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Clustering of inertial particles in fully developed two-dimensional inverse cascading turbulence
occurs for all particle relaxation times ranging from an order of magnitude under the smallest eddy
turnover time to an order of magnitude above the largest eddy turnover time. Particle voids and
clusters are statistically self-similar over a finite range of scales within the inertial range and are
explained in terms of coarse-grained vorticity and resonant eddies �for voids� and in terms of
zero-acceleration points �for clusters�. The clustering of inertial particles reflects the clustering of
zero-acceleration points. Essential to both explanations is the sweeping of small eddies by large
ones. An important implication is that particle clustering can be explicitly described just in terms of
the fluid acceleration field without the need for Lagrangian particle integrations. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2364263�

I. INTRODUCTION

The preferential concentration �clustering� of small
heavy particles in turbulence is a well-known phenomenon,
with important implications in various environmental �see,
e.g., Ref. 1� and industrial �see, e.g., Ref. 2� flows, and it has
been explained3–5 by the centrifugal effect of coherent in-
tense smallest-scale eddies that can be found even in homo-
geneous isotropic turbulence. These studies have also
claimed that clustering is most significant when the relax-
ation time �p �see �1� below for its definition� of inertial
particles is comparable to the Kolmogorov time, i.e., the
typical time scale of swirling motion of the smallest eddies.

However, it has been pointed out by Boffetta et al.6 that
a multiscale structure of clustering can be observed in fully
developed isotropic homogeneous two-dimensional turbu-
lence in the inverse energy cascade regime. In turbulence
with the Kolmogorov −5/3 power-law spectrum, most of the
enstrophy is at the smallest scales. It is therefore the smallest
eddies that are observed predominantly if one focuses on
vorticity. At the same time, however, in such fully developed
turbulence, multiscale eddies do exist simultaneously, and
each one of them might contribute to the clustering of the
inertial particles if �p is comparable to their swirling time
scales.

One purpose of the present article is to demonstrate this
picture of multiscale clustering due to multiscale coherent
eddies with the help of direct numerical simulations �DNS�
of two-dimensional turbulence, and to develop a physical
model to explain the self-similarity of inertial particle clus-
tering based on this picture. Note that our approach and ar-

gument are not inconsistent with previous numerical3,4 and
experimental5 works on moderate Reynolds number turbu-
lent flows, since the largest and the smallest scales are not
well separated in such not-fully-developed turbulence, im-
plying that the multiscale nature of the velocity field, and
therefore of inertial particle clustering, is not significant.

Another purpose of the present article is to bridge the
gap between explanations of particle clustering based on vor-
ticity and our recent demonstration in Ref. 7 that particle
clustering mirrors the clustering of zero-acceleration points.
This gap is bridged here because our approach based on the
multiscale structure of coherent eddies is an extension of the
conventional picture based on the smallest-scale eddies only.
An incomplete explanation of the coincidence of particle and
zero-acceleration point clusters was given in Ref. 7, which
we develop here and complete. Essential to this explanation
is the “stickiness” of zero-acceleration points and their
sweeping by the local fluid velocity.

II. INERTIAL PARTICLES IN FULLY DEVELOPED
TURBULENCE

A. Equation of motion of inertial particles

We consider particles that are small heavy rigid spheres
all of the same size. Their mass density �p is assumed to be
much heavier than the fluid density, and their radius a is
sufficiently small for the Reynolds number based on the par-
ticle radius being much smaller than unity and the Stokes
approximation holding for the local flow around each par-
ticle. The radius is also assumed to be smaller than the small-
est length scale of the turbulence. Under these assumptions,
and ignoring gravity, the equation of motion for a particle is8
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d

dt
vp�t� =

1

�p
�u„xp�t�,t… − vp�t�� . �1�

Here, vp�t� and u�x , t� are the velocities of an inertial particle
at position xp�t� and of the fluid at position x and time t,
respectively. This equation implies that the particle velocity
relaxes to the fluid velocity within a time scale �p. According
to the Stokes approximation, �p=2�pa2 / �9��, where � is the
fluid viscosity. We further assume that particles do not affect
fluid motion, and that the number density of particles is small
enough for interactions between particles to be neglected. All
these neglected effects might be important in real flows, but
we leave them for future study because even when we ne-
glect them, the system described by �1� is sufficiently com-
plex and worth studying as a foundation for the future.

