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Steady flows of a vapor around its condensed phase of arbitrary shape, on the surface of which
evaporation and condensation of the vapor may take place, are considered in the presence of a small
amount of a noncondensable gas. By a systematic asymptotic analysis of the Boltzmann system, the
present authors have derived the fluid-dynamic system describing such flows in the continuum limit
in the case where the amount of the noncondensable gas is infinitesimal compared with that of the
vapor [K. Aoki, S. Takata, and S. Taguchi, Eur. J. Mech. B/Fluids22, 51 (2003)]. In the present
study, the fluid-dynamic system is applied to some physical problems, and it is demonstrated with
concrete examples that such a tiny amount of the noncondensable gas causes dramatic changes of
the overall vapor flows. ©2004 American Institute of Physics. [DOI: 10.1063/1.1795271]

I. INTRODUCTION

In flows of a vapor with evaporation or condensation
taking place on the boundary, the vapor is not in a local
equilibrium state near the boundary even in the continuum
limit, i.e., the limit in which the Knudsen number, defined by
the ratio of the mean free path of the vapor molecules to the
characteristic length of the system, goes to zero. Therefore,
an approach based on kinetic theory is required to describe
such flows. In fact, this type of flow has been one of the
important subjects in kinetic theory of gases for more than
three decades.1–6

Concerning the continuum limit(and its neighborhood),
the fluid-dynamic systems that describe steady flows of the
vapor have been established by means of systematic
asymptotic analyses of the Boltzmann system.5,7–10Some of
these fluid-dynamic systems have been extended to the vapor
flows in the presence of another noncondensable gas that
neither evaporates nor condenses on the boundary.11,12 How-
ever, some interesting and important phenomena peculiar to
the continuum limit for the mixture of the vapor and the
noncondensable gas were clarified only recently.13–18

The phenomenon that is investigated in Ref. 18 is the
effect of a tiny amount of the noncondensable gas on the
overall vapor flows. For the sake of simplicity we restrict
ourselves to the case of a closed domain, and we suppose
that steady evaporation and condensation are taking place on
the boundary. Letnr be the reference molecular number den-
sity of the vapor,nav

B the average molecular number density
of the noncondensable gas over the domain, and Kn the
Knudsen number defined by the mean free path of the vapor
molecules in a reference equilibrium state divided by the
characteristic length of the domain. We assume that the
Knudsen number Kn is small and that the average concen-
tration of the noncondensable gas is as small as the Knudsen
number. The latter condition is equivalent tonav

B /nr =OsKnd.

The fluid-dynamic equations, which are the set of compress-
ible Euler equations, and their boundary conditions for the
continuum limit under this condition were derived in Ref. 18
with the help of a systematic asymptotic analysis of the Bolt-
zmann system for small Kn and a complementary numerical
analysis performed in Refs. 19 and 20. In this limit, the av-
erage concentration becomes infinitesimalsnav

B /nr →0d.
However, it was shown that the noncondensable gas of an
infinitesimal average concentration accumulates in the Knud-
sen layer with an infinitesimal thickness on the condensing
boundary and has a significant effect on the overall vapor
flow through the fluid-dynamic boundary condition on the
condensing boundary. An example that demonstrates a dra-
matic change of the streamlines of the vapor flow caused by
the presence of the noncondensable gas with an infinitesimal
average concentration is also given in Ref. 18.

High-speed flows of a single-component vapor that un-
dergo strong evaporation and condensation play an important
role in various applications such as heat pipes and laser ab-
lation. In practical situations, however, the vapor flows may
contain tiny impurities. The fluid-dynamic system estab-
lished in Ref. 18 reveals that such impurities have a crucial
effect on the vapor flows. Moreover, it enables quantitative
assessment of the effect of the impurities. Therefore, the re-
sults given in Ref. 18 are not only of theoretical interest but
also of practical importance.

In the present paper, we will give some more applica-
tions of the fluid-dynamic system derived in Ref. 18 and
demonstrate the effect of the trace of the noncondensable gas
on the global vapor flow. We first summarize the fluid-
dynamic system(Sec. II) and then investigate three concrete
problems numerically(Sec. III).

II. BASIC EQUATIONS

In this section, we first describe the physical situation
that we consider and then summarize the fluid-dynamic
equations and their boundary conditions obtained in Ref. 18.a)Electronic mail: aoki@aero.mbox.media.kyoto-u.ac.jp
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A. Physical situation

Let us consider a vapor and its condensed phase of arbi-
trarily smooth shape, on the surface of which evaporation or
condensation of the vapor is taking place. For the sake of
simplicity, we restrict ourselves to the case of a closed do-
main (see Ref. 18 for the case of an infinite domain). A small
amount of the noncondensable gas is contained in the sys-
tem. In the following, we assign the labelA to the vapor(it
will also be calledA component) andB to the noncondens-
able gas(it will also be calledB component).

We first introduce the reference quantities:L is the ref-
erence length of the system,nr is the reference number den-
sity of the vapor molecules,Tr is the reference temperature,
pr is the reference pressure of the vapor defined bypr

=knrTr (k is the Boltzmann constant), mA is the mass of a
molecule of the vapor,l r is the mean free path of the vapor
molecules in the equilibrium state at rest with temperatureTr

and number densitynr, and Kn=l r /L is the Knudsen number
with respect to the vapor. Further, we denote bynav

B the av-
erage number density of the noncondensable gas contained
in the system.

We consider steady flows of the vapor in the following
situation: (i) The Knudsen number Kn is small.(ii ) The
amount of the noncondensable gas contained in the system is
small; to be more specific, the amount is such that the aver-
age concentration of the noncondensable gas is of the order
of the Knudsen number Kn. The latter condition is equivalent
to setting

nav
B

nr
= OsKnd. s1d

We will focus on the continuum limit where Kn→0, or
equivalently, the zeroth-order quantities in Kn. It should be
noted that in the situation of Eq.(1), the average concentra-
tion of the noncondensable gas becomes infinitesimal in the
continuum limit. Nevertheless, as we will see, its trace has an
important effect on the overall flow of the vapor.

B. Fluid-dynamic equations

In Ref. 18, the asymptotic behavior of the vapor and the
noncondensable gas was investigated in the situation de-
scribed in Sec. II A. More specifically, a systematic
asymptotic analysis of the Boltzmann equation for small
Knudsen numbers has been carried out under the assumption
that the interaction of the vapor molecules with the boundary
is described by the conventional condition for evaporation
and condensation(the so-called complete condensation con-
dition), and that of the noncondensable-gas molecules with
the boundary by the diffuse reflection condition. The result is
summarized here and in Sec. II C.

Let Xi denote the space rectangular coordinate system,
na, ra, andpa the number density, the mass density, and the
pressure of thea componentsa=A,Bd, respectively, andvi

and T the flow velocity and the temperature of the vapor,

respectively. We introduce their dimensionless counterparts
by the following relations:

xi = Xi/L, n̂a = na/nr ,

r̂a = ra/mAnr, p̂a = pa/pr ,

v̂i = vi/s2kTr/m
Ad1/2, T̂ = T/Tr . s2d

According to Ref. 18, the macroscopic quantitiesh sh
= n̂a , r̂a , p̂a , v̂i , or T̂d are expressed in the following form:

h = hH + hK, s3d

wherehH is the moderately varying overall solution whose
length scale of variation is the reference length of the system
[i.e., ]hH /]xi =Os1d] and hK is a correction term tohH in a
thin layer(the Knudsen layer) with thickness of the order of
the mean free path(or of the order of Kn in the dimension-
less xi space) adjacent to the boundary. ThehH is the so-
called Hilbert solution, and we callhK the Knudsen-layer
correction. We consider the situation in which there is no
closed streamlines of the vapor flow or in which closed
streamlines of the vapor flow, if any, do not carry any non-
condensable gas. Then, as discussed in Ref. 18, we can as-
sume, consistently with Eq.(1), that the noncondensable gas
is absent in the overall flow field, that is,

n̂H
B = r̂H

B = p̂H
B = 0, s4d

and that the noncondensable gas is also absent in the Knud-
sen layer on the evaporating boundary(this fact can be
shown rigorously for the Maxwell molecules and for most of
the model equations18). Consequently, the noncondensable
gas can be present only in the Knudsen layer on the condens-
ing boundary.

