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Steady flows of a vapor around its condensed phase of arbitrary shape, on the surface of which
evaporation and condensation of the vapor may take place, are considered in the presence of a small
amount of a noncondensable gas. By a systematic asymptotic analysis of the Boltzmann system, the
present authors have derived the fluid-dynamic system describing such flows in the continuum limit

in the case where the amount of the noncondensable gas is infinitesimal compared with that of the
vapor[K. Aoki, S. Takata, and S. Taguchi, Eur. J. Mech. B/Flu@a 51 (2003)]. In the present

study, the fluid-dynamic system is applied to some physical problems, and it is demonstrated with
concrete examples that such a tiny amount of the noncondensable gas causes dramatic changes of
the overall vapor flows. @004 American Institute of PhysidDOI: 10.1063/1.1795271

I. INTRODUCTION The fluid-dynamic equations, which are the set of compress-
ible Euler equations, and their boundary conditions for the
In flows of a vapor with evaporation or condensationcontinuum limit under this condition were derived in Ref. 18
taking place on the boundary, the vapor is not in a localwith the help of a systematic asymptotic analysis of the Bolt-
equilibrium state near the boundary even in the continuungmann system for small Kn and a complementary numerical
limit, i.e., the limit in which the Knudsen number, defined by analysis performed in Refs. 19 and 20. In this limit, the av-
the ratio of the mean free path of the vapor molecules to therage concentration becomes infinitesim(aigvl n,—0).
characteristic length of the system, goes to zero. Thereforéjowever, it was shown that the noncondensable gas of an
an approach based on kinetic theory is required to describ@finitesimal average concentration accumulates in the Knud-
such flows. In fact, this type of flow has been one of thesen layer with an infinitesimal thickness on the condensing
important subjects in kinetic theory of gases for more tharboundary and has a significant effect on the overall vapor
three decades® flow through the fluid-dynamic boundary condition on the
Concerning the continuum lim{and its neighborhogd  condensing boundary. An example that demonstrates a dra-
the fluid-dynamic systems that describe steady flows of thenatic change of the streamlines of the vapor flow caused by
vapor have been established by means of systematibe presence of the noncondensable gas with an infinitesimal
asymptotic analyses of the Boltzmann sys?e7ﬁ11.°Some of average concentration is also given in Ref. 18.
these fluid-dynamic systems have been extended to the vapor High-speed flows of a single-component vapor that un-
flows in the presence of another noncondensable gas thdergo strong evaporation and condensation play an important
neither evaporates nor condenses on the bourtdafydow-  role in various applications such as heat pipes and laser ab-
ever, some interesting and important phenomena peculiar fation. In practical situations, however, the vapor flows may
the continuum limit for the mixture of the vapor and the contain tiny impurities. The fluid-dynamic system estab-
noncondensable gas were clarified only rece]r?ﬂﬁf lished in Ref. 18 reveals that such impurities have a crucial
The phenomenon that is investigated in Ref. 18 is theeffect on the vapor flows. Moreover, it enables quantitative
effect of a tiny amount of the noncondensable gas on thassessment of the effect of the impurities. Therefore, the re-
overall vapor flows. For the sake of simplicity we restrict sults given in Ref. 18 are not only of theoretical interest but
ourselves to the case of a closed domain, and we suppos¢so of practical importance.
that steady evaporation and condensation are taking place on In the present paper, we will give some more applica-
the boundary. Len, be the reference molecular number den-tions of the fluid-dynamic system derived in Ref. 18 and
sity of the vapor,ngv the average molecular number density demonstrate the effect of the trace of the noncondensable gas
of the noncondensable gas over the domain, and Kn then the global vapor flow. We first summarize the fluid-
Knudsen number defined by the mean free path of the vapatynamic systengSec. 1)) and then investigate three concrete
molecules in a reference equilibrium state divided by theproblems numericallySec. IlI).
characteristic length of the domain. We assume that the
Knudsen number Kn is small and that the average concen;

. . . BASIC EQUATION
tration of the noncondensable gas is as small as the Knudsen SIC EQUATIONS

number. The latter condition is equivalentrt) /n,=O(Kn). In this section, we first describe the physical situation
that we consider and then summarize the fluid-dynamic

¥Electronic mail: aoki@aero.mbox.media.kyoto-u.ac.jp equations and their boundary conditions obtained in Ref. 18.
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A. Physical situation respectively. We introduce their dimensionless counterparts

Let us consider a vapor and its condensed phase of arbi- by the following relations:

trarily smooth shape, on the surface of which evaporation or  x,=X/L, h*=n%n,,

condensation of the vapor is taking place. For the sake of

simplicity, we restrict ourselves to the case of a closed do-  p®=p¥m’n,, p*=pYp;,

main(see Ref. 18 for the case of an infinite domafksmall

amount of the noncondensable gas is contained in the sys- 5. = ./(2kT,/nm)2, ']':T/Tr_ (2)

tem. In the following, we assign the labalto the vaporit ] ) N

will also be calledA componentandB to the noncondens- According to Ref. 18, the macroscopic quantities (h

able gagit will also be calledB componenit =h*, p*, p*, v;, or T) are expressed in the following form:
We first introduce the reference quantitiésis the ref- h=hy + hy, (3)

erence length of the system, is the reference number den-

sity of the vapor moleculed], is the reference temperature, Wherehy, is the moderately varying overall solution whose

p, is the reference pressure of the vapor defined pby Igngth scale of variation is t_he referenc_e length of th_e system

=kn T, (k is the Boltzmann constaptm® is the mass of a [",e" dhy/ax=0(1)] andhy is a correchon term tdy, in a

molecule of the vapol, is the mean free path of the vapor tEII’I Iayer(:che KI’IUdSGﬂfngI’WI(tjh th|;:l:<ne§s %f tr:f order of

molecules in the equilibrium state at rest with temperaiyre Itessrgesgaggeagﬁatgrn? t(; tehgrb(e;:”? dar?/ ".}.:r; islTheensslg_n-

and number density,, and Kn4,/L is the Knudsen number ' :

, called Hilbert solution, and we caly the Knudsen-layer
with respect to the vapor. Further, we denoterflythe av-  Corection. We consider the situation in which there is no

erage number density of the noncondensable gas containgghsed streamlines of the vapor flow or in which closed

in the system. streamlines of the vapor flow, if any, do not carry any non-
We consider steady flows of the vapor in the following condensable gas. Then, as discussed in Ref. 18, we can as-

situation: (i) The Knudsen number Kn is smalli) The  sume, consistently with Egl), that the noncondensable gas

amount of the noncondensable gas contained in the systemisabsent in the overall flow field, that is,

small; to be more specific, the amount is such that the aver- g _ _

age concentration of the noncondensable gas is of the order =Pk =Pa=0, @

of the Knudsen number Kn. The latter condition is equivalentand that the noncondensable gas is also absent in the Knud-

to setting sen layer on the evaporating boundathis fact can be
shown rigorously for the Maxwell molecules and for most of
EU the model equatioﬁ§). Consequently, the noncondensable
o O(Kn). (1) gas can be present only in the Knudsen layer on the condens-
' ing boundary.
We will focus on the continuum limit where Kr 0, or The macroscopic quantitigs, in the continuum limit

equivalently, the zeroth-order quantities in Kn. It should beKn— 0 (or, equivalently, the zeroth-order terms of their Kn-

noted that in the situation of Eql), the average concentra- €xpansiongare described by the Euler set of equations for an
tion of the noncondensable gas becomes infinitesimal in thileal gas, which is written in the following dimensionless

continuum limit. Nevertheless, as we will see, its trace has altprm

important effect on the overall flow of the vapor. 9 PP
P 7 — 0 (5a)

. . . IX; '

B. Fluid-dynamic equations !

In Ref. 18, the asymptotic behavior of the vapor and the . a_ﬁl L1 1(9p

noncondensable gas was investigated in the situation de- P j&Xj 2 9%
scribed in Sec. Il A. More specifically, a systematic

=0, (5b)

asymptotic analysis of the Boltzmann equation for small ¢4 (5.

