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Near-wall turbulence in the buffer region of Couette and Poiseuille flows is characterized in terms
of recently-found nonlinear three-dimensional solutions to the incompressible Navier—Stokes
equations for wall-bounded shear flows. The data suggest that those solutions can be classified into
two families, of which one is dominated by streamwise vortices, and the other one by streaks. They
can be associated with the upper and lower branches of the equilibrium solutions for Couette flow
found by Nagatd“Three-dimensional finite-amplitude solutions in plane Couette flow: Bifurcation
from infinity,” J. Fluid Mech.217, 519(1990]. The quiescent structures of near-wall turbulence are
shown to correspond to the vortex-dominated family, but evidence is presented that they burst
intermittently both in minimal and in fully turbulent flows. The intensity and period of the bursts are
Reynolds-number dependent, but they saturate at high enough Reynolds numbers. The time-periodic
exact solution found for Couette flow by Kawahara and KitReriodic motion embedded in plane
Couette turbulence: Regeneration cycle and burst,” J. Fluid Mé&48.291(2001)] can be used as

a simplified model for the bursting process.2005 American Institute of Physics
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I. INTRODUCTION in which their stability has been investigated, the equilibrium
solutions are unstable saddles in phase space at the Reynolds

Wall-bounded flows have been important in turbulencenumbers at which turbulence is observed. They are not there-
research ever since the famous 1883 experiments by ReYore expected to be found as such in real turbulence but,
nolds. This is particularly true of the immediate near-wallsince the velocity of the system in phase space vanishes at
layer which, because its Reynolds number is locally low, isfixed points, whether stable or not, any turbulent flow could
usually considered to be a good candidate for an approximatspend a substantial fraction of its lifetime in their neighbor-
description in terms of simple deterministic structures. hood.

Nonlinear equilibrium solutions of the three-dimensional  Although the observed similarities suggest that all those
Navier—Stokes equations, with characteristics which suggesfructures are related to each other and to self-sustaining wall
that they may be useful in such a description, have beeturbulence, the nature of those relations is unclear. The first
obtained numerically in the past few years for plane Couettgjoal of this paper is to clarify that point by comparing as
flow,"* plane Poiseuille flof;* and an autonomous wall many as possible of the known equilibrium solutions, among
flow.> All those solutions look qualitatively simildr, and  themselves and with real near-wall turbulence. This compatri-
take the form of a wavy low-velocity streak flanked by stag-son will also include the time-periodic saddle orbits identi-
gered quasistreamwise vortices of alternating signs, resenfied by Kawahara and Kid¥, which not only approximate
bling the spatially-coherent objects educed from the nearthe profiles of average velocity and of the intensities of near-
wall region of true turbulent flow&® The mean and wall turbulence, but also part of its temporal structure.
fluctuation intensity profiles of the equilibrium structures are  In fact, the second problem that we will consider is the
also reminiscent of the experimental valG8dn those cases possible relation between temporal intermittency in the near-

wall layer and such time-dependent simple solutions of the
dElectronic mail: jimenez@torroja.dmt.upm.es Navier—Stokes equations. The term “burst” was originally
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introduced to describe fluid eruptions observed near the walliscussed in Sec. IV. Temporal intermittency is discussed in
in the early visualizations of turbulent boundary layErit  Sec. V, and conclusions are offered in Sec. VI. A preliminary
was initially hypothesized that bursts were due to the interversion of part of the present paper appeared previously as
mittent breakup of the near-wall streaks, but even the origiRef. 16.
nal authors later acknowledged that their visualizations could
be consistent with permanent advecting objéttand the || COMPUTATIONAL METHODS
term became eventually associated with the ejections ob- )
served by stationary velocity probes. With the advent of nuA- Autonomous solutions
merical simulations, it became apparent that the streaks were The permanent traveling-wave solutions described be-
long-lived streamwise velocity structures, and that thelow as “autonomous” are computed using a slightly modified
sweeps and ejections identified in the analysis of single-poingersiort’ of the numerical scheme used in Refs. 5 and 15.
data were mostly due to the passing of shorter quasistreanThe flow is established in a numerical domain with spatial
wise vortices, intermittent in space but not necessarily irperiodicitiesL, andL, in the streamwise and in the spanwise
time!® The question of whether the observed temporally in-directions, over a wall located gt=0. The streamwise, wall-
termittent sublayer events were visualization artifacts or renormal, and spanwise velocity components are, andw.
ally existed in the near-wall layer was bypassed by this exThe Navier—Stokes equations are integrated in the form of
planation. evolution equations for the wall-normal vorticity, and for
The well-documented mutual dependence of the nearvV2y, using a pseudospectral code with Fourier expansions in
wall streaks and vortices is consistent both with equilibriumthe two wall-parallel directions and Chebychev polynomials
models sustained by steady nonlinear interactions, such as in the wall-normal directiort® At each time step the right-
the structures mentioned above, and with temporal cycles ihand sides of the two evolution equations are multiplied by a
which both types of structures periodically create each othedamping mask 1AtF(y), where
The difficulty of following for long times individual struc- P _ . _
tures in fully turbulent flows complicates the experimental or Fy)=0ify<é, Fy=10ify=5=15,, (1)
numerical distinction between essentially permanent objectand the two limits of(y) are connected smoothly by a cubic
and intrinsically time-dependent processes with a long pespline. This mask can be interpreted as a linear dissipation
riod, but intermittent breakdown of near-wall turbulence isfor each of the two evolution variables. The decay tithis
observed in minimal-flow numerical simulations for which chosen so that all the vorticity fluctuations are effectively
spatial intermittency is not an isstié? The same is true of damped abovg=(8,+8,)/2. The equations are not modi-
autonomous wall flows in which the observation is simplifiedfied below the mask lower limib;. Irrotational fluctuations
by the small wall-normal dimensions of the simulation are not affected anywhere, and the outer edge of the Navier—
domain®® Stokes layer is bounded by a potential core which prevents
By comparing periodic solutions such those in Ref. 10,the formation of viscous boundary layers at the mask bound-
minimal simulations, and fully turbulent ones, we will try to ary. No-slip, impermeable boundary conditions are imposed
clarify whether intermittent behavior, as distinguished fromat the wall.
the vortex-passing bursts, is found in fully turbulent flows,  While the flows in Refs. 5 and 15 were integrated at
and whether it can be explained in terms of simple time-constant mass flux in a channel, the present computations
periodic solutions. were initially carried out at constant driving stress in a
We will also address the question of whether the charac*semi-infinite” domain. The velocities were matched to outer
teristics of such equilibrium or periodic solutions can explainpotential fluctuations extending to infinity from the edge,
the wavelength-selection properties of near-wall turbulencesh> 6,, of the computational domairi.This driving mecha-
such as the well-known mean streak separatiari /100 or  nism is free from the complications of a “second wall” across
the equally intriguingx* =300 streamwise separation found the potential layer, and, in particular, from the effect of a
in turbulent flows between vortex pairs within the samemean pressure gradient, and should, in principle, be prefer-
streak:* able to simulations involving two-walled channels. The total
To simplify the discussion, stationary or traveling per- shear stress, for example, is constant across the Navier—
manent waves, and solutions which can be reduced to limiBtokes layer instead of varying linearly across the channel,
cycles in some frame of reference, will be referred to asand the only Reynolds number in the problemdis The
“simple” from now on. Of those, the permanent waves andsuperscript™ denotes “wall” variables normalized with the
the turbulent flows whose statistics are roughly similar tokinematic viscosityr and with the friction velocityu,.
them, will be denoted as “quiescent.” Solutions with stronger  This driving mechanism had been successfully used to
vorticity, usually corresponding to a fast evolution in phasesimulate autonomous wall flows in large computational
space, will be called “excited.” boxes’ but, in the present case, it failed to reproduce the
Some of the older solutions required recomputing for thesimple solutions found by Jiménez and Sinferis a
purpose of this paper, using numerical methods which argressure-driven channel. The flow passed directly from fully
occasionally slightly different from the original ones. Thosechaotic (minimal) turbulence to laminar decay upon minor
methods are described in Sec. Il. The comparison betweechanges in the parameters.
the different equilibrium and periodic solutions is made in It was therefore decided to reintroduce some pressure
Sec. lll, and their relation with fully developed turbulence is effects. The basic structure of the code is maintained, and, in
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TABLE |. Parameters of the autonomous simulations used in the ltgxt. plane, and forwy and VZU' as in the preceding section. The
andL, are the box dimensionsl, is the phase velocity, andf, .., v/, and