The macroscopic quantitieshH in the continuum limit
Kn→0 (or, equivalently, the zeroth-order terms of their Kn-
expansions) are described by the Euler set of equations for an
ideal gas, which is written in the following dimensionless
form:18

] r̂Av̂ j

] xj
= 0, s5ad

r̂Av̂ j
] v̂i

] xj
+

1

2

] p̂A

] xi
= 0, s5bd

v̂ j
]

] xj
S5

2
T̂ + v̂k

2D = 0, s5cd

p̂A = r̂AT̂, s5dd

where r̂A= n̂A. Here and in what follows, we omit the sub-
script H for the Hilbert solution because no confusion is
expected.

C. Boundary conditions

The Knudsen-layer correctionhK [see Eq.(3)] is ob-
tained by solving a half-space boundary-value problem of
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the Boltzmann equation. More specifically, the Knudsen-
layer correction for the evaporating surface corresponds to
the solution for the steady flow of a pure vapor evaporating
from a plane condensed phase,21–24and that for the condens-
ing surface corresponds to the solution for the steady flow of
a vapor condensing onto a plane condensed phase in the
presence of the noncondensable gas.19,20,25,26The boundary
conditions for the Euler equations(5a)–(5d) are obtained to-
gether with the solution for the Knudsen-layer corrections.
We will summarize, in the following, the boundary condi-
tions thus obtained(see Ref. 18 for the details of the deriva-
tion).

Let Lxwisx1,x2d denote the boundary, wherex1 and x2

are the(dimensionless) coordinates on the boundary orthogo-

nal to each other,TrT̂w the temperature of the boundary,
s2kTr /m

Ad1/2v̂wi its velocity, andprp̂w
A the saturation pressure

of the vapor at temperatureTrT̂w. Further, we denote byni

the unit normal vector to the boundary pointing to the gas
region and byti

s1d and ti
s2d the unit tangential vectors to the

boundary in the direction of increasingx1 andx2, which are
taken in such a way thatti

s1d, ti
s2d, andni form a right-hand

system. Since we consider steady flows,v̂wini =0 holds.
First, we introduce the following local Mach numbers

based on the normal and tangential flow velocities on the
boundary relative to the velocity of the boundary:

Mn = Î6/5sT̂db
−1/2usv̂ jdbnju, s6ad

Mt = Î6/5sT̂db
−1/2usv̂idb − v̂wi − sv̂ jdbnjniu, s6bd

where s·db indicates that the quantity in the parentheses is
evaluated on the boundary. Then, the boundary conditions
for the Euler equations in the continuum limit are expressed
as follows.

1. Boundary condition on the evaporating surface

The boundary condition for the Euler set of equations on
the evaporating surfacefsv̂ jdbnj .0g is given in the following
form:

Mn ø 1, Mt = 0, s7ad

sp̂Adb

p̂w
A = h1sMnd,

sT̂db

T̂w

= h2sMnd. s7bd

The functionsh1sMnd andh2sMnd in Eq. (7b) have been con-
structed numerically by the use of the Bhatnagar–Gross–
Krook (BGK) model27–29 of the Boltzmann equation in Ref.
23. The analytical form of these functions forMn!1 was
obtained in Ref. 22(see also Refs. 5, 24, and 30).

2. Boundary condition on the condensing surface

The boundary condition for the Euler set of equations on
the condensing surfacefsv̂ jdbnj ,0g is summarized as fol-
lows:

sp̂Adb

p̂w
A = FsSMn,Mt,

sT̂db

T̂w

,
l r

sn̂Adblb
G̃D swhenMn , 1d, s8ad

sp̂Adb

p̂w
A ù FbS1,Mt,

sT̂db

T̂w

,
l r

sn̂Adblb
G̃D swhenMn = 1d, s8bd

sp̂Adb

p̂w
A . FbSMn,Mt,

sT̂db

T̂w

,
l r

sn̂Adblb
G̃D swhenMn . 1d, s8cd

x1,1
]

] x1
sN̂i

Bti
s1dd + x2,2

]

] x2
sN̂i

Bti
s2dd + g2N̂i

Bti
s1d − g1N̂i

Bti
s2d = 0,

s9d

N̂i
B = v̂wiG̃ +

lb
l r

sn̂AdbsT̂db
1/2

3 GsSMn,Mt,
sT̂db

T̂w

,
l r

sn̂Adblb
G̃Dai swhen Mn , 1d,

s10ad

N̂i
B = v̂wiG̃ +

lb
l r

sn̂AdbsT̂db
1/2

3 GbSMn,Mt,
sT̂db

T̂w

,
sp̂Adb

p̂w
A ,

l r
sn̂Adblb

G̃Dai

swhenMn ù 1d, s10bd

wherelb is the mean free path of the vapor molecules in the
equilibrium state at rest with number densitynrsn̂Adb and

temperatureTrsT̂db and is therefore a function ofx1 andx2;
x1,1 andx2,2 are defined by

x1,1= S ] x1

] xj
D

b

tj
s1d, x2,2= S ] x2

] xj
D

b

tj
s2d, s11d

andg1 andg2 are, respectively, the geodesic curvatures31 (in
the dimensionlessxi space) of thex1 andx2 coordinate lines
on the boundary; andai, which is defined by

ai =
sv̂idb − v̂wi − sv̂ jdbnjni

usv̂idb − v̂wi − sv̂ jdbnjniu
, s12d

is the tangential unit vector in the direction of the tangential
component of the flow velocity of the vapor relative to the
boundary. When the tangential component is zero[sv̂idb

− v̂wi−sv̂ jdbnjni =0 or Mt=0], we can defineai as an arbitrary
unit tangential vector becauseGs andGb vanish[see Eq.(13)
below]. Here, we note the following: In Ref. 18,uMnu instead
of Mn appears in the equations corresponding to Eqs.(8) and

(10) becauseMn is defined byMn=Î6/5sT̂db
−1/2sv̂ jdbnj [cf.

Eq. (6a)]; in the same reference,Fss1−,¯ d, which is the
same asFbs1,¯ d, is used in the equation corresponding to
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Eq. (8b); andN̂i0 in Ref. 18 corresponds toN̂i
B here. TheG̃

and thusN̂i
B are undetermined functions ofx1 andx2, deter-

mined together with the solution of the Euler set of equa-
tions. The physical meaning of these functions will be ex-
plained below. The functionsFs andFb of four independent
variables occurring in Eq.(8) have been constructed numeri-
cally in Refs. 19 and 20(see also Refs. 25 and 26), on the
basis of the model Boltzmann equation proposed by Garzóet
al.32 [the Garzó–Santos–Brey(GSB) model]. It should be
mentioned that these numerical functions are restricted to the
case where the molecules of the noncondensable gas are me-
chanically identical to those of the vapor. The numerical data
for these functions are given in Refs. 19 and 20: see Eq.(25)
in Ref. 19 and related figures and tables forFs; and see Eq.
(15a) in Ref. 20 and related figures and tables forFb. The
numerical data for the functionsGs in Eq. (10a) and Gb in
Eq. (10b), based on the GSB model and restricted to the case
where the molecules of the noncondensable gas and those of
the vapor are mechanically the same, are also given in Refs.