Knudsen numbers has been carried out under the assumption Vi J( T ) 0 (50)
that the interaction of the vapor molecules with the boundary

is described by the conventional condition for evaporation A SAT (50)

and condensatio(the so-called complete condensation con-
dition), and that of the noncondensable-gas molecules witvhere p”=A”. Here and in what follows, we omit the sub-
the boundary by the diffuse reflection condition. The result isscript H for the Hilbert solution because no confusion is
summarized here and in Sec. Il C. expected.

Let X; denote the space rectangular coordinate system,
ne, p®, andp“ the number density, the mass density, and th&"- Boundary conditions
pressure of thexr component@=A,B), respectively, and; The Knudsen-layer correctiohy [see EQq.(3)] is ob-
and T the flow velocity and the temperature of the vapor,tained by solving a half-space boundary-value problem of
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the Boltzmann equation. More specifically, the Knudsen-(ﬁA) ('AI') I
layer correction for the evaporating surface corresponds teTb=}'s Mn,Mt,A—b, AAr r (whenM,<1), (83
the solution for the steady flow of a pure vapor evaporating Pw Tw (Dplp

from a plane condensed phe@éz,“and that for the condens-

ing surface corresponds to the solution for the steady flow of ) (:r) |

a vapor condensing onto a plane condensed phase in th{% ;fb(l,Mt’A_b’ AAr f) (whenM,=1), (8b)
presence of the noncondensable §£9:*>?**The boundary  Pu W (ply

conditions for the Euler equatioriSa)<5d) are obtained to-

gether with the solution for the Knudsen-layer corrections.(ﬁA) (_AI_) |

We will summarize, in the following, the t_)oundary cond|- AAb > Fy Mn,Mt,A—b, AAr T (whenM,>1), (80)
tions thus obtaine¢see Ref. 18 for the details of the deriva- [, T (Mplp

tion). "

Let Lx,i(x1,x2) denote the boundary, whepg and y»
are the(dimensionles)ﬂscoordinates on the boundary orthogo- ,, 1i(/§/?ti(1)) + X 2L(Mati(2)) + gzMsti(l) _ glMati(Z) =0,
nal to each otherT,T,, the temperature of the boundary, Rt "Xz
(2KT,/mPY%,; its velocity, andp, pf, the saturation pressure (9)
of the vapor at temperatur‘éﬁw. Further, we denote by,
the unit normal vector to the boundary pointing to the gas. .=~ _ o o 21
region and byt” andt? the unit tangential vectors to the N =0wl + I—(n )o(Tp
boundary in the direction of increasing and y,, which are '

taken in such a way thaf", t*, andn; form a right-hand My I =
system. Since we consider steady flowgn;=0 holds. X Gs M“’Mt’_’l‘__’(ﬁA) | I'|a  (when M, <1),

First, we introduce the following local Mach numbers w b
based on the normal and tangential flow velocities on the (109
boundary relative to the velocity of the boundary:

M, = \,r%(-]-)£1/2|(,3j)bnj|, (6a) /V,B = l;wi’f + ll_b(ﬁA)b(-'I‘—)%IZ

r
M, = VB/5(T), 2 (B1)b = i = (B )0yl (6hb) XG<M (Do @% I, f>
b ) t~ 9 A 1 A i

where (), indicates that the quantity in the parentheses is T, B ()l
evaluated on the boundary. Then, the boundary conditions (whenM, = 1), (10b)

for the Euler equations in the continuum limit are expressed

as follows. wherel, is the mean free path of the vapor molecules in the
equilibrium state at rest with number density(i®), and
temperatureT,(T), and is therefore a function ¢f; and x»;
1. Boundary condition on the evaporating surface X1.1and y, , are defined by
The boundary condition for the Euler set of equations on 3 P
the evaporating surfadév;),n; > 0] is given in the following X11= <ﬁ> tD y,,= <ﬁ> 1@, (11)
form: T\ ax /! “ X/
M,<1, M;=0, (78 andg, andg, are, respectively, the geodesic curvatﬁjre'm
the dimensionless; space of the y; and y, coordinate lines
G (1’) on the boundary; and;, which is defined by
T =My, =My, (7b)
" Tw _ (0i)p — Owi = (0))pNjN; (12)
The functionshy(M,,) andh,(M,,) in Eq.(7b) have been con- |(D1)p = Dwi = ()i

structed numerically by the use of the Bhathagar—-Gross—
Krook (BGK) modef’ of the Boltzmann equation in Ref. is the tangential unit vector in the direction of the tangential
23. The analytical form of these functions ft,<1 was component of the flow velocity of the vapor relative to the
obtained in Ref. 22see also Refs. 5, 24, and)30 boundary. When the tangential component is zg(®),
=0y = (0))pnn;=0 or M=0], we can define as an arbitrary
unit tangential vector becau§&; andG, vanish[see Eq(13)
below]. Here, we note the following: In Ref. 181, instead
of M,, appears in the equations corresponding to E)sand
The boundary condition for the Euler set of equations on(10) becauseM,, is defined byM,= \s’6—/5(:|')gl’2(ﬁj)bnj [cf.
the condensing surfadéo;)pn;<0] is summarized as fol- Eq. (6a)]; in the same referencef(1_,---), which is the
lows: same asFy(1,--), is used in the equation corresponding to

2. Boundary condition on the condensing surface
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Eq. (8b); andﬂ/io in Ref. 18 corresponds t&/*,3 here. Thel

and thus/\/}3 are undetermined functions @f and y,, deter- T T
mined together with the solution of the Euler set of equa- d vapor A
tions. The physical meaning of these functions will be ex- pr + prr

plained below. The functiongg and F, of four independent

variables occurring in Eq8) have been constructed numeri- noncondensable gas

cally in Refs. 19 and 2@see also Refs. 25 and gén the Urnr
basis of the model Boltzmann equation proposed by Getz6

al.*? [the Garz6—Santos—BrefGSB) model. It should be X,
mentioned that these numerical functions are restricted to the 0 L

case where the molecules of the noncondensable gas are me-
chanically 'den_tlcal to thc_)se O_f the vapor. The numerical dat%IG. 1. Two-surface problem of evaporation and condensation in the pres-
for these functions are given in Refs. 19 and 20: seqE8).  ence of a noncondensable gas.

in Ref. 19 and related figures and tables f& and see Eqg.