B. Self-similarity in fully developed turbulence

Being interested in the statistics of inertial particle clus-
tering in fully developed turbulence, we consider a velocity
field u�x , t� in �1� that is two-dimensional and fully turbulent
because we can simulate numerically two-dimensional turbu-
lence at much higher Reynolds numbers than three-
dimensional turbulence. Here, we numerically integrate tur-
bulence governed by the Navier-Stokes equation with an
external small-scale energy source and a large-scale energy
sink. Periodic boundary conditions for the velocity field are
imposed in two orthogonal directions. In this system, the
energy cascades from small to large scales,9–11 and the en-
ergy flux settles at a negative constant, −�, in the inertial
range between the small forcing scale � �hereafter, we call �
the Kolmogorov length� and the integral length L �of the
second-order longitudinal velocity correlation function�
where the energy spectrum takes the power-law form

E�k� � �2/3k−5/3. �2�

Details of this DNS are given in Ref. 12. By using up to
40962 grid points, we simulate such turbulence over almost
two decades in wave-number space �see Figs. 1 and 2 of Ref.
12�. The statistics of the simulated turbulent flows are listed
in Table I. In this article, we use two cases; one is a small
L /� case �Run A� and the other is a large L /� case �Run D�.
Note that in this two-dimensional turbulence, the value L /�
serves as an index of how developed the turbulence is, and
we call L /� the Reynolds number. Of course note that,
strictly speaking, this is not a real Reynolds number as � is
not a Kolmogorov length and that the real Reynolds number
in three-dimensional isotropic turbulence is proportional to
�L /��4/3, where � is the Kolmogorov length. Our use of the
term “Reynolds number” is by analogy.

One of the most important characteristics of fully devel-
oped turbulence is that motions of a wide range of length
scales are excited simultaneously. More precisely, in the case
of an energy spectrum with a power-law form such as �2�,
eddies of many length scales between � and L coexist, and
eddies of a given length scale are advected by eddies larger
than them. Note that larger-scale eddies are more energetic,
though smaller-scale eddies are more conspicuous because
the enstrophy spectrum k2E�k� peaks in the high wave-
number range while E�k� peaks in the low wave-number re-
gion. This multiscale nature of turbulent eddies is captured
well by the coarse-grained vorticity field �c�x , t �kc� obtained
by low-pass filtering Fourier components of vorticity with a
sharp cutoff at wave number kc. It is observed in Fig. 1 �a
movie is also available online� that these eddies are spinning
with the time scale ��c�−1, and are swept by eddies larger
than them. This multiscale nature of spinning and swept co-
herent eddies plays a crucial role in the clustering of inertial
particles.

C. Scale-dependent Stokes number

For scaling purposes, the relaxation time �p in �1� should
be normalized by a time scale of the turbulence. This nor-
malized relaxation time is called the Stokes number, often
defined as

TABLE I. Statistics of turbulent velocity field. N2, the number of grid
points; L, integral scale; �, forcing scale; u�, rms velocity; T�L /u�, eddy
turnover time; �, mean energy flux in the inertial range; ��, Kolmogorov
time determined by the rms vorticity as �����−1.

N2 L L /� u� T � �� T /��

run A 5122 0.38 6.3 3.2 0.12 3.0 0.012 10

run D 40962 0.23 30 1.3 0.17 0.20 0.0068 25

FIG. 1. Coarse-grained vorticity fields �the magnitudes of which are plotted in shades of gray� by low-pass filtering Fourier components of vorticity with a
sharp cutoff at wave number kc. �a� kc=k� /4, �b� k� /8, �c� k� /16, and �d� k� /32. Here, k��2� /�. The side length of the plots is about 7L�200�. Run D
�enhanced online�.
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S� �
�p

��

, �3�

which is the relaxation time normalized by the Kolmogorov
time ��. �The average stretching rate of infinitesimal material
line elements, � �see Ref. 17 for details on how � is calcu-
lated� in this two-dimensional turbulence is 0.22��

−1. Hence,
the Stokes number Sb��p� used by Boffetta et al.6 is Sb

=0.22S�.� In this article’s arguments, it is useful to define
generalized scale-dependent Stokes numbers,

S��� �
�p

T���
, �4�

where

T��� �
�

	E�1/��/�
� �−1/3�2/3 �5�

is the turnover time of eddies of size �. Here, we have as-
sumed �2�. The constant of proportionality in �5� is deter-
mined so that T���=��, i.e., T���=0.11�−1/3�2/3 irrespective
of the Reynolds number L /�.