; : > o maxe ._solutions are expressed as double Fourier expansions in the
), max are the maximum fluctuation intensities used below to characterize . . .
solutions. two wall-parallel directions. The wall-normal expansions are
expressed in terms of the centered dimensionless coordinate
Ly L 5 u; u vl O max y*=y/h-1, wherey* =0 is the midplane of the channel and

h is half the wall ration. Th h is function
Al 189 180 420 126 271 0616 04116 s half the wall separatio ey use the basis functions

A2 189 180 456 124 284 0612 0117 A-y2)T(y*) (2
A3 168 180 384 132 254 0592  0.124
A4 168 180 420 128 259 0598  0.121
A5 151 180 420 132 251 0578  0.123 (1-y2)2T,(y*) (3)

for up and wy, and

for v, whereT,(y*) is thelth order Chebychev polynomial.
They satisfy the boundary conditions

particular, the driving mechanism for the mean flow is still a . ov .

constant shear far from the wall, instead of a fixed imposed Y0~ @~V = = 0 aty* ==+1. (4)

mean pressure gradient. The mean velocity profile is linear

far from the wall, rather than parabolic, but the potentialThe collocation method with grid pointg* =cogmm/(M

fluctuations in the masked region are required to match &1)], (m=1,2,... M) is used to construct a system of qua-

no-stress impermeable boundaryyatH >h instead of de- dratic equations for the Fourier—-Chebychev—Fourier coeffi-

caying aty— . All the cases presented in this paper werecients, which is solved by the Newton—Raphson method. The

computed withH=2h and with the viscosity adjusted so that arc-length methdd is used to track the nonlinear solutions,

h*=120. with the three parameters Re,, andL, being changed in-
This modification introduces a small fluctuating pressuredependently.

gradient which maintains the instantaneous mass flow con- It is well-known that a laminar plane Couette flow is

stant across the domaif,H). It was found to be sufficient linearly stable for all finite Reynolds numbers. Nagata’s up-

to restore the existence of steady traveling waves. Their confer and lower solution branches appear subcritically at Re

putational parameters are summarized in Table I. They werg Uyh/v~125 from a saddle-node bifurcation, whedg, is

computed using 48 49x 48 spectral modes, before dealias- half the difference of the two wall velocities. In general, the

ing. The resulting resolution iAx*~Az"'~4, with a maxi- uUpper-brancfior lower-branch solutions generated from the

mum grid spacing\y*~ 3 below the mask. bifurcation have a larggior smallej deviation from a lami-
The significance of this observation is not clear, althougtnar state. All the solutions have two spatial symmeties®?

it is not surprising that the properties of constant-mass an@ reflection with respect to the plane o£0 plus a stream-

constant-stress simulations should differ in small computawise shift byL,/2,

t?onal _domains. Note that the _solu'gions discgssed in this sec- U, 0, W (%Y *,2) = (U*,0,~W)(X+LJ2,y*,- 2), (5)

tion differ from others used in this paper in that they are

obtained from an initial-value problem, and are thereforeand a rotation byr around the linex=y* =0 plus a spanwise

stable with a nonzero basin of attraction. This explains theishift by L,/2,

sensitivity to the stress boundary condition, which changes

their stability although not their qualitative character. The

present traveling waves do not differ visually from those in (6)

Ref. S, even though the codes are different, The chaotic >%he steady traveling-wave solution found by Waléffer

Iytlons obtalnec_i fr_om th_e constant-stress boun_dary Cc_mdéf)Iane Poiseuille flow also has symmets).

tions are also indistinguishable from the chaotic solution

btained by raising th K either in th t cod ; Figure 1 and Table Il summarize the properties and the
otaNed by raising the mask €itner in the present code or IEomputational parameters of the solutions used below as rep-
Ref. 5. They all agree with minimal Poiseuille flows below

L E17 resentative of this flow. All the cases were computed using
roughly half the mask he|gﬁ11. Because of the presence of 16X 16 complex Fourier coefficients in the wall-parallel di-

a required fluctuation of the spatially-constant pressure I8t PR
. o Tections and 33 Chebychev polynomialsyirThis represents
dient, these flows are classified below as part of the Poi y Poly H P

. . . : a resolution of at least 15, 9, and 5 wall units, respectively, in
seuille famlly,.eve_n if the temporal average of their meany,q X, ¥, and z directions, which is better than most direct
pressure gradient is zero. simulations of turbulenc®?3The most marginal direction is

y and grid convergence was tested at Re=400 by reducing
the resolution to 16 polynomials. The changes in Fig. 1 were

Nagata’'s steady solutiohfor incompressible plane Cou- within the size of the symbols.

ette flow were recomputed using a method similar to that in  Note that both the upper and the lower branches
Ref. 20. The flow is described by its deviatign*, v, w) have higher dimensionless shear rates at the wall,
from the linear profile, and is obtained numerically by solv-1+(h/U,,) duoldy|y*:ﬂ, than the unit shear of the laminar
ing steady nonlinear equations for the streamwise velocityptate. The range of existence of the solutions in Fig. 1 is
ug(y)=(u*), where( ) denotes averaging over a wall-parallel always close td_;=100, as in the observed mean separation

(u*,v,W)(X,y*,2=(-u*,—v,W)(-x,—-y*,z+L,/2).

B. Plane Couette solutions
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4 T T T TABLE lll. Parameters of the two periodic solutions in Ref. ]I[g.is the
4 temporal period of the solution and the turbulence properties are averaged
E over each cycle. Both cycles are traversed clockwise in the representation in
< 3 Figs. 5 and 11 and counterclockwise in the representation in Fig. 14.

W
o
w
ot
ot

+ + + r+ r+ r+
Lx LZ h T; Unax Umax Wy max

()

o1 190 130 34.4 188 3.18 0.741 0.125
02 154 105 27.9 299 4.62 0.231 0.084

o
o
o
K

Wall shear rate
N

] Nagata’s lower branch. Hereafter, the former solution will be
referred to as the “upper” periodic solution, while the latter
will be called the “lower” periodic solution, although there
does not appear to be a continuous connection between the
two. The upper cycle exhibits a full regeneration cycle of
near-wall coherent structures, and approximates well the
low-order turbulence statistics of minimal plane Couette flow
(see Fig. 3. It is interesting to note that both the upper and
FIG. 1. Dimensionless wall shear rate for the solutions in Table II, vs thejq\ver branches of Nagata steady waves have minimum

spanwise period.;. V, Re=200;>, 300; A, 400; <], 600. In all cases, t . | th hich lativelv ind dent of
=2wh. The lines are drawn from the tracking algorithm, and the pointsS reamwise wavelengths wnich are relatively independent o

distinguished by symbols are used later for a more detailed study. Solidhe Reynolds number. In the case of the upper branch this
symbols are classified as “upper branch,” open ones as “lower branch.” Thminimum length is approximately consistent with the wave-