(159 in Ref. 20 and related figures and tables #&y. The

numerical data for the functionSg in Eq. (108 and G, in noncondensable-gas molecules contained in the Knudsen
Eq. (10b), based on the GSB model and restricted to the caskyer per unit area on the boundary.

where the molecules of the noncondensable gas and those of

the vapor are mechanically the same, are also given in Reff. Summary

19 and 20. More specificallyGs corresponds toV;=I'G in To summarize, the vapor flows in the continuum limit in
Ref. 19 [see Eq.(32) there; " corresponds td,I'/(i¥),l,  the situation explained in Sec. Il A are described by the Eu-
herd, and G is tabulated thergsee Fig. 9 and Table Il in ler set of equations, Eqg5a)—(5d), with the boundary con-
Ref. 19 and also Tables IX-XII in Ref. 33and G, corre-  dition, Egs.(7a and(7b), when evaporation of the vapor is
sponds ta\; in Ref. 20(see Fig. 8 and Table Il in Ref. 20 taking place and with the boundary condition, E@)—(8c),

and also Tables IX-XII in Ref. 34 We note that the func- (9), (108, and(10b), when condensation is taking place. In

tions G, and G, are nonnegative and have the property thatthis physical situation, the noncondensable gas of an infini-
tesimal average concentration accumulates in the Knudsen
Gs=Gp,=0 only when M{=0 or r=o. (13 layer with an infinitesimal thickness on the condensing
boundary. As a result, its local concentration on the boundary
rises to the order of unity. In this way, the noncondensable
gas has a finite effect on the vapor flow through the boundary
condition on the condensing boundafyr more precisely,

throughf in the boundary condition

When the problem is spatially two dimensional, we may
assume that the physical quantities are independeng.of
For simplicity, let us denotey; by y and ti(l) by t;. Then,
becauseay; =g,=0 in this case, it follows from Eq9) that

ﬂ/?ti = const. (14)
B ) ll. APPLICATIONS

The functiond” and/\/? of x, and y, are auxiliary func- ) . .
tions in the boundary condition, and their physical meaning N this section, we show some applications of the Euler
is not necessary to obtain the solution of the Euler set ofYStem summarized in the preceding section. To be consis-
equations with the boundary conditioig—(10). However, tent W'th t_he numerical data for the functiofts, 71, Gs, and
these functions themselves have clear physical meaning r&» 9iven in Refs. 19 and 2[see Sec. Il C for the correspon-
lated to the behavior of the noncondensable gas in the Knudi€nce betwee(Gs, Gy) and the symbols in Refs. 19 and]20
sen layer. Lem,i8 and n,(2kT,/m*) 208 denote, respec- we assume thgt thg molecules of the noncondensable gas are
tively, the number density and tiocal) particle flux of the mechanically identical to those of the vapor and that the

noncondensable gas molecules in the Knudsen layer, and [Bghavior of the mixture is described by the GSB model.

7 be the stretched coordinate normal to the boundary definednen: Wwe make use of these data as well as those for the

by X =X+ €7, where e=(\a/2)Kn (=0 corresponds to f2u3nctionshl andh, based on the BGK model given in Ref.
the boundary. Then,A§ and®Z, are functions ofyy, x», and :

7, andl and A are defined dS A. Two-surface problem of evaporation and
foo condensation

T'= Ard7, (153

The first problem is the two-surface problem of evapo-
ration and condensation. We consider a vagocomponent
" in the gap G=X;=<L between two parallel plane condensed
Ma:f (I,iBKdﬂ_ (15b) phases(see Fig. 1 Let us suppose that the surfaceXgt
0 =0 is kept at temperaturg and is set at rest, whereas that at
_ _ - R X;=L is kept at temperatur&, and may be moving in its
Thus, (V#/2)n|,T" and (\“"7-r/2)nr(2kTr/mA)1’2Ir/\/?3 are, re- surface in theX, direction with a constant spedd,. We
spectively, the total number and the total particle flux of thedenote byp, and p,, the saturation pressure of the vapor at

0
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TABLE I. The quantitiesp?, o5, T, p* M,, and M for different values of the parameteps/p,, U, and
A (T, /T,=1). Here, the molecules of the noncondensable gas are assumed to be mechanically identical with
those of the vapor.

pu/p=1.2 pu/p=1.5

Oy A P =5, T P M, M P - TP M, M

0 1.118 0.0424 0.981 1.097 0.0469 0.0474 1.284 0.0930 0.958 1.231 0.1041 0.1194
1.128 0.0370 0.983 1.109 0.0409 0.0417 1.312 0.0801 0.964 1.265 0.0894 0.1051
1.136 0.0329 0.985 1.119 0.0363 0.0374 1.333 0.0704 0.969 1.291 0.0783 0.0938
0 2 1147 0.0269 0.988 1.134 0.0297 0.0309 1.364 0.0567 0.975 1.329 0.0629 0.0773
05 0 1.120 0.0414 0.981 1.099 0.0458 0.0464 1.288 0.0912 0.959 1.235 0.1020 0.1175
05 05 1.129 0.0363 0.984 1.111 0.0401 0.0410 1.315 0.0787 0.965 1.269 0.0878 0.1035
05 1 1137 0.0324 0.986 1.120 0.0357 0.0368 1.336 0.0693 0.969 1.294 0.0771 0.0926
05 2 1148 0.0265 0.988 1.135 0.0292 0.0304 1.365 0.0560 0.975 1.331 0.0621 0.0764
1.124 0.0388 0.983 1.105 0.0429 0.0436 1.299 0.0861 0.961 1.249 0.0962 0.1118
0.5 1.133 0.0343 0.985 1.116 0.0379 0.0389 1.323 0.0749 0.967 1.279 0.0834 0.0991
1.140 0.0307 0.986 1.124 0.0339 0.0350 1.342 0.0663 0.970 1.303 0.0737 0.0890
1.150 0.0254 0.989 1.137 0.0280 0.0292 1.370 0.0540 0.976 1.337 0.0598 0.0740
1.139 0.0312 0.986 1.123 0.0344 0.0355 1.332 0.0708 0.968 1.290 0.0788 0.0943
0.5 1.145 0.0282 0.987 1.131 0.0310 0.0323 1.350 0.0629 0.972 1.312 0.0699 0.0849
1 1.150 0.0257 0.989 1.137 0.0283 0.0296 1.364 0.0566 0.975 1.330 0.0628 0.0772
1.157 0.0218 0.990 1.146 0.0240 0.0252 1.385 0.0473 0.979 1.356 0.0524 0.0655

o O o
o
(&)]

N NDNDNDN PR R R
o

temperaturel, and that at temperaturg,, respectively. A T P~ Uy l, ng
noncondensable gaB componentis contained in the gap, T Uy = (2K P2’ Kn= U (16)
whose average molecular number density over the gap is ! ! ! !

