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Generation of electrostatic multiple harmonic Langmuir modes during beam–plasma interaction
process has been observed in laboratory and spaceborne active experiments, as well as in computer
simulation experiments. Despite earlier efforts, such a phenomenon has not been completely
characterized both theoretically and in terms of numerical simulations. This paper is a first in a
series of three papers in which analytic expressions for harmonic Langmuir mode dispersion
relations are derived and compared against the numerical simulation result. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1537238#
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I. INTRODUCTION

The beam–plasma interaction is one of the most imp
tant problems in plasma physics for both scientific and co
mercial applications. The weak beam–plasma~or bump-on-
tail! instability has also played a crucial role as a testbed
various nonlinear plasma turbulence theories, which incl
quasilinear,1–4 weak turbulence,5–14 and strong
turbulence15–21 theories.

One of the intriguing phenomena in the beam–plas
interaction process is the excitation of electrostatic multi
harmonic Langmuir waves, which were first observed
laboratory experiments in the 1960s,22–30as well as in space
craft observation31 and spaceborne rocket activ
experiment.32 Such a phenomenon was also observed in v
ous numerical computer simulations of the beam–plas
interactions.33–41 According to these publications, the ha
monic waves are excited at multiples of the plasma f
quency,

v;nvpe , n52,3,4,...

~here,vpe
2 54pn̂e2/me is the square of the electron plasm

frequency,n̂, e, andme being the ambient density, unit elec
tric charge, and electron rest mass, respectively!, and they all
propagate with phase speeds roughly equal to the b
propagation speed,

v/k;V0 ,

whereV0 is the average electron beam speed. This imp
that the wavelengths of the harmonic components,ln , be-
come shorter and shorter for higher harmonics,ln

;2pV0 /(nvpe), or equivalently, the wave number of th

a!CNPq fellow. Permanent address: Instituto de Fı´sica e Matema´tica, Uni-
versidade Federal de Pelotas~UFPel!, Caixa Postal 354, 96010
900 Pelotas, RS, Brazil.
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harmonic with frequency in the vicinity ofnvpe is given by

k;nvpe /V0 .

Available theories in the literature for the harmonic ge
eration can be categorized into two classes. The first clas
theories, which were developed in the early 1970s, view
harmonics as forced electrostatic perturbations generate
the interaction of trapped electrons and large-amplitude
herent Langmuir waves.33,36,42–44Such theories are appli
cable for a sufficiently strong and cold beam, and for re
tively early nonlinear phase where the beam–plas
interaction is dominated by the formation of coherent phas
space vortices.

Another view, recently developed in Ref. 45, is to co
sider the harmonics as eigenmodes of nonlinear plasma
tem. This approach was prompted by recent simulations40,41

which show that harmonic modes persist even in the
nonlinear phase when the coherent phase space structu
no longer apparent, and when the plasma has entered a
which can be genuinely characterized by random phases

The simulations by Schriveret al.40 and Kasabaet al.,41

which were designed to resolve only up to the first harmo
~i.e., n51 and 2!, clearly show on the basis of simulate
v –k diagram, that the first harmonic mode occupies a bro
spectral range which can be best described by a phenom
logical dispersion relation,

vk
L2'vpe~213k2lDe

2 /2!, ~1!

with a spectrum ofk values largely centered aroundk
'2vpe /V0 . Here,lDe

2 5kBTe /(4pn̂e2) is the square of the
Debye length.