This scale-dependent Stokes number S��� is useful be-
cause of the multiscale nature of turbulent eddies as the fol-
lowing argument shows. If S���	1, then inertial particles
promptly follow the motion induced by eddies of size �, and
therefore no clustering may be brought about by such eddies.
On the other hand, if S���
1, then inertial particles com-
pletely ignore the fluid motion induced by eddies of size �,
and therefore no clustering of size � takes place. Hence, only
when S��� is not too far from 1 do eddies of size � play a
role in the clustering of inertial particles. Since eddies of
many different sizes coexist in fully developed turbulence,
we expect eddies of many length scales such that S���
=O�1� �a more precise condition is given in �8� below� to
contribute simultaneously to the clustering of inertial par-
ticles. Therefore, the resultant clustering must have a self-
similar feature if the velocity field also has one. As will be
shown below, such self-similar clustering is indeed observed
in the present numerical simulation.

III. SELF-SIMILAR CLUSTERING OF INERTIAL
PARTICLES

A. Stokes number and Reynolds number dependence
of particle clustering

We plot in Fig. 2 the spatial distribution of 218�105

inertial particles originally uniformly distributed and re-
leased in turbulence of Reynolds number L /�=6.3 �Run A�.
The snapshots in Fig. 2 are taken at time t=8.3T for nine
different Stokes numbers ranging from �a� S�=0.1 to �i� 25.6.
The size of the box is 10L��63��. When S� is as small as
0.1, i.e., Fig. 2�a�, all void regions �holes� characterizing the
clustering are as small as O���. As S� becomes larger, larger
holes appear. The size of the largest holes seems to saturate
around Fig. 2�e� S�=1.6 or Fig. 2�f� 3.2. Observe that, at this
Stokes number, not only the conspicuous large holes but also
small holes exist, and that the size of the largest holes is
O�L�. This observation is consistent with the results of

Boffetta et al.;6 that is, the probability density function
�PDF� of hole areas takes a power-law form, and the cutoff
of the power law depends on the Stokes number. This power-
law form of the PDF is also confirmed in this field �see Fig.
7�. As S� increases further, holes of small scales become
fainter and eventually disappear. When S�=25.6 �i.e., S�L�
=2.56�, even the largest holes become faint.

FIG. 2. Spatial distribution of inertial particles. Run A. t=8.3T. The side
length of the plots is 10L ��63��. �a� S�=0.1, �b� 0.2, �c� 0.4, �d� 0.8, �e�
1.6, �f� 3.2, �g� 6.4, �h� 12.8, and �i� 25.6.

FIG. 3. Spatial distribution of inertial particles. Run D. t=3.8T. The side
length of the plots is 10L ��300��. �a� S�=0.1, �b� 0.2, �c� 0.4, �d� 0.8, �e�
1.6, �f� 3.2, �g� 6.4, �h� 12.8, and �i� 25.6.
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Particle distributions for a larger value of L /�=30 �Run
D� are plotted in Fig. 3. The number of particles is 220

�106, and the snapshots shown are at t=3.8T. Similar fea-
tures to the lower L /� case are observed; �I� when S� is
small, only small holes are observed, �II� as S� increases,
larger holes appear, �III� the size of the largest holes saturates
at O�L� when S� is around Fig. 3�f� 3.2 or Fig. 3�g� 6.4; �IV�
as S� increases further, smaller holes start to lose their defi-
nition and eventually disappear. Compared to the lower L /�
case, the larger holes can survive even at large S�. Note that
S�=25.6 corresponds to S�L�=1.0 in Run D.

The above observations can be quantified by the pair
correlation function m���. Following Ref. 13 and Sec. 116 of
Ref. 14, we numerically estimate the pair correlation func-
tion m��� of the spatial distribution of inertial particles using
the formula

1

�



0

�

m����d�� =
��N − �N���2��

�N��
2 −

1

�N��

, �6�

where the integral on the left-hand side is taken over a box of
size �2, and brackets ��� denote the average over many boxes
of size �2, e.g.,

�N�� =
1

I

i=1

I

N�i�, �7�

where N�i� is the number of particles that are in the ith box of
size �2. Note that the right-hand side of �6� vanishes for
Poisson spatial distributions. We plot m��� in Fig. 4, which is
estimated by differentiating the numerical value of the right-
hand side of �6�. The qualitative observations we made in
Figs. 2 and 3 are also captured by m���. Furthermore, m���
can highlight differences that are not clear in the visualiza-
tions; for example, the difference between �d� S�=0.8, �e�
1.6, and �f� 3.2 in Fig. 3 is clearly reflected in the gradual
increase of m��� in Fig. 4�b�. In both cases of L /�, when S�

is smaller than O�1�, m��� vanishes for ���. This agrees
with the absence of clustering characterized by holes larger
than �. Only the smallest scale holes of O��� exist when
S��1. As S� increases, the pair correlation takes nonzero
values in the inertial range and rises until S� reaches 1.6 in
Run A and around 3.2 in Run D. As S� increases further,
m��� gradually returns to smaller values. This decrease of
m���, for larger S�, begins from the smaller � range.