denoted byngv. Here, we takd. as the reference length and wherel, is the mean free path of the vapor molecules in the

T,, p, andn;=p,/kT, as the reference quantities, i.€,~T,,  equilibrium state at rest with temperatufeand pressure,
p,=p;, andn,=n,. Then, the problem is characterized by the (or molecular number density;). We assume thal,<T,
following parameters: andp, <p,, so that evaporation takes place on the surface at

TABLE Il. The quantitiesp?, 0, T, A M, and M for different values of the parametepg/p;, Ol, and
A (T, /T,=1.1). See the caption of Table I.

pu/pi=2 pu/pi=5
Op & A =5 T P My M P - TP My, M
0 0 1402 01643 1.023 1.434 0.1779 0.2303 2.600 0.3602 0.928 2.412 0.4096 0.9365
0 05 1457 0.1396 1.034 1507 0.1504 0.2033 2.923 0.2824 0.966 2.823 0.3147 0.8255
0 1.499 0.1216 1.043 1.563 0.1305 0.1823 3.143 0.2347 0.989 3.109 0.2585 0.7377

0 2 1558 0.0969 1.054 1.643 0.1034 0.1510 3.434 0.1775 1.016 3.490 0.1929 0.6095
05 0 1.408 0.1615 1.024 1.442 0.1749 0.2274 2.616 0.3559 0.930 2.433 0.4043 0.9310
0.5 05 1.462 0.1376 1.035 1.513 0.1482 0.2011 2.936 0.2794 0.967 2.840 0.3112 0.8203
05 1 1502 0.1201 1.044 1568 0.1287 0.1803 3.154 0.2325 0.990 3.122 0.2560 0.7333
05 2 1561 0.0959 1.055 1.646 0.1023 0.1497 3.441 0.1761 1.017 3.499 0.1913 0.6060
1 0 1425 0.1540 1.027 1.464 0.1664 0.2195 2.663 0.3440 0.936 2.492 0.3895 0.9161
0.5 1475 0.1319 1.038 1.530 0.1419 0.1946 2.973 0.2711 0.971 2.888 0.3013 0.8060
1513 0.1156 1.046 1.582 0.1239 0.1749 3.184 0.2263 0.993 3.162 0.2488 0.7205
1568 0.0930 1.056 1.656 0.0991 0.1458 3.462 0.1723 1.019 3.527 0.1870 0.5965
1.478 0.1304 1.039 1.535 0.1401 0.1927 2.822 0.3054 0.955 2.694 0.3424 0.8618
0.5 1.517 0.1139 1.046 1.588 0.1219 0.1728 3.098 0.2441 0.984 3.050 0.2695 0.7562
1.547 0.1013 1.052 1.628 0.1082 0.1567 3.285 0.2060 1.003 3.294 0.2253 0.6767
1592 0.0833 1.061 1.689 0.0886 0.1327 3.532 0.1593 1.025 3.620 0.1724 0.5626

NN NN BRE P
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TABLE IIl. The quantitiesp®, o5, T, P, M,, and M for different values of the parameteps/p,, U, and
A (T, /T,=1.2). See the caption of Table I.

Pu/pi=5 py/p=10

oA -0, T pA M, M ra -0, T pA M, M

_C)
>4
heY

0 2381 0.3768 1.012 2.409 0.4103 0.8972 3.929 0.5136 0.940 3.694 0.5803 2.018
2.665 0.2986 1.052 2.803 0.3190 0.7958 4.754 0.3779 1.011 4.808 0.4117 1.797

1 2862 0.2497 1.077 3.081 0.2636 0.7146 5.271 0.3063 1.048 5.523 0.3278 1.615
0 2 3125 0.1902 1.106 3.458 0.1980 0.5943 5.924 0.2264 1.088 6.447 0.2377 1.341
05 0 2395 0.3726 1.014 2.429 0.4053 0.8924 3.954 0.5090 0.942 3.727 0.5744 2.013
0.5 05 2.677 0.2956 1.053 2.819 0.3155 0.7913 4.775 0.3748 1.013 4.837 0.4079 1.789
05 1 2872 0.2475 1.078 3.095 0.2611 0.7108 5.289 0.3040 1.049 5.548 0.3251 1.608
05 2 3132 0.1887 1.107 3.467 0.1965 0.5910 5.937 0.2249 1.089 6.465 0.2361 1.335
0 2437 0.3606 1.020 2.486 0.3910 0.8788 4.025 0.4962 0.949 3.822 0.5578 1.997
0.5 2710 0.2871 1.058 2.866 0.3058 0.7780 4.836 0.3659 1.018 4.921 0.3974 1.769
1 2899 0.2411 1.081 3.133 0.2540 0.6989 5.340 0.2973 1.052 5.620 0.3175 1.588
3.151 0.1847 1.109 3.494 0.1921 0.5820 5.973 0.2208 1.091 6.517 0.2315 1.319
2,578 0.3215 1.040 2.681 0.3453 0.8288 4.273 0.4534 0.972 4.153 0.5037 1.937
0.5 2822 0.2594 1.072 3.024 0.2745 0.7320 5.042 0.3368 1.032 5.206 0.3631 1.698
1 2990 0.2200 1.091 3.263 0.2307 0.6578 5.513 0.2754 1.064 5.863 0.2926 1.518
2 3.215 0.1712 1.116 3.587 0.1775 0.5504 6.097 0.2069 1.098 6.694 0.2163 1.261

o O O
o
ol

NN NN BRE PP
o

X;=L (or x;=1) and condensation &, =0 (or x;=0); there- It follows from Egs.(5a—5d) that pA(=i*), ; (03=0),
fore v;<0. In view of Eq.(1), we let T, and p* are all constant. The boundary condition on the
B evaporating surfac€7) leads to the following condition at
?"’"’:A Kn, (17 x=L
l ~
Mng 1, 62:U||, (193)

whereA is a constant, and we specily rather thamgv/ n.

We investigate the steady flow of the vapor caused by evapo-
ration and condensation on the condensed phases and the @A:mhl(mn), T="h,M,), (19b)
effect of the noncondensable gas on the vapor flow in the I
continuum limit with respect to the vapakn—0). The |\ here
present problem has been investigated in Ref. 13 in the case

of U, =0. The following analysis and discussion are straight- M, = V6/5T Y25, (20)

forward extensions of those given there. The notation(-),, is omitted in Eqs(19) and(20) as well as

Now, let us apply the Euler equations and their boundary N
conditions to the present problem. Since the problem is spd? Eds-(21) and(22) below becausg?, T, etc., are constants.