19 and 20. More specifically,Gs corresponds toN̂ f =GG in

Ref. 19 [see Eq.(32) there; G corresponds tol rG̃ / sn̂Adblb
here], andG is tabulated there(see Fig. 9 and Table III in
Ref. 19 and also Tables IX–XII in Ref. 33); and Gb corre-

sponds toN̂ f in Ref. 20(see Fig. 8 and Table III in Ref. 20
and also Tables IX–XII in Ref. 34). We note that the func-
tions Gs andGb are nonnegative and have the property that

Gs = Gb = 0 only when Mt = 0 or G̃ = 0. s13d

When the problem is spatially two dimensional, we may
assume that the physical quantities are independent ofx2.
For simplicity, let us denotex1 by x and ti

s1d by ti. Then,
becauseg1=g2=0 in this case, it follows from Eq.(9) that

N̂i
Bti = const. s14d

The functionsG̃ andN̂i
B of x1 andx2 are auxiliary func-

tions in the boundary condition, and their physical meaning
is not necessary to obtain the solution of the Euler set of
equations with the boundary conditions(7)–(10). However,
these functions themselves have clear physical meaning re-
lated to the behavior of the noncondensable gas in the Knud-
sen layer. Letnrn̂K

B and nrs2kTr /m
Ad1/2FiK

B denote, respec-
tively, the number density and the(local) particle flux of the
noncondensable gas molecules in the Knudsen layer, and let
h be the stretched coordinate normal to the boundary defined
by xi =xwi+ehni, wheree=sÎp /2dKn (h=0 corresponds to
the boundary). Then,n̂K

B andFiK
B are functions ofx1, x2, and

h, andG̃ andN̂i
B are defined as18

G̃ =E
0

`

n̂K
Bdh, s15ad

N̂i
B =E

0

`

FiK
B dh. s15bd

Thus, sÎp /2dnrlrG̃ and sÎp /2dnrs2kTr /m
Ad1/2l rN̂i

B are, re-
spectively, the total number and the total particle flux of the

noncondensable-gas molecules contained in the Knudsen
layer per unit area on the boundary.

D. Summary

To summarize, the vapor flows in the continuum limit in
the situation explained in Sec. II A are described by the Eu-
ler set of equations, Eqs.(5a)–(5d), with the boundary con-
dition, Eqs.(7a) and (7b), when evaporation of the vapor is
taking place and with the boundary condition, Eqs.(8a)–(8c),
(9), (10a), and(10b), when condensation is taking place. In
this physical situation, the noncondensable gas of an infini-
tesimal average concentration accumulates in the Knudsen
layer with an infinitesimal thickness on the condensing
boundary. As a result, its local concentration on the boundary
rises to the order of unity. In this way, the noncondensable
gas has a finite effect on the vapor flow through the boundary
condition on the condensing boundary(or more precisely,

throughG̃ in the boundary condition).

III. APPLICATIONS

In this section, we show some applications of the Euler
system summarized in the preceding section. To be consis-
tent with the numerical data for the functionsFs, Fb, Gs, and
Gb given in Refs. 19 and 20[see Sec. II C for the correspon-
dence betweensGs,Gbd and the symbols in Refs. 19 and 20],
we assume that the molecules of the noncondensable gas are
mechanically identical to those of the vapor and that the
behavior of the mixture is described by the GSB model.
Then, we make use of these data as well as those for the
functionsh1 andh2 based on the BGK model given in Ref.
23.

A. Two-surface problem of evaporation and
condensation

The first problem is the two-surface problem of evapo-
ration and condensation. We consider a vapor(A component)
in the gap 0øX1øL between two parallel plane condensed
phases(see Fig. 1). Let us suppose that the surface atX1

=0 is kept at temperatureTI and is set at rest, whereas that at
X1=L is kept at temperatureTII and may be moving in its
surface in theX2 direction with a constant speedUII . We
denote bypI and pII the saturation pressure of the vapor at

FIG. 1. Two-surface problem of evaporation and condensation in the pres-
ence of a noncondensable gas.
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temperatureTI and that at temperatureTII , respectively. A
noncondensable gas(B component) is contained in the gap,
whose average molecular number density over the gap is
denoted bynav

B . Here, we takeL as the reference length and
TI, pI, andnI =pI /kTI as the reference quantities, i.e.,Tr =TI,
pr =pI, andnr =nI. Then, the problem is characterized by the
following parameters:

TII

TI
,

pII

pI
, ÛII =

UII

s2kTI/m
Ad1/2, Kn =

l r
L

,
nav

B

nI
, s16d

wherel r is the mean free path of the vapor molecules in the
equilibrium state at rest with temperatureTI and pressurepI

(or molecular number densitynI). We assume thatTI øTII

andpI ,pII , so that evaporation takes place on the surface at

TABLE I. The quantitiesr̂A, v̂1, T̂, p̂A, Mn, and M̂ for different values of the parameterspII /pI, ÛII and
D sTII /TI =1d. Here, the molecules of the noncondensable gas are assumed to be mechanically identical with
those of the vapor.

pII /pI =1.2 pII /pI =1.5

ÛII D r̂A −v̂1 T̂ p̂A Mn M̂ r̂A −v̂1 T̂ p̂A Mn M̂

0 0 1.118 0.0424 0.981 1.097 0.0469 0.0474 1.284 0.0930 0.958 1.231 0.1041 0.1194

0 0.5 1.128 0.0370 0.983 1.109 0.0409 0.0417 1.312 0.0801 0.964 1.265 0.0894 0.1051

0 1 1.136 0.0329 0.985 1.119 0.0363 0.0374 1.333 0.0704 0.969 1.291 0.0783 0.0938

0 2 1.147 0.0269 0.988 1.134 0.0297 0.0309 1.364 0.0567 0.975 1.329 0.0629 0.0773

0.5 0 1.120 0.0414 0.981 1.099 0.0458 0.0464 1.288 0.0912 0.959 1.235 0.1020 0.1175

0.5 0.5 1.129 0.0363 0.984 1.111 0.0401 0.0410 1.315 0.0787 0.965 1.269 0.0878 0.1035

0.5 1 1.137 0.0324 0.986 1.120 0.0357 0.0368 1.336 0.0693 0.969 1.294 0.0771 0.0926

0.5 2 1.148 0.0265 0.988 1.135 0.0292 0.0304 1.365 0.0560 0.975 1.331 0.0621 0.0764

1 0 1.124 0.0388 0.983 1.105 0.0429 0.0436 1.299 0.0861 0.961 1.249 0.0962 0.1118

1 0.5 1.133 0.0343 0.985 1.116 0.0379 0.0389 1.323 0.0749 0.967 1.279 0.0834 0.0991

1 1 1.140 0.0307 0.986 1.124 0.0339 0.0350 1.342 0.0663 0.970 1.303 0.0737 0.0890

1 2 1.150 0.0254 0.989 1.137 0.0280 0.0292 1.370 0.0540 0.976 1.337 0.0598 0.0740

2 0 1.139 0.0312 0.986 1.123 0.0344 0.0355 1.332 0.0708 0.968 1.290 0.0788 0.0943

