PHYSICS OF PLASMAS VOLUME 10, NUMBER 2 FEBRUARY 2003

Harmonic Langmuir waves. I. Nonlinear dispersion relation
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Generation of electrostatic multiple harmonic Langmuir modes during beam—plasma interaction
process has been observed in laboratory and spaceborne active experiments, as well as in computer
simulation experiments. Despite earlier efforts, such a phenomenon has not been completely
characterized both theoretically and in terms of numerical simulations. This paper is a first in a
series of three papers in which analytic expressions for harmonic Langmuir mode dispersion
relations are derived and compared against the numerical simulation res@2@0® American

Institute of Physics.[DOI: 10.1063/1.1537238

I. INTRODUCTION harmonic with frequency in the vicinity ofw,, is given by

The beam—plasma interaction is one of the most impor-  K~Nwpe/Vo.

tant problems in plasma physics for both scientific and com-  available theories in the literature for the harmonic gen-
mercial applications. The weak beam—plasfpabump-on-  eration can be categorized into two classes. The first class of
tail) instability has also played a crucial role as a testbed fotheories, which were developed in the early 1970s, view the
various nonlinear plasma turbulence theories, which includ@armonics as forced electrostatic perturbations generated by
quasilinear,®  weak  turbulencé&* and  strong  the interaction of trapped electrons and large-amplitude co-
turbulence® " theories. herent Langmuir wave&:*¢42-44Sych theories are appli-
One of the intriguing phenomena in the beam—plasmaaple for a sufficiently strong and cold beam, and for rela-
interaction process is the excitation of electrostatic multiplejvely early nonlinear phase where the beam—plasma
harmonic Langmuir waves, which were first observed injnteraction is dominated by the formation of coherent phase—
laboratory experiments in the 19685, %as well as in space- space vortices.
craft observatiot and spaceborne rocket active  Another view, recently developed in Ref. 45, is to con-
experiment” Such a phenomenon was also observed in varisider the harmonics as eigenmodes of nonlinear plasma sys-
ous numerical computer simulations of the beam-plasmgm. This approach was prompted by recent simulatfsis
interactions’®~** According to these publications, the har- which show that harmonic modes persist even in the late
monic waves are excited at multiples of the plasma frenonlinear phase when the coherent phase space structure is
quency, no longer apparent, and when the plasma has entered a stage
n=234 which can be genuinely characterized by random phases.
T The simulations by Schrivest al*° and Kasabat al.,*
(here,w,zm.z47-rﬁe2/me is the square of the electron plasma which were designed to resolve only up to the first harmonic
frequencyf, e, andm, being the ambient density, unit elec- (i.e., n=1 and 2, clearly show on the basis of simulated
tric charge, and electron rest mass, respectjyelyd they all  »—k diagram, that the first harmonic mode occupies a broad
propagate with phase speeds roughly equal to the beasgpectral range which can be best described by a phenomeno-

w~nwpe,

propagation speed, logical dispersion relation,

wlk~Vq, wR*~ wpd2+ 3K\ 542), 1)
whereV, is the average electron beam speed. This impliesvith a spectrum ofk values largely centered arourkd
that the wavelengths of the harmonic components, be-  ~2wpe/Vy. Here,\3.=kgT./(4mfe?) is the square of the

come shorter and shorter for higher harmonics, Debye length.

~27Vol(nwye), or equivalently, the wave number of the Clearly, the broadband spectrum and the presistence of
the harmonic mode in a fully turbulent stage cannot be dis-

ICNPq fellow. Permanent address: Instituto dsi¢a e Matemica, Uni- Cus_sed_ solely on the baS!S of coherent nonlinear dy,namlcs'

versidade Federal de Pelotad)FPe), Caixa Postal 354, 96010- Which is why the altemat'\'/e thepry was developed in Ref.