. L . ~ . . The boundary condition on the condensing surfé®)e(10)
&?::Zhoigi:l;]:dnzzns;}; In Egs. (8380) Is a constant, reduces to the following condition a=0:

A~ 1~
= A = !
| T~ =F\ MM, T, T M, <1), 21
A=TT, (18) P S( TR ) (Mn<2) (213
2
This relation is derived from the following fact: since thereis  ga_ ~ (1 M. T |_r1-> M.=1 21p
no noncondensable gas except in the Knudsen layer at the P PV T A (Ma=1), (21b
condensing surface; =0), the quantity(vw/2)nl,I", which
is the total number of the noncondensable-gas molecules ., ~ =
contained in the Knudsen layer per unit area of the condens- P> ]:b(M”’M“T’ ﬁA|bF (Mo >1), (219

ing surface[see the paragraph containing Efj5)], is equal ) o
to nSL, i.e., the total number of the noncondensable-gagvhereM, is the same as Eq20), M; is given by

molecules contained in the column of lendttbetween two M. = ,%ﬂ/zr 2
condensed phases, perpendicular to them, with a unit base "t~ ' vals

area. In the present one-dimensional probleofw/,}3 and|l, is the mean free path of the vapor molecules in the

=(0 ,ﬂ/‘;,O) is also constant, so that E¢Q) or Eq. (14) is  equilibrium state at rest with temperatuTe? and number
satisfied. densityn,i®. The ratiol,/l,, appearing in the function&,
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and %, depends on the molecular modg#l,=/*/TY2 for
the GSB mode(for example|,/1,=A* for hard-sphere mol-
ecules.

From the first equation of Eq19a), the flow is either
subsonic(M,<1) or sonic(M,=1). First, we consider the

subsonic case. If we eliminafg®, ?, 0o, andT from Egs.
(18), (199, (19b), (213, and(22), we obtain the following
equation forM,;:

6\v2. [T -1/2
oty = f( (5) U.thwn)} ,

T T 12
_hZ(Mn)v , th(Mn) Al (23)

The M, is determined by solvmg Eq23) for a given set of
the paramete(T,/T,, pu/p, U”, A). Then, pA and T are
obtained from Eq(19b), v, from Eq.(20), andp”* (=i*) from

Eq. (5d). We show the constanf&, o,, T, P*, andM, thus
obtained for various values of the s&,/T,, p,/p, U,,, A)

in Tables I-lll. The results for the casféqlzo are given in
Table | of Ref. 13, where the parametgy/n, (n,=p, /KT, ® Trr/Tr=2
is used rather thap,,/pl In the present study, we recom-

puted the case dﬂ”—O usmg supplemented numerical dataF'G 2. The boundar)ﬁ Ol, T,/T,,A) of the existence range s for vari-

ous values otJII (@ T,/T,=1,(b) T, /T,=2. The dotted lines in the figures
of Fs and included the results in Tables |1l for the sake Oflndlcate the asymptoteg\=§,) of the curves. Here, the molecules of the

completeness. Since the dependgm‘f@n M, is weak, the  noncondensable gas are assumed to be mechanically identical with those of
solution does not depend much bk. Its dependence on  the vapor.

is stronger. The dimensionless mass-flow ratd=p"o,)) N - .

from the evaporating to the condensing surface, which i re s_hown in Fig. 2, wher§(Uy,Ty/T,,4) |s_shown as a

related to the(dimensional mass-flow rateM(=p?lu,|) per ynctlon ofAA for T,/T,=1 and 2 and for various values of

unit time and unit areathrough a plane;=consy as M Yi- The S(Uy, Ty /T,,A) is an increasing function of and

=2p, (2T, /mf)" 1’2/\/1 is also shown in Tables I—IIl. With the becomes |nf|n|tely large aA approaches a critical valug,

increase ofA (or the amount of the noncondensable gas inthat depends oy and Ty /T,. That is,A= &, is the asymp-

the Knudsen layer a1x1—0) the condensation becomes tote of the curve, and there is no sonic solution in the region

weaker, and thus,| and M decrease. On the other hand, A= 6. The formula of the critical value’, is readily ob-
tained from the form ofF, given in Ref. 20, i.e.,

Dy= U” holds irrespective oA. Therefore, WherU,, is finite

(e.g., U”—O 5, 1, 2 in Tables I-I), the flow becomes more 5= \W[Tuh (l)]m

tangential to the plane condensed phases for latgewe © 2 2

will see the same effect in Figs. 5 and 6 in Sec. Il B 6\1v2. [T 12 7
Next, we consider the case where the flow speed is sonic X rb(l,(—> U, [th(l)] ,th(l)), (25)
(M,=1). If we eliminatep”, T, o, andT" from Egs.(18), S Ti

(199, (19b), (21b), and (22), we obtain the following wherel’, is a function the numerical data of which are given
relation:

2 T T T
~ T L
%>S<U,,,?",A>, (243 I
| | L T[[/T]=1
where T 1.25
T 6 1/2 T -1/2 <S Lr 15
ST SV e .
S(U"’T,'A> hl(l)fb(l.(5> U..[ h2(1>] , _
T T -1/2 B
7 ha(2), r{T”hzu)} A>. (24b) i
I \7T 00 L 1 L

This relation gives the condition far, /T,, p,/p;, Uy, andA
for which a sonic ﬂOW(M“:l) occurs. Some examples of FIG. 3. The critical values; vs 0” for variousT, /T,. The &, is taken as the

the boundaryS(O,, ,Ty/T,,A) of the existence rangé4a  abscissa for easy comparison with Fig. 2. See the caption of Fig. 2.
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X9

X5
o Acos( ><X1 <L, 0sX,<2L. (26)
2L L

We denote byn? the average molecular number density of
the noncondensable gas over the dongas) and let it be in
the form of Eq.(17), i.e.,n2 /n;=AKn, in order to be con-
sistent with Eq(1). The problem is then characterized by the

following parameters:
vapor oo U A
T p " (kT/yY2 oL

_|_
noncondensable Unr We investigate the steady behavior of the vapor and the non-

gas condensable gas in the continuum lirgiin — 0), where the
T T average concentration of the noncondensable gas becomes
I 17 P B
infinitesimal (n;,/n;— 0).
We restrict ourselves to the case where evaporation takes

pr prr .
place on the plane condensed phase and condensation on the
sinusoidal one. In addition, we assume, just for simplicity,
that the speed of condensation on the sinusoidal condensed
0 dA LV X phase is sqbsonic. The present problem_ has been _investigated

on the basis of the same Euler system in Ref. 18 in the case
FIG. 4. Vapor flow between a plane and a sinusoidal condensed phase in thghere the plane condensed phase is at(tdqst 0). This case
presence of a noncondensable gas. will also be included in the following discussions.

Now let us summarize the boundary conditions for the
Euler set of equationa)—5d) in the present problem. The
boundary condition on the plane condensed phase, where
evaporation is assumed to be taking place, is given by Eq.

