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Near-wall turbulence in the buffer region of Couette and Poiseuille flows is characterized in terms
of recently-found nonlinear three-dimensional solutions to the incompressible Navier–Stokes
equations for wall-bounded shear flows. The data suggest that those solutions can be classified into
two families, of which one is dominated by streamwise vortices, and the other one by streaks. They
can be associated with the upper and lower branches of the equilibrium solutions for Couette flow
found by Nagata[“Three-dimensional finite-amplitude solutions in plane Couette flow: Bifurcation
from infinity,” J. Fluid Mech.217, 519(1990)]. The quiescent structures of near-wall turbulence are
shown to correspond to the vortex-dominated family, but evidence is presented that they burst
intermittently both in minimal and in fully turbulent flows. The intensity and period of the bursts are
Reynolds-number dependent, but they saturate at high enough Reynolds numbers. The time-periodic
exact solution found for Couette flow by Kawahara and Kida[“Periodic motion embedded in plane
Couette turbulence: Regeneration cycle and burst,” J. Fluid Mech.449, 291(2001)] can be used as
a simplified model for the bursting process. ©2005 American Institute of Physics.
[DOI: 10.1063/1.1825451]

I. INTRODUCTION

Wall-bounded flows have been important in turbulence
research ever since the famous 1883 experiments by Rey-
nolds. This is particularly true of the immediate near-wall
layer which, because its Reynolds number is locally low, is
usually considered to be a good candidate for an approximate
description in terms of simple deterministic structures.

Nonlinear equilibrium solutions of the three-dimensional
Navier–Stokes equations, with characteristics which suggest
that they may be useful in such a description, have been
obtained numerically in the past few years for plane Couette
flow,1,2 plane Poiseuille flow,2–4 and an autonomous wall
flow.5 All those solutions look qualitatively similar,6,7 and
take the form of a wavy low-velocity streak flanked by stag-
gered quasistreamwise vortices of alternating signs, resem-
bling the spatially-coherent objects educed from the near-
wall region of true turbulent flows.8,9 The mean and
fluctuation intensity profiles of the equilibrium structures are
also reminiscent of the experimental values.2,5 In those cases

in which their stability has been investigated, the equilibrium
solutions are unstable saddles in phase space at the Reynolds
numbers at which turbulence is observed. They are not there-
fore expected to be found as such in real turbulence but,
since the velocity of the system in phase space vanishes at
fixed points, whether stable or not, any turbulent flow could
spend a substantial fraction of its lifetime in their neighbor-
hood.

Although the observed similarities suggest that all those
structures are related to each other and to self-sustaining wall
turbulence, the nature of those relations is unclear. The first
goal of this paper is to clarify that point by comparing as
many as possible of the known equilibrium solutions, among
themselves and with real near-wall turbulence. This compari-
son will also include the time-periodic saddle orbits identi-
fied by Kawahara and Kida,10 which not only approximate
the profiles of average velocity and of the intensities of near-
wall turbulence, but also part of its temporal structure.

In fact, the second problem that we will consider is the
possible relation between temporal intermittency in the near-
wall layer and such time-dependent simple solutions of the
Navier–Stokes equations. The term “burst” was originallya)Electronic mail: jimenez@torroja.dmt.upm.es
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introduced to describe fluid eruptions observed near the wall
in the early visualizations of turbulent boundary layers.11 It
was initially hypothesized that bursts were due to the inter-
mittent breakup of the near-wall streaks, but even the origi-
nal authors later acknowledged that their visualizations could
be consistent with permanent advecting objects,12 and the
term became eventually associated with the ejections ob-
served by stationary velocity probes. With the advent of nu-
merical simulations, it became apparent that the streaks were
long-lived streamwise velocity structures, and that the
sweeps and ejections identified in the analysis of single-point
data were mostly due to the passing of shorter quasistream-
wise vortices, intermittent in space but not necessarily in
time.13 The question of whether the observed temporally in-
termittent sublayer events were visualization artifacts or re-
ally existed in the near-wall layer was bypassed by this ex-
planation.

The well-documented mutual dependence of the near-
wall streaks and vortices is consistent both with equilibrium
models sustained by steady nonlinear interactions, such as in
the structures mentioned above, and with temporal cycles in
which both types of structures periodically create each other.
The difficulty of following for long times individual struc-
tures in fully turbulent flows complicates the experimental or
numerical distinction between essentially permanent objects
and intrinsically time-dependent processes with a long pe-
riod, but intermittent breakdown of near-wall turbulence is
observed in minimal-flow numerical simulations for which
spatial intermittency is not an issue.5,14 The same is true of
autonomous wall flows in which the observation is simplified
by the small wall-normal dimensions of the simulation
domain.15

By comparing periodic solutions such those in Ref. 10,
minimal simulations, and fully turbulent ones, we will try to
clarify whether intermittent behavior, as distinguished from
the vortex-passing bursts, is found in fully turbulent flows,
and whether it can be explained in terms of simple time-
periodic solutions.

We will also address the question of whether the charac-
teristics of such equilibrium or periodic solutions can explain
the wavelength-selection properties of near-wall turbulence,
such as the well-known mean streak separation ofz+<100 or
the equally intriguingx+<300 streamwise separation found
in turbulent flows between vortex pairs within the same
streak.14

To simplify the discussion, stationary or traveling per-
manent waves, and solutions which can be reduced to limit
cycles in some frame of reference, will be referred to as
“simple” from now on. Of those, the permanent waves and
the turbulent flows whose statistics are roughly similar to
them, will be denoted as “quiescent.” Solutions with stronger
vorticity, usually corresponding to a fast evolution in phase
space, will be called “excited.”

Some of the older solutions required recomputing for the
purpose of this paper, using numerical methods which are
occasionally slightly different from the original ones. Those
methods are described in Sec. II. The comparison between
the different equilibrium and periodic solutions is made in
Sec. III, and their relation with fully developed turbulence is

discussed in Sec. IV. Temporal intermittency is discussed in
Sec. V, and conclusions are offered in Sec. VI. A preliminary
version of part of the present paper appeared previously as
Ref. 16.

II. COMPUTATIONAL METHODS

A. Autonomous solutions

The permanent traveling-wave solutions described be-
low as “autonomous” are computed using a slightly modified
version17 of the numerical scheme used in Refs. 5 and 15.
The flow is established in a numerical domain with spatial
periodicitiesLx andLz in the streamwise and in the spanwise
directions, over a wall located aty=0. The streamwise, wall-
normal, and spanwise velocity components areu, v, andw.
The Navier–Stokes equations are integrated in the form of
evolution equations for the wall-normal vorticityvy and for
¹2v, using a pseudospectral code with Fourier expansions in
the two wall-parallel directions and Chebychev polynomials
in the wall-normal direction.18 At each time step the right-
hand sides of the two evolution equations are multiplied by a
damping mask 1−DtFsyd, where

Fsyd = 0 if y ø d1, Fsyd = 1/u if y ù d2 = 1.5d1, s1d

and the two limits ofFsyd are connected smoothly by a cubic
spline. This mask can be interpreted as a linear dissipation
for each of the two evolution variables. The decay timeu is
chosen so that all the vorticity fluctuations are effectively
damped abovey<sd1+d2d /2. The equations are not modi-
fied below the mask lower limitd1. Irrotational fluctuations
are not affected anywhere, and the outer edge of the Navier–
Stokes layer is bounded by a potential core which prevents
the formation of viscous boundary layers at the mask bound-
ary. No-slip, impermeable boundary conditions are imposed
at the wall.

While the flows in Refs. 5 and 15 were integrated at
constant mass flux in a channel, the present computations
were initially carried out at constant driving stress in a
“semi-infinite” domain. The velocities were matched to outer
potential fluctuations extending to infinity from the edge,y
=h.d2, of the computational domain.19 This driving mecha-
nism is free from the complications of a “second wall” across
the potential layer, and, in particular, from the effect of a
mean pressure gradient, and should, in principle, be prefer-
able to simulations involving two-walled channels. The total
shear stress, for example, is constant across the Navier–
Stokes layer instead of varying linearly across the channel,
and the only Reynolds number in the problem isd1

+. The
superscript + denotes “wall” variables normalized with the
kinematic viscosityn and with the friction velocityut.