900 Pelotas, RS, Brazil. 45. However, as with the simulations in Refs. 40 and 41, the
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i de(k) o

original theory in Ref. 45 is also restricted to the first har- :<§ ;w) E+€(K))I(K)
monic Langmuir mode onl§>4®

At present, a fully general theory which combines both TIx@(k' k= x")]?
aspects of turbulenti.e., eigenmode theoyyand coherent _ZJ dx €* (k)
nonlinear dynamicsforced perturbation theoyys not avail- , ,
able. The strengths and weaknesses of the two views are as — [Pk’ | k- K’)}Z( (k= «') (k") ) ()
follows: The coherent nonlinear theory has a clearly identi- e(k’) e(k—k')
fiable mechanism, i.e., particle trapping in the phase—space
vortex, which accounts for the generation of harmonic per- YOk | = k' &) 1) 1 (k) |, 2)
turbations. On the other hand, it cannot be applied when the
system becomes turbulent, that is, when the spectrum broagere k=(k,w), K=K, o), x—r'=Kk-K 0—'),
ens, and/or the phase—space vortex is no longer characterizgfy fdx'=[dk’ [de'.
by a coherent wave. In contrast, the incohefentturbulent In Eq. (2),
eigenmode theory is applicable for a broadband spectrum,
and it is capable of explaining the persistence of harmonics  €(x) =1+ x(«k)
over a long period. On the other hand, the theory does N9k the linear plasma response function, are), x@(x’|«
have a self-contained mephanism to gengrate the initial per- «"), andxtd(x'|— k'| ) are the Iinea,r, secénd-order and
turbations for.th.e. harmonlc.modes. Thus in Ref. 46 an arbiy.. i order susceptibilities, respectively,
trary level of initial harmonic mode had to be imposed. In
this respect, it can be envisaged that both the coherent and
incoherent nonlinear theories have a role to play in a hypo- X(K)zza:
thetical complete theory.

At any rate, the present paper, which is a first in a series —j €, wga
of three papers, is motivated by the following two aspects: XA k= K'")= 72 m m
The analysis of Refs. 45 and 46 pertains only to the first e
harmonic i=2). Obviously, it needs to be generalized to all )
higher harmonics. More importantly, though, the physical Xf dv{(k" g [(k=K") G fal
derivation of the nonlinear dispersion relation in Refs. 45
and 46 was based upon certain conjectural procedures, which (K or—x) ]
were intended to reproduce the phenomenological dispersion 1 2 2
curve, Eq(1), rather than based upon a systematic deductive y()(x'|— k'|k)= = >, —5 oes
method. Since the conceptual foundation of the turbulent 273 mg kK
eigenmode theory rests upon the very existence of the eigen-

(") I(k—K")

w

2
kgaJ dvk-g.fa,

mode solution itself, it is critical to re-examine the derivation xf dv (k' g [(K' g« )(k-0,.fa)
of the harmonic eigenmode solution before we move on fur-
ther. +(ke=—«k")],

The latter objective is the major focus in the present . e ) _
paper(paper ), where a more reliable approximation SChemewherefa(v) is the velocity distribution function for species
is devised for the proper derivation of the harmonic Lang-
muir mode dispersion relation, which is valid for arbitrary 1 9
harmonics. For the sake of reference, in the second paper, QKIT—,

. w—k-v+i0 dv
henceforth designated as papel{R. Gaelzeret al,, Phys.
Plasmas10, 373 (2003], we will formulate and solve the and the summatior®, is over the particle species, with
generalized weak turbulence kinetic equations for the elecwf,az 47-rﬁe§/ma representing the square of the plasma fre-
trons and the waves, utilizing the nonlinear dispersion relaguency for speciea=e,i (e andi stand for the electrons
tion to be derived in the present pagdéee., paper ). Then, and iong. The quantityl («) is the phase-averaged square of
the third paper(paper Il)) [T. Umedaet al, Phys. Plasmas the wave electric field,
10, 382 (2003] is devoted to the Vlasov simulation and
comparison with the theory. Although the full description of (1) =( 8Bk OF -k —0) = (5B -

[normalized to unityfdv f(v)=1],

the simulation will be the focus of paper Ill, we will also The derivation of Eq(2) and approximate forms of the
refer to the simulation results in both papers | and Il wherevarious response functions can be found in Ref. 45, and thus,
appropriate. will not be repeated here. We simply mention that the desired

dispersion equation is obtained from the real part of ).

. . . . while the imaginary part leads to the wave kinetic equation.