B. Physical explanation of the self-similar clustering

The hypothesis drawn from the observations in Figs. 2–4
is that inertial particle clustering is governed by eddies of
size �, which satisfy a resonance condition with the relax-
ation time scale �p of particles. This picture in terms of the
resonance between particles and eddies can be summarized
as follows. Particles promptly follow the slow motion in-
duced by large eddies with swirling time T���
�p �i.e.,
S���	1�, but also completely ignore the fast motion induced
by small eddies with T���	�p �i.e., S���
1�. Thus, particles
are affected by eddies of size � that satisfy

 � S��� � � . �8�

Here,  and � are constants and S��� is the scale-dependent
Stokes number �4�. Therefore, the smallest and the largest
sizes of the eddies that satisfy the resonance condition �8� are

�min = �−3/2S�
3/2� �9�

and

�max = −3/2S�
3/2� , �10�

respectively. All the eddies with length scales ranging be-
tween �min and �max impact on the clustering of particles.

It is worth mentioning that the above hypothesis in terms
of multiscale eddies is an extension of the conventional pic-
ture based on the smallest-scale eddies’ centrifugal effects on
particles. However, our picture is significantly different. In-
deed, we have shown7 that when S� is sufficiently larger than
1, particle distributions cannot be explained in terms of bare
vorticity or strain rate only. Velocity gradients reflect the
smallest scales only, but it is eddies of scales throughout the
inertial range that impact on particle clustering when S�
1.

It is also important to mention that for the centrifugal
effect of eddies to have an impact on inertial particles, it is
necessary that particles stay within these eddies for long
enough times. This is indeed the case because of the turbu-
lence sweeping whereby eddies are swept by larger eddies
that also sweep the particles with them. Hence, in a Lagrang-
ian frame moving with the sweeping velocity induced by the
larger eddies, particles stay within resonant eddies long
enough to be centrifuged out of them.

The pair correlation function plotted in Fig. 4 allows us
to estimate the two constants  and � in �8�. Irrespective of

FIG. 4. Pair correlation function m���
for nine different Stokes numbers �0.1,
0.2, 0.4, ..., 25.6�. Each curve is the
result of an average over 100 snap-
shots. Vertical lines indicate integral
length L. �a� Run A. �b� Run D.
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the Reynolds number L /�, when S� is smaller than 0.4, m���
is independent of S�. This implies that when �p�0.4��, there
is only negligible action by most eddies. On the other hand,
when �p=0.8��, the smallest eddies have a clear impact on
the preferential concentration, and m��� �for ���� grows
clearly above its values at S��0.4. Therefore, we may
roughly estimate  as 0.6, which is between 0.4 and 0.8.
Concerning �, looking at Fig. 4 again we notice that the
correlation function m��� at �=� takes its maximum value
when S�=6.4 in both cases of L /�. This means that eddies
of size � cease to contribute to the particle clustering when
�p is larger than 6.4��. Therefore, the upper bound of �8� is
given as ��6. The two constants in �8� are thus determined
roughly as

 � 0.6, � � 6 �11�

for the two-dimensional turbulence.
In order to verify the above argument qualitatively, we

plot in Fig. 5 inertial particles together with the coarse-
grained vorticity field, which is obtained by sharp low-pass
filtering of Fourier components of vorticity at the cutoff

wave number kc= k̃c�S��. Here, k̃c is chosen so that the con-
ditional average ��c�x , t �kc��p of the magnitude of coarse-
grained vorticity at positions of inertial particles takes a

minimum value when kc= k̃c�S��. It is numerically shown

that k̃c�0.5S�
−3/2�−1, consistent with the low-pass filtering

argument of Ref. 15 as well as �10�. Since it is the largest
eddies of size �max that predominantly contribute to ��c�p, we

expect k̃c
−1��max/ �2��.

Note that, in Fig. 5, many smaller holes of inertial par-
ticles are observed between the conspicuous largest holes,
and these are not explained by the centrifugal effect of the
eddies of size �max only but also of all the smaller eddies of
size larger than �min. This is demonstrated in Fig. 6, where

we magnify Fig. 5�b� two and four times �kc is also enlarged
two and four times�. In these figures, we observe the self-
similarity of inertial particle clustering; Fig. 6�b� is the mag-
nification of clusters of inertial particles in Fig. 6�a�, and Fig.
6�c� is the magnification of clusters of inertial particles in
Fig. 6�b�. Smaller holes exist between larger holes. We also
observe that particles avoid high-intensity regions of coarse-
grained vorticity at each length scale. This implies that the
multilength nature of particle holes is likely to be explained
in terms of self-similar coherent eddies; i.e., larger/smaller
holes are due to larger/smaller eddies.