two circled cases are those in Fig. 7. length\} = 250—300 below which wall turbulence cannot be
sustained?*°
o The solution loci in Fig. 2 are open towards long wave-
of sublayer streaks. The limits of that randg,~50-150, |engths. Given the number of modes that can be used in
are also in good agreement with the range of streak spacinggyactice by our continuation algorithm, wavelengths longer
\; = 50200 found in real boundary layefs. than those in the figure would be numerically inaccurate.
Two time-periodic solutions for a plane Couette flow are go|ytion curves closed towards laryg were found in Ref.
taken from Kawahara and Kidd, using Re=400,L, 27 and closed solution@ot shown were also found by us
=1.7557h, andL,=1.27h, which are essentially the same as 5, narrower boxegL,=0.87). It may very well be that the
those of the minimal plane Couette turbulence studied iy es in Fig. 2 close at some longer wavelength.
Ref. 25. The latter approxima%}e)lg/5 2sés\tisﬁes the two symme-
tries (5) and (6) spontaneously;“>“” but they have been
explicitly imposed on the time-periodic solutions. Their pa—“l' CLASSIFICATION OF SOLUTIONS
rameters are summarized in Table Il In this section, we look at the similarities and differences
Figure 2 shows the wall shear rate of Nagata’'s steadymong the simple solutions available in the literature for
waves as a function of the streamwise wavelength, and alsgouette and Poiseuille flows, including the equilibrium and
those of the two periodic solutions. There is no steady Naperiodic solutions described in the preceding section. Figure
gata solution for the conditions of the periodic orbits, but the
wall shear rate of the orbit O1 is roughly the same as that of
Nagata’s upper branch, while that of the orbit O2 is closerto 4 T

150

TABLE II. Approximate parameter ranges for the “lower branch” L and

[0

“upper branch” U Nagata solutions used in the papéris half the wall < 3F
separation in wall units. All the cases usg=2h. -
IS
+ + 1+ 1+ 1+ Q
Re h LZ umax Umax wx,max -%

3 ol
L1 200 18-18 51-61 2.59-3.19 0.29-0.40 0.12-0.12 =

L2 300 21-22 53-82 3.10-4.32 0.21-0.30 0.08-0.10
L3 400 24-25 53-92 3.20-5.09 0.17-0.30 0.07-0.08
L4 600 29-29 55-91 3.49-5.62 0.14-0.28 0.05-0.06 1 L

100 200 300
Lt
ul 200 21-22 68-85 2.26-2.42 0.61-0.70 0.15-0.16 x
Uz 300 28-29 71-110 2.46-2.68 0.64-0.83 0.13-0.13 £15 5 \yall shear rate for the Nagata solutions vs the streamwise wave-
u3 400 35-35 76-132 2.79-3.42 0.53-0.89 0.11-0.13 |eng[h L;. —_, Re:400.|_2: 1.2xh; ----, Re:GOO.LZ: wh. The upper |0ng

U4 600 44-48 87-151 3.15-3.61 0.61-0.94 0.09-0.11 (lower shorj vertical thick segment represents the wall shear variation of the
time-periodic solution O102) in Table IlI.
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6 T T r

(a)

30

0 20 40 0 10 20 30
y* yt

FIG. 3. r.m.s. velocity profiles for ----, the autonomous solutions from TableFIG. 4. r.m.s. velocity profiles for —, lower-branch solutions of case L3 in
I; —, upper-branch solutions of case U3 in Table®, “upper” cycle O1 in Table II; O, “lower” cycle O2 in Table Ill.(a) Streamwise componentb)
Table Ill. The heavy solid line is the minimal Couette simulation C1 in Wall-normal component.

Table IV. (a) Streamwise componenth) Wall-normal component.

tices and of the streak$.We will therefore characterize the
3 shows the streamwise and wall-normal r.m.s. velocity proupper-branch solutions as “vortex-dominated,” and the
files, U’ and v’, for the upper-branch Nagata equilibrium lower-branch ones as “streak-dominated.”
solutions, for the upper cycle of Ref. 10, and for the autono-  The characteristics of the fluctuation profiles of the dif-
mous steady waves. The figure also includes the statistics éérent solutions are summarized in Fig. 5, where each solu-
a fully-turbulent minimal Couette simulation. Figure 4 doestion is represented by a single point whose coordinates are
the same for the lower-branch Nagata solutions and for théhe maximum valuesy;,,, andv/,,,, of its intensity profiles.
lower cycle. All the profiles in Fig. 3 agree roughly among Most solutions fall into one of the two classes discussed
themselves, as do those in Fig. 4, but the two families ar@above. In the upper-left corner of the plot we have the
very different from each other. The upper-branch solutionssortex-dominated solutions, and in the lower-right corner the
are very close to minimal near-wall turbulence, which is in-streak-dominated ones. In the former class we find the three
cluded in Fig. 3, and are characterized by a relatively strongipper-branch families discussed above, and in the latter the
wall-normal velocities, and by weaker streamwise fluctuatwo lower-branch Couette solutions. The unstable permanent
tions. The lower solutions have much weaker wall-normalwave obtained by Toh and Itahim a Poiseuille flow, and the
velocities and stronger streamwise fluctuations. Since neaheteroclinic connection identified by the same autffoase
wall turbulence is known to be dominated by streamwise-streak-dominated solutions. The figure also includes the two
velocity streaks and by quasistreamwise vortideand since  permanent-wave solutions given by Waléffer Poiseuille
the latter are responsible for most of the generation of wallflow, which are classified as lower or upper branch according
normal velocity, the relative magnitudes wf and ofu’ can  to the original reference, although they are too close to the
respectively be used as indicators of the strength of the voiturning point to differ too much from each other. All that can

Downloaded 04 Jun 2007 to 130.54.110.22. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



015105-6 Jiménez et al. Phys. Fluids 17, 015105 (2005)

o
(3
L

........
- %
.,

Sereaanen’

T ; T 0 -

i A, o ] 2 4 6
k ~.~ A A A . N uimax
s "-B' ------------------ p
o 1 1 1 2 T
2 4 6 X b
Vs (b)

W r"ﬁax 0.15f i . )

FIG. 5. Classification into upper and lower solutions in terms of the maxi-
mum streamwise and wall-normal r.m.s. velocities,, andv;,.. The solid

large and small loops represent the upper and the lower periodic solution:s a
O1 and O2 in Table Ill.A, Nagata steady solution L3-U3 from Table II.

Solid symbols are classified as upper branch, and open ones as lowes,
branch;l, autonomous solutions from Table |. Other traveling-wave solu- 8 0.1}
tions for plane Poiseuille flow are also shown for compari®@n\Waleffe
(Ref. 2) upper-branch solution fo®/»=1303, whereQ is the volume flux
per unit spanly X L} X h*=387x 149x 123; O, Waleffe (Ref. 2 lower-
branch solution foQ/»v=1390,L; X L] X h*=379x 146X 121; ], Toh and
Itano (Ref. 3 asymmetric wave foQ/»=4000,L,=m, andL,=0.4a. The

dotted loop is the periodiclike solution in Ref. 28. . T eeing
0.052

be_' said about th.em iS. that they are ordered in_the_right way iR, 6. Peak intensities for all the Nagata solutions in Table ().
this representation with respect to the classification used far, v/ .. (b) U oL nae Symbols are as in Fig. 1. The lines are drawn to