This driving mechanism had been successfully used to
simulate autonomous wall flows in large computational
boxes17 but, in the present case, it failed to reproduce the
simple solutions found by Jiménez and Simens5 in a
pressure-driven channel. The flow passed directly from fully
chaotic (minimal) turbulence to laminar decay upon minor
changes in the parameters.

It was therefore decided to reintroduce some pressure
effects. The basic structure of the code is maintained, and, in
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particular, the driving mechanism for the mean flow is still a
constant shear far from the wall, instead of a fixed imposed
mean pressure gradient. The mean velocity profile is linear
far from the wall, rather than parabolic, but the potential
fluctuations in the masked region are required to match a
no-stress impermeable boundary aty=H.h instead of de-
caying aty→`. All the cases presented in this paper were
computed withH=2h and with the viscosity adjusted so that
h+=120.

This modification introduces a small fluctuating pressure
gradient which maintains the instantaneous mass flow con-
stant across the domains0,Hd. It was found to be sufficient
to restore the existence of steady traveling waves. Their com-
putational parameters are summarized in Table I. They were
computed using 48349348 spectral modes, before dealias-
ing. The resulting resolution isDx+<Dz+<4, with a maxi-
mum grid spacingDy+<3 below the mask.

The significance of this observation is not clear, although
it is not surprising that the properties of constant-mass and
constant-stress simulations should differ in small computa-
tional domains. Note that the solutions discussed in this sec-
tion differ from others used in this paper in that they are
obtained from an initial-value problem, and are therefore
stable with a nonzero basin of attraction. This explains their
sensitivity to the stress boundary condition, which changes
their stability although not their qualitative character. The
present traveling waves do not differ visually from those in
Ref. 5, even though the codes are different. The chaotic so-
lutions obtained from the constant-stress boundary condi-
tions are also indistinguishable from the chaotic solutions
obtained by raising the mask either in the present code or in
Ref. 5. They all agree with minimal Poiseuille flows below
roughly half the mask height.5,17 Because of the presence of
a required fluctuation of the spatially-constant pressure gra-
dient, these flows are classified below as part of the Poi-
seuille family, even if the temporal average of their mean
pressure gradient is zero.

B. Plane Couette solutions

Nagata’s steady solutions1 for incompressible plane Cou-
ette flow were recomputed using a method similar to that in
Ref. 20. The flow is described by its deviationsu* , v ,wd
from the linear profile, and is obtained numerically by solv-
ing steady nonlinear equations for the streamwise velocity
u0syd=ku* l, wherek l denotes averaging over a wall-parallel

plane, and forvy and¹2v, as in the preceding section. The
solutions are expressed as double Fourier expansions in the
two wall-parallel directions. The wall-normal expansions are
expressed in terms of the centered dimensionless coordinate
y* = y/h−1, wherey* =0 is the midplane of the channel and
h is half the wall separation. They use the basis functions

s1 − y*2dTlsy * d s2d

for u0 andvy, and

s1 − y*2d2Tlsy * d s3d

for v, whereTlsy* d is the lth order Chebychev polynomial.
They satisfy the boundary conditions

u0 = vy = v =
]v
]y

= 0 aty * = ± 1. s4d

The collocation method with grid pointsy* =cosfmp / sM
+1dg, sm=1,2, . . . ,Md is used to construct a system of qua-
dratic equations for the Fourier–Chebychev–Fourier coeffi-
cients, which is solved by the Newton–Raphson method. The
arc-length method20 is used to track the nonlinear solutions,
with the three parameters Re,Lx, andLz being changed in-
dependently.

It is well-known that a laminar plane Couette flow is
linearly stable for all finite Reynolds numbers. Nagata’s up-
per and lower solution branches appear subcritically at Re
=Uwh/n<125 from a saddle-node bifurcation, whereUw is
half the difference of the two wall velocities. In general, the
upper-branch(or lower-branch) solutions generated from the
bifurcation have a larger(or smaller) deviation from a lami-
nar state. All the solutions have two spatial symmetries:1,21,22

a reflection with respect to the plane ofz=0 plus a stream-
wise shift byLx/2,

su * , v,wdsx,y * , zd = su * , v,− wdsx + Lx/2,y * ,− zd, s5d

and a rotation byp around the linex=y* =0 plus a spanwise
shift by Lz/2,

su * , v,wdsx,y * , zd = s− u * ,− v,wds− x,− y * , z+ Lz/2d.

s6d

The steady traveling-wave solution found by Waleffe4 for
plane Poiseuille flow also has symmetry(5).

Figure 1 and Table II summarize the properties and the
computational parameters of the solutions used below as rep-
resentative of this flow. All the cases were computed using
16316 complex Fourier coefficients in the wall-parallel di-
rections and 33 Chebychev polynomials iny. This represents
a resolution of at least 15, 9, and 5 wall units, respectively, in
the x, y, and z directions, which is better than most direct
simulations of turbulence.18,23The most marginal direction is
y and grid convergence was tested at Re=400 by reducing
the resolution to 16 polynomials. The changes in Fig. 1 were
within the size of the symbols.

Note that both the upper and the lower branches
have higher dimensionless shear rates at the wall,
1+sh/Uwdudu0/dyuy*=±1, than the unit shear of the laminar
state. The range of existence of the solutions in Fig. 1 is
always close toLz

+=100, as in the observed mean separation

TABLE I. Parameters of the autonomous simulations used in the text.Lx

andLz are the box dimensions,Uc is the phase velocity, andumax8 , vmax8 , and
vx,max8 are the maximum fluctuation intensities used below to characterize
solutions.

Lx
+ Lz

+ d1
+ Uc

+ umax8+ vmax8+ vx,max8+

A1 189 180 42.0 12.6 2.71 0.616 0.116

A2 189 180 45.6 12.4 2.84 0.612 0.117

A3 168 180 38.4 13.2 2.54 0.592 0.124

A4 168 180 42.0 12.8 2.59 0.598 0.121

A5 151 180 42.0 13.2 2.51 0.578 0.123
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of sublayer streaks. The limits of that range,Lz
+<50–150,

are also in good agreement with the range of streak spacings,
lz

+<50–200 found in real boundary layers.24

Two time-periodic solutions for a plane Couette flow are
taken from Kawahara and Kida,10 using Re=400, Lx

=1.755ph, andLz=1.2ph, which are essentially the same as
those of the minimal plane Couette turbulence studied in
Ref. 25. The latter approximately satisfies the two symme-
tries (5) and (6) spontaneously,10,25,26 but they have been
explicitly imposed on the time-periodic solutions. Their pa-
rameters are summarized in Table III.

Figure 2 shows the wall shear rate of Nagata’s steady
waves as a function of the streamwise wavelength, and also
those of the two periodic solutions. There is no steady Na-
gata solution for the conditions of the periodic orbits, but the
wall shear rate of the orbit O1 is roughly the same as that of
Nagata’s upper branch, while that of the orbit O2 is closer to

Nagata’s lower branch. Hereafter, the former solution will be
referred to as the “upper” periodic solution, while the latter
will be called the “lower” periodic solution, although there
does not appear to be a continuous connection between the
two. The upper cycle exhibits a full regeneration cycle of
near-wall coherent structures, and approximates well the
low-order turbulence statistics of minimal plane Couette flow
(see Fig. 3). It is interesting to note that both the upper and
lower branches of Nagata steady waves have minimum
streamwise wavelengths which are relatively independent of
the Reynolds number. In the case of the upper branch this
minimum length is approximately consistent with the wave-
lengthlx

+<250–300 below which wall turbulence cannot be
sustained.14,15

The solution loci in Fig. 2 are open towards long wave-
lengths. Given the number of modes that can be used in
practice by our continuation algorithm, wavelengths longer
than those in the figure would be numerically inaccurate.
Solution curves closed towards largeLx were found in Ref.
27, and closed solutions(not shown) were also found by us
for narrower boxessLx=0.8pd. It may very well be that the
curves in Fig. 2 close at some longer wavelength.