2 0.5 1.145 0.0282 0.987 1.131 0.0310 0.0323 1.350 0.0629 0.972 1.312 0.0699 0.0849

2 1 1.150 0.0257 0.989 1.137 0.0283 0.0296 1.364 0.0566 0.975 1.330 0.0628 0.0772

2 2 1.157 0.0218 0.990 1.146 0.0240 0.0252 1.385 0.0473 0.979 1.356 0.0524 0.0655

TABLE II. The quantitiesr̂A, v̂1, T̂, p̂A, Mn, and M̂ for different values of the parameterspII /pI, ÛII and
D sTII /TI =1.1d. See the caption of Table I.

pII /pI =2 pII /pI =5

ÛII D r̂A −v̂1 T̂ p̂A Mn M̂ r̂A −v̂1 T̂ p̂A Mn M̂

0 0 1.402 0.1643 1.023 1.434 0.1779 0.2303 2.600 0.3602 0.928 2.412 0.4096 0.9365

0 0.5 1.457 0.1396 1.034 1.507 0.1504 0.2033 2.923 0.2824 0.966 2.823 0.3147 0.8255

0 1 1.499 0.1216 1.043 1.563 0.1305 0.1823 3.143 0.2347 0.989 3.109 0.2585 0.7377

0 2 1.558 0.0969 1.054 1.643 0.1034 0.1510 3.434 0.1775 1.016 3.490 0.1929 0.6095

0.5 0 1.408 0.1615 1.024 1.442 0.1749 0.2274 2.616 0.3559 0.930 2.433 0.4043 0.9310

0.5 0.5 1.462 0.1376 1.035 1.513 0.1482 0.2011 2.936 0.2794 0.967 2.840 0.3112 0.8203

0.5 1 1.502 0.1201 1.044 1.568 0.1287 0.1803 3.154 0.2325 0.990 3.122 0.2560 0.7333

0.5 2 1.561 0.0959 1.055 1.646 0.1023 0.1497 3.441 0.1761 1.017 3.499 0.1913 0.6060

1 0 1.425 0.1540 1.027 1.464 0.1664 0.2195 2.663 0.3440 0.936 2.492 0.3895 0.9161

1 0.5 1.475 0.1319 1.038 1.530 0.1419 0.1946 2.973 0.2711 0.971 2.888 0.3013 0.8060

1 1 1.513 0.1156 1.046 1.582 0.1239 0.1749 3.184 0.2263 0.993 3.162 0.2488 0.7205

1 2 1.568 0.0930 1.056 1.656 0.0991 0.1458 3.462 0.1723 1.019 3.527 0.1870 0.5965

2 0 1.478 0.1304 1.039 1.535 0.1401 0.1927 2.822 0.3054 0.955 2.694 0.3424 0.8618

2 0.5 1.517 0.1139 1.046 1.588 0.1219 0.1728 3.098 0.2441 0.984 3.050 0.2695 0.7562

2 1 1.547 0.1013 1.052 1.628 0.1082 0.1567 3.285 0.2060 1.003 3.294 0.2253 0.6767

2 2 1.592 0.0833 1.061 1.689 0.0886 0.1327 3.532 0.1593 1.025 3.620 0.1724 0.5626
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X1=L (or x1=1) and condensation atX1=0 (or x1=0); there-
fore v̂1,0. In view of Eq.(1), we let

nav
B

nI
= D Kn, s17d

whereD is a constant, and we specifyD rather thannav
B /nI.

We investigate the steady flow of the vapor caused by evapo-
ration and condensation on the condensed phases and the
effect of the noncondensable gas on the vapor flow in the
continuum limit with respect to the vapor(Kn→0). The
present problem has been investigated in Ref. 13 in the case

of ÛII =0. The following analysis and discussion are straight-
forward extensions of those given there.

Now, let us apply the Euler equations and their boundary
conditions to the present problem. Since the problem is spa-

tially one-dimensional,G̃ in Eqs. (8a)–(8c) is a constant,
which is related toD by13

D =
Îp

2
G̃. s18d

This relation is derived from the following fact: since there is
no noncondensable gas except in the Knudsen layer at the

condensing surfacesx1=0d, the quantitysÎp /2dnIl rG̃, which
is the total number of the noncondensable-gas molecules
contained in the Knudsen layer per unit area of the condens-
ing surface[see the paragraph containing Eq.(15)], is equal
to nav

B L, i.e., the total number of the noncondensable-gas
molecules contained in the column of lengthL between two
condensed phases, perpendicular to them, with a unit base

area. In the present one-dimensional problem,N̂i
B

=s0,N̂2
B,0d is also constant, so that Eq.(9) or Eq. (14) is

satisfied.

It follows from Eqs.(5a)–(5d) that r̂As=n̂Ad, v̂i sv̂3=0d,
T̂, and p̂A are all constant. The boundary condition on the
evaporating surface(7) leads to the following condition at
x1=1:

Mn ø 1, v̂2 = ÛII , s19ad

p̂A =
pII

pI
h1sMnd, T̂ =

TII

TI
h2sMnd, s19bd

where

Mn = Î6/5T̂−1/2uv̂1u. s20d

The notations·db is omitted in Eqs.(19) and (20) as well as

in Eqs.(21) and(22) below becausep̂A, T̂, etc., are constants.
The boundary condition on the condensing surface(8)–(10)
reduces to the following condition atx1=0:

p̂A = FsSMn,Mt,T̂,
l r

n̂Alb
G̃D sMn , 1d, s21ad

p̂A ù FbS1,Mt,T̂,
l r

n̂Alb
G̃D sMn = 1d, s21bd

p̂A . FbSMn,Mt,T̂,
l r

n̂Alb
G̃D sMn . 1d, s21cd

whereMn is the same as Eq.(20), Mt is given by

Mt = Î6/5T̂−1/2uv̂2u, s22d

and lb is the mean free path of the vapor molecules in the

equilibrium state at rest with temperatureTIT̂ and number
densitynIn̂

A. The ratio l r / lb, appearing in the functionsFs

TABLE III. The quantitiesr̂A, v̂1, T̂, p̂A, Mn, and M̂ for different values of the parameterspII /pI, ÛII and
D sTII /TI =1.2d. See the caption of Table I.

pII /pI =5 pII /pI =10

ÛII D r̂A −v̂1 T̂ p̂A Mn M̂ r̂A −v̂1 T̂ p̂A Mn M̂

0 0 2.381 0.3768 1.012 2.409 0.4103 0.8972 3.929 0.5136 0.940 3.694 0.5803 2.018

0 0.5 2.665 0.2986 1.052 2.803 0.3190 0.7958 4.754 0.3779 1.011 4.808 0.4117 1.797

0 1 2.862 0.2497 1.077 3.081 0.2636 0.7146 5.271 0.3063 1.048 5.523 0.3278 1.615

0 2 3.125 0.1902 1.106 3.458 0.1980 0.5943 5.924 0.2264 1.088 6.447 0.2377 1.341

0.5 0 2.395 0.3726 1.014 2.429 0.4053 0.8924 3.954 0.5090 0.942 3.727 0.5744 2.013

0.5 0.5 2.677 0.2956 1.053 2.819 0.3155 0.7913 4.775 0.3748 1.013 4.837 0.4079 1.789

0.5 1 2.872 0.2475 1.078 3.095 0.2611 0.7108 5.289 0.3040 1.049 5.548 0.3251 1.608