X, max

the other solutions. aid the eye. Only the symbols correspond to actual data.
It is remarkable that two families are enough to classify
all the solutions discussed here, which include Poiseuille,
autonomous, and Couette flows, and steady, traveling-wavéy, which could be considered a more direct indicator of the
and temporally periodic solutions computed by a variety ofstrength of the streamwise vortices. The maximum of interest
techniques. The homogeneity within each class is indeetbr us is the one aroung*~15-20, which in fully devel-
only approximate. It is clear from Fig. 3 that, while the oped turbulence corresponds to the quasistreamwise
maxima ofu’ is almost the same in the autonomous and invortices'® There is usually a second maximum ef at the
the Couette flows, the peaks are located farther from the wallall itself, which is related to the interactions of the vortices
in the former than in the latter. It is also clear in Fig. 5 that  with the transverse no-slip condition, and sometimes one
tends to be stronger in Couette flows than either in the aumore near the center of the flow, which is associated with the
tonomous or in the Poiseuille solutions. outer structures. Occasionally, specially at very low Rey-
The classification into two families is on the other handnolds numbers, some of those maxima merge, and it is im-
relatively independent of the parameters of the solutionspossible to define a maximum associated with the stream-
Figure 6 shows several Nagata equilibrium solutions obwise vortices. The vorticity maxima for the Nagata solutions
tained by varying., for a fixedL,, using different Reynolds are displayed in Fig.®). It is seen, for example, that, while
numbers. The separation into two families persists evemhe maxima ofu’ andv’ increase with Reynolds number for
when the Reynolds number is increased by a factor of 3, anthe upper Nagata solutions, thosedf decrease. By study-
a similar resultnot shown is obtained when the box length ing individual profiles it is seen that the reason is that the
is increased by 50%. vortex and wall peaks tend to merge at very low Reynolds
Similar classifications can be obtained using other varinumbers, but the consequence is that the classification in
ables, but not all of them are as clear as the previous onéerms ofw,, is less informative than that in termss. More-
Consider, for example, the substitutionf,, by the maxi-  over, even if the vortices are the primary reason for the wall-
mum w, ., Of the intensity profile of the streamwise vortic- normal velocity, it is the velocity itself that is dynamically
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tions are very similar to the linearly unstable eigenfunctions

(a) of the sinusoidal mode of a straight stréakhis makes sense
because the lower-branch saddle in Ref. 3 was found by
tracing its stable manifold from some unstable streaky flow.
Those eigenfunctions contain little streamwise vorticity in
the flanks of the streak, and do not include vortices with
circular cores, which are typically only formed later by the
nonlinear rollup of vortex sheets.

The origin of the instability and of the streamwise vor-
ticity can be understood by considering its evolution equa-
tion,
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For a straight streak without streamwise vorticity béttand

wy vanish, and so do the three source terms in the right-hand
side of (7). The first two source terms are lineardp If the
streak is kinked slightly, they create streamwise vorticity by
reorienting the shear around the streak into a streamwise vor-
tex sheet. In a sinusoidal mode, this streamwise vorticity
changes sign along and further deforms the streak by cre-
ating a spanwise velocity which varies wii This is the
feedback mechanism of the sinuous instability responsible
for the lower branch.

It is tempting to blame the third term in the right-hand
side of(7) for the collapse of the vortex sheets into tubes as
the intensity of the kinking increases. This term is bilinear in
FIG. 7. Projection of thev, and velocity fields on the cross-platey), for dy and w,, and represents the stretchingwf by the stream-
the solutions in Table Il. Re=40Q,,X L,=27hx0.97h. The thick solid  wise variation ofu. The straind,u is positive whenever the
lines are different sgctiqns of_ the surfage0. Arrows are th(_e cross-plane kinked Iow-velocity streak follows higher-velocity fluid, and
velocities atx=0, which is defined so that the first streamwise harmonic of. | . . . . .

u is proportional to co@wx/L,). The arrows are uniformly scaled in wall is highest towards the middle of its vertical walls. It is here
units, and the longest arrows (h) are roughly 1.8,. The dark- and light- that the initial streamwise vortex sheet is strained most, and
gray objects are isosurfaces =+0.155. The two solutions used here are where it can collapse into tubular vortic®sOn the other
circled in Figs. 1 and 6(a) Lower branch,L;=67. (b) Upper branch,  panq jt is known that two-dimensional vortex sheets, which
Le=99. are not stretched, roll into circular cores in times of the order
of the inverse of their vorticity, which are in general shorter
— . in wall-bounded flows than the time needed for them to build
significant, by advecting the mean s_hear ',[0 geperate thg streak’® The criterion for rollup is that the internal Rey-
streak;. From now on the.varlable P&l Urmay) W'” t.)e nolds number of the streak should be large enough for ad-
our primary tool for comparing flow§, althog@I{}m\-/wII“sull vection to overcome viscous diffusion. The upper branch
be occasionally referred to as the “vortex intensity. would then appear as an equilibrium solution in which the
sheets of streamwise vorticity created by the instability have
become intense enough to roll into cores. Stretching helps to

Besides the statistical differences just discussed betwedncalize them along the streak.
the upper and lower branches, there are significant differ- We have seen that both types of solutions exist, with and
ences in their spatial structures. Consider the two flow fieldsvithout collapsed vortices, arising from a saddle-node bifur-
in Fig. 7, which correspond to lower and upper Nagata solucation at some onset Reynolds number. It is however clear
tions at comparable Reynolds numbers and dimensions. Thefiat both configurations are unstable. Thaependentw,
differ mainly in the location of the streamwise vorticity, distribution kinks the streak, which generates further stream-
which is concentrated in the form of sheets in the case of thaise vorticity, and further kinking. This eventually weakens
lower branch, but which also has two concentrated tubulathe streak by mixing the velocity gradient along its flanks,
vortices in each flank of the streak in the case of the uppeand consequently the vortices created by that gradient.
branch. In both cases the vorticity structures are staggered Note that there is no one-to-one correspondence between
streamwise, and the streak itself is deformed sinusoidallythe strength of the vortices and that of the streak. The latter is
Three-dimensional representations of these flows, especialthe consequence of the action of the vortices over a period of
of the upper branch, can be found in the original paperdime, and this time scale is as important in determining the
describing these solutiois:*° streak intensity as the vortex strength. There is little doubt

It has been noted elsewhere that the lower-branch soluhat, in the absence of viscosity or of other limiting factor, a

A. The structure of the flow field
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also agree among themselves, although with different maxi-
mum lengths. It was shown in Ref. 17 that these tails are
passive in the sense that they can be removed without dis-
turbing the minimal scales, and that they can be explained as
wakes of the smaller structures. The last part of the spectrum
is the upper-right corner, which differs among the three

10°%

TN flows. Those structures scale in outer units, contain no Rey-
nolds stresses at this wall distance, and extend deep into the
102_ outer flow®® The only spectral range that can be compared to

the simple solutions discussed above is, therefore, the lower-

left corner, but that range is specially important because it

contains the structures that are both active in the sense of

participating in the generation of turbulent energy in the

. ) . buffer layer, and autonomous in the sense of requiring nei-

102 103 104 ther larger or taller scales to survive. They form the “nonlin-
I ear core” of buffer-layer turbulence.

