0.022724
0.05 0 0.0089626  0.022726 0.034785  0.047 634 0 0.0087637  0.022204 0.033950  0.046 432
0.1 0 0.018 518 0.046 971 0.071920  0.098 500 0 0.018149 0.046 013 0.070412  0.096 370
0.2 0 0.039 180 0.099 384 0.152 14 0.208 23 0  0.038518 0.097 682 0.149 50 0.20455
0.4 0 0.086 187 0.218 49 0.33411 0.456 53 0  0.084941 0.215 30 0.32918 0.44971

obtained value op../py. Then, we solve the linear problem solution discussed in Ref. 2, we derived essential properties
for the noncondensable gas numerically to obtafh, from  of the parameter range that admits a steady soluBec.

which A%, is computed. The\; is obtained from Eq(26). lII). Then, with the help of the property of the boundary of

However, once we know the existence rarityéa and(14b) the parameter range discussed in Ref. 1 and extensive nu-
there is no merit to use the above indirect procedure. Therdherical computation based on the GSB model, the parameter

fore, in order to obtain the data given in Tables IX, XI, and"@ngeé was constructed numericallyec. IV A). Finally, the
XIl in Ref. 20, we made use of a direct method, namely, webehavior of the macroscopic quantities was clarifigecs.

numerically solved the original boundary-value problem forlV BT";‘]”d IV C). it for th hat admi
(EA E8Y, rather than the problem forf( E®), specifying he present result for the parameter range that admits a

L solution, together with the corresponding result for subsonic
the original parametersMp.., M., T./Tw, Po/Puw, I)

condensation in Ref. 2, completes the boundary condition for

and computed\; directly. the compressible Euler set of equations that describes the
steady flows of the vapor around arbitrarily shaped con-
V. CONCLUDING REMARKS densed phases in the continuum limit in the presence of a

tiny amount of the noncondensable §akhe boundary con-

rowT(?fea?/raesgrnE:gr?oil)eerzSI; th:nts(fgonlinpeagoz;g;ies(;ucjgag; '&tion, however, is still subject to the limitation that the va-
P Y P P or molecules are mechanically the same as the

incidence in the case where a noncondensable gas is present .
. noncondensable-gas molecules and that the numerical results
near the condensed phase. The case of subsonic conden

. . “NFE obtained on the basis of the GSB model. The relaxation

tion, i.e., the case where the component of the flow velocity S .
. . “of these limitations would be an important future work.

of the vapor perpendicular to the condensed phase at infinity

is subsonic, is studied in the first pAnyhereas the case of
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0.15 . - - ————————— accuracy. As in Ref. 2, let us introduce the following quan-
[ o:['=0.0125 11 o: Mis=04 ] tities:
. '=0.025 Pl e M=1 3
01- a: '=0.05 A My =15 1
_opere * Mo =2 ] <|1,|2,|3,|4>=f§1<1,zl,§2,z,-2>Fd3z, (A1)
<2 ]
0051 15= f LFB A3 (A2)
o — The n.(2KT./mM¥2,,  2p.l,,  2p.ds,  and
0.05 01  p,(2kT./mY)Y2, indicate, respectively, the number of
r molecules, th&X; component of the momentum, i com-

ponent, and the energy of the total mixture transported in the
positive X; direction across a unit area of the plaie
=const per unit timen..(2kT.,,/m*)¥2? is the molecular
flux of the noncondensable gas corresponding to
N..(2kT../m™)¥2 ;. Itis shown in Appendix C of Ref. 2 that
1%=0 and thatl ,, (m=1, 2, 3, 4 are spatially uniform and
are expressed in terms of the quantities at infinity as

l1=11.,=—(5/6)YM,.,

lo=15,=[(5/3 M2, +1]/2,

(A3)

3=13,=—(5/6)M .M.,

(b)

i | 4=14,=—(5/6)%°M ..(M2,+ M2, +3).

FIG. 8. Mi(M .. ;Moo , Too I Ty P /Pw , ) VS My, for variousT” and that vs

I' for variousMy... (& Mn..=1.2, T.. /T, =1, p../py,=20; and(b) My, Because of numerical error, this uniformity is not satisfied

=2, T../Ty=2, . /py,=10. The symbol©, W, A, #, V, and»indicate  gxactly, and ® does not vanish exactly. The deviations of the

the numerical data, which are connected by spline curves. . B B -
numerical values of,— I .. andly, from zero, wheré?, is
the 19 with FE=F2 (see the third paragraph in Sec. IIJ,A
are estimated as follows:

APPENDIX: DATA ON NUMERICAL COMPUTATION (A=Y
moe 00 _
. . _ _ _ “Bm“ | ™ 1<0.89x1077, (A4)
In this appendix, we give some information on the accu- Ix ! 1o
racy of '.[he present numerical analysis. In t.h.e presenfor all M., M., andT../T,, included in Tables I-IV in
computation based on the GSB_ model collision termpef. 20 M..=0 is excluded form=3 becausds=14.=0
we only need to handle two independent variables;q inis casg
x,[ = (2/\)1;1X,] and{,, because the transversal compo-
nents¢, and {3 of the molecular velocity can be eliminated
(see Sec. IV A of Ref. 2 The lattice systems fox; and {;
used here are essentia”y the same as those used in Ref. 1g Sone, K. Aoki, and T. Doi, “Kinetic theory analysis of gas flows con-
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