0.5 2 3.132 0.1887 1.107 3.467 0.1965 0.5910 5.937 0.2249 1.089 6.465 0.2361 1.335

1 0 2.437 0.3606 1.020 2.486 0.3910 0.8788 4.025 0.4962 0.949 3.822 0.5578 1.997

1 0.5 2.710 0.2871 1.058 2.866 0.3058 0.7780 4.836 0.3659 1.018 4.921 0.3974 1.769

1 1 2.899 0.2411 1.081 3.133 0.2540 0.6989 5.340 0.2973 1.052 5.620 0.3175 1.588

1 2 3.151 0.1847 1.109 3.494 0.1921 0.5820 5.973 0.2208 1.091 6.517 0.2315 1.319

2 0 2.578 0.3215 1.040 2.681 0.3453 0.8288 4.273 0.4534 0.972 4.153 0.5037 1.937

2 0.5 2.822 0.2594 1.072 3.024 0.2745 0.7320 5.042 0.3368 1.032 5.206 0.3631 1.698

2 1 2.990 0.2200 1.091 3.263 0.2307 0.6578 5.513 0.2754 1.064 5.863 0.2926 1.518

2 2 3.215 0.1712 1.116 3.587 0.1775 0.5504 6.097 0.2069 1.098 6.694 0.2163 1.261
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andFb, depends on the molecular model:l r / lb= n̂A/ T̂1/2 for
the GSB model(for example,l r / lb= n̂A for hard-sphere mol-
ecules).

From the first equation of Eq.(19a), the flow is either
subsonic(Mn,1) or sonic sMn=1d. First, we consider the

subsonic case. If we eliminatep̂A, T̂, v̂2, and G̃ from Eqs.
(18), (19a), (19b), (21a), and (22), we obtain the following
equation forMn:

pII

pI
h1sMnd = FsSMn,S6

5
D1/2

ÛIIFTII

TI
h2sMndG−1/2

,

TII

TI
h2sMnd,

2
Îp

FTII

TI
h2sMndG−1/2

DD . s23d

The Mn is determined by solving Eq.(23) for a given set of

the parameter(TII /TI, pII /pI, ÛII , D). Then, p̂A and T̂ are
obtained from Eq.(19b), v̂1 from Eq.(20), andr̂A (=n̂A) from

Eq. (5d). We show the constantsr̂A, v̂1, T̂, p̂A, andMn thus

obtained for various values of the set(TII /TI, pII /pI, ÛII , D)
in Tables I–III. The results for the caseÛII =0 are given in
Table I of Ref. 13, where the parameternII /nI (nII =pII /kTII)
is used rather thanpII /pI. In the present study, we recom-

puted the case ofÛII =0 using supplemented numerical data
of Fs and included the results in Tables I–III for the sake of
completeness. Since the dependence ofFs on Mt is weak, the

solution does not depend much onÛII . Its dependence onD

is stronger. The dimensionless mass-flow rateM̂s=r̂Auv̂1ud
from the evaporating to the condensing surface, which is
related to the(dimensional) mass-flow rateMs=rAuv1ud per
unit time and unit area(through a planex1=const) as M
=2pIs2kTI /m

Ad−1/2M̂, is also shown in Tables I–III. With the
increase ofD (or the amount of the noncondensable gas in
the Knudsen layer atx1=0), the condensation becomes

weaker, and thusuv̂1u and M̂ decrease. On the other hand,

v̂2=ÛII holds irrespective ofD. Therefore, whenÛII is finite

(e.g.,ÛII =0.5, 1, 2 in Tables I–III), the flow becomes more
tangential to the plane condensed phases for largerD. We
will see the same effect in Figs. 5 and 6 in Sec. III B.

Next, we consider the case where the flow speed is sonic

sMn=1d. If we eliminate p̂A, T̂, v̂2, and G̃ from Eqs. (18),
(19a), (19b), (21b), and (22), we obtain the following
relation:

pII

pI
ù SSÛII ,

TII

TI
,DD , s24ad

where

SSÛII ,
TII

TI
,DD =

1

h1s1d
FbS1,S6

5
D1/2

ÛIIFTII

TI
h2s1dG−1/2

,

TII

TI
h2s1d,

2
Îp

FTII

TI
h2s1dG−1/2

DD . s24bd

This relation gives the condition forTII /TI, pII /pI, ÛII , andD
for which a sonic flowsMn=1d occurs. Some examples of

the boundarySsÛII ,TII /TI ,Dd of the existence range(24a)

are shown in Fig. 2, whereSsÛII ,TII /TI ,Dd is shown as a
function of D for TII /TI =1 and 2 and for various values of

ÛII . TheSsÛII ,TII /TI ,Dd is an increasing function ofD and
becomes infinitely large asD approaches a critical valuedc

that depends onÛII andTII /TI. That is,D=dc is the asymp-
tote of the curve, and there is no sonic solution in the region
Dùdc. The formula of the critical valuedc is readily ob-
tained from the form ofFb given in Ref. 20, i.e.,

dc =
Îp

2
FTII

TI
h2s1dG1/2

3 GbS1,S6

5
D1/2

ÛIIFTII

TI
h2s1dG−1/2

,
TII

TI
h2s1dD , s25d

whereGb is a function the numerical data of which are given

FIG. 2. The boundarySsÛII ,TII /TI ,Dd of the existence range vsD for vari-

ous values ofÛII . (a) TII /TI =1, (b) TII /TI =2. The dotted lines in the figures
indicate the asymptotessD=dcd of the curves. Here, the molecules of the
noncondensable gas are assumed to be mechanically identical with those of
the vapor.

FIG. 3. The critical valuedc vs ÛII for variousTII /TI. Thedc is taken as the
abscissa for easy comparison with Fig. 2. See the caption of Fig. 2.
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in Ref. 20. In Fig. 3,dc versusÛII is shown for various
values ofTII /TI; dc is taken as the abscissa for easy compari-
son with Fig. 2.

Here, we should recall that, because of Eq.(17), nav
B /nI

vanishes in the continuum limit Kn→0. As we have seen,
however, the solution in the continuum limit depends onD,
which is a quantity specifying the vanishing rate ofnav

B /nI

and thus related to the amount of the noncondensable gas.
This means that, in the continuum limit, the vapor flow is
still affected by the noncondensable gas in spite of the fact
that its average concentration is infinitesimal.

B. Vapor flows between a plane and a sinusoidal
condensed phase

Next we consider a vapor(A component) and a noncon-
densable gas(B component) in the gap between a sinusoidal
condensed phase located atX1=A cosspX2/Ld and a plane
condensed phase located atX1=L (see Fig. 4). Let us sup-
pose that the sinusoidal condensed phase is kept at tempera-
ture TI and is set at rest, whereas the plane condensed phase
is kept at temperatureTII and may be moving in its surface in
the X2 direction with a constant speedUII . We denote bypI

the saturation pressure of the vapor at temperatureTI and by
pII that at temperatureTII . We takeL as the reference length
and TI, pI, and nI =pI /kTI as the reference quantities, i.e.,
Tr =TI, pr =pI, andnr =nI. Then, the Knudsen number Kn of
the system is given by Kn=l r /L, where l r is the mean free
path of the vapor molecules in the equilibrium state at rest
with temperatureTI and pressurepI (or molecular number
densitynI). We assume that the flow field is periodic in the
X2 direction with period 2L and consider the problem in the
closed domain

A cosSpX2

L
D ø X1 ø L, 0 ø X2 ø 2L. s26d

We denote bynav
B the average molecular number density of

the noncondensable gas over the domain(26) and let it be in
the form of Eq.(17), i.e., nav

B /nI =DKn, in order to be con-
sistent with Eq.(1). The problem is then characterized by the
following parameters:

TII

TI
,

pII

pI
, ÛII =

UII

s2kTI/m
Ad1/2,

A

L
, Kn, D. s27d

We investigate the steady behavior of the vapor and the non-
condensable gas in the continuum limit(Kn→0), where the
average concentration of the noncondensable gas becomes
infinitesimal snav

B /nI →0d.
We restrict ourselves to the case where evaporation takes

place on the plane condensed phase and condensation on the
sinusoidal one. In addition, we assume, just for simplicity,
that the speed of condensation on the sinusoidal condensed
phase is subsonic. The present problem has been investigated
on the basis of the same Euler system in Ref. 18 in the case

where the plane condensed phase is at restsÛII =0d. This case
will also be included in the following discussions.