The behavior of the turbulence statistics with the Rey-
FIG. 8. Premultiplied spectra of the streamwise velocity compokggE, nolds number is connected with this spectral classification.
as a function of the spanwise and streamwise wavelengtBn/k. y*  The total energy’? of the streamwise velocity fluctuations
=16. Shaded, autonomous flow in a large lifkef. 17, masked above; is the integral of the spectrum, and it follows from Fig. 8
=60; —, full channel(Ref. 33 at h*=550; ----, full channel(Ref. 34 at ’ g ! h :
h*=950. The dotted rectangle is the first zero of the transfer function for dhat, if we consider all the structures in the buffer layeér,
convolution box of sizeb, x b, =400x 100. should depend onh* through the dependence of the

spectrunf'.5 If on the other hand we only consider structures

within the minimal dotted box in the figure, the partial
permanent vortex will eventually pump the mean velocityshould become independent of the Reynolds number.
profile into uniform streamwise regions in which the stream-  This is a particular case of the dependence of the turbu-
wise velocity is that of one or of the other wall. Viscosity or |ence statistics on the size of the averaging box, which means
|nStab|l|ty limit that diStortion, and the Simplest eXplanation that boxes of different sizes cannot be direct'y Compared,
of the weaker streaks measured for the upper-branch solgyen within the same flow, because individual small boxes
tions is that the flank vortices shorten the effective time Scal%re not Statistica”y “Converged_” In particu'ar' the fluctuation
of the pumping by providing an effective eddy viscosity thatprofiles of the simple solutions are not comparable to the
homogenizes the streamwise-velocity profile. An equivalentmensity profiles compiled in experiments or in computa-
explanation closer to the language of turbulence is that th@ons. To allow the comparison in our case, each wall of the
“overhangs” of the streak in Fig.() are first- and third- |arge boxes is divided into sub-boxes of minimal sk
quadrant events®which substract from the production of x b?~380x 110, and the statistics are compiled over them.

turbulent energy. In addition, each wall is treated independently, and the inten-
sity profiles are compiled only from the wall to the central
IV. COMPARISON WITH TURBULENT FLOWS plane. Each sub-box is characterized by its maximum r.m.s.

intensities, and the values for different sub-boxes are sum-
marized as a joint probability density function of the two
We will compare in this section the previously discussedquantities, compiled over all the sub-boxes and over time.
simple solutions to the Navier—Stokes equations with fullyEach flow is therefore not characterized by a single point, but
developed turbulence in large computational boxes, but somigy the probability distribution of the possible states of a sub-
discussion is first needed on what is being compared, and difox of a given size. Although the effect of this procedure on
the differences between different flows and between differenthe spectral space is not straightforward, its main effect is to
Reynolds numbers. subtract from the velocity its local average, and can be ap-
It should be clear that we may only expect the solutiongproximated as windowing the spectrum with one minus the
in the preceding section to be related to structures in th&ourier transform of the averaging box, which decreases rap-
buffer and viscous sublayers of fully turbulent flows, but it is idly above A=2b. This spectral window is represented by
also true that not all the near-wall structures can be modeledotted lines in Fig. 8, and contains all the active autonomous
in this way. Consider the spectra of the streamwise velocitycales discussed above.
displayed in Fig. 8, which includes an autonomous flow with  The effect of this local averaging procedure is shown in
“no” outer layer’ and two full channels at different Rey- Fig. 9a), which displays the maximum of the r.m.s. velocity
nolds number&>3*The spectra are scaled in wall units and fluctuations for several turbulent flows as a function of the
have three regions. In the lower-left corner, corresponding t&keynolds number. As predicted aboug, ., increases with
“minimal” structures of sizes comparable to the solutionsh*, but when the same flows are analyzed over boxes of
discussed above, the spectra agree well. Farther to the righthinimal size, as in the closed symbols in the figure, that
at scales which are too long and too wide to be comparedffect disappears. Another example is shown in Fidn),9
with the simple solutions, there are spectral “tails” whichwhich shows the probability distributions of the maximum

A. Flow type and Reynolds-number effects
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2.5

FIG. 10. Production profiles from full-size simulations. —, Couette flow
1.5} b 1 (Ref. 36 ath*=82; ---, PoiseuillgRef. 18, h*=180; ——, PoiseuilléRef.

( ) 34), h*=1880; O, asymptotic infinite-Reynolds number distribution from
the logarithmic profile with Karman constart0.4.

damped by the numerical mask. Even in that case, whén
measured at a giveyl near the wall, the fluctuations of both
flows agree welP* The wall-normal velocities of Poiseuille
flow also vary at low Reynolds numbers?’ and Uy N
creases from=0.85 to 1.08 wherh* increases from 180 to
1000. Jiménez and Pinéflifound the same effect in minimal
0 channels withh* <600, but experiments in boundary layers
at much higher Reynolds numb%‘?suggest that the growth
0 , L L L of the wall-normal-velocity peak saturates whigi= 1000.

1 2,0t 3 4 There is no comparable effect for Couette flow, except per-

u p b ptp

haps at very low Reynolds numbers, and the few available
FIG. 9. (a) Maximum of u’. Open symbols are either full simulations or Couette experiments at moderate to high Reynolds
experiments. Solid symbols are computed over averaging boxes of sizaumber&®° show thatv’®.~1 in the rangeh*=50-800.

. . . max ) A X . O
400x 100.0, Poiseuille(Refs. 33 and 34 V, boundary layeréRef. 35; L, The gpectra of’ are essentially contained within the mini-

evimum fustuaton intensties n the minimal Paisevile flow P4 in Tabie Mal bOX of Fig. 8, and lacks both the Reynolds-number de-
IV, depending on the width of the averaging box. 63=110; -, b} pendent wakes, or the outer structure&gf. All the avail-
=220. The probability contours contain 30%, 50%, 70%, and 90% of theghle evidence suggests that the structure of the near-wall
data. The solid squares are the permanen_t waves from Table |, and the qu.yel’ is approximately universal when the Reynolds number
and right heavy solid lines are, respectively, cycles O1 and O2 from,
Table III. is large enough.
The main reason for the differences of low-Reynolds
number behavior of Poiseuille and Couette flows is probably
intensities for two identical minimal flows, compiled over their different mean velocity profiles, which is monotonic in
boxes which are approximately twice wider in one case tharhe latter but not in the former. The production of turbulent
in the other. The statistics in the wider box are more concenkinetic energy is proportional to the gradient of the mean
trated than those in the narrower one, and most of thaelocity, and the fluctuations in Poiseuille flow begin to be
“wings” of the latter are missing in the former. damped as soon as they cross into the opposite side of the
The next question is whether different flows can be com-channel. The same is true for the autonomous flows, in which
pared to one another. There are well-documented differencdbe eddies which move into the numerical mask are immedi-
between the near-wall behavior of Poiseuille and Couett@tely damped, but not in the Couette case, in which the
turbulent flows at low Reynolds numbefswhich are pre- monotonic velocity profile means that an eddy can cross al-
sumably related to the discrepancies between the corresponatost to the opposite wall without being damped. This is
ing elementary solutions, but they disappear near the wall agearly seen in Fig. 10, which shows profiles of the turbulent
the Reynolds number increases. THemaxima in Fig. 9a), ~ energy productiontI=—(tv)d,U, wheret andv are fluctua-
which are in the near-wall region, fall in the same line for all tions with respect to the long-term mean velocity protile
the flows included. Another example is the wall-normal ve-for a fully developed Couette flow dt"=82, and for two
locity of the autonomous simulations, which is lower than inPoiseuille flows at substantially higher Reynolds numbers. If
Poiseuille flow, because’ peaks away from the wall and is we assume that the near-wall structures are governed by the
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TABLE IV. Parameters of the minimal Poiseuille P and Couette C flows
used in the figures in Secs. IV and M, andL, are the dimensions of the
computational box, whilé, andb, are the dimensions of the sub-boxes over

] which statistics are compiled. Re for the Poiseuille cases is based in the bulk
velocity and the half height. For the Couette case it is based on half the
velocity difference and the half height.