A. Formal nonlinear dispersion equation Our focus in this study is mainly on the real part of E2),
The starting point of the present analysis is the formaflthough we will also discuss the linear damping/growth rate

nonlinear spectral balance equation, given by @yof Ref. of the harmonic Langmuir modes by considering only the
45, imaginary part of the linear response of Eg) and ignoring

IIl. THEORETICAL FORMULATION
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nonlinear mode coupling terms. The full consideration of thelow-frequency ion-sound mode altogether. Here we reiterate

wave kinetic equation is the focus of paper II. that the conjecture on the form of the dispersion relation for
The total spectral wave intensiti(«), is given by the | 2 mode as represented by E)*>“®was influenced by the

sum of individual wave intensity for each normal mode, des{ 1 mode dispersion relatiof), rather than systematically

ignated bya, derived. In the subsequent discussion we will remedy this
” N shortcoming, and actually derive the proper form La?
'(")—% (,:Eil la(k) 8o =owy). ) mode dispersion relation, as well as those of all the higher

harmonics.
Let us insert Eq(3) into the real part of Eq.2). In doing
so, we note that the third-order susceptibility contributes
very little to the dispersion relation, since it does not contain
L b2 the inverse of the linear dielectric response function, as the
0= wpe(1+3KApe/2), (4 second-order terms do. Therefore, we will ignore the third-
is well known. In the present discussion which pertains toorder nonlinearity in the discussion of the dispersion rela-
high-frequency response of the plasma, we may ignore thgons. The result is

Specifically, we shall adopta=Ln to designate the
nth-harmonic Langmuir wave. Fan=1 (the fundamental
Langmuir modg the customary Bohm—Gross dispersion re-
lation,

0= Ree(k,a'wkn)l Un(K) 8(w— O'wL"
n=123,.0=%1
2{xPk' o' wr! |k k',co"— 0o wL,n 02
+2 Ref dk’| > X - kLn 1 (K 170(K) 80— ok
nn' oo ==1 e(k—k’ O'wk —0'w, )
|X(2)(k/ O_;wIIZ?’|k_k, ” :Zn”k,)|2 o o ) .
-2 , L’ (KD 1k =K' S(o—0" o =" w.")0) | (5
n'.n" o o'=x1 e*(k,o’ a)k, to O r)

We may consider the above expression as a perturbation s€e the next orderr{=2), if we keep the leading nonlinear
ries in the power of ", with n as the ordering parameter. term with the frequency difference equal tow,e in the
Keep in mind that the nonlinear response can balance thargument of the denominators, then we have
linear response only when the inverse of linear response,
which appears in the nonlinear term, becomes sufficiently
small. This can happen, for instance, when the inverse linear 0=Ree(k,aw?) 17,(k) +4 Rej dk’
response is of the form,
XK', o wk,|k k', oo’—o wk,)}2

1 X > 1

KT ek ou ol
which can be of significance, since the denominator can be- X 173k 175(K). (6)
come very small when the differenag"— o} (") is on the
order of e, Note that the last term in E§5) does not contribute because

the delta function condition cannot be satisfied.

’ Ln L(n 1) ! —
e(k—k’, )~ e(k=k',wpe)~0. To the next orderif=3), we have
On the other hand, other quantities(k—k’,wj —wl';? ),
wheren’#n—1, that is, when the argument involves the  g=Ree(k,cwk’) 175(k)+4 Ref dk’
frequency difference between two harmonics that are not im-
mediately adjacent to each other, can be ignored, since ob- @)1 / _ 2

= X(kaw,kko-w a'w,)
jects such ag(k—k’,0k"— o ") ~e(k—k’,20,0), are X > ! K ,| S i
finite. o==1 e(k—k O'wk -0 wk,)
To the lowest orderr{=1), we have the linear disper- o o

sion relation forL1 mode, X (k") (k). @)

0=Ree(k,awih) 17,(K). In general, we have
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{X(z)(k’,U’wtfn_l)|k—k’,awkn—a’wtsn_l))}z o "
O=Re( e(k,owkn)+40,§il dk e(k—k’,awk“—a’wkf”fl’) IWin=1)(K) | I7a(K)  (n>2).
tS)
The second-order susceptibility can be approximatéd by
eZ
’ y L(n—-1) ’ L y L(n=1) —~ (n)
{X(z)(k N0 wk,n k=K', ocw"— o wk,n )}2~_4wgem_§Akr‘1k”
AL =1[(n—1) K2k +n k' 2k]- (k—k')+n(n—1) [k—k'|? (k-k")}}{n* (n—1)* K2 k'2 [k—k' |} L. 9
|
This leads to the following dispersion equation: that however, we remind the readers of #tehoctreatment
M |+ employed in Refs. 45 and 46, which were concerned with
e? A (kD) . ) N
_ / k,k’ "L(n—1) only n=2. In these references, the denominator was simpli
Ree(k,w)——2—4Re dk C(n—1), . .
Mg ®pe e(k—k',o—w, ) fied by setting
(10 0wy and o, ~wbt,