III. CLASSIFICATION OF SOLUTIONS

In this section, we look at the similarities and differences
among the simple solutions available in the literature for
Couette and Poiseuille flows, including the equilibrium and
periodic solutions described in the preceding section. Figure

TABLE II. Approximate parameter ranges for the “lower branch” L and
“upper branch” U Nagata solutions used in the paper.h+ is half the wall
separation in wall units. All the cases useLx=2ph.

Re h+ Lz
+ umax8+ vmax8+ vx,max8+

L1 200 18–18 51–61 2.59–3.19 0.29–0.40 0.12–0.12

L2 300 21–22 53–82 3.10–4.32 0.21–0.30 0.08–0.10

L3 400 24–25 53–92 3.20–5.09 0.17–0.30 0.07–0.08

L4 600 29–29 55–91 3.49–5.62 0.14–0.28 0.05–0.06

U1 200 21–22 68–85 2.26–2.42 0.61–0.70 0.15–0.16

U2 300 28–29 71–110 2.46–2.68 0.64–0.83 0.13–0.13

U3 400 35–35 76–132 2.79–3.42 0.53–0.89 0.11–0.13

U4 600 44–48 87–151 3.15–3.61 0.61–0.94 0.09–0.11

TABLE III. Parameters of the two periodic solutions in Ref. 10.Tp
+ is the

temporal period of the solution and the turbulence properties are averaged
over each cycle. Both cycles are traversed clockwise in the representation in
Figs. 5 and 11 and counterclockwise in the representation in Fig. 14.

Lx
+ Lz

+ h+ Tp
+ umax8+ vmax8+ vx,max8+

O1 190 130 34.4 188 3.18 0.741 0.125

O2 154 105 27.9 299 4.62 0.231 0.084

FIG. 1. Dimensionless wall shear rate for the solutions in Table II, vs the
spanwise periodLz

+. ,, Re=200;x, 300; n, 400; v, 600. In all casesLx

=2ph. The lines are drawn from the tracking algorithm, and the points
distinguished by symbols are used later for a more detailed study. Solid
symbols are classified as “upper branch,” open ones as “lower branch.” The
two circled cases are those in Fig. 7.

FIG. 2. Wall shear rate for the Nagata solutions vs the streamwise wave-
length Lx

+. —, Re=400.Lz=1.2ph; ----, Re=600.Lz=ph. The upper long
(lower short) vertical thick segment represents the wall shear variation of the
time-periodic solution O1sO2d in Table III.
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3 shows the streamwise and wall-normal r.m.s. velocity pro-
files, u8 and v8, for the upper-branch Nagata equilibrium
solutions, for the upper cycle of Ref. 10, and for the autono-
mous steady waves. The figure also includes the statistics of
a fully-turbulent minimal Couette simulation. Figure 4 does
the same for the lower-branch Nagata solutions and for the
lower cycle. All the profiles in Fig. 3 agree roughly among
themselves, as do those in Fig. 4, but the two families are
very different from each other. The upper-branch solutions
are very close to minimal near-wall turbulence, which is in-
cluded in Fig. 3, and are characterized by a relatively strong
wall-normal velocities, and by weaker streamwise fluctua-
tions. The lower solutions have much weaker wall-normal
velocities and stronger streamwise fluctuations. Since near-
wall turbulence is known to be dominated by streamwise-
velocity streaks and by quasistreamwise vortices,13 and since
the latter are responsible for most of the generation of wall-
normal velocity, the relative magnitudes ofv8 and ofu8 can
respectively be used as indicators of the strength of the vor-

tices and of the streaks.17 We will therefore characterize the
upper-branch solutions as “vortex-dominated,” and the
lower-branch ones as “streak-dominated.”

The characteristics of the fluctuation profiles of the dif-
ferent solutions are summarized in Fig. 5, where each solu-
tion is represented by a single point whose coordinates are
the maximum values,umax8 andvmax8 , of its intensity profiles.
Most solutions fall into one of the two classes discussed
above. In the upper-left corner of the plot we have the
vortex-dominated solutions, and in the lower-right corner the
streak-dominated ones. In the former class we find the three
upper-branch families discussed above, and in the latter the
two lower-branch Couette solutions. The unstable permanent
wave obtained by Toh and Itano3 in a Poiseuille flow, and the
heteroclinic connection identified by the same authors28 are
streak-dominated solutions. The figure also includes the two
permanent-wave solutions given by Waleffe2 for Poiseuille
flow, which are classified as lower or upper branch according
to the original reference, although they are too close to the
turning point to differ too much from each other. All that can

FIG. 3. r.m.s. velocity profiles for ----, the autonomous solutions from Table
I; —, upper-branch solutions of case U3 in Table II;P, “upper” cycle O1 in
Table III. The heavy solid line is the minimal Couette simulation C1 in
Table IV. (a) Streamwise component.(b) Wall-normal component.

FIG. 4. r.m.s. velocity profiles for —, lower-branch solutions of case L3 in
Table II; s, “lower” cycle O2 in Table III.(a) Streamwise component.(b)
Wall-normal component.
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be said about them is that they are ordered in the right way in
this representation with respect to the classification used for
the other solutions.

It is remarkable that two families are enough to classify
all the solutions discussed here, which include Poiseuille,
autonomous, and Couette flows, and steady, traveling-wave,
and temporally periodic solutions computed by a variety of
techniques. The homogeneity within each class is indeed
only approximate. It is clear from Fig. 3 that, while the
maxima ofu8 is almost the same in the autonomous and in
the Couette flows, the peaks are located farther from the wall
in the former than in the latter. It is also clear in Fig. 5 thatv8
tends to be stronger in Couette flows than either in the au-
tonomous or in the Poiseuille solutions.

The classification into two families is on the other hand
relatively independent of the parameters of the solutions.
Figure 6 shows several Nagata equilibrium solutions ob-
tained by varyingLz for a fixedLx, using different Reynolds
numbers. The separation into two families persists even
when the Reynolds number is increased by a factor of 3, and
a similar result(not shown) is obtained when the box length
is increased by 50%.

Similar classifications can be obtained using other vari-
ables, but not all of them are as clear as the previous one.
Consider, for example, the substitution ofvmax8 by the maxi-
mum vx,max8 of the intensity profile of the streamwise vortic-

ity, which could be considered a more direct indicator of the
strength of the streamwise vortices. The maximum of interest
for us is the one aroundy+<15–20, which in fully devel-
oped turbulence corresponds to the quasistreamwise
vortices.18 There is usually a second maximum ofvx8 at the
wall itself, which is related to the interactions of the vortices
with the transverse no-slip condition, and sometimes one
more near the center of the flow, which is associated with the
outer structures. Occasionally, specially at very low Rey-
nolds numbers, some of those maxima merge, and it is im-
possible to define a maximum associated with the stream-
wise vortices. The vorticity maxima for the Nagata solutions
are displayed in Fig. 6(b). It is seen, for example, that, while
the maxima ofu8 andv8 increase with Reynolds number for
the upper Nagata solutions, those ofvx8 decrease. By study-
ing individual profiles it is seen that the reason is that the
vortex and wall peaks tend to merge at very low Reynolds
numbers, but the consequence is that the classification in
terms ofvx8 is less informative than that in termsv8. More-
over, even if the vortices are the primary reason for the wall-
normal velocity, it is the velocity itself that is dynamically

FIG. 5. Classification into upper and lower solutions in terms of the maxi-
mum streamwise and wall-normal r.m.s. velocities,umax8 andvmax8 . The solid
large and small loops represent the upper and the lower periodic solutions
O1 and O2 in Table III.n, Nagata steady solution L3-U3 from Table II.
Solid symbols are classified as upper branch, and open ones as lower
branch;j, autonomous solutions from Table I. Other traveling-wave solu-
tions for plane Poiseuille flow are also shown for comparison;P, Waleffe
(Ref. 2) upper-branch solution forQ/n=1303, whereQ is the volume flux
per unit span.Lx

+3Lz
+3h+=38731493123; s, Waleffe (Ref. 2) lower-

branch solution forQ/n=1390,Lx
+3Lz

+3h+=37931463121; h, Toh and
Itano (Ref. 3) asymmetric wave forQ/n=4000,Lx=p, andLz=0.4p. The
dotted loop is the periodiclike solution in Ref. 28.