Clearly, the broadband spectrum and the presistenc
the harmonic mode in a fully turbulent stage cannot be d
cussed solely on the basis of coherent nonlinear dynam
which is why the alternative theory was developed in R
45. However, as with the simulations in Refs. 40 and 41,
© 2003 American Institute of Physics
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365Phys. Plasmas, Vol. 10, No. 2, February 2003 Harmonic Langmuir waves. I. Nonlinear dispersion relation
original theory in Ref. 45 is also restricted to the first h
monic Langmuir mode only.45,46

At present, a fully general theory which combines bo
aspects of turbulent~i.e., eigenmode theory! and coherent
nonlinear dynamics~forced perturbation theory! is not avail-
able. The strengths and weaknesses of the two views a
follows: The coherent nonlinear theory has a clearly ide
fiable mechanism, i.e., particle trapping in the phase–sp
vortex, which accounts for the generation of harmonic p
turbations. On the other hand, it cannot be applied when
system becomes turbulent, that is, when the spectrum br
ens, and/or the phase–space vortex is no longer characte
by a coherent wave. In contrast, the incoherent~or, turbulent!
eigenmode theory is applicable for a broadband spectr
and it is capable of explaining the persistence of harmon
over a long period. On the other hand, the theory does
have a self-contained mechanism to generate the initial
turbations for the harmonic modes. Thus in Ref. 46 an a
trary level of initial harmonic mode had to be imposed.
this respect, it can be envisaged that both the coherent
incoherent nonlinear theories have a role to play in a hy
thetical complete theory.

At any rate, the present paper, which is a first in a se
of three papers, is motivated by the following two aspec
The analysis of Refs. 45 and 46 pertains only to the fi
harmonic (n52). Obviously, it needs to be generalized to
higher harmonics. More importantly, though, the physi
derivation of the nonlinear dispersion relation in Refs.
and 46 was based upon certain conjectural procedures, w
were intended to reproduce the phenomenological disper
curve, Eq.~1!, rather than based upon a systematic deduc
method. Since the conceptual foundation of the turbul
eigenmode theory rests upon the very existence of the ei
mode solution itself, it is critical to re-examine the derivati
of the harmonic eigenmode solution before we move on
ther.

The latter objective is the major focus in the prese
paper~paper I!, where a more reliable approximation schem
is devised for the proper derivation of the harmonic Lan
muir mode dispersion relation, which is valid for arbitra
harmonics. For the sake of reference, in the second pa
henceforth designated as paper II@R. Gaelzeret al., Phys.
Plasmas.10, 373 ~2003!#, we will formulate and solve the
generalized weak turbulence kinetic equations for the e
trons and the waves, utilizing the nonlinear dispersion re
tion to be derived in the present paper~i.e., paper I!. Then,
the third paper~paper III! @T. Umedaet al., Phys. Plasmas
10, 382 ~2003!# is devoted to the Vlasov simulation an
comparison with the theory. Although the full description
the simulation will be the focus of paper III, we will als
refer to the simulation results in both papers I and II wh
appropriate.

II. THEORETICAL FORMULATION

A. Formal nonlinear dispersion equation

The starting point of the present analysis is the form
nonlinear spectral balance equation, given by Eq.~3! of Ref.
45,
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]e~k!

]v

]

]t
1e~k! D I ~k!

22E dk8F ux (2)~k8uk2k8!u2

e* ~k!
I ~k8! I ~k2k8!

2$x (2)~k8uk2k8!%2S I ~k2k8!

e~k8!
1

I ~k8!

e~k2k8! D I ~k!

1x̄ (3)~k8u2k8uk! I ~k8! I ~k! G , ~2!

where k5(k,v), k85(k8,v8), k2k85(k2k8,v2v8),
and*dk85*dk8*dv8.

In Eq. ~2!,

e~k!511x~k!

is the linear plasma response function, andx~k!, x (2)(k8uk
2k8), andx̄ (3)(k8u2k8uk) are the linear, second-order an
third-order susceptibilities, respectively,

x~k!5(
a

vpa
2

k2 E dv k•gk f a ,

x (2)~k8uk2k8!5
2 i

2 (
a

ea

ma

vpa
2

kk8uk2k8u

3E dv $~k8•gk! @~k2k8!•gk2k8 f a#

1~k8↔k2k8! %,

x (3)~k8u2k8uk!5
1

2 (
a

ea
2

ma
2

vpa
2

k2k82

3E dv ~k8•gk! @~k8•gk2k8!~k•gk f a!