where we have replaced the argumexﬁf‘ by a generico,
and have restricted ourselves to the casevefo’=+1,
W@thout Ioss of generality. The solution to the above equation — ,— w.';rl— w:ik,m 0—2wpe— (3/2)(wpe k2\2,).
will be designated as

thus approximating

. This procedure was designed to reproduce the approximate
0=wy . solution for L,, given by Eq.(1), but of course, it is not
strictly justified. In the present paper, the proper solution to

We expect at the outset thaﬂ{;”~nwpe. . . _ . )
Following the standard approach, which is applicable toEa- (12) is obtained according to a procedure with a firmer

the spectral range over which a given eigenmode is eithdhatheématical and physical basis.
marginally damped or weakly growing, we employ the as-

sumption that B. Dispersion relations for harmonic Langmuir

[Im e(k,w)|<|Ree(k,w)|, modes

which is equivalent to the assumption that the linear growth/ ~ We approach in a deductive manner, starting with

damping ratey, of the wave is much less than the real fre- =2. First we note that forTe—0 (or, equivalently,\pe
quency,, —0), Eqg.(12) can be solved exactly for arbitrary In tak-

ing this limit, we ignore the implicit temperature dependence
Im e(k,w) <ol (11) of the wave intensity. The limiff—0, is therefore, a math-
dRee(k,w)/dw ematical one, rather than a physical assumption. Firstn for
=2, we have the low-temperature limit of E{.2),

ly|=

To justify this assumption, we will later compute the growth/
damping rate of the harmonic modes and show that indeed, 2e? 1
the above inequality is satisfied. We assume the same for 1= 3Mlws. w—2w J
e(k—k',0— - D) epe Pe
il k/ . . . .
Under this assumption we may approximate the lineatVhich immediately leads to

dk’ AZ 113K,

response function by wkZpre(ersl((Z)),
2 2
“pe 2 “pe 2 e
elkoo)~1= 7| 1+3K%Npe 7. e073 ma? f dk’ AL, 113(K").

eWpe

For e(k—k’,0—w, "), we simply replace the appropri- Note thate(®) is a small correction term, which can be ig-
ate arguments. Further simplification is possible if we notenored whenw? is inserted to the next-order nonlinear dis-

that the frequency diﬁerencm—wtfnfl), is expected to be persion equation. Moving on to= 3, we have
of order ~w,e. Then, after some straightforward manipula- 9 &2 1
tions, Eq.(10) can be shown to reduce to 1~— 2—3—f dk’ A 1 (k),
16 M wse 0= 3wpe Kk TL(n=1)
n2 e A 1 (KD . -
1~ f ek L0-1) (12 from which we obtain
2(n=1) ml 2, BRI

B o= wpe(3+e?),
wherew, ", is the fundamental Langmuir mode dispersion 9 &2
relation (4). This is the desired formal nonlinear dispersion e(d=— _f dk’ A(kiz, 15(k").

. . . 2 4
equation to be analyzed in the next section. Before we do 16 mewpe

Downloaded 04 Jun 2007 to 130.54.110.22. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



368 Phys. Plasmas, Vol. 10, No. 2, February 2003 Yoon et al.

In general, for arbitraryn and T,=0, Eq.(12) reduces to 9 ¢? o
=TE Jdk'A“) 1ok =
23 ,
1% n2 e2 1 J‘ dk’ A(n) |+ (k’) 16 mewpe k,k (9)\De )\ZD -0
2(n’—1) mg wge ©O—Nwpe k,k’ 'L(n—1) ’ o ¢
: . . . . 3 O
from which, the desired solution fdr,=0 for arbitraryn is ~ 5 @pe k'2+ —(%-+|k—k’|2> :
obtained Exr
o "= wpe(n+ef), From this, we obtain
13
0= - f d*k’ AL, TLn-1y(K) . o 3 opd K242 o
— ! , _ ’ . _ K — + ,
T2 1) mZwd, ke TH 1) NBe| o 29" T el
De
To obtain the thermal corrections to the nonlinear disper- )
sion relation(13), let us assume that the full dispersion rela- (3):3 e NG NI
. _ e it 6\ | Ak’ ASL 115Kk
tion can be expanded in a Taylor series\i,, 16 miwp,e '
kn 6(2)
o"= 0"z —ot —7- MRt X kfz_k'k/+_|((75 :
De INpe )‘ZD ~o &
e
where In general we obtain the desired nonlinear dispersion