Now let us summarize the boundary conditions for the
Euler set of equations(5a)–(5d) in the present problem. The
boundary condition on the plane condensed phase, where
evaporation is assumed to be taking place, is given by Eq.
(7), i.e., atx1=1,

Mn ø 1, v̂2 = ÛII , s28ad

p̂A =
pII

pI
h1sMnd, T̂ =

TII

TI
h2sMnd, s28bd

with

Mn = Î6/5T̂−1/2uv̂1u. s29d

In Eqs.(28) and(29) and in Eqs.(30)–(33) below, the nota-
tion s·db is omitted because it is obvious that the quantities
occurring in the boundary conditions are their boundary val-
ues. The boundary condition on the sinusoidal condensed
phase, where subsonic condensation is assumed to be taking
place, is given by Eqs.(8a) and (9). That is, at x1

=sA/Ldcosspx2d,

p̂A = FsSMn,Mt,T̂,
l r

n̂Alb
G̃D , s30d

whereMns,1d andMt are given by

Mn = Î6/5T̂−1/2uv̂ jnju, s31ad

Mt = Î6/5T̂−1/2uv̂ jt ju, s31bd

with ni andti being unit normal and tangential vectors to the
sinusoidal condensed phase, andlb the mean free path of the
molecules of the vapor in the equilibrium state at rest with

temperatureTIT̂ and number densitynIn̂
A. In addition, in the

present two-dimensional problem, Eq.(14) holds along the

sinusoidal boundary withN̂i
B given by [see Eq.(10a)]

FIG. 4. Vapor flow between a plane and a sinusoidal condensed phase in the
presence of a noncondensable gas.
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FIG. 5. Streamlines of the vapor flow forD=2 in the case ofTII /TI =1,

pII /pI =2, andA/L=0.2. (a) ÛII =0, (b) ÛII =0.1, (c) ÛII =0.2, (d) ÛII =0.3.
The corresponding streamlines in the pure-vapor casesD=0d are shown by
dashed lines. Here, the molecules of the noncondensable gas are assumed to
be mechanically identical with those of the vapor.

FIG. 6. Streamlines of the vapor flow forD=4 in the case ofTII /TI =1,

pII /pI =2, andA/L=0.2. (a) ÛII =0, (b) ÛII =0.1, (c) ÛII =0.2, (d) ÛII =0.3.
The corresponding streamlines in the pure-vapor casesD=0d are shown by
dashed lines. See the caption of Fig. 5.

FIG. 7. Isolines of the flow speeduviu for ÛII =0.1,
TII /TI =1, pII /pI =2, andA/L=0.2. (a) Pure vaporsD
=0d, uviu / s2kTI /m

Ad1/2=0.164+0.01m sm=0, . . .8d; (b)
D=2, uviu / s2kTI /m

Ad1/2=0.075+0.015m sm=0, . . . ,10d.
See the caption of Fig. 5.
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N̂i
B =

lb
l r

n̂AT̂1/2GsSMn,Mt,T̂,
l r

n̂Alb
G̃Dai , s32d

where

ai = Hti sfor v̂ jt j ù 0d,

− ti sfor v̂ jt j , 0d.
s33d

[Here,ai for v̂ jt j =0 is defined asti; see the sentence follow-
ing that containing Eq.(12).] Note that the ratiol r / lb appear-

ing in the functionsFs andGs is given byl r / lb= n̂A/ T̂1/2 for
the GSB model. In order to complete the boundary condition,

we need the relation betweenD andG̃. This relation takes the
following form:

D =
Îp

4
E G̃ds, s34d

whereds is the line element along the sinusoidal boundary in
the dimensionlessx1x2 plane, and the range of integration is
from x2=0 to 2. This relation is obtained by noting that

sÎp /2dnIl rG̃ is the total number of the noncondensable gas in
the Knudsen layer per unit area of the boundary[see the
paragraph containing Eq.(15) in Sec. II C] and that its total
number in the entire domain per unit width inX3, i.e.,

nav
B s2L2d, is therefore given bysÎp /2dnIl rLe G̃ds. Finally,

these boundary conditions are supplemented by the condition

hsx2=2d=hsx2=0d sh= r̂A, p̂A, v̂i , or T̂d and G̃sx2=2d

FIG. 8. Isolines of the number densitynA for ÛII =0.1,
TII /TI =1, pII /pI =2, andA/L=0.2. (a) Pure vaporsD
=0d, nA/nI =1.504+0.004m sm=0, . . .8d; (b) D=2,
nA/nI =1.646+0.004m sm=0, . . . ,10d. See the caption
of Fig. 5.

FIG. 9. Isolines of the temperatureT for ÛII =0.1,
TII /TI =1, pII /pI =2, andA/L=0.2. (a) Pure vaporsD
=0d, T/TI =0.917+0.0015m sm=0, . . . ,9d; (b) D=2,
T/TI =0.942+0.002m sm=0, . . . ,8d. See the caption of
Fig. 5.
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=G̃sx2=0d, which corresponds to the periodic boundary con-
dition.

We solve this boundary-value problem numerically by
means of a standard finite-difference method. Here, we omit
the description about the numerical method and show only
the results. The computation is carried out forA/L=0.2,
TII /TI =1, andpII /pI52.

Figure 5 shows the streamlines of the vapor flow for

ÛII =0, 0.1, 0.2, and 0.3 in the case ofD=2, and Fig. 6 shows

those for the sameÛII in the case ofD=4. In these figures,
the corresponding streamlines for a pure-vapor flowsD=0d
are also shown by dashed lines. As is seen from the figures,
the flow pattern of the vapor strongly depends onD. (In the

case ofÛII =0, the pattern of the streamlines forD=2 and
that for D=4 are quite similar[see Figs. 5(a) and 6(a)]. But,
as is discussed in Ref. 18, the values of the quantities such as
the flow speeduviu and the number densitynA are different

(see Sec. 4 of Ref. 18).) Let us consider the case whereÛII is
finite [cf. Figs. 5(b)–5(d) and 6(b)–6(d)]. The streamlines of
the vapor flow near the plane condensed phase show a simi-
lar tendency to those in the two-surface problem(Sec. III A).
That is, the presence of the noncondensable gas in the Knud-
sen layer on the sinusoidal condensed phase weakens con-
densation there and thus evaporation on the plane condensed
phase, so that the streamlines become more tangential to the
plane condensed phase for larger values ofD. In the pure-
vapor casesD=0d, the shape of the condensing surface has a
weak effect on the overall vapor flow, and its streamlines are
nearly parallel and do not differ much from those of the
two-surface problem. When the noncondensable gas is con-
tained in the Knudsen layer on the condensing surface, the
magnitude of the component of the flow velocity of the va-
por normal to the condensed phase is reduced there. On the
other hand, the magnitude of its tangential component is not
reduced much because the noncondensable gas is mobile
along the condensed phase and therefore does not give strong
resistance. Therefore, the incidence of the streamlines be-
comes more tangential for larger values ofD. In this way, the
vapor flow is more affected by the geometry of the condens-

ing surface whenD is large. WhenÛII =0 [Figs. 5(a) and
6(a)], the problem is symmetric with respect to theX1 axis

and thusN̂i
Bti =0 holds identically. Therefore, it follows from

Eqs. (13) and (32) that Mt=0 on the sinusoidal condensed
phase. In other words, the vapor condenses perpendicularly
there. In contrast, the vapor condenses obliquely in the pure-
vapor case. This difference has been pointed out in Ref. 18.