Thus, the self-similarity of particle clustering is due to
the self-similarity of coherent eddies, which satisfy the reso-
nance condition �8�, as verified roughly by numerical visual-
ization. In the following two subsections, we develop a quan-
titative argument based on this self-similarity.

C. Quantification of the self-similar clustering

A method for quantifying the multiscale nature of iner-
tial particle clustering is by way of measuring its fractal di-
mensions. However, after trying to calculate the box-
counting dimension of the particles’ spatial distribution, we
found that the inertial range of our present DNS, although
relatively wide, is nevertheless not wide enough for a good
and unambiguous estimation of the box-counting dimension.
For this reason, we follow Ref. 6 in defining voids as con-
nected regions of empty boxes from a grid of boxes covering
all space �the size of the box being defined by the resolution
of the simulation� and then calculating the PDF, P�A�, of
void areas A. We plot this PDF in Fig. 7 for two different
Reynolds numbers. It is clearly seen in this figure that as S�

increases, larger holes appear, and that P�A� takes a clear
power-law form when S�=O�1��O�10�. The scaling expo-
nent lies between −1.6 and −2.0.6 Figure 7 suggests that this

FIG. 5. �Color� �a� Spatial distribution
of inertial particles �S�=0.4� and the
magnitude of coarse-grained vorticity
field by sharp low-pass filtering at kc

=0.83k�. The side length of the plots
is 10L. Positive/negative vorticity re-
gions are colored by red/blue. Run D.
�b� S�=1.6, kc=0.093k�. �c� S�=6.4,
kc=0.037k�.

FIG. 6. �Color� �a� Same as Fig. 5�b�
but only the lower right quarter
is shown. �b� The magnification of the
lower left quarter of �a�.
kc=0.19k��=2k̃c�. �c� The magnifica-
tion of the lower left quarter of �b�.
kc=0.37k��=4k̃c�.
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exponent is independent of L /�, and we expect the range
over which it is well-defined to be always the same and
limited by �min and �max as long as L /� is much larger than
�max/�min. This scaling behavior of P�A� implies that the
hole sizes of inertial particle clusters are never described by
a single scale �e.g., the Kolmogorov length� structure, and
that the inertial particle clustering is self-similar, reflecting
the self-similarity of background turbulence within the reso-
nance window of scales between �min and �max. This is mean-
ingful because � / is O�10�, and therefore �max/�min is not
small.

The above result strengthens the arguments in our previ-
ous subsections. Incidentally, it has been shown in Ref. 7 that
the pair correlation function m��� takes a power-law form
�though its exponent depends on S��, which also implies self-
similarity of particle clustering.

D. Model to explain the self-similarity of void areas

In this subsection, we present a simple model to explain
the power-law form of P�A�. This model is based on the fact
that turbulence with the energy spectrum �2� has a self-
similar structure of coherent eddies �Fig. 1�. Inertial particles
are swept out of these eddies, and P�A� obeys a power law
because hole sizes are self-similarly distributed in a finite
range determined by �min and �max and particles are swept
out of such sized eddies �Fig. 6�. More precisely, the largest
holes are due to the largest-scale eddies. Then, in regions
where the largest-scale eddies are absent, the second-largest
eddies eject inertial particles. Hence, the second-largest holes
are due to these eddies. Then, in the rest of space, where the
largest and the second-largest eddies are absent, next-scale
eddies eject particles, and so on.

Based on this picture, a simple model of inertial particle
clustering can be constructed. First, we assume that the tur-
bulent velocity field consists of eddies at discrete scales,

�m � L�−m �12�

with

m = 0,1,2, . . . ,M . �13�

Here, �M ��, and therefore M depends on the Reynolds
number, and � ��1� is a constant. Second, eddies at each
scale, �m, are assumed to occupy a ratio R of space. Here, we

assume, from self-similarity, that R is independent of m. Ac-
cording to our clustering picture and following from the first
assumption, holes have discrete areas �m

2 �m=0,1 , . . . ,M�.
Under these two assumptions, the PDF of the hole area can
be estimated as follows.

Let us start with the largest scale in the turbulence. By
definition of R, the total area A0

total of holes of area �0
2 is RL0

2.
Here, L0 is the system size. Then, since the rest of the space
is �1−R�L0

2, the total area A1
total of holes of area �1

2 is R�1
−R�L0

2. Inductively, the total area of holes of area �m
2 is

Am
total = R�1 − R�mL0

2. �14�

Then, the number Nm of holes of size Am=�m
2 =L2�−2m is

Nm =
Am

total

Am
=

L0
2R�1 − R�m

Am
� Am

−1−�1/2�log��1−R�. �15�

Consequently, the PDF of A takes the form

P�A� � A−2−�1/2�log��1−R�. �16�

Here, the extra A−1 factor stems from the definition of Am;
note that Am are equidistantly located on the logarithmic A
axis.