relation for harmonic Langmuir mode for amg=2,
o"\2 _p=w (n+e(™)
k )‘De:O pe k
Ln
w, —w
k pe

3.,, 360
n+s(kn)+ EkZADe'F :I((ﬁ)—)\De , (14)

is already given by Eq(13). Higher-order Taylor series co-
efficients can be obtained by taking successive derivatives of oy ) _
the nonlinear dispersion equati¢f2). We are only inter- Wheree” is defined in Eq(13), and

ested in the second-order correction. Let us first consider n2 e?

=2. Taking the derivative with respect ig,, while ignoring Hf(“)=2 (=T e wgef a3k’ A" 1 o 1)(K')

k,k’
possiblex 3, dependence df;(k’), we have
2 2 A(Z) |+ (kr) 2 (kl’:*l)
_2 e , Kk L1 X| k' “=k-K'+ 7=y, (15
= 3 miwl. (0— [1T_ LI 2 €
e@pe 0= OO )
v 3 with 6{Y=0.
X(_)\T_ Ewpek’z— Ewpe|k—k’|2)_ The result we have obtained, namely, Etd), is quite
IADe general but formal. In a time-dependent calculation of the
SettingA2,=0, we have entire array of wave kinetic equations, the instantaneous dis-

persion relation(14), and the coefficientl5) can be com-

0 2 € f , A(,f,z, 1K) [ e puted at each moment in time by numerical means, using the
3 mgwge (w—pre)z (&A%e - a_ctuz_il mtens_lty,l,_n(k), computed on the ba3|s_ of the_ wave
De kinetic equation. However, for the purpose of illustration, let
3 us consider a specific model for the harmonic Langmuir-
— E,,)pe|(2_3 wpe(k’z—k- k,)> . wave spectra.
The physical situation in mind is that an energetic but

] 5 . tenuous population of beam electrons interact with thermal
Since the factor ¢ —2wpe)® can be taken out of the’ in-  hackground plasma to excite primary Langmuir waves)
tegral, after some straightforward algebraic manipulationsrhe enhanced.1 mode is the source of the nonlinearity

we see that which leads to the existence and excitation L& mode,
&wkz 3 20(k2) vv_hich i_n turn_lea(_js toL3 mode, and so on. In a one-
— == wpe K2+ _(7T) dimensional situation, let us assume that the electrons are
I\ pe A2.=0 2 €k initially distributed in velocity space according to the model
specified by
(2) 2 ez ' 12 ’ (2) |+ ’ 2,2 2, 2
Ok =3 mgwgeJ’ dk’ (k"“=k-k") Al 11 (k"), e Ve, e @ Vol

fo(v)= ,n_llzve—"n_o I

where the beam-to-background density ratio is supposed to
be small,n,/ny<<1. The thermal speeds associated with the
background and the beam are given by

Next, we move on to=3, ve=V2kgTe/Me, vp=V2kgTp/m,
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respectively, wheré&g is the Boltzmann constant. The quan- 10 - - - ‘ o
tity Vo represents the average beam speed, which we hav
encountered already. The beam electrons will excite primary
(L1) Langmuir waves in a range of spectrum with average
wave number given approximately by~ w,./Vq.
Simulationg®>=*! as well as experimerfts 2932 provide
evidence that the primanyl mode gives rise to the second-
ary excitation of the_2 mode with characteristic wave num- %
ber equal to~2kg, and that in generahth-harmonic Lang-
muir mode (n) possesses a spectrum with average wave
number located at roughly

Nko~Nwpe/Vy.