The isolines of the flow speeduviu, those of the number
densitynA, and those of the temperatureT are shown in Figs.

7–9, respectively, forÛII =0.1. In Figs. 7–9, the isolines of
the quantities for the pure vaporsD=0d are shown in(a),
while those forD=2 in (b). Since the motion of the plane

condensed phase is relatively slowsÛII =0.1d, the density and
temperature variations are small. Therefore, a small error can
change isolines significantly. It should be understood that the
isolines in Figs. 8 and 9 give information about the almost
uniform values of the number density and temperature of the
vapor but do not show the detailed structure of their small
variations accurately. LetM be the rate of the mass of the
vapor evaporating from the part 0øX1ø2L of the plane
condensed phase per unit time and per unit width in theX3

direction. Its dimensionless counterpartM̂, defined byM̂
=M /mAnIs2kTI /m

Ad1/2L, is shown in Table IV.
In summary of all the results presented here, the noncon-

densable gas with an infinitesimal average concentration
completely changes the global two-dimensional flow field of
the vapor.

The quantityG̃, which is a function of the position on the
boundary, is a measure of accumulation of the noncondens-
able gas inside the thickless Knudsen layer on the condens-

ing boundary. The distribution ofG̃ along the sinusoidal con-

TABLE IV. Mass-flow rateM̂ for various values ofÛII andD in the case
TII /TI =1, pII /pI =2, andA/L=0.2. Here, the molecules of the noncondens-
able gas are assumed to be mechanically identical with those of the vapor.

ÛII \D 0 2 4

0 0.4987 0.3734 0.2863

0.1 0.4984 0.3580 0.2773

0.2 0.4979 0.3442 0.2727

0.3 0.4989 0.3435 0.2593

FIG. 10. Distribution ofG̃ along the
sinusoidal condensed phase for vari-

ous values ofÛII in the case ofTII /TI

=1, pII /pI =2, andA/L=0.2. (a) D=2,
(b) D=4. See the caption of Fig. 5.
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densed phase is shown in Fig. 10 for various values ofÛII in
the case ofD=2 [Fig. 10(a)] and 4[Fig. 10(b)]. Let us define
a kind of average flow speedVB of the noncondensable gas
inside the Knudsen layer along the sinusoidal condensed
phase by

G̃VB = N̂i
Bti . s35d

Recall thatN̂i
Bti, which is the total particle flux of the non-

condensable gas in the Knudsen layer, is constant along the
boundary[Eq. (14)]. The distribution ofVB along the sinu-

soidal condensed phase is shown in Fig. 11 forÛII =0, 0.1,
0.2, and 0.3 in the case ofD=2 [Fig. 11(a)] and 4 [Fig.

11(b)]. When ÛII =0, VB vanishes identically(see Sec. 4 of
Ref. 18). The average speedVB naturally increases with the

increase ofÛII .
Finally, we show some results for relatively smallD. If

the amount of the noncondensable gas is large enough, it
distributes over the entire boundary(see Fig. 10). On the
other hand, when the amount of the noncondensable gas be-

comes small, it may vanish(or equivalently,G̃ may vanish)
in a certain part of the boundary. Since we are considering a
steady flow, we need to assume that the part which contains
the noncondensable gas does not move. This means that its

particle flux N̂i
Bti vanishes and thusMt=0 holds because of

Eq. (13) with nonzeroG̃. To summarize, Eq.(30) with Mt

=0 holds in the part which contains the noncondensable gas,

and Eq. (30) with G̃=0 holds in the part which does not

contain it. Figure 12 shows the distributions ofG̃ and VB

along the sinusoidal boundary, in the case ofÛII =0.1, for
several values ofD, i.e.,D=2, 1, 0.5, 0.1, and 0.05. WhenD
is not small, the noncondensable gas distributes over the
whole boundary. But for smallD (D=0.1, 0.05), the noncon-
densable gas tends to disappear from the part 0øX2/L&1
and from the part nearX2/L=2. (The VB does not have a
meaning in the part without the noncondensable gas.) At the
left-side edge of the part with the noncondensable gas in Fig.

12(a), the slope of the distribution ofG̃ tends to become very
steep. If the distribution of a physical quantity, e.g.,r̂A, v̂i, or

T̂, along the sinusoidal condensed phase is plotted as a func-
tion of X2/L, the derivative of the curve seems to be discon-
tinuous at the corresponding point, and its limit from the
right seems to be(plus or minus) infinity. In contrast, at the

right-hand edge of the part with the noncondensable gas,G̃
disappears smoothly and no singularity appears, that is, the
curve of any physical quantity is smooth at the correspond-
ing point. Here, we should recall that the Euler set of equa-
tions is derived from the Hilbert solution of the Boltzmann
equation with a moderately varying property.18 Therefore, if
such a singularity as described above appears in the physical
quantities, it violates the assumption for the Hilbert solution.
In other words, the present fluid-dynamic system is not theo-
retically applicable to such situations. In order to treat this
type of flow correctly, we need a two-dimensional analysis
based on kinetic theory in the neighborhood of the singular
point.

FIG. 11. Distribution ofVB along the sinusoidal con-

densed phase for various values ofÛII in the case of
TII /TI =1, pII /pI =2, andA/L=0.2. (a) D=2, (b) D=4.

Here,VB=0 holds identically forÛII =0. See the caption
of Fig. 5.

FIG. 12. Distribution ofG̃ (a) and that ofVB (b) along
the sinusoidal condensed phase for various values ofD

for ÛII =0.1,TII /TI =1, pII /pI =2, andA/L=0.2. See the
caption of Fig. 5.
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C. Vapor flows between two noncoaxial cylindrical
condensed phases

In this section, we consider a vapor(A component) and a
noncondensable gas(B component) between two noncoaxial
circular cylinders made of the condensed phase as shown in
Fig. 13, where theX1, X2, andX3 axes are assumed to form
the right-hand system. LetRI (or RII) be the radius of the
inner (or outer) cylinder, TI (or TII) the temperature of the
inner (or outer) cylinder, D the distance between the two
axes, andpI (or pII) the saturation pressure of the vapor at
temperatureTI (or TII). The inner cylinder may be rotating
(counterclockwise in Fig. 13) around its axis with a constant
angular velocity, whereas the outer cylinder is kept at rest.
We denote byUI the speed of the surface of the inner cylin-
der and takeRI as the reference length andTI, pI, and nI

=pI /kTI as the reference quantities, i.e.,L=RI, Tr =TI, pr

=pI, andnr =nI. Then the Knudsen number of the system is
given by Kn=l r /RI with l r being the mean free path of the
vapor molecules in the equilibrium state at rest with tempera-
ture TI and pressurepI (or molecular number densitynI). As
before, the average molecular number density of the noncon-
densable gas over the whole domain is denoted bynav

B and is
put in the formnav

B /nI =DKn, whereD is a constant to be
specified. The problem is characterized by the following
parameters:

TII

TI
,

pII

pI
, ÛI =

UI

s2kTI/m
Ad1/2,

RII

RI
,

D

RI
, Kn, D.

s36d

We investigate the steady behavior of the vapor and the ef-
fect of the trace of the noncondensable gas in the continuum
limit sKn→0d.