(a)

\ a 1 | Re L L} h* b! b
>
P1 1170 410 180 85 410 110
P2 1 800 385 220 123 385 110
0.5; 1 P3 2925 450 125 181 450 125
P4 2925 375 220 197 375 110
o P5 30500 440 110 850 440 110
0 P6 77 200 450 110 1720 450 110
C1 400 188 128 34 188 100
' . ' ' . c2 2000 337 101 107 337 101
C3 3000 440 106 140 440 106
2 (b)
L5p turbulent channel®>* which have computational boxes of
the order ofL; X L,~10000x5 000, we compile for the
+ g latter the probability distributions af;,,, andv,,, computed
> 1y over “minimal” sub-boxes of the same wall-parallel dimen-
sions as the computational boxes of the former.
Figure 1%a) shows probability isolines containing 90%
0.5 of the samples for each of the large flows, compared with the
single points characterizing the instantaneous values of some
0 of the simple solutions. The figure also includes p.d.f.s from

fully turbulent minimal Poiseuille flows, which were com-
puted for the present paper and which are summarized in
Table IV. They include one case fait= 190 which should be
FIG. 11. Comparison between the joint p.d.f.s of the maximum fluctuationsimilar to the full channel with the lowest-Reynolds number.
INtensities (Upa; Umay) in minimal and full turbulent flows and in simple e giatistics for these minimal flows are computed in the
solutions. Probability isolines contain 90% of data. The heavy solid lines are .
as in Fig. 9b). The dashed lines with open and solid circles are Nagata’sS&M€ Way as for the full channels, using sub-boxes of the
Couette solutions, as in Fig(#. (a) Turbulent Poiseuille flows. Statistics Size given in the table, independently of the size of their
are computed over boxes, X b, ~380x 110, and only those boxes for computational box. The numerical code used for the minimal
gm‘:}umzxgg ':nzeé;"yﬁ’:riozigeggfgcf'gggfgysggg?g’s fég.'iirgee;box Poiseuille simulations is the one in Ref. 14, and that used for
are minimal-box Poiseuille simulations from Table IV. —, P4=197; ——,  the minimal Couette cases discussed below is the one from
P2, h*=123; «--eee , P1y*=85. (b) Turbulent Couette flows. Simulations Ref. 40.
Wefeb[lj(“bin g%éiﬂ-l%é '—Zz3?h0><f1|f|5% |?L;1t Fhﬁt Smstiffs were Comptl;teld The p.d.f.s of the turbulent flows converge towards those
Z\rle?%?nimél-box Couett‘eO\s/?rrr\ulaeticL)Jns fe:omeTlgbleow,%l?#:&fnﬂs,ycr:nzos of the Upper_bran,Ch _S'm,P'e waves as the Reynolds number
h*=107: ¢, C3, h*=140. ——, Full Poiseuille simulation At=950, from  decreases. This is significant because the lowest Reynolds
(a), included to facilitate comparison. numbers used for the Poiseuille and Couette flows in Figs.
11(a) and 11b), are very close to the minimum value for
which turbulence can be sustained.

There is a trend fop,,,, to strengthen as the Reynolds
number increases, but it saturates at large Reynolds numbers,
as previously discussed. Note, in particular, that there is so
little difference between the p.d.f.s dt"=950 and h*
=1880 in Fig. 11a) that it is difficult to tell them apart. It is
also significant that the lower limits of all the p.d.f.s reach
down to the location of the permanent solutions, suggesting
that the latter represent quiescent turbulent structures com-
mon to all Reynolds numbers, while the higher parts of the
p.d.f. contain their “excited” states.

Consider first the solutions in the Poiseuille family. As The difference between the minimal and the full chan-
explained above, to compare the simple solutions with larg@els in Fig. 11a) is interesting, because their statistics are

region belowy*<60-100, it is clear from the figure that the

production in that layer is closer to the infinite-Reynolds-
number limit for the low-Reynolds-number Couette flow
than for any of the Poiseuille flows. The near-wall layer of
Couette flows can then be “fully developed” at Reynolds
numbers as low als*=50-80, in agreement with the experi-

mental evidence mentioned above.

B. Comparisons with full turbulence
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compiled over identical averaging boxes. Comparing the twan which essentially normal turbulence is maintained even
cases witth* =190, it is clear that the minimal channel var- when the wall-normal dimension of the flow is made as low
ies more, specially in the streak intensity,,,. The same as &; =40.
“wings” of the p.d.f. are found in all the minimal boxes, but In Couette flows there are few large-box turbulent simu-
not in the full ones. The left-hand wing represents occasionfations to use as comparisons, but three minimal boxes were
in which both the streaks and the vortices are weak, and th&in for the present paper. Their parameters are given in Table
flow is close to local laminarization. Transient laminarization!V, and their p.d.f.s are shown in Fig. (. The lowest
of one wall in minimal flows was already observed in Ref. Reynolds number agrees very well with the statistics of the
14, and inspection of the temporal histories of the preserPper-branch Nagata solutions, as we had already seen in
minimal simulations(not shown shows that the left-hand Fig. 3. Since those solutions correspond to the same flow at
wings of the p.d.f.s correspond to events of this type. similar Reynolds numbers, it is not surprising that their
The right-hand wings of the p.d.f.s represent strongfgreement should be bf—:-tter than with the Poiseuille ﬂovys. As
streaks with weak vortices, and are conceptually similar tgh® Reynolds number increases, the Couette and Poiseuille
the lower-branch solutions discussed above, although Fightalistics converge to one another, as discussed in the preced-
11(a) makes clear that the minimal Poiseuille flows always"d Section. Note that both in Figs. (&) and 11b) the lower-
have stronger vortices than the equilibrium states belongingranch Nagata solutions are in a region of the parameter
to that branch. Kawahara and Kidafound that minimal lane that is very different from the tL_eruIent_ statistics. The
Couette flow occasionally visits lower-branch solutions inCouette flows also have short “Iammar’_’ tails towards its
which the streak grows for a while to very high intensitiesIower'left'hand corner, and local excursions towards local

o . laminarization can be seen in its history, but the effect is
before breaking into a strong turbulent burst. We will refer to . L -
u " weaker than in the Poiseuille case. In contrast, its right-hand
these strong streaks from now on as “metastable,” becau

e . .
the evidence in the above reference suggests that the ﬂow%f%III is stronger than in channels, and approaches more closely
the lower-branch cycle of metastable strong streaks. That

qot able to _sustam suc_:h strong strea_k mte_nsmes for lo_n_gower orbit was originally identified from a minimal Couette
times. The wider boxes in the present simulations do not V'S'gimulation similar to this ori@ but, as in the Poiseuille case,

this lower-branch cycle often enough to show in the p.d.f.s(he effect is absent from the higher Reynolds numbers.

but it is tempting to interpret their right-hand wings as parts The Couette boxes with*=114 andh*=140 are very

of the Same process. . similar to each other, although their right-hand tails move
Neither of those two processes seems to happen in th§eagily away from the lower cycle as the Reynolds number

full flows, although the tilt of their p.d.f.s towards the lower- increases, and they are comparable to the full Poiseuille

left corner of Fig. 11a) suggests that some local laminariza- pannel aht~ 1000. Couette flows at these Reynolds num-

tion occasionally occurs. The simplest interpretation is thahers gre already essentially asymptotic, in agreement with

the perturbations induced by the rest of the flow are enougg,, previous discussion of the experimental evidence.
to prevent individual streaks from either dying completely or

from growing to metastable strengths.
We can also interpret in this light the differences be-V- BURSTING

tvyeeq th? t\.NO p.d.fs in I_:ig.(B), n _WhiCh the left-hand While the results just discussed suggest that full-fledged
wing is missing from the wider box. Since we know from the turbulence contains quiescent structures which are essen-

p.d.f. computed over the narrower box that local laminarizayjqy identical to the simple solutions of Sec. Ill, it is clear
tion occurs in this flow, its absence from the wider statistics;om the p.d.f.s that it also contains stronger ones, specially
shows that the two streaks that exist in the computationals the Reynolds number increases. It is impractical to con-
box never laminarize at the same time. This may be imporg, e the search for simple solutions to much higher Rey-
tant in maintaining the flow, since the active streak can act agg|ds numbers than the ones in Sec. 1, but it is unlikely that
a trigger to revive the decaying one, and it is probably thes,ch solutions, if they exist, would turn out to be much stron-
reason why it was found in Ref. 5 that minimal turbulence alger than those at the Reynolds numbers presented here. Even
very low Reynolds numberénh®=100 could only be sus- simple solutions should eventually scale approximately in
tained in comparatively wide boxes of the order IBf  wall units. This, and the already-mentioned fact that the tur-
~200. Narrower boxes at such low Reynolds numbers susyylent p.d.f.s stretch upwards as the Reynolds number in-
tain turbulence for fairly long times, but they eventually creases, but keep a constant lower bound, raises naturally the
laminarize and do not recover. At somewhat higher Reynoldguestion of whether the Reynolds number effects seen in Fig.
numbers both walls interact loosely, and one wall retriggerg1 might be due to unsteady effects.