On the basis of this consideration, let us model the one-

dimensional harmonic Langmuir mode spectra by 00 > 1 p p 10 1
La(K) =1 (7Y2.8) "2 e (k)" (16 K

wherelnzfdeLn(k), and 8 represents the spread associ-FIG. 1. Normalized frequencyx=w/w,, versus wave numberx

ated with the spectra. With the above model spectra, we may X Vo/@pe; for U=Vo/ve=4. The straight diagonal dashed line is the
’ ! alyeam modex= « (or equivalently,w=kV,;), shown here only as a refer-

‘i (N .
explicitly evaluate the quant'ty(k ) as follows: ence. The growth of each harmonic is expected to occur only around the
2 2 intersection points between the beam line and the dispersion cigeeshe
(n) _ n eln_1 next Fig. 2.

20?1 mE o,

2

o
x| ank?=(n=1) by kok+ (n—1)%c, k§+ ¢, IIl. NUMERICAL RESULTS
a7 Figure 1 shows the plot of analytical dispersion curves
where for the harmonics when the beam is characterized by
Vo/ve=4. The normalizations for the frequency, wave num-
(n+1)2 2(n+1)(n—2) (n—2)2 ber, and the ratio of average to background thermal speeds
an:m, n:W: anm- are according to
Let us assume that the width of the spectruirfor each x=wlwpe, k=kVolwpe, U=Volve. (19)

n, although broad enough to justify the use of incoherentryg siraight diagonal dashed line represents the beam mode,
turbulence theory, is sufficiently narrow in comparison W|thw~kv0 or equivalently,x=«. The beam mode is not an
the central wave _ru_me?:}ko, .e., 5<nko. Then we may  ,cyal eigenmode solution, but is shown here only as a ref-
compute the coefficient,” , by ignoring terms proportional - grence to guide the readers. The growth of each harmonic is
to 8. As a matter of fact, however, this approximation is quiteeypected to occur only around the intersection points be-
valid even ifis not so small when compared wikg, since  tyeen the harmonic mode dispersion curves and the straight

the coefficient, is much smaller tham, orb, foragivenn  heam jine. The stacked curves are the eigenmode solutions,
(first few members of these coefficients @g=0.5625,b,  \yritten in normalized form by

=c,=0; @a3=0.0494, b3=0.0370, c3=0.0069; a,

=0.0109, b,=0.0116, c,=0.0031; a;=0.0036, bg 3k 3(n-1)
=0.0045,c5=0.0014; ..). Under this assumption, one may X=N+ 202~ o2
also show thav\" is related tos{" by

n
oM =eM(n—1) ko<—k0—k).

n
(K— E) n=123,.... (20

A caveat in the interpretation of Fig. 1 is that we are only

interested in each harmonic dispersion curve which satisfies

the condition,w~nw,e, a presumption imposed at the out-

. ) . set. Therefore, solutions which do not satisfy this criterion
Making use of these results, we obtain the following st not be taken literally. A close examination reveals that

specific form of dispersion relation for the harmonic Lang-yq gispersion curve for a givensatisfies this criterion only

muir modes in a beam—plasma system: around the vicinity of the intersection point between the

2

wk" 3 3(n-1)(k n K2y 2 dashed beam line and the dispersion curve itself.

Pk P22 2V R T 0Te () : : ,
n+3 K\ e 5 ( K 2)—7 +ey”, Before we close, we note that if we are only interested in

@pe 0 @pe (19 the sufficiently earlyi.e., quasilinearphase of the harmonic

mode generation process, then we may discuss the amplifi-
where ko~ wp./Vy. In the above, the nonlinear frequency cation of Ln mode by considering its “linear” growth rate
shift factors,ﬁ“) can be ignored for all practical purposes, [which can be obtained by only considering the linear re-
since it is a small quantity. sponse of Eq(2)],
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K

FIG. 2. Normalized growth ratd" = y/w,. versusx, for n,/ny=10"3,
Volve=4, andT,=T,.

) wkn 3 . (wkn 2
_ el Tk n _
=i oo -G
Ny [ Te|*? (wk"—kVo)?
%(ﬁ) (o~ kVolex| = 77— |.
(21)
Figure 2 plots the normalized growth raté= y/we,
where
. m(xU)3 (xU)?
“TNZ 28 XA T 22
X — 2u2
+ 57’3/2(X—K)exr{_%2—7) ,

versus k, for 8=n,/ng=10"3 U=Vy/v.=4, and 7
=T./Tp=1. Note that the peak value @& monotonically
increases for increasing, which confirms the findings in
Ref. 36 that the initial growth rate for the harmonic mode is

higher than that of the fundamental by a factor roughly pro-

portional to the harmonic mode numbé¢guch a finding is

also confirmed by our own simulations as will be discussed

in paper IlIl) A close examination reveals that indeed, the
growth of the harmonic mode occurs only in the vicinity of

the intersections between the beam mode line and the dispe

sion curves.