In the above argument, we have introduced two artificial
parameters, � and R. However, they are not independent. As
we are considering turbulence with the Kolmogorov
spectrum �2�, the energy in the eddies between scales �m and
�m+1 is



�m

−1

�m+1
−1

E�k�dk � �2/3�m
2/3�1 − �−2/3� . �17�

Hence, in the discrete model introduced above, the mth scale
eddies occupy a portion of space proportional to the factor
1−�−2/3. Since R must tend to 1 in the limit where � tends to
infinity, we may conclude

R = 1 − �−2/3 �18�

for turbulence with the Kolmogorov spectrum. Then, substi-
tuting �18� into �16�, we have

P�A� � A−5/3. �19�

The scaling observed in Fig. 7 supports this consequence of
our simple model.

IV. COINCIDENCE WITH ZERO-ACCELERATION
CLUSTERING

The remaining problem is where inertial particles, which
are swept out of multiscale coherent eddies, accumulate. Be-
cause eddies of different sizes are effectively superimposed
on each other in a complex way, it is very difficult to define
the regions where particles cluster in term of multiscale ed-
dies or even in terms of multiscale strain fields. Instead, the
particle clusters can be easily described in terms of zero-
acceleration points. As shown in our previous paper,7 the
clustering of inertial particles reflects that of zero-
acceleration points. In this section, we develop the argument
explaining this coincidence.

FIG. 7. PDF of hole areas A of inertial particles. �, S�=0.1; �, 0.4; �, 1.6;
�, 6.4. Thick solid curve is the PDF of hole areas of zero-acceleration
points. Solid straight lines indicate the scaling A−5/3 predicted by the model
developed in Sec. III D, and vertical dotted lines indicate A=L2. �a� Run A.
�b� Run D.
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Figure 8 is a side-by-side comparison between the spa-
tial distributions of zero-acceleration points and inertial par-
ticles for S�=1.9 in Run D. It is observed that these two
distributions are spatially well correlated at all length scales,
and this correlation persists unaltered as time advances. The
multiscale nature of holes of inertial particles and that of
zero-acceleration points look surprisingly similar.

For a quantification, we calculate the PDF of hole areas
of zero-acceleration points by the same method as we did for
inertial particles, and plot it �thick solid curve� in Fig. 7. In
both cases of L /�, the PDF of hole areas of zero-
acceleration points is in excellent agreement with the PDF of
hole areas of inertial particles when S� is such that the range
of scales between �min �see �9�� and �max �see �10�� is fully
within the inertial range.

In Ref. 7, we attempted an explanation of turbulent clus-
tering of inertial particles without reference to coarse-grained
vorticity but solely in terms of zero-acceleration points and
the fact that, like vorticity in two dimensions, they are pre-
dominantly �in a statistical and asymptotic sense defined in
Ref. 7� swept by the large-scale velocity field. Instead, in this
article, we have presented an explanation for particle cluster-
ing that depends crucially on the fact that coarse-grained
vorticity is swept by the fluid velocity. One advantage of the

explanation based on zero-acceleration points is that their
sweeping by large-scale eddies is valid in three-dimensional
flows as well as two-dimensional turbulence, whereas vortic-
ity in three-dimensional flows is not only swept but also
stretched. The second advantage of the acceleration approach
is that it may be more appropriate than the coarse-grained
vorticity approach to explain the presence or absence of par-
ticle clustering in various inhomogeneous turbulent flows.

Physical explanation of the coincidence
of two distributions

The argument developed in Ref. 7 to explain the coinci-
dence between distributions of particles and zero-
acceleration points is summarized as follows. The velocity
vp of an inertial particle with �p sufficiently smaller than ��

is well approximated by u−�pa,16 where u and a are the fluid
velocity and acceleration at the particle position xp. There-
fore, at a point where a=0, inertial particles tend to move
with the fluid velocity. On the other hand, as demonstrated in
Ref. 7, the acceleration field, and in particular its zero-
acceleration points, move on average with same fluid veloc-
ity u. Consequently, an inertial particle and a coincident
zero-acceleration point will move together for a while,
whereas a particle at a point where a is nonzero will swiftly
move toward other values of a because vp=u−�pa. Note that
this argument does not imply that zero-acceleration points
attract inertial particles. Zero-acceleration points are simply
more sticky for particles than other regions where the accel-
eration takes larger values. Zero-acceleration points being
clustered, the fact that particles move from one zero-
acceleration point to another and spend some significant time
with them implies that zero-acceleration point clusters trap
inertial particles. As a result, particles cluster in a way that
reflects the clustering of zero-acceleration points. It is impor-
tant to stress that both clusters of zero-acceleration points
and of inertial particles are not static.