The behavior of the vapor is described by the Euler
equations(5a)–(5d). Let us consider the case where the vapor
is evaporating from the inner cylinder and condensing onto
the outer cylinder and assume that the speed of condensation
on the outer cylinder is subsonic. Then the boundary condi-
tion on the inner cylindersx1

2+x2
2=1d, where evaporation is

taking place, is given by

Mn ø 1, v̂ jt j = ÛI , s37ad

p̂A = h1sMnd, T̂ = h2sMnd, s37bd

where

Mn = Î6/5T̂−1/2uv̂ jnju, s38d

andni andti are the unit normal and tangential vectors to the
inner cylinder,ni pointing into the region of the vapor, and
ni, ti, and theX3 axis forming the right-hand system. In Eqs.
(37) and (38) and Eqs.(39)–(42) below, the notations·db is
omitted as in Sec. III B. On the other hand, the boundary
condition on the outer cylinderfsx1−D /RId2+x2

2=sRII /RId2g,
where condensation is taking place, is given by

p̂A =
pII

pI
FsSMn,Mt,

TI

TII
T̂,

l r
n̂Alb

G̃D , s39d

where

Mn = Î6/5T̂−1/2uv̂ jnju, s40ad

Mt = Î6/5T̂−1/2uv̂ jt ju, s40bd

andni andti are the unit normal and tangential vectors to the
outer cylinder,ni pointing into the region of the vapor, and
ni, ti, and theX3 axis forming the right-hand system. In ad-

dition, Eq. (14) holds along the outer cylinder, whereN̂i
B is

given by

FIG. 13. Vapor flow between cylindrical condensed phases in the presence
of a noncondensable gas.

FIG. 14. Streamlines of the vapor flow forD=2 in the
case ofTII /TI =1, pII /pI =0.5,RII /RI =2, andD /RI =0.5.

(a) ÛI =0, (b) ÛI =0.1, (c) ÛI =0.2. The corresponding
streamlines in the pure-vapor casesD=0d are shown by
dashed lines. Here, the molecules of the noncondens-
able gas are assumed to be mechanically identical with
those of the vapor.
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N̂i
B =

lb
l r

n̂AT̂1/2GsSMn,Mt,
TI

TII
T̂,

l r
n̂Alb

G̃Dai , s41d

with

ai = H ti for v̂ jt j ù 0,

− ti for v̂ jt j , 0.
s42d

[Here,ai for v̂ jt j =0 is defined asti; see the sentence follow-
ing that containing Eq.(12).] Finally, the relation betweenD

and G̃ is given by

D =
1

2Îp
FSRII

RI
D2

− 1G−1E G̃ds, s43d

whereds is the(dimensionless) line element along the outer
cylinder, and the integration is carried out over the whole
circle. This relation is obtained in a similar way as Eq.(34).

We analyze the above boundary-value problem of the
Euler set of equations by a finite-difference method. The re-
sult for TII /TI =1, pII /pI =0.5, RII /RI =2, and D /RI =0.5 is
shown in Figs. 14–17. Figure 14 shows the streamlines of

the vapor flow forÛI =0, 0.1, and 0.2 in the case ofD=2. In
the figure, the streamlines for the corresponding pure-vapor
casesD=0d are also shown by dashed lines. Figure 15 shows
the isolines of the molecular number density of the vapornA

in the case ofÛI =0.1, where the isolines for the pure-vapor
casesD=0d are shown in(a) and those forD=2 in (b). Fig-

ure 16 shows the distribution ofG̃ and that ofVB along the

outer cylinder forD=2. Here,VB is the same as that used in
Sec. III B [Eq. (35)], andu s0øu,2pd is the angle between
the X1 axis and the line connecting a point on the outer
cylinder and its axis[the pointsD ,0d in Fig. 13] measured

counterclockwise. LetM=mAnIs2kTI /m
Ad1/2RIM̂ be the to-

tal mass-flow rate of the vapor evaporating from the inner
cylinder (per unit width in theX3 direction and per unit

time). The dimensionless mass-flow rateM̂ versusD for

ÛI =0, 0.1, 0.2, and 0.3 is shown in Fig. 17.
The features of the streamlines can basically be under-

stood from the discussion in Sec. III B. The dimensionless

mass-flow rateM̂ naturally decreases with the increase ofD.
Faster rotation of the inner cylinder leads to a pressure rise
on the outer cylinder because of stronger centrifugal effect

and thus causes stronger condensation. Therefore,M̂ in-

creases asÛI increases. The results shown here again dem-
onstrate that the noncondensable gas with an infinitesimal
average concentration has a significant effect on the overall
vapor flow field.

IV. CONCLUDING REMARKS

In a previous paper,18 we derived the fluid-dynamic sys-
tem that describes steady flows of a vapor around its con-
densed phase, on the surface of which evaporation or con-
densation is taking place, in the continuum limitsKn→0d in
the presence of a noncondensable gas whose amount is in-

FIG. 16. Distribution ofG̃ and that ofVB along the

outer cylinder for variousÛI in the caseD=2. (a) G̃, (b)
VB. Here, u s0øu,2pd is the angle between theX1

axis and the line connecting a point on the outer cylin-
der and its axis[the pointsD ,0d in Fig. 13] measured
counterclockwise. In(b), VB=0 holds identically in the

caseÛI =0. See the caption of Fig. 14.

FIG. 15. Isolines of the number densitynA for ÛI =0.1
in the caseTII /TI =1, pII /pI =0.5, RII /RI =2, andD /RI

=0.5. (a) Pure vaporsD=0d, nA/nI =0.67+0.01m sm
=0, . . . ,5d; (b) D=2, nA/nI =0.744+0.006m sm
=0, . . . ,5d. See the caption of Fig. 14.
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finitesimal in comparison with that of the vapor. In the case
of a closed domain, the amount of the noncondensable gas is
expressed more precisely in such a way that its average con-
centration is infinitesimalfOsKndg. In the same paper, we
pointed out that such a small amount of the noncondensable
gas can affect the overall vapor flow significantly, accumu-
lating in the Knudsen layer with an infinitesimal thickness on
the condensing surface. The present paper is devoted to the
application of the fluid-dynamic system mentioned above to
some concrete problems that demonstrate the effect of the
trace of the noncondensable gas clearly.

The fluid-dynamic system consists of the set of the com-
pressible Euler equations and its boundary conditions con-
structed numerically under the following assumptions:(i) the
mechanical property of the molecules of the vapor and that
of the noncondensable gas are the same and(ii ) the model
Boltzmann equations(the BGK and GSB models) describe
the behavior in the Knudsen layers(Sec. II). On the basis of
this system, the two-surface problem of evaporation and con-
densation(Sec. III A), vapor flows between a plane and a
sinusoidal condensed phase(Sec. III B), and vapor flows be-
tween two noncoaxial cylindrical condensed phases(Sec.
III C ) were investigated numerically. In these problems, it is
clearly seen that the noncondensable gas with an infinitesi-
mal average concentration has significant effects on the over-
all vapor flows in the continuum limit.
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