Kn, A. (27

in Ref. 20. In Fig. 3,5; versustH is shown for various

values ofT,/T,; &, is taken as the abscissa for easy compari- (7) 1e., aty =1,

son with Fig. 2. My<1, 0,= 0”’ (283)
Here, we should recall that, because of ELy), n i

vanishes in the continuum limit Kr-0. As we have seen, A P N

however, the solution in the continuum limit depends/n pt= o —h (M), T= _hZ(Mn) (28b)

which is a quantity specifying the vanishing rate nﬁ[/n,
and thus related to the amount of the noncondensable gagith
This means that, in the continuum limit, the vapor flow is

still affected by the noncondensable gas in spite of the fact My = V6/5T404]. (29

that its average concentration is infinitesimal. In Egs.(28) and(29) and in Eqs(30)«33) below, the nota-
tion (-), is omitted because it is obvious that the quantities

B. Vapor flows between a plane and a sinusoidal occurring in the boundary conditions are their boundary val-

condensed phase ues. The boundary condition on the sinusoidal condensed

Next we consider a vap@A componentand a noncon- phase, where subsonic condensation is assumed to be taking
densable gaéB componentin the gap between a sinusoidal Place, is given by Eqs(8a and (9). That is, atXx,
condensed phase locatedYyt=A cogmX,/L) and a plane =(A/L)cogmxy),

condensed phase locatedX§t=L (see Fig. 4. Let us sup- l,

pose that the sinusoidal condensed phase is kept at tempera- ph= ( ts '”AI ) (30
ture T, and is set at rest, whereas the plane condensed phase b

is kept at temperaturg, and may be moving in its surface in whereM,(<1) and M, are given by

the X, direction with a constant speedi,. We denote hbyp, —

the saturation pressure of the vapor at temperafuend by M, = V6/5T Y25;n), (31a
p, that at temperaturg,,. We takeL as the reference length o

and T,, p;, and n,=p,/KT, as the reference quantities, i.e., M, = V6/5T *3p;t], (31b)

T,=T,, pr=p;, andn,=n,. Then, the Knudsen number Kn of

the system is given by Kni=/L, wherel, is the mean free with n; andt; being unit normal and tangential vectors to the

path of the vapor molecules in the equilibrium state at restinusoidal condensed phase, apm(_a_m_ean free path of the_
with temperatureT, and pressure, (or molecular number molecules of the vapor in the equilibrium state at rest with

densityn,). We assume that the flow field is periodic in the temperaturd| T and number densit,f. In addition, in the
X, direction with period 2 and consider the problem in the Present two-dimensional problem, Ed4) holds along the
closed domain sinusoidal boundary Wi'[W? given by[see Eq(103)]
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Xo/L
Xo/L
X/L

1.5

L L R S S

Xo/L
X,/L
Xa/L

0.5

T T T T T T T

0 0.5 1 0.5 ,
X,/L X./L X,/L X1/L
© Upr = 0.2 (@ Uy =0.3 © Uy = 0.2 @ Uy =03
FIG. 5. Streamlines of the vapor flow fax=2 in the case off};/T,=1, FIG. 6. Streamlines of the vapor flow fax=4 in the case off,,/T,=1,

pu/p=2, andA/L=0.2.(a) U;=0, (b) U;=0.1,(c) Uy=0.2,(d) U;=0.3.  p,/p,=2, andA/L=0.2.(a) U, =0, (b) U,=0.1, (c) U,=0.2, (d) U, =0.3.
The corresponding streamlines in the pure-vapor ¢ase) are shown by The corresponding streamlines in the pure-vapor ¢Ased) are shown by
dashed lines. Here, the molecules of the noncondensable gas are assumeg@hed lines. See the caption of Fig. 5.

be mechanically identical with those of the vapor.

1.5

. FIG. 7. Isolines of the flow speefb;| for U,=0.1,
e T,/T,=1, py/p,=2, andA/L=0.2. (a) Pure vapor(A
g =0), |vi|/(2kT,/m*¥?=0.164+0.0in (m=0, ...8; (b)
. A=2, |vi|/(2KT,/mP*2=0.075+0.015 (m=0, ..., 10.

M‘%ﬂm - See the caption of Fig. 5.

=0.15 7

Xs/L
Xo/L

Ty m AT

0.5

0 0.5 1
Xy/L

(a) pure vapor (A = 0) b)) A=2
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im i@ FIG. 8. Isolines of the number densit for U, =0.1,
> > Ty/T\=1, py/p,=2, andA/L=0.2. (8) Pure vapor(A
=0), n*/n=1.504+0.00Mm (M=0,...8; (b) A=2,
n/n,=1.646+0.00é (m=0,...,10. See the caption
of Fig. 5.
(a) pure vapor (A = 0)
NB_ lbonzar = = \77 =
=N TG M,M,, T, A I a;, (32 A:T I'ds, (34)
r b
where wheredsis the line element along the sinusoidal boundary in
t  (for ot =0) the dimensionlesg;x, plane, and the range of integration is
= lt . th <(’) (33)  from x,=0 to 2. This relation is obtained by noting that
i (forv<0). (Vw/2)nI,T is the total number of the noncondensable gas in

[Here,a; for v;t;=0 is defined as; see the sentence follow- the Knudsen layer per unit area of the boundgsge the

ing that containing Eq.12).] Note that the ratid,/l, appear-  paragraph containing E@l5) in Sec. Il § and that its total

ing in the functionsF, and G, is given byl,/l,=A*/TY2for ~ number in the entire domain per unit width X, i.e.,

the GSB model. In order to complete the boundary conditionnS (2L?), is therefore given by(\w/2)nl,L [T'ds Finally,

we need the relation betweénandT . This relation takes the these boundary conditions are supplemented by the condition
following form: h(x,=2)=h(x,=0) (h=p”, p*, 0;, orT) and T'(x,=2)

FIG. 9. lIsolines of the temperaturé for U, =0.1,
T,/T,=1, py/p,=2, andA/L=0.2. (a) Pure vapor(A
=0), T/T,=0.917+0.0016 (m=0,...,9; (b) A=2,
T/T,=0.942+0.00&h (m=0, ...,8. See the caption of
Fig. 5.

Xs/L
Xo/L

(a) pure vapor (A = 0)
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:f(XZ: 0), which corresponds to the periodic boundary con-TABLE IV. Mass-flow rateM for various values ofJ, andA in the case
T,/T,=1, p,/p,=2, andA/L=0.2. Here, the molecules of the noncondens-

dltlo\;]v'e solve this boundary-value problem numerically by able gas are assumed to be mechanically identical with those of the vapor.

means of a standard finite-difference method. Here, we om'E,”\A 0 5 4

the description about the numerical method and show only

the results. The computation is carried out #fL=0.2, O 0.4987 0.3734 0.2863

T,/T,=1, andp,/p,=2. 0.1 0.4984 0.3580 0.2773
Figure 5 shows the streamlines of the vapor flow for0.2 0.4979 0.3442 0.2727

U, =0, 0.1, 0.2, and 0.3 in the case®£ 2, and Fig. 6 shows %3 0.4989 0.3435 0.2593

those for the samél” in the case ofA=4. In these figures,
the corresponding streamlines for a pure-vapor fldw:0)

are also shown by dashed lines. As is seen from the figures, - ) ) .
the flow pattern of the vapor strongly dependsn(n the and thus\?t;=0 holds identically. Therefore, it follows from