FIG. 6. Peak intensities for all the Nagata solutions in Table II.(a)
umax8 -vmax8 . (b) umax8 -vx,max8 . Symbols are as in Fig. 1. The lines are drawn to
aid the eye. Only the symbols correspond to actual data.
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significant, by advecting the mean shear to generate the
streaks. From now on the variable pairsumax8 -vmax8 d will be
our primary tool for comparing flows, althoughvmax8 will still
be occasionally referred to as the “vortex intensity.”

A. The structure of the flow field

Besides the statistical differences just discussed between
the upper and lower branches, there are significant differ-
ences in their spatial structures. Consider the two flow fields
in Fig. 7, which correspond to lower and upper Nagata solu-
tions at comparable Reynolds numbers and dimensions. They
differ mainly in the location of the streamwise vorticity,
which is concentrated in the form of sheets in the case of the
lower branch, but which also has two concentrated tubular
vortices in each flank of the streak in the case of the upper
branch. In both cases the vorticity structures are staggered
streamwise, and the streak itself is deformed sinusoidally.
Three-dimensional representations of these flows, especially
of the upper branch, can be found in the original papers
describing these solutions.2,5,10

It has been noted elsewhere that the lower-branch solu-

tions are very similar to the linearly unstable eigenfunctions
of the sinusoidal mode of a straight streak.7 This makes sense
because the lower-branch saddle in Ref. 3 was found by
tracing its stable manifold from some unstable streaky flow.
Those eigenfunctions contain little streamwise vorticity in
the flanks of the streak, and do not include vortices with
circular cores, which are typically only formed later by the
nonlinear rollup of vortex sheets.

The origin of the instability and of the streamwise vor-
ticity can be understood by considering its evolution equa-
tion,

S D

Dt
− n¹2Dvx = ]xv]zu − ]xw]yu + vx]xu. s7d

For a straight streak without streamwise vorticity both]x and
vx vanish, and so do the three source terms in the right-hand
side of(7). The first two source terms are linear in]x. If the
streak is kinked slightly, they create streamwise vorticity by
reorienting the shear around the streak into a streamwise vor-
tex sheet. In a sinusoidal mode, this streamwise vorticity
changes sign alongx and further deforms the streak by cre-
ating a spanwise velocity which varies withx. This is the
feedback mechanism of the sinuous instability responsible
for the lower branch.

It is tempting to blame the third term in the right-hand
side of(7) for the collapse of the vortex sheets into tubes as
the intensity of the kinking increases. This term is bilinear in
]x andvx, and represents the stretching ofvx by the stream-
wise variation ofu. The strain]xu is positive whenever the
kinked low-velocity streak follows higher-velocity fluid, and
is highest towards the middle of its vertical walls. It is here
that the initial streamwise vortex sheet is strained most, and
where it can collapse into tubular vortices.29 On the other
hand it is known that two-dimensional vortex sheets, which
are not stretched, roll into circular cores in times of the order
of the inverse of their vorticity, which are in general shorter
in wall-bounded flows than the time needed for them to build
a streak.30 The criterion for rollup is that the internal Rey-
nolds number of the streak should be large enough for ad-
vection to overcome viscous diffusion. The upper branch
would then appear as an equilibrium solution in which the
sheets of streamwise vorticity created by the instability have
become intense enough to roll into cores. Stretching helps to
localize them along the streak.

We have seen that both types of solutions exist, with and
without collapsed vortices, arising from a saddle-node bifur-
cation at some onset Reynolds number. It is however clear
that both configurations are unstable. Thex dependentvx

distribution kinks the streak, which generates further stream-
wise vorticity, and further kinking. This eventually weakens
the streak by mixing the velocity gradient along its flanks,
and consequently the vortices created by that gradient.

Note that there is no one-to-one correspondence between
the strength of the vortices and that of the streak. The latter is
the consequence of the action of the vortices over a period of
time, and this time scale is as important in determining the
streak intensity as the vortex strength. There is little doubt
that, in the absence of viscosity or of other limiting factor, a

FIG. 7. Projection of thevx and velocity fields on the cross-planesz-yd, for
the solutions in Table II. Re=400,Lx3Lz=2ph30.9ph. The thick solid
lines are different sections of the surfaceu=0. Arrows are the cross-plane
velocities atx=0, which is defined so that the first streamwise harmonic of
u is proportional to coss2px/Lxd. The arrows are uniformly scaled in wall
units, and the longest arrows in(b) are roughly 1.9ut. The dark- and light-
gray objects are isosurfacesvx

+= ±0.155. The two solutions used here are
circled in Figs. 1 and 6.(a) Lower branch,Lz

+=67. (b) Upper branch,
Lz

+=99.
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permanent vortex will eventually pump the mean velocity
profile into uniform streamwise regions in which the stream-
wise velocity is that of one or of the other wall. Viscosity or
instability limit that distortion, and the simplest explanation
of the weaker streaks measured for the upper-branch solu-
tions is that the flank vortices shorten the effective time scale
of the pumping by providing an effective eddy viscosity that
homogenizes the streamwise-velocity profile. An equivalent
explanation closer to the language of turbulence is that the
“overhangs” of the streak in Fig. 7(b) are first- and third-
quadrant events31,32 which substract from the production of
turbulent energy.

IV. COMPARISON WITH TURBULENT FLOWS

A. Flow type and Reynolds-number effects

We will compare in this section the previously discussed
simple solutions to the Navier–Stokes equations with fully
developed turbulence in large computational boxes, but some
discussion is first needed on what is being compared, and of
the differences between different flows and between different
Reynolds numbers.

It should be clear that we may only expect the solutions
in the preceding section to be related to structures in the
buffer and viscous sublayers of fully turbulent flows, but it is
also true that not all the near-wall structures can be modeled
in this way. Consider the spectra of the streamwise velocity
displayed in Fig. 8, which includes an autonomous flow with
“no” outer layer,17 and two full channels at different Rey-
nolds numbers.33,34 The spectra are scaled in wall units and
have three regions. In the lower-left corner, corresponding to
“minimal” structures of sizes comparable to the solutions
discussed above, the spectra agree well. Farther to the right,
at scales which are too long and too wide to be compared
with the simple solutions, there are spectral “tails” which

also agree among themselves, although with different maxi-
mum lengths. It was shown in Ref. 17 that these tails are
passive in the sense that they can be removed without dis-
turbing the minimal scales, and that they can be explained as
wakes of the smaller structures. The last part of the spectrum
is the upper-right corner, which differs among the three
flows. Those structures scale in outer units, contain no Rey-
nolds stresses at this wall distance, and extend deep into the
outer flow.33 The only spectral range that can be compared to
the simple solutions discussed above is, therefore, the lower-
left corner, but that range is specially important because it
contains the structures that are both active in the sense of
participating in the generation of turbulent energy in the
buffer layer, and autonomous in the sense of requiring nei-
ther larger or taller scales to survive. They form the “nonlin-
ear core” of buffer-layer turbulence.

The behavior of the turbulence statistics with the Rey-
nolds number is connected with this spectral classification.
The total energyu82 of the streamwise velocity fluctuations
is the integral of the spectrum, and it follows from Fig. 8
that, if we consider all the structures in the buffer layer,u8
should depend onh+ through the dependence of the
spectrum.35 If on the other hand we only consider structures
within the minimal dotted box in the figure, the partialu8
should become independent of the Reynolds number.