Since the maximum of the normalized growth rale,
increases for increasing harmonic mode number,one
might wonder whether the original assumptiorg o, is vio-
lated for very highn. However, since the normalized fre-
guency,X, also increases as a function rof the ratio,I'/x,
always remains small for alh. To see this, we replot the
result shown in Fig. 2 in a new format, in terms of the ratio,
I'/x=vylw, in Fig. 3. The numerical result reconfirms the
inequality, y<w, which validates the present approximate
analysis.

It should be noted that when the growth rate formula
(21) is plotted inG= y/ wy" versusg=kv/wg", then all the
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FIG. 3. The ratio of the growth rate to the real frequengy versusk, for
the same set of parameters as in Fig. 2.

curves collapse onto a single curve. This can be seen easily
by the fact that Eq(21) can be expressed in terms @fand
g as

n, T2

l/q2+ — —p
Ng ng

G=——3|e
q3

ave
Ue

X|1-

)e—(ve/val/q—vo/vb)Z _

To test the idea of the present nonlinear eigenmode
theory of harmonic generation, we have also performed a
one-dimensional electrostatic Vlasov simulation. The full de-
tails of the simulation technique and the in-depth analysis of
the results will be the focus of paper Ill, but here we preview
one of the crucial results. The simulation result shown in Fig.
4 corresponds to the intensity of the waves plotted in gray-
scale format against normalized frequency and wave number,
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FIG. 4. Simulated dispersion diagram for harmonic Langmuir waves. The
intensity of the waves are Fourier analyzed in both space and time, and the
result is plotted in grayscale format against normalized frequency and wave
number,w/ wpe andkVy/wpe. We have superposed the theoretical disper-
sion relation curves18).
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ol w,e andkVy/w,e. The input parameters for the simula- trary harmonicn has been derived. The theoretical expres-
tion were n,/ny=10"3, V,=3.5v,, and T,/T,=4. The sion is then compared against the simulated dispersion rela-
Fourier transformat|on is performed over the simulated datdion. The result shows an excellent agreement between the
in both space and time, and the result is a simulateck  theory and simulation, which lends a strong support for treat-
dispersion diagram shown in Fig. 4. We have superposed thag the electrostatic harmonics as nonlinear eigenmodes of a
theoretical dispersion relation curves, given by EtB) or  turbulent plasma. These eigenmodes exist as a result of tak-
(20), on top of the numerically generated wave intensity ver-ing the nonlinear mode coupling associated with firjkiat
susw andk. The result is the comparison between the theorynot necessarily large amplitudeaves into account. Such a
and simulation. finding cannot be discussed on the basis of the traditional
In Fig. 4, we have made one adjustment to the theoretiweak turbulence theory since the traditional theory only con-
cal curve. Note that the theoretical dispersion cud® as-  siders the primary Langmuir modé 1), which is a linear
sumes that the central wave number associated with the furgigenmode.
damental Langmuir modeL(l) is given by We have also computed the initial growth rates of the
K= o[\ harmonic modes. The focus of the present paper was to char-
07 Fpel 70 acterize the dispersion relation of the harmonic Langmuir
However, this estimation is only a crude one. This stemsnodes. Paper Il of the present series will make use of the
from the notion that the optimum interaction between theresults derived in this paper, to formulate and solve the entire
waves and the electrons occurvat V. In reality, however, wave kinetic equation as well as the particle kinetic equation
the instability takes place when the derivative of the beanin a self-consistent manner. Such an approach is needed if
distribution is positive, not at the peak of the distribution one is to discuss the actual level of the saturated harmonic
itself. The maximum positive derivative occurs when Langmuir mode spectra. Finally, paper Ill of the present se-
#?*f/dv?=0. Considering only the beam distribution into ries presents a detailed account of the Vlasov simulations,
account, one can easily compute one of the results of which has already been showcased in

0= (2 av?)exd — (v—Vo)Xv2] Fig. 4.
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