the other, but that mechanism eventually also fails. At very  We already mentioned in the introduction that the ques-
high Reynolds numbers the two walls interact little, and nartion of whether the generation of turbulence in the near-wall
row boxes also occasionally die. Several of the boxes inayer is best described by permanent coherent structures or
Table 1V had to be restarted at some point from slightlyby temporally intermittent processes has been discussed of-
different initial conditions after they died, in some cases afteten. Near-wall turbulence is clearly not steady, but the ques-
running fort*=~5x 10 In wider boxes one of the streaks in tion is whether it is closer to a system moving in phase space
each wall can revive the whole flow, and extreme examplesvithin the immediate neighborhood of an unstable coherent
of this mutual triggering are the large autonomous bd®é$, state*! or to a sequence of intermittent nonlinear excursions
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defined as the weighted logarithmic average of the periods in
the temporal frequency spectrum,

IN(T,) = J IN(TE(w)do. ©)

For the Poiseuille flows in Fig. 18), the length of the
“burst” decreases frorif, ~1000 at low Reynolds numbers
to T, ~400 at highh*. The longer period is close to the one
observed visually in Refs. 14 and 5, and the shorter one is
close to the “torus” period in Ref. 5. This shorter value is
probably asymptotic for high-Reynolds-number flows, be-
cause it changes little between the two highest Reynolds
numbers in the figure. Preliminary results for an even higher-
Reynolds-number minimal Poiseuille simulation &t
~3500 give the same periggbrivate communication from
J. C. del Alamo.

The evolution of the mean burst period for Poiseuille
1000 T T and Couette flows is presented in Fig(l2 In the Couette
b case it increases froffi; ~ 300 at the lower Reynolds num-
( ) ber, to the same value as in Poiseuille flows at the higher
800! i ones, T, =~ 400. The shorter period is not too far from that of
the “vortex” orbit in Ref. 10. The convergence of the Poi-
seuille and Couette flow at high Reynolds numbers recalls

L"' the similar one discussed above for the intensity of the fluc-
600} A tuations, and the fact the two flows approach their asymp-
totes from opposite directions may be related to the similar

L’ way in which the production behaves in Fig. 10.
400  _..-=""" . As the minimal flows evolve, their properties generate
e probability clouds similar to those studied in the preceding

section. A useful representation, closely related to the one
used in Ref. 10, is to describe the state of the flow by its

200 102 103 instantaneous integrated production and dissipation rates
ht over some chosen integration height
. . . X
FIG. 12. (a) Premultiplied frequency spectra of the time evolution of the _ _
plane-averaged wall shear plotted against the period, for different minimal P=- (ﬁvaUdy, 9)
Poiseuille flows from Table IV. - , P1; ——, P3; ----, P5; —,(PB. 0
Weighted average periods for all the minimal flows in Table IV. —, Poi- d
seuille; ----, Couette. an
X
D= VJ (Vu[®dy. (10)
0
far from a saddle point along homoclinic or heteroclinic The balance of those two quantities determines how energy
orbits 2842 accumulates or drains from the perturbations.

The modern tendency has been to emphasize the first of The joint p.d.f. of those two quantities is shown in Fig.
those views, but evidence for time-dependent bursting ha$3(a) for a minimal Poiseuille flow. The arrows in the figure
been increasingly difficult to ignore. It is well known that represent the evolution velocity of the system in parameter
streaks are unstable to sinuous perturbaticiig*and lateral space(dP/dt, dD/dt). The p.d.f. is compiled as a histogram
oscillations have been implicated in the breakdown of theover 25x 25 bins, and the arrows represent the mean evolu-
streaks in simulations of autonomaotfsninimal Poiseuille  tion velocity of all the states within a particular bin. Note
and minimal Couetf& flows. Schoppa and Husséafrhave  that the velocities computed in this way are in general lower
been specially insistent in urging the reconsideration of thehan the true evolution velocities of the systems within the
case for time-dependent bursting. bin, because of the effect of the vector averaging, but the

There is no question that minimal flows burst intermit- mean values in the bins near the periphery of the distribu-
tently with fairly well-defined periodé‘.1 Frequency spectra tions in Fig. 13 are of the same order as their measured
of the time histories of their integrated wall she@s,)(y  standard deviations, and they are therefore probably repre-
=0) are shown in Fig. 1@) and, since there is only one sentative of the true values.
structure in the computational box of minimal simulations,  To study the behavior of the flow as it evolves, we divide
those spectra reflect a temporal evolution. the (P-D) space into quadrants defined by the principal axes

The mean value of the burst peridd=27/o can be of the probability cloud, as in Fig. 18). Note that these are

Downloaded 04 Jun 2007 to 130.54.110.22. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



015105-13  Characterization of near-wall turbulence Phys. Fluids 17, 015105 (2005)
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max 0 20 40 60 80 100
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FIG. 13. (a) Evolution velocity and definition of the production-dissipation y
quadrants(b) Streak-vortex parameter plane. Minimal flow P3, belgv ) S ) o
=50. FIG. 14. (a) Joint probability distribution of the production and dissipation.
----, minimal Poiseuille flow P3; —, full Poiseuille flow, both with*

~180; the heavy solid line is the Couette cycle O1 in TableM);autono-
mous permanent waves in Table |. The production and dissipation of all

n h ran f the mor 1-u") analvsi ’ojl,SZTh these flows are computed belgy= 35. The dotted diagonal is the energy
otthe quad ants of the more usial-v’) a alysis € uilibrium P=D. (b) Reynolds-stress profiles conditioned for ed€hD)

present definition essentially guarantees that all the quadranigase, normalized with the total shear stress. —, “Dissipation” phase. Quad-
contain roughly the same number of points, and the subrants | and II; ----, “production” phase. Quadrants Ill and IV. Simple lines
boxes over which our statistics are Computed are chosen we minimal Poiseuille flOW P3, and lines with heayy dots are a large-box
be large enough that each of them contains one ful sweef?Seule Tov, b0 s SUA . srrege o e Jue suonies ot
and one full ejection. The mean wall-normal velocity over .
each sub-box is always very close to zero. It is clear from the
figure that the flow visits the four quadrants consecutively in
the mean, accumulating energy as it moves from Il to IV, A similar evolution analysis can be done for other pa-
whereP>D, and releasing it from | to Il. rameter pairs, such as tie/,,-v...,) plane used in the pre-
The residence times of the system in each quadrant cateding section and shown in Fig.(b3. Its sense of rotation
be estimated from its evolution velocity, at least at the pedis also counterclockwise. There is no one-to-one correspon-
riphery of the cloud. The result is that the system crossedence between areas near the centers of this and of the
quadrant | in abouT| =80, and the other three quadrants in (P-D) distribution, but the evolution of their peripheries can
T, =140, T;;, = 150, andT,, = 70. The total from these esti- be correlated well. Starting from top center in Fig(4)3the
mates agrees well with the periods in Fig. 12, and the implisystem moves consecutively through ttRe-D) quadrants
cation of the partial crossing times is that the system spends-IV, which are now located approximately as indicated in
most (2/3) of its time at the lower left of the distribution, the figure. Note that quadrants Il and IV roughly correspond
which is where the simple solutions §#tee Fig. 14a)], with to the left and right wings of the p.d.f.s in Fig. 11.
somewhat shorter excursions into the tail at the right-hand The general picture that can be derived from plots of this
side of the distribution. type is consistent with the visual studies of bursting in mini-