The above reasoning is limited to �p much smaller than
��. However, the coincidence of the two clusters is observed
even when �p is comparable to or much larger than ��. This
superficial inconsistency is resolved as follows. In Refs. 12
and 18, we introduced the idea that velocity stagnation points
have a length scale and a time scale tagged to them and that
these scales can take many different values within the power-
law energy spectrum’s range. Following this idea, it might be
natural to expect zero-acceleration points also to have a time
scale �a tagged to them. This time scale might be defined as

�a � ���1�2 + ��2�2�−1/4, �20�

where �1 and �2 are the eigenvalues of the matrix �ai /�xj

because these gradients give an indication of the extent of
the region around a=0 where a remains close to 0. We ob-
serve in Figs. 9�a�, 9�d�, and 9�g� that the subcluster of zero-
acceleration points that have values of �a larger than a certain
threshold resembles the entire cluster of zero-acceleration
points for any threshold not much larger than T over a range
of coarse-graining spatial resolutions that is a subrange of the
inertial range. We also observe in Fig. 9 that the subcluster of
zero-acceleration points, plotted in Figs. 9�b�, 9�e�, and 9�h�,

FIG. 8. ��a�, �c�, and �e�� Spatial distribution of inertial particles. S�=1.9.
��b�, �d�, and �f�� Spatial distribution of zero-acceleration points. ��a� and
�b�� The side length of the plots is about 7L�200�. ��c� and �d�� The
four-times magnification of the squared region in �a� and �b�. ��e� and �f��
The four-times magnification of the squared region in �c� and �d�. Run D.
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with �a smaller than the threshold, is located only in high
acceleration regions, i.e., darker regions in Figs. 9�c�, 9�f�,
and 9�i�. As a result, we may expect inertial particles of
relaxation time �p to be trapped by subclusters of zero-
acceleration points with �a much larger than �p because �a�
takes smaller values around such zero-acceleration points
than around zero-acceleration points with �a��p. Hence,
zero-acceleration points with �a
�p are stickier for particles
of relaxation time �p than zero-acceleration points with �a

��p. This explains why inertial particles of any relaxation
time �p not much larger than T cluster in a way that reflects
the clustering of zero-acceleration points over a broad range
of coarse-graining resolutions. Note that when �p�T, par-
ticles do not cluster in a way that reflects zero-acceleration
point clustering because there is no zero-acceleration points
with �a
T.

This explanation raises two questions: �i� Is our expla-
nation consistent with the disappearance of inertial particle
clustering when �p /��→0? �ii� Why are large holes in the
particles’ clustering absent when �p is much smaller than T
but larger than ��? Concerning the first question, indeed,
when �p=0, there is no clustering at all and vp=u. The dif-
ference between vp and u when �p is nonzero yet much
smaller than �� is approximately −�pa. Hence, −�pa limits
the “stickiness” of zero-acceleration points and regions sur-
rounding them. When �p=0, the entire space is “sticky” be-
cause −�pa=0 and particles are fluid elements. When �p�0,
a “sticky” region surrounding a zero-acceleration point may
be defined as the region where �p�a� is much smaller than a

typical velocity of the fluid, e.g., u�. The size �a of this
region is a function of both �a and �p, in fact an increasing
function of �a �because increasing values of �a reflect shal-
lower acceleration gradients at a=0� and a decreasing func-
tion of �p. As �p decreases far below ��, the clustering dis-
appears because �a becomes increasingly large. Similarly,
concerning the second question, as �p increases above ��, �a

gradually decreases, and as a consequence, the size of the
relatively empty holes increases. Incidentally, in such cases
in which �p is slightly larger than ��, particles’ holes exist
only in regions where �a� takes extremely large values, i.e.,
extremely “slippery” regions for particles.