This is a particular case of the dependence of the turbu-
lence statistics on the size of the averaging box, which means
that boxes of different sizes cannot be directly compared,
even within the same flow, because individual small boxes
are not statistically “converged.” In particular, the fluctuation
profiles of the simple solutions are not comparable to the
intensity profiles compiled in experiments or in computa-
tions. To allow the comparison in our case, each wall of the
large boxes is divided into sub-boxes of minimal sizebx

+

3bz
+<3803110, and the statistics are compiled over them.

In addition, each wall is treated independently, and the inten-
sity profiles are compiled only from the wall to the central
plane. Each sub-box is characterized by its maximum r.m.s.
intensities, and the values for different sub-boxes are sum-
marized as a joint probability density function of the two
quantities, compiled over all the sub-boxes and over time.
Each flow is therefore not characterized by a single point, but
by the probability distribution of the possible states of a sub-
box of a given size. Although the effect of this procedure on
the spectral space is not straightforward, its main effect is to
subtract from the velocity its local average, and can be ap-
proximated as windowing the spectrum with one minus the
Fourier transform of the averaging box, which decreases rap-
idly above l=2b. This spectral window is represented by
dotted lines in Fig. 8, and contains all the active autonomous
scales discussed above.

The effect of this local averaging procedure is shown in
Fig. 9(a), which displays the maximum of the r.m.s. velocity
fluctuations for several turbulent flows as a function of the
Reynolds number. As predicted above,umax8 increases with
h+, but when the same flows are analyzed over boxes of
minimal size, as in the closed symbols in the figure, that
effect disappears. Another example is shown in Fig. 9(b),
which shows the probability distributions of the maximum

FIG. 8. Premultiplied spectra of the streamwise velocity componentkxkzEuu

as a function of the spanwise and streamwise wavelengthsl=2p /k. y+

=16. Shaded, autonomous flow in a large box(Ref. 17), masked aboved1
+

=60; —, full channel(Ref. 33) at h+=550; ----, full channel(Ref. 34) at
h+=950. The dotted rectangle is the first zero of the transfer function for a
convolution box of sizebx

+3bz
+=4003100.
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intensities for two identical minimal flows, compiled over
boxes which are approximately twice wider in one case than
in the other. The statistics in the wider box are more concen-
trated than those in the narrower one, and most of the
“wings” of the latter are missing in the former.

The next question is whether different flows can be com-
pared to one another. There are well-documented differences
between the near-wall behavior of Poiseuille and Couette
turbulent flows at low Reynolds numbers,36 which are pre-
sumably related to the discrepancies between the correspond-
ing elementary solutions, but they disappear near the wall as
the Reynolds number increases. Theu8 maxima in Fig. 9(a),
which are in the near-wall region, fall in the same line for all
the flows included. Another example is the wall-normal ve-
locity of the autonomous simulations, which is lower than in
Poiseuille flow, becausev8 peaks away from the wall and is

damped by the numerical mask. Even in that case, whenv8 is
measured at a giveny+ near the wall, the fluctuations of both
flows agree well.5,17 The wall-normal velocities of Poiseuille
flow also vary at low Reynolds numbers,23,37 and vmax8+ in-
creases from<0.85 to 1.08 whenh+ increases from 180 to
1000. Jiménez and Pinelli15 found the same effect in minimal
channels withh+&600, but experiments in boundary layers
at much higher Reynolds numbers35 suggest that the growth
of the wall-normal-velocity peak saturates whenh+*1000.
There is no comparable effect for Couette flow, except per-
haps at very low Reynolds numbers, and the few available
Couette experiments at moderate to high Reynolds
numbers38,39 show thatvmax8+ <1 in the rangeh+=50–800.
The spectra ofv8 are essentially contained within the mini-
mal box of Fig. 8, and lacks both the Reynolds-number de-
pendent wakes, or the outer structures ofEuu.

33 All the avail-
able evidence suggests that the structure of the near-wall
layer is approximately universal when the Reynolds number
is large enough.

The main reason for the differences of low-Reynolds
number behavior of Poiseuille and Couette flows is probably
their different mean velocity profiles, which is monotonic in
the latter but not in the former. The production of turbulent
kinetic energy is proportional to the gradient of the mean
velocity, and the fluctuations in Poiseuille flow begin to be
damped as soon as they cross into the opposite side of the
channel. The same is true for the autonomous flows, in which
the eddies which move into the numerical mask are immedi-
ately damped, but not in the Couette case, in which the
monotonic velocity profile means that an eddy can cross al-
most to the opposite wall without being damped. This is
clearly seen in Fig. 10, which shows profiles of the turbulent
energy production,P=−kũṽl]yU, whereũ andṽ are fluctua-
tions with respect to the long-term mean velocity profileU,
for a fully developed Couette flow ath+=82, and for two
Poiseuille flows at substantially higher Reynolds numbers. If
we assume15 that the near-wall structures are governed by the

FIG. 9. (a) Maximum of u8. Open symbols are either full simulations or
experiments. Solid symbols are computed over averaging boxes of size
4003100.s, Poiseuille(Refs. 33 and 34); ,, boundary layers(Ref. 35); h,
Couette(Refs. 36 and 38). (b) Comparison between the joint p.d.f.s of the
maximum fluctuation intensities in the minimal Poiseuille flow P4 in Table
IV, depending on the width of the averaging box. —,bz

+=110; ----, bz
+

=220. The probability contours contain 30%, 50%, 70%, and 90% of the
data. The solid squares are the permanent waves from Table I, and the left
and right heavy solid lines are, respectively, cycles O1 and O2 from
Table III.

FIG. 10. Production profiles from full-size simulations. —, Couette flow
(Ref. 36) at h+=82; ----, Poiseuille(Ref. 18), h+=180; –·–, Poiseuille(Ref.
34), h+=1880; s, asymptotic infinite-Reynolds number distribution from
the logarithmic profile with Kármán constantk=0.4.
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region belowy+&60–100, it is clear from the figure that the
production in that layer is closer to the infinite-Reynolds-
number limit for the low-Reynolds-number Couette flow
than for any of the Poiseuille flows. The near-wall layer of
Couette flows can then be “fully developed” at Reynolds
numbers as low ash+=50–80, in agreement with the experi-
mental evidence mentioned above.

B. Comparisons with full turbulence

Consider first the solutions in the Poiseuille family. As
explained above, to compare the simple solutions with large

turbulent channels,33,34 which have computational boxes of
the order ofLx

+3Lz
+<10 00035 000, we compile for the

latter the probability distributions ofumax8 andvmax8 computed
over “minimal” sub-boxes of the same wall-parallel dimen-
sions as the computational boxes of the former.

Figure 11(a) shows probability isolines containing 90%
of the samples for each of the large flows, compared with the
single points characterizing the instantaneous values of some
of the simple solutions. The figure also includes p.d.f.s from
fully turbulent minimal Poiseuille flows, which were com-
puted for the present paper and which are summarized in
Table IV. They include one case ath+<190 which should be
similar to the full channel with the lowest-Reynolds number.
The statistics for these minimal flows are computed in the
same way as for the full channels, using sub-boxes of the
size given in the table, independently of the size of their
computational box. The numerical code used for the minimal
Poiseuille simulations is the one in Ref. 14, and that used for
the minimal Couette cases discussed below is the one from
Ref. 40.

The p.d.f.s of the turbulent flows converge towards those
of the upper-branch simple waves as the Reynolds number
decreases. This is significant because the lowest Reynolds
numbers used for the Poiseuille and Couette flows in Figs.
11(a) and 11(b), are very close to the minimum value for
which turbulence can be sustained.

There is a trend forvmax8 to strengthen as the Reynolds
number increases, but it saturates at large Reynolds numbers,
as previously discussed. Note, in particular, that there is so
little difference between the p.d.f.s ath+=950 and h+

=1880 in Fig. 11(a) that it is difficult to tell them apart. It is
also significant that the lower limits of all the p.d.f.s reach
down to the location of the permanent solutions, suggesting
that the latter represent quiescent turbulent structures com-
mon to all Reynolds numbers, while the higher parts of the
p.d.f. contain their “excited” states.