Downloaded 04 Jun 2007 to 130.54.110.22. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



015105-14  Jiménez et al. Phys. Fluids 17, 015105 (2005)

mal channels by previous investigat(])?§.5"44The flow stays  which is known to generate a net excess of turbulent energy
for relatively long times in the dense region of the p.d.f.,in real flows®® In particular, note that the autonomous solu-
where it looks like a simple equilibrium statgsee Fig. tions lie near the production branch of the periodic orbit.
14(a)]. We saw in Sec. Il A that this equilibrium is a balance The comparison among the different systems can be
between the creation of the streaks by the wall-normal vedone in more detail using flow profiles conditioned on the
locity of the vortices and their damping by the spanwisedifferent phases of the bursting cycle. Many of those com-
velocity. Occasionally the equilibrium is broken and theparisons are equivalent to the correspondence of the joint
streaks enter various parts of the bursting cycle. For exp.d.f.s discussed up to now, but one which is difficult to do in
ample, if the vortices grow weaker and the system moveshat way is Fig. 1&), which displays the distribution of
towards the lower edge of Fig. @8, the streaks straighten Reynolds stress in the production and in the dissipation
and begin to strengthen, as in the lower-branch solutions, anghases of the cycle. The figure also contains data from the
the system drifts from quadrants Il to IV. It follows from the vortex-dominated periodic Couette orbit and from the au-
previously cited visual studies that this corresponds to relatonomous permanent waves. To facilitate their comparison
tively straight streaks with weak vortices which do not growthe Reynolds stress has been normalized with the total stress,
during this phase of the evolution, as shown by the horizonk.e., with u? in the autonomous and Couette cases, and with
tal motion of the system in Fig. 18). This may be the ui(l—y/h) in the Poiseuille flows. The minimal and the full
algebraic-growth phase identified in Ref. 44, and it eventuPoiseuille flows also agree well in this representation, and
ally results in streaks that are strong enough to be unstable tmth show a clear distinction between the production and the
the previously mentioned exponential sinuous instability.dissipation phases. Given the differences in Reynolds num-
This limit was identified in Ref. 44 as/;, ~3-4 in the bers, the agreement of the other solutions is also good. In
present notation, and is consistent with the position of theparticular, the autonomous permanent waves are again near
right-hand edge of the distributions in Fig. 11. This newthe production branch. One surprise is that the Reynolds
instability results in vortex growtlilV) and in the eventual stress near the wall is predominantly generated during the
destruction of the streak through lateral deformationThis  quiescent and streak-growth production phase, while the
in the dissipation-dominated part of the cycle, which resultsrortex-dominated states in quadrants | and Il carry much less
in the final decay of the vorticedl) once their feeding stress in that region. This is clearly because the temporal
streaks have been destroyed. Note that the vortex decdyurst destroys the coherence of the near-wall structures, but
times found in Ref. 15 by artificially shutting down their it goes against the often-quoted rule that the Reynolds stress
vortex production term are of the same ordé€r=200 as is carried by the bursts.
those found above for quadrants | and Il. Similar initiation Other plots such as this one also suggest that the activity
scenarios can be postulated starting from other locationduring the dissipation phase of the cycle moves away from
along the cycle. the wall, which brings to mind the large-scale structures
While this correspondence with previous studies ofidentified by different investigators in the logarithmic
minimal flows is reassuring, the emphasis in this papetayer®***~*8|t has been suggested that those structures could
should be on the similarities between the minimal channelshe self-propelled coherent packets of hairpins vortf¢es)d
the simple structures, and the full turbulent flows. As in theit is tempting to speculate that the bursts identified here
preceding section, the statistics used for the minimal boxesould be the initial triggers for such packets.
can be defined over minimal sub-boxes of full-scale simula-  There are not at the moment enough data on the distance
tions. The production and dissipation distributions of a mini-between vortex packets to test this assumption, and the pack-
mal and of a full simulation at similar Reynolds numbers areets themselves, being predominantly above the buffer layer,
compared in Fig. 14) below y*=35, which is a depth of the are outside the scope of the present paper, but it is interesting
order of those of the simple solutions. They agree well, aso note that the temporal information obtained from the mini-
was the case for they),,-vh,,) representation in the preced- mal simulations can be related to the length of the buffer-
ing section, and similar results are found for all the variablelayer structures of the full flows. If we assume that the ad-
pairs that have been tried. Although temporal evolution in-vection velocity of features in this part of the flatis c*
formation is not available for the full simulations, that agree-= 10, a bursting period oT =400 corresponds to a length of
ment strongly suggests that the full channel is also burstingy; = 4000, which is in good agreement with the observed
Figure 14a) also includes data from the autonomous solu-length of “composite” streaks in the buffer layérSuch
tions in Table | and from the vortex-dominated orbit O1 in streaks can be expected to contain several vortex systems, on
Table Ill. They are in the “quiescent” core of the distribution, average one every, =400, but not all of them are “ex-
and it is interesting that the periodic orbit is also traversectited.” If we, for example, define as excited systems those in
counterclockwise by the flow. In fact, the periodic orbit canquadrants | and IV in Fig. ¥8), the fraction of excited boxes
be considered as a “miniature” bursting cycle in the limit ofwould be proportional taT,+T,,)/T,~0.33, The implied
very low Reynolds numbers, and shares many of the charadistance between consecutive excited vortex systems along a
teristics of higher-Reynolds-number cases. For example, thetreak is\; =~ 1200, which is also in good agreement with the
orbit can be divided intdP-D) quadrants, and 60% of its measured length of the coherent part of each sttealote
time is also spent within the two left-hand quiescent ones. that these lengths imply that, if the bursts are really the trig-
Note that most of the flows in the figure are not in en-gers for the logarithmic-layer vortex packets, the mean dis-
ergy equilibrium over the near-wall layer being consideredtance between such packets would turn out to be of the order
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of A\ X \; =1200x 300, and some interaction among neigh-tures, probably by two different processes. The streaks ini-
boring packets should be expected once they grow to apially grow in intensity without a corresponding
proximately such size. strengthening of the vortices, and later undergo a faster in-
stability in which stronger vortices are created, move away
from the wall, and eventually destroy the streak. We have
presented statistics of both minimal and full flows condi-
We have shown that several known “simple” solutions totioned on different parts of the cycle. Contrary to the often-
the Navier—Stokes equations, particularly those which correquoted belief, these temporal bursts carry relatively little
spond to permanent waves and to limit cycles in autonomouReynolds stress near the wall. The stress in the buffer layer is
and Couette flows, can be classified into upper- and lowerPredominantly carried by the “steady” structures. The peri-
branch families which agree fairly well with the correspond-odic orbit identified in Ref. 10 has been shown to be a
ing branches of the Couette waves found by NaéaTae weaker version of the bursting cycle, sharing with it many of
velocity statistics within each branch are reasonably similafts characteristics.
to each other, even though the base flows are quite different. The temporal information obtained from the minimal
The upper branch consists of weak streaks with strong vorlows can be used to predict the spatial scales of the streaks
tices, and the lower one has much stronger streaks arifl the buffer layer of full flows, which agrees well with ob-
weaker vortices. served values. It is speculated that the burst could act as
Turbulence in minimal Poiseuille or Couette flows staystriggers for the large-scale vortex packets that have been de-
close to the vortex-dominated upper solutions, and fully turscribed elsewhere in the logarithmic layer, and it is shown
bulent simulations in large boxes, when analyzed over subthat this would lead to specific predictions regarding their
boxes of minimal size, have statistics which are also consisspacing and their eventual evolution.
tent with those solutions. In particular, the range of spanwise
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