~ . Egs. (13) and (32) that M;=0 on the sinusoidal condensed
fﬁ;{efoorfg[;Oér;hguﬁ:tt;mil;’;stgee :itg;'zaﬁrg)“giz 2{35]2 ;Std phase. In other words, the vapor condenses perpendicularly
as is discussed in Ref. 18, the values of the quantities such here. In contrast, the vapor condenses obliquely in the pure-

. . eapor case. This difference has been pointed out in Ref. 18.
the flow speedvi| and the numbe_r density* are dlﬁgrgnt The isolines of the flow spedd;|, those of the number
(see Sec. 4 of Ref. 1§ Let us consider the case whadg is  gensityn?, and those of the temperatuFeare shown in Figs.

finite [cf. Figs. §b)-5d) and §b)-6(d)]. The streamlines of 7-9, respectively, fotJ, =0.1. In Figs. 7-9, the isolines of
the vapor flow near the plane condensed phase show a sirq' ' ! h=-= . '

lar tendency to those in the two-surface probig&ac. Il A). hr(]a"gutzggge;)rfzr:'tzh?np(l;;e Sviiggﬁth é))ma(;te} Oihg}N tr;] ;né%n e
That is, the presence of the noncondensable gas in the Knu\év- ) . ~ )

sen layer on the sinusoidal condensed phase weakens cdindensed phase is relatively slou; =0.1), the density and
densation there and thus evaporation on the plane condensi&ilPerature variations are small. Therefore, a small error can
phase, so that the streamlines become more tangential to tﬁggnge |§0I|r)es S|gn|f|cantly. It ,ShOUId b,e understood that the
plane condensed phase for larger values\ofn the pure- |sql|nes in Figs. 8 and 9 give |nfor.mat|on about the almost
vapor caséA=0), the shape of the condensing surface has élnlform values of the number densny and temperature of the
weak effect on the overall vapor flow, and its streamlines ardapor but do not show the detailed structure of their small
nearly parallel and do not differ much from those of the variations accurately. LeM be the rate of the mass of the
two-surface problem. When the noncondensable gas is coN2POr evaporating from the part<0X;<2L of the plane
tained in the Knudsen layer on the condensing surface, thEondensed phase per unit time and per unit width inXge
magnitude of the component of the flow velocity of the va-direction. Its dimensionless counterpavt, defined by M

por normal to the condensed phase is reduced there. On thegM/m*n(2kT,/n)¥2L, is shown in Table IV.

other hand, the magnitude of its tangential component is not [N summary of all the results presented here, the noncon-
reduced much because the noncondensable gas is mobflensable gas with an infinitesimal average concentration
along the condensed phase and therefore does not give strof@mpletely changes the global two-dimensional flow field of
resistance. Therefore, the incidence of the streamlines bébe vapor. 5

comes more tangential for larger valuesdofin this way, the The quantityl”, which is a function of the position on the
vapor flow is more affected by the geometry of the condensboundary, is a measure of accumulation of the noncondens-
ing surface whem is large. When[J”:o [Figs. 5a) and  able gas inside the thickless Knudsen layer on the condens-

6(a)], the problem is symmetric with respect to te axis  ing boundary. The distribution dt along the sinusoidal con-

FIG. 10. Distribution ofT" along the
sinusoidal condensed phase for vari-
ous values olJ,, in the case ofT, /T,
=1, p,/p=2, andA/L=0.2.(a) A=2,
(b) A=4. See the caption of Fig. 5.

Xo/L X,/L
@A=2 YA =4
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0.4 ; T ; ; T 0.4 ; ; T

0.3 0.3
:& 0.9 202 FIG. 11. Distribution ofV® along tfje sinusoidal con-
densed phase for various valuesWf in the case of
T/ T,=1, py/p,=2, andA/L=0.2. (a) A=2, (b) A=4.
0.1 0.1 Here,1®=0 holds identically folJ, =0. See the caption
of Fig. 5.
0 L Il Il O Il 1 Il
0 0.5 1 1.5 2 0 0.5 1 1.5 2
Xo/L Xs/L
@ A=2 b)A =4

densed phase is shown in Fig. 10 for various value@hpfn contain it. Figure 12 shows the distributions Bfand 18

the case o\ =2 [Fig. 10@)] and 4[Fig. 1Qb)]. Let us define  ajong the sinusoidal boundary, in the caselkf=0.1, for
a kind of average flow speexf of the noncondensable gas several values od,i.e.,A=2, 1, 0.5, 0.1, and 0.05. When
inside the Knudsen layer along the sinusoidal condense@ not small, the noncondensable gas distributes over the
phase by whole boundary. But for smalt (A=0.1, 0.03, the noncon-
1B = A8t (35) densable gas tends to disappear from the paX@/L=<1
b and from the part neax,/L=2. (The V® does not have a
Recall that\/®t;, which is the total particle flux of the non- Meaning in the part without the noncondensable)géisthe
condensable gas in the Knudsen layer, is constant along tfgft-side edge of the part with the noncondensable gas in Fig.
boundary[Eqg. (14)]. The distribution of\® along the sinu- 12(a), the slope of the distribution df tends to become very
soidal condensed phase is shown in Fig. 11@@:0, 0.1, §teep. If the distribution of a physical quantity, e, v;, or
0.2, and 0.3 in the case &f=2 [Fig. 1X@)] and 4[Fig. T, along the sinusoidal condensed phase is plotted as a func-
11(b)]. When U, =0, VB vanishes identicallysee Sec. 4 of t@on of X,/L, the derivative _of the curve seems to be discon-
Ref. 18. The average speed naturally increases with the tinuous at the correspond{ng point, and its limit from the
increase oﬂ,,. right seems to béplus or minu$ infinity. In contrast, at t~he
Finally, we show some results for relatively small If ~ right-hand edge of the part with the noncondensable Bas,
the amount of the noncondensable gas is large enough, §isappears smoothly and no singularity appears, that is, the
distributes over the entire boundafyee Fig. 19 On the  Curve pf any physical quantity is smooth at the correspond-
other hand, when the amount of the noncondensable gas b@9 Point. Here, we should recall that the Euler set of equa-

comes s, may vanistr quivalenty” may vamsh 075 Sfeq 17 e bt sl of e Bojamenn
in a certain part of the boundary. Since we are considering §d y varying prop '

steady flow, we need to assume that the part which containssUCh a singularity as described above appears in the physical
’ antities, it violates the assumption for the Hilbert solution.

the noncondensable gas does not move. This means that : . )
icle flux A®t vanish nd thusl- =0 holds b ¢ n other words, the present fluid-dynamic system is not theo-
particle flux Ai't; vanishes and thubl=0 holds because of \4icq|ly applicable to such situations. In order to treat this

Eq. (13) with nonzerol’. To summarize, Eq30) with M¢  type of flow correctly, we need a two-dimensional analysis
=0 holds in the part which contains the noncondensable gagased on kinetic theory in the neighborhood of the singular
and Eg.(30) with I'=0 holds in the part which does not point.

5 ‘ ‘ ‘ ‘ 0.2

FIG. 12. Distribution ofl" (a) and that ofV® (b) along
the sinusoidal condensed phase for various values of
for U;=0.1,T,/T,=1, p,/p,=2, andA/L=0.2. See the
caption of Fig. 5.