The difference between the minimal and the full chan-
nels in Fig. 11(a) is interesting, because their statistics are

TABLE IV. Parameters of the minimal Poiseuille P and Couette C flows
used in the figures in Secs. IV and V.Lx andLz are the dimensions of the
computational box, whilebx andbz are the dimensions of the sub-boxes over
which statistics are compiled. Re for the Poiseuille cases is based in the bulk
velocity and the half height. For the Couette case it is based on half the
velocity difference and the half height.

Re Lx
+ Lz

+ h+ bx
+ bz

+

P1 1 170 410 180 85 410 110

P2 1 800 385 220 123 385 110

P3 2 925 450 125 181 450 125

P4 2 925 375 220 197 375 110

P5 30 500 440 110 850 440 110

P6 77 200 450 110 1720 450 110

C1 400 188 128 34 188 100

C2 2000 337 101 107 337 101

C3 3000 440 106 140 440 106

FIG. 11. Comparison between the joint p.d.f.s of the maximum fluctuation
intensitiessumax8 -vmax8 d in minimal and full turbulent flows and in simple
solutions. Probability isolines contain 90% of data. The heavy solid lines are
as in Fig. 9(b). The dashed lines with open and solid circles are Nagata’s
Couette solutions, as in Fig. 6(a). (a) Turbulent Poiseuille flows. Statistics
are computed over boxesbx

+3bz
+<3803110, and only those boxes for

which the maximum is belowy+=50 are used. Open symbols are large-box
simulations(Refs. 33 and 34). n, h+=1880;L, 950;,, 550;h, 180. Lines
are minimal-box Poiseuille simulations from Table IV. —, P4,h+=197; –·–,
P2, h+=123; ········, P1,h+=85. (b) Turbulent Couette flows. Simulations
were run in boxesLx

+3Lz
+<3803180, but the statistics were computed

overbx
+3bz

+<3803100, over the full half-height of the flow. Open symbols
are minimal-box Couette simulations from Table IV.n, C1,h+=34; h, C2,
h+=107; L, C3, h+=140. –·–, Full Poiseuille simulation ath+=950, from
(a), included to facilitate comparison.
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compiled over identical averaging boxes. Comparing the two
cases withh+<190, it is clear that the minimal channel var-
ies more, specially in the streak intensityumax8 . The same
“wings” of the p.d.f. are found in all the minimal boxes, but
not in the full ones. The left-hand wing represents occasions
in which both the streaks and the vortices are weak, and the
flow is close to local laminarization. Transient laminarization
of one wall in minimal flows was already observed in Ref.
14, and inspection of the temporal histories of the present
minimal simulations(not shown) shows that the left-hand
wings of the p.d.f.s correspond to events of this type.

The right-hand wings of the p.d.f.s represent strong
streaks with weak vortices, and are conceptually similar to
the lower-branch solutions discussed above, although Fig.
11(a) makes clear that the minimal Poiseuille flows always
have stronger vortices than the equilibrium states belonging
to that branch. Kawahara and Kida10 found that minimal
Couette flow occasionally visits lower-branch solutions in
which the streak grows for a while to very high intensities
before breaking into a strong turbulent burst. We will refer to
these strong streaks from now on as “metastable,” because
the evidence in the above reference suggests that the flow is
not able to sustain such strong streak intensities for long
times. The wider boxes in the present simulations do not visit
this lower-branch cycle often enough to show in the p.d.f.s
but it is tempting to interpret their right-hand wings as parts
of the same process.

Neither of those two processes seems to happen in the
full flows, although the tilt of their p.d.f.s towards the lower-
left corner of Fig. 11(a) suggests that some local laminariza-
tion occasionally occurs. The simplest interpretation is that
the perturbations induced by the rest of the flow are enough
to prevent individual streaks from either dying completely or
from growing to metastable strengths.

We can also interpret in this light the differences be-
tween the two p.d.f.s in Fig. 9(b), in which the left-hand
wing is missing from the wider box. Since we know from the
p.d.f. computed over the narrower box that local laminariza-
tion occurs in this flow, its absence from the wider statistics
shows that the two streaks that exist in the computational
box never laminarize at the same time. This may be impor-
tant in maintaining the flow, since the active streak can act as
a trigger to revive the decaying one, and it is probably the
reason why it was found in Ref. 5 that minimal turbulence at
very low Reynolds numberssh+&100d could only be sus-
tained in comparatively wide boxes of the order ofLz

+

<200. Narrower boxes at such low Reynolds numbers sus-
tain turbulence for fairly long times, but they eventually
laminarize and do not recover. At somewhat higher Reynolds
numbers both walls interact loosely, and one wall retriggers
the other, but that mechanism eventually also fails. At very
high Reynolds numbers the two walls interact little, and nar-
row boxes also occasionally die. Several of the boxes in
Table IV had to be restarted at some point from slightly
different initial conditions after they died, in some cases after
running fort+<53104. In wider boxes one of the streaks in
each wall can revive the whole flow, and extreme examples
of this mutual triggering are the large autonomous boxes,15,17

in which essentially normal turbulence is maintained even
when the wall-normal dimension of the flow is made as low
asd1

+<40.
In Couette flows there are few large-box turbulent simu-

lations to use as comparisons, but three minimal boxes were
run for the present paper. Their parameters are given in Table
IV, and their p.d.f.s are shown in Fig. 11(b). The lowest
Reynolds number agrees very well with the statistics of the
upper-branch Nagata solutions, as we had already seen in
Fig. 3. Since those solutions correspond to the same flow at
similar Reynolds numbers, it is not surprising that their
agreement should be better than with the Poiseuille flows. As
the Reynolds number increases, the Couette and Poiseuille
statistics converge to one another, as discussed in the preced-
ing section. Note that both in Figs. 11(a) and 11(b) the lower-
branch Nagata solutions are in a region of the parameter
plane that is very different from the turbulent statistics. The
Couette flows also have short “laminar” tails towards its
lower-left-hand corner, and local excursions towards local
laminarization can be seen in its history, but the effect is
weaker than in the Poiseuille case. In contrast, its right-hand
tail is stronger than in channels, and approaches more closely
the lower-branch cycle of metastable strong streaks. That
lower orbit was originally identified from a minimal Couette
simulation similar to this one10 but, as in the Poiseuille case,
the effect is absent from the higher Reynolds numbers.

The Couette boxes withh+=114 andh+=140 are very
similar to each other, although their right-hand tails move
steadily away from the lower cycle as the Reynolds number
increases, and they are comparable to the full Poiseuille
channel ath+<1000. Couette flows at these Reynolds num-
bers are already essentially asymptotic, in agreement with
our previous discussion of the experimental evidence.

V. BURSTING

While the results just discussed suggest that full-fledged
turbulence contains quiescent structures which are essen-
tially identical to the simple solutions of Sec. III, it is clear
from the p.d.f.s that it also contains stronger ones, specially
as the Reynolds number increases. It is impractical to con-
tinue the search for simple solutions to much higher Rey-
nolds numbers than the ones in Sec. III, but it is unlikely that
such solutions, if they exist, would turn out to be much stron-
ger than those at the Reynolds numbers presented here. Even
simple solutions should eventually scale approximately in
wall units. This, and the already-mentioned fact that the tur-
bulent p.d.f.s stretch upwards as the Reynolds number in-
creases, but keep a constant lower bound, raises naturally the
question of whether the Reynolds number effects seen in Fig.
11 might be due to unsteady effects.