V. CONCLUDING REMARKS

All the past works �e.g., Refs. 3–5 among others� show-
ing that particles move away from vortical regions and spend
much time in straining regions were carried out numerically
or experimentally in turbulent flows of limited Reynolds
number and therefore with an insufficiently defined range of
self-similar scales. In contrast, our turbulence has a k−5/3 en-
ergy spectrum defined over nearly two decades and we show
that the clustering in such turbulence does indeed require
consideration of the entire range of scales to be explained.
Furthermore, what these previous studies did not make clear
is the central importance of the sweeping in the way that
high Reynolds number turbulence clusters inertial particles.
In fact, if there were no sweeping, the clustering of inertial
particles would not occur as it does. Indeed, as demonstrated

FIG. 9. ��a�, �d�, and �g�� Zero-
acceleration points with time scales �a

larger than 12.8��. ��b�, �e�, and �h��
Zero-acceleration points with time
scales �a smaller than 12.8��. ��c�, �f�,
and �i�� Acceleration magnitudes are
plotted in shades of gray, darker
shades corresponding to higher magni-
tudes. Plotted times and regions are
the same as in Fig. 8: full side lengths
of the plots are 7L�200� in �a�–�c�,
3.5L�100� in �d�–�f�, and 1.8L
�50� in �g�–�i�. Run D.
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in Ref. 7, the clustering of inertial particles is qualitatively
different in kinematic simulations of two-dimensional turbu-
lence with the k−5/3 energy spectrum where there is no
sweeping but where there are well-defined high enstrophy
and high-strain rate regions as in our two-dimensional DNS
turbulence. And in both simulations, high strain rate regions
do not explain clustering because there are many cases of
clustered inertial particles �depending on Stokes and Rey-
nolds numbers� where the ratio of the enstrophy averaged
over all inertial particles to the square of the strain rate also
averaged over all inertial particles is equal to 2, the value
taken by this ratio when these averages are taken over all
space of a statistically homogeneous turbulence �see Ref. 7�.
One would have expected this ratio to be much smaller than
2 if the particle clustering could be simply explained solely
in terms of regions of high strain rate.

Of equally central importance to the clustering of inertial
particles, as we show here, is the cluster of zero-acceleration
points. The effect of zero-acceleration clusters was missed in
previous studies because the knowledge of the importance of
the concepts of stagnation points �whether zero-acceleration
or zero-velocity� and of their specific properties �as opposed
to the properties of the enstrophy and strain rate fields� was
missing �see Refs. 7, 12, and 18 and references therein for
more details on the relatively recent development of this new
approach�. If there were no acceleration clusters, the cluster-
ing of inertial particles would not occur as it does in this
two-dimensional turbulence. As a result of sweeping of the
acceleration field by the velocity field, inertial particles clus-
ter in a way that closely mimics the zero-acceleration points
cluster. Important in this thinking is our concept of stickiness
of zero-acceleration points. The stickiness stems from the
fact that zero-acceleration points move, together with nearby
inertial particles, in the local velocity induced by larger
eddies.

We now summarize our conclusions. A first important
result of this study is that particle clustering occurs at all
Stokes numbers,

 � S� � ��T/��� , �21�

where  and � are given in �11� for the considered
turbulence.

Second, because the particle voids cannot be explained
in terms of bare vorticity and strain rate concepts, we have
explained them in terms of coarse-grained vorticity and
scale-dependent Stokes numbers S���=�p /T���, where T���
varies between �� and T according to length scale �. A cen-
tral concept of this explanation is the existence of resonant
eddies over a decade-long range of length scales bounded
from below and above by �min and �max ��max/�min�30�.
These are eddies that have time scales T��� such that S��� is
neither too large nor too small. The statistical self-similarity
of eddies in turbulence with a k−5/3 energy spectrum implies
a statistical self-similarity of clusters of inertial particles that
is reflected in the power-law shape of the PDF P�A� of void
areas A. Specifically, P�A��A−5/3 over a range Amin�A
�Amax with Amax/Amin= ��max/�min�2�1000 for all Reynolds
numbers L /� larger than �max/�min. We have proposed a

simple model based on resonant eddies that implies that this
exponent −5/3 follows from E�k��k−5/3.

The third contribution of our study is the bridging of the
gap between previous explanations of inertial particle clus-
tering that are based on vorticity, and our recent claim7 that
inertial particles cluster, irrespective of the Stokes number
�in the range �21��, in a way that directly reflects the cluster-
ing of zero-acceleration points. This gap is bridged in the
sense that multiscale eddies can explain the appearance of
particle voids, whereas acceleration clusters can directly ex-
plain particle clusters. Finally, we have developed and clari-
fied the explanation of Ref. 7 for the clustering of inertial
particles over many length-scale resolutions solely in terms
of zero-acceleration point clusters, and we have shown how
this explanation is valid over the entire Stokes number range
�21�. This conclusion, that properties of inertial particle clus-
tering can be explained solely in terms of fluid acceleration,
may have broad applications to particle clustering in various
turbulent fields, where the centrifugal effect of eddies is not
the only source of fluid acceleration.
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