0.1

0 05 1 15 2
(a) Xao/L (b) X5/ L
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e ok Y ReDo
T op’ O (@&T/MHY RTORS '
(36)

R, %

We investigate the steady behavior of the vapor and the ef-
fect of the trace of the noncondensable gas in the continuum

T Ry limit (Kn—0).
pr O D X, The behavior of the vapor is described by the Euler
vapor equationg5a—(5d). Let us consider the case where the vapor
+ Tir is evaporating from the inner cylinder and condensing onto
nancondensable the outer cylinder and assume that the speed of condensation
b on the outer cylinder is subsonic. Then the boundary condi-
tion on the inner cylindetx?+x3=1), where evaporation is
taking place, is given by
FIG. 13. Vapor flow between cylindrical condensed phases in the presence M <1, 51‘1 = OI, (373
of a noncondensable gas.
pA=h(My), T=hy(M,), (37b)
C. Vapor flows between two noncoaxial cylindrical where
condensed phases ——n o
M, = V6/5T ¥45;ny], (38

In this section, we consider a vap@ componentand a
noncondensable g&B component between two noncoaxial andn; andt; are the unit normal and tangential vectors to the
circular cylinders made of the condensed phase as shown inner cylinder,n; pointing into the region of the vapor, and
Fig. 13, where theX;, X,, andX; axes are assumed to form nj, t;, and theX; axis forming the right-hand system. In Egs.
the right-hand system. Le® (or R,) be the radius of the (37) and(38) and Eqs.(39)—(42) below, the notatior(-), is
inner (or outep cylinder, T, (or T;;) the temperature of the omitted as in Sec. Ill B. On the other hand, the boundary
inner (or outey cylinder, D the distance between the two condition on the outer cylinddi(x;—D/R)?+x5=(Ry/R))?],
axes, andp, (or p,) the saturation pressure of the vapor atwhere condensation is taking place, is given by
temperaturel, (or T,). The inner cylinder may be rotating

(counterclockwise in Fig. J3around its axis with a constant ph= &73<Mn,MpLi ALr 1->, (39)
angular velocity, whereas the outer cylinder is kept at rest. P Ty iy

We denote byJ, the speed of the surface of the inner cylin-

der and takeR, as the reference length arig, p,, andn, where

=p,/KT, as the reference quantities, i.&=R,, T,=T,, p; T

=p;, andn,=n,. Then the Knudsen number of the system is My = V6/5T l/2|vjni|' (408
given by Knd,/R, with |, being the mean free path of the

vapor molecules in the equilibrium state at rest with tempera- M, = \fﬁsﬁ"l’%jt”, (40b)

ture T, and pressur@, (or molecular number density). As

before, the average molecular number density of the noncor@ndn; andt; are the unit normal and tangential vectors to the
densable gas over the whole domain is denoted®ynd is ~ outer cylinder,n; pointing into the region of the vapor, and
put in the formnZ /n=AKn, whereA is a constant to be N ti, and theX; axis forming the right-hand system. In ad-

specified. The problem is characterized by the followingdition, Eq.(14) holds along the outer cylinder, WheféB is
parameters: given by

FIG. 14. Streamlines of the vapor flow far=2 in the
case ofT,,/T,=1, p,/p,=0.5,R,/R =2, andD/R,=0.5.

@ 0|:0, (b 0.:0.1, (c) 0,:0.2. The corresponding
streamlines in the pure-vapor cage=0) are shown by
dashed lines. Here, the molecules of the noncondens-
able gas are assumed to be mechanically identical with
those of the vapor.

(©) ;=02

®) ;=01

(@) oy=0
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FIG. 15. Isolines of the number densit{ for U|=0.l
in the casel,/T,=1, p,/p,=0.5, R,/R =2, andD/R,
=0.5. (@ Pure vapor(A=0), "*/n,=0.67+0.0m (m
=0,...,5; (b) A=2, nA/n=0.744+0.0061 (m
=0,...,5. See the caption of Fig. 14.

Re= [ i~ = outer cylinder forA=2. Here,)® is the same as that used in
i E” TGy anMt'-lT“T’ ﬁAle &, (4)  sec. Il B[Eq.(35)], andd (0=< §<2) is the angle between
the X; axis and the line connecting a point on the outer
with cylinder and its axigthe point(D,0) in Fig. 13 measured
{ t for ot;=0, counterclockwise. Let\ =m”n,(2kT,/m™)¥?R M be the to-
&= A (42) tal mass-flow rate of the vapor evaporating from the inner
-1 for thj <0.

cylinder (per unit width in theX; direction and per unit

[Here,a; for 0;t;=0 is defined as; see the sentence follow- time). The dimensionless mass-flow ratel versusA for
ing tbat containing Eq(12).] Finally, the relation betweei 0,=0, 0.1, 0.2, and 0.3 is shown in Fig. 17.

andI’ is given by The features of the streamlines can basically be under-
1 R\ -1 stood from the discussion in Sec. Il B. The dimensionless
A= —2\“,; <E|> 1 f I'ds, (43 mass-flow rateVl naturally decreases with the increase\of

Faster rotation of the inner cylinder leads to a pressure rise
whereds s the (dimensionlesgline element along the outer on the outer cylinder because of stronger centrifugal effect

Cylinder, and the integration is carried out over the WhOleand thus causes Stronger condensation. Theref,brtein_
circle. This relation is obtained in a similar way as E84).  ;reases a8, increases. The results shown here again dem-

We analyze the above boundary-value problem of the, qirate that the noncondensable gas with an infinitesimal

Euler set of equations by a finite-difference method. The rez o306 concentration has a significant effect on the overall
sult for T|| /T| =1, p||/p| =0.5, R|| /R| =2, and D/R| =05 is vapor flow field.

shown in Figs. 14-17. Figure 14 shows the streamlines of

the vapor flow fon],:o, 0.1, and 0.2 in the case AF=2. In

the figure, the streamlines for the corresponding pure-vapdV- CONCLUDING REMARKS

casg(A_:O) are also shown by dashed Iineg. Figure 15 shows | o previous pape¥ we derived the fluid-dynamic sys-
the isolines of the molecular number density of the vapor o that describes steady flows of a vapor around its con-
in the case otJ;=0.1, where the isolines for the pure-vapor densed phase, on the surface of which evaporation or con-
case(A=0) are shown in(@) and those fod =2 in (b). Fig-  densation is taking place, in the continuum lirfin — 0) in

ure 16 shows the distribution df and that of)® along the the presence of a noncondensable gas whose amount is in-

FIG. 16. Distribution of" and that of\B along the
outer cylinder for varioui;AJI in the case\=2. (a) T, (b

VB. Here, 6 (0< #<2m) is the angle between th¥,
axis and the line connecting a point on the outer cylin-
der and its axi§the point(D,0) in Fig. 13 measured
counterclockwise. Irfb), VE=0 holds identically in the

casel:llzo. See the caption of Fig. 14.

@) o/ (b) 0/m
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