We already mentioned in the introduction that the ques-
tion of whether the generation of turbulence in the near-wall
layer is best described by permanent coherent structures or
by temporally intermittent processes has been discussed of-
ten. Near-wall turbulence is clearly not steady, but the ques-
tion is whether it is closer to a system moving in phase space
within the immediate neighborhood of an unstable coherent
state,41 or to a sequence of intermittent nonlinear excursions
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far from a saddle point along homoclinic or heteroclinic
orbits.3,28,42

The modern tendency has been to emphasize the first of
those views, but evidence for time-dependent bursting has
been increasingly difficult to ignore. It is well known that
streaks are unstable to sinuous perturbations,7,43,44and lateral
oscillations have been implicated in the breakdown of the
streaks in simulations of autonomous,15 minimal Poiseuille,14

and minimal Couette25 flows. Schoppa and Hussain44 have
been specially insistent in urging the reconsideration of the
case for time-dependent bursting.

There is no question that minimal flows burst intermit-
tently with fairly well-defined periods.14 Frequency spectra
of the time histories of their integrated wall shearkvzlsy
=0d are shown in Fig. 12(a) and, since there is only one
structure in the computational box of minimal simulations,
those spectra reflect a temporal evolution.

The mean value of the burst periodT=2p /v can be

defined as the weighted logarithmic average of the periods in
the temporal frequency spectrum,

lnsTbd =E lnsTdEsvddv. s8d

For the Poiseuille flows in Fig. 12(a), the length of the
“burst” decreases fromTb

+<1000 at low Reynolds numbers
to Tb

+<400 at highh+. The longer period is close to the one
observed visually in Refs. 14 and 5, and the shorter one is
close to the “torus” period in Ref. 5. This shorter value is
probably asymptotic for high-Reynolds-number flows, be-
cause it changes little between the two highest Reynolds
numbers in the figure. Preliminary results for an even higher-
Reynolds-number minimal Poiseuille simulation ath+

<3500 give the same period(private communication from
J. C. del Álamo).

The evolution of the mean burst period for Poiseuille
and Couette flows is presented in Fig. 12(b). In the Couette
case it increases fromTb

+<300 at the lower Reynolds num-
ber, to the same value as in Poiseuille flows at the higher
ones,Tb

+<400. The shorter period is not too far from that of
the “vortex” orbit in Ref. 10. The convergence of the Poi-
seuille and Couette flow at high Reynolds numbers recalls
the similar one discussed above for the intensity of the fluc-
tuations, and the fact the two flows approach their asymp-
totes from opposite directions may be related to the similar
way in which the production behaves in Fig. 10.

As the minimal flows evolve, their properties generate
probability clouds similar to those studied in the preceding
section. A useful representation, closely related to the one
used in Ref. 10, is to describe the state of the flow by its
instantaneous integrated production and dissipation rates
over some chosen integration heightx,

P = −E
0

x

kũṽl]yUdy, s9d

and

D = nE
0

x

ku=ũu2ldy. s10d

The balance of those two quantities determines how energy
accumulates or drains from the perturbations.

The joint p.d.f. of those two quantities is shown in Fig.
13(a) for a minimal Poiseuille flow. The arrows in the figure
represent the evolution velocity of the system in parameter
space,sdP/dt , dD /dtd. The p.d.f. is compiled as a histogram
over 25325 bins, and the arrows represent the mean evolu-
tion velocity of all the states within a particular bin. Note
that the velocities computed in this way are in general lower
than the true evolution velocities of the systems within the
bin, because of the effect of the vector averaging, but the
mean values in the bins near the periphery of the distribu-
tions in Fig. 13 are of the same order as their measured
standard deviations, and they are therefore probably repre-
sentative of the true values.

To study the behavior of the flow as it evolves, we divide
the sP-Dd space into quadrants defined by the principal axes
of the probability cloud, as in Fig. 13(a). Note that these are

FIG. 12. (a) Premultiplied frequency spectra of the time evolution of the
plane-averaged wall shear plotted against the period, for different minimal
Poiseuille flows from Table IV. ········, P1; –·–, P3; ----, P5; —, P6.(b)
Weighted average periods for all the minimal flows in Table IV. —, Poi-
seuille; ----, Couette.
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not the quadrants of the more usualsu8-v8d analysis.31,32The
present definition essentially guarantees that all the quadrants
contain roughly the same number of points, and the sub-
boxes over which our statistics are computed are chosen to
be large enough that each of them contains one full sweep
and one full ejection. The mean wall-normal velocity over
each sub-box is always very close to zero. It is clear from the
figure that the flow visits the four quadrants consecutively in
the mean, accumulating energy as it moves from III to IV,
whereP.D, and releasing it from I to II.

The residence times of the system in each quadrant can
be estimated from its evolution velocity, at least at the pe-
riphery of the cloud. The result is that the system crosses
quadrant I in aboutTI

+<80, and the other three quadrants in
TII

+ <140,TIII
+ <150, andTIV

+ <70. The total from these esti-
mates agrees well with the periods in Fig. 12, and the impli-
cation of the partial crossing times is that the system spends
most s2/3d of its time at the lower left of the distribution,
which is where the simple solutions sit[see Fig. 14(a)], with
somewhat shorter excursions into the tail at the right-hand
side of the distribution.

A similar evolution analysis can be done for other pa-
rameter pairs, such as thesumax8 -vmax8 d plane used in the pre-
ceding section and shown in Fig. 13(b). Its sense of rotation
is also counterclockwise. There is no one-to-one correspon-
dence between areas near the centers of this and of the
sP-Dd distribution, but the evolution of their peripheries can
be correlated well. Starting from top center in Fig. 13(b), the
system moves consecutively through thesP-Dd quadrants
I–IV, which are now located approximately as indicated in
the figure. Note that quadrants II and IV roughly correspond
to the left and right wings of the p.d.f.s in Fig. 11.

The general picture that can be derived from plots of this
type is consistent with the visual studies of bursting in mini-

FIG. 13. (a) Evolution velocity and definition of the production-dissipation
quadrants.(b) Streak-vortex parameter plane. Minimal flow P3, belowy+

=50. FIG. 14. (a) Joint probability distribution of the production and dissipation.
----, minimal Poiseuille flow P3; —, full Poiseuille flow, both withh+

<180; the heavy solid line is the Couette cycle O1 in Table III;j, autono-
mous permanent waves in Table I. The production and dissipation of all
these flows are computed belowx+<35. The dotted diagonal is the energy
equilibrium P=D. (b) Reynolds-stress profiles conditioned for eachsP-Dd
phase, normalized with the total shear stress. —, “Dissipation” phase. Quad-
rants I and II; ----, “production” phase. Quadrants III and IV. Simple lines
are minimal Poiseuille flow P3, and lines with heavy dots are a large-box
Poiseuille flow, both ath+=180; h, average of the five autonomous solu-
tions in Table I;n, average of the cycle O1 whenP.D; m, O1 for P
,D.
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mal channels by previous investigators.14,25,44The flow stays
for relatively long times in the dense region of the p.d.f.,
where it looks like a simple equilibrium state[see Fig.
14(a)]. We saw in Sec. III A that this equilibrium is a balance
between the creation of the streaks by the wall-normal ve-
locity of the vortices and their damping by the spanwise
velocity. Occasionally the equilibrium is broken and the
streaks enter various parts of the bursting cycle. For ex-
ample, if the vortices grow weaker and the system moves
towards the lower edge of Fig. 13(b), the streaks straighten
and begin to strengthen, as in the lower-branch solutions, and
the system drifts from quadrants III to IV. It follows from the
previously cited visual studies that this corresponds to rela-
tively straight streaks with weak vortices which do not grow
during this phase of the evolution, as shown by the horizon-
tal motion of the system in Fig. 13(b). This may be the
algebraic-growth phase identified in Ref. 44, and it eventu-
ally results in streaks that are strong enough to be unstable to
the previously mentioned exponential sinuous instability.
This limit was identified in Ref. 44 asumax8+ <3–4 in the
present notation, and is consistent with the position of the
right-hand edge of the distributions in Fig. 11. This new
instability results in vortex growth(IV ) and in the eventual
destruction of the streak through lateral deformation(I). This
in the dissipation-dominated part of the cycle, which results
in the final decay of the vortices(II ) once their feeding
streaks have been destroyed. Note that the vortex decay
times found in Ref. 15 by artificially shutting down their
vortex production term are of the same orderT+<200 as
those found above for quadrants I and II. Similar initiation
scenarios can be postulated starting from other locations
along the cycle.

While this correspondence with previous studies of
minimal flows is reassuring, the emphasis in this paper
should be on the similarities between the minimal channels,
the simple structures, and the full turbulent flows. As in the
preceding section, the statistics used for the minimal boxes
can be defined over minimal sub-boxes of full-scale simula-
tions. The production and dissipation distributions of a mini-
mal and of a full simulation at similar Reynolds numbers are
compared in Fig. 14(a) belowx+=35, which is a depth of the
order of those of the simple solutions. They agree well, as
was the case for thesumax8 -vmax8 d representation in the preced-
ing section, and similar results are found for all the variable
pairs that have been tried. Although temporal evolution in-
formation is not available for the full simulations, that agree-
ment strongly suggests that the full channel is also bursting.
Figure 14(a) also includes data from the autonomous solu-
tions in Table I and from the vortex-dominated orbit O1 in
Table III. They are in the “quiescent” core of the distribution,
and it is interesting that the periodic orbit is also traversed
counterclockwise by the flow. In fact, the periodic orbit can
be considered as a “miniature” bursting cycle in the limit of
very low Reynolds numbers, and shares many of the charac-
teristics of higher-Reynolds-number cases. For example, the
orbit can be divided intosP-Dd quadrants, and 60% of its
time is also spent within the two left-hand quiescent ones.

Note that most of the flows in the figure are not in en-
ergy equilibrium over the near-wall layer being considered,

which is known to generate a net excess of turbulent energy
in real flows.15 In particular, note that the autonomous solu-
tions lie near the production branch of the periodic orbit.

The comparison among the different systems can be
done in more detail using flow profiles conditioned on the
different phases of the bursting cycle. Many of those com-
parisons are equivalent to the correspondence of the joint
p.d.f.s discussed up to now, but one which is difficult to do in
that way is Fig. 14(b), which displays the distribution of
Reynolds stress in the production and in the dissipation
phases of the cycle. The figure also contains data from the
vortex-dominated periodic Couette orbit and from the au-
tonomous permanent waves. To facilitate their comparison
the Reynolds stress has been normalized with the total stress,
i.e., with ut

2 in the autonomous and Couette cases, and with
ut

2s1−y/hd in the Poiseuille flows. The minimal and the full
Poiseuille flows also agree well in this representation, and
both show a clear distinction between the production and the
dissipation phases. Given the differences in Reynolds num-
bers, the agreement of the other solutions is also good. In
particular, the autonomous permanent waves are again near
the production branch. One surprise is that the Reynolds
stress near the wall is predominantly generated during the
quiescent and streak-growth production phase, while the
vortex-dominated states in quadrants I and II carry much less
stress in that region. This is clearly because the temporal
burst destroys the coherence of the near-wall structures, but
it goes against the often-quoted rule that the Reynolds stress
is carried by the bursts.

Other plots such as this one also suggest that the activity
during the dissipation phase of the cycle moves away from
the wall, which brings to mind the large-scale structures
identified by different investigators in the logarithmic
layer.34,45–48It has been suggested that those structures could
be self-propelled coherent packets of hairpins vortices,49 and
it is tempting to speculate that the bursts identified here
could be the initial triggers for such packets.

There are not at the moment enough data on the distance
between vortex packets to test this assumption, and the pack-
ets themselves, being predominantly above the buffer layer,
are outside the scope of the present paper, but it is interesting
to note that the temporal information obtained from the mini-
mal simulations can be related to the length of the buffer-
layer structures of the full flows. If we assume that the ad-
vection velocity of features in this part of the flow50 is c+

<10, a bursting period ofTp
+=400 corresponds to a length of

lx
+<4000, which is in good agreement with the observed

length of “composite” streaks in the buffer layer.17 Such
streaks can be expected to contain several vortex systems, on
average one everylx

+<400, but not all of them are “ex-
cited.” If we, for example, define as excited systems those in
quadrants I and IV in Fig. 13(a), the fraction of excited boxes
would be proportional tosTI +TIVd /Tp<0.33, The implied
distance between consecutive excited vortex systems along a
streak islx

+<1200, which is also in good agreement with the
measured length of the coherent part of each streak.17 Note
that these lengths imply that, if the bursts are really the trig-
gers for the logarithmic-layer vortex packets, the mean dis-
tance between such packets would turn out to be of the order
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of lx
+3lz

+<12003300, and some interaction among neigh-
boring packets should be expected once they grow to ap-
proximately such size.

VI. CONCLUSIONS

We have shown that several known “simple” solutions to
the Navier–Stokes equations, particularly those which corre-
spond to permanent waves and to limit cycles in autonomous
and Couette flows, can be classified into upper- and lower-
branch families which agree fairly well with the correspond-
ing branches of the Couette waves found by Nagata.1 The
velocity statistics within each branch are reasonably similar
to each other, even though the base flows are quite different.
The upper branch consists of weak streaks with strong vor-
tices, and the lower one has much stronger streaks and
weaker vortices.

Turbulence in minimal Poiseuille or Couette flows stays
close to the vortex-dominated upper solutions, and fully tur-
bulent simulations in large boxes, when analyzed over sub-
boxes of minimal size, have statistics which are also consis-
tent with those solutions. In particular, the range of spanwise
wavelengths for which the steady solutions exist is in the
nearlz

+<100 for all the Reynolds numbers investigated, and
the streamwise wavelengths for upper-branch solutions is
bounded below bylx

+<250, both in agreement with compa-
rable length scales of fully developed wall turbulence. We
have argued that the structures of real turbulence which are
represented by these solutions are the active nonlinear scales
of the viscous and buffer region, which constitute the autono-
mous self-regenerating “core” of this part of the flow.

Kawahara and Kida10 found that minimal Couette turbu-
lence at very low Reynolds numbers intermittently visits the
lower-branch solutions, but the same is not true in flows at
somewhat higher Reynolds numbers or in larger boxes. What
remains of this behavior is a tendency of minimal simula-
tions to make occasional extreme excursions either towards
lower-branch solutions or towards laminar states, but even
those are much less common in turbulence in large boxes.

We have interpreted this to mean that the lower branch,
which has been linked to bypass transition to full
turbulence,3,10,40represents a metastable state which minimal
turbulence can reach before retransitioning, but that these
events are not allowed at higher Reynolds numbers, or in
larger boxes, because of the higher level of ambient pertur-
bations.

There is a general tendency for the statistics of minimal
or full flows to extend to intensities which are higher than
those of the simple solutions as the Reynolds number in-
creases, but this trend saturates forh+*1000 in Poiseuille
flow, and much sooner in the Couette case. The limiting state
is the same for both types of flows.

We have given evidence that this higher intensities are
associated with intermittent temporal bursting both in mini-
mal and in full flows, with periods which tend toTb

+<400 at
high Reynolds numbers. This phenomenon is different from
the passing of individual coherent structures, which are well
described by the simple solutions mentioned above. The tem-
poral bursting involves the destabilization of those struc-

tures, probably by two different processes. The streaks ini-
tially grow in intensity without a corresponding
strengthening of the vortices, and later undergo a faster in-
stability in which stronger vortices are created, move away
from the wall, and eventually destroy the streak. We have
presented statistics of both minimal and full flows condi-
tioned on different parts of the cycle. Contrary to the often-
quoted belief, these temporal bursts carry relatively little
Reynolds stress near the wall. The stress in the buffer layer is
predominantly carried by the “steady” structures. The peri-
odic orbit identified in Ref. 10 has been shown to be a
weaker version of the bursting cycle, sharing with it many of
its characteristics.

The temporal information obtained from the minimal
flows can be used to predict the spatial scales of the streaks
in the buffer layer of full flows, which agrees well with ob-
served values. It is speculated that the burst could act as
triggers for the large-scale vortex packets that have been de-
scribed elsewhere in the logarithmic layer, and it is shown
that this would lead to specific predictions regarding their
spacing and their eventual evolution.
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