1~k↔2k8!#,

wheref a(v) is the velocity distribution function for speciesa
@normalized to unity,*dv f a(v)51],

gk5
1

v2k•v1 i0

]

]v
,

and the summation(a is over the particle species, wit
vpa

2 54pn̂ea
2/ma representing the square of the plasma f

quency for speciesa5e,i (e and i stand for the electrons
and ions!. The quantityI (k) is the phase-averaged square
the wave electric field,

I ~k!5^dEk,v dE2k,2v&5^dE2&k,v .

The derivation of Eq.~2! and approximate forms of the
various response functions can be found in Ref. 45, and t
will not be repeated here. We simply mention that the desi
dispersion equation is obtained from the real part of Eq.~2!,
while the imaginary part leads to the wave kinetic equati
Our focus in this study is mainly on the real part of Eq.~2!,
although we will also discuss the linear damping/growth r
of the harmonic Langmuir modes by considering only t
imaginary part of the linear response of Eq.~2! and ignoring
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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nonlinear mode coupling terms. The full consideration of
wave kinetic equation is the focus of paper II.

The total spectral wave intensity,I (k), is given by the
sum of individual wave intensity for each normal mode, d
ignated bya,

I ~k!5(
a

(
s561

I a
s~k! d~v2svk

a!. ~3!

Specifically, we shall adopta5Ln to designate the
nth-harmonic Langmuir wave. Forn51 ~the fundamental
Langmuir mode!, the customary Bohm–Gross dispersion
lation,

vk
L15vpe~113k2lDe

2 /2!, ~4!

is well known. In the present discussion which pertains
high-frequency response of the plasma, we may ignore
r.
t
s

nt
e

b

e
im
o

-
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low-frequency ion-sound mode altogether. Here we reiter
that the conjecture on the form of the dispersion relation
L2 mode as represented by Eq.~1!45,46was influenced by the
L1 mode dispersion relation~4!, rather than systematically
derived. In the subsequent discussion we will remedy t
shortcoming, and actually derive the proper form ofL2
mode dispersion relation, as well as those of all the hig
harmonics.

Let us insert Eq.~3! into the real part of Eq.~2!. In doing
so, we note that the third-order susceptibility contribu
very little to the dispersion relation, since it does not cont
the inverse of the linear dielectric response function, as
second-order terms do. Therefore, we will ignore the thi
order nonlinearity in the discussion of the dispersion re
tions. The result is
05 (
n51,2,3,...

(
s561

Ree~k,svk
Ln! I Ln

s ~k! d~v2svk
Ln!

12 ReE dk8 F (
n,n8

(
s,s8561

2 $x (2)~k8,s8vk8
Ln8uk2k8,svk

Ln2s8vk8
Ln8!%2

e~k2k8,svk
Ln2s8vk8

Ln8!
I Ln8

s8 ~k8! I Ln
s ~k! d~v2svk

Ln!

2 (
n8,n9

(
s8,s9561

ux (2)~k8,s8vk8
Ln8uk2k8,s9vk2k8

Ln9 !u2

e* ~k,s8vk8
Ln81s9vk2k8

Ln9 !
I Ln8

s8 ~k8! I Ln9
s9 ~k2k8! d~v2s8vk8

Ln82s9vk2k8
Ln9 !G . ~5!
r

e

We may consider the above expression as a perturbation
ries in the power ofI k

Ln , with n as the ordering paramete
Keep in mind that the nonlinear response can balance
linear response only when the inverse of linear respon
which appears in the nonlinear term, becomes sufficie
small. This can happen, for instance, when the inverse lin
response is of the form,

1

e~k2k8,vk
Ln2vk8

L(n21)
!
,

which can be of significance, since the denominator can
come very small when the differencevk

Ln2vk
L(n21) is on the

order ofvpe ,

e~k2k8,vk
Ln2vk8

L(n21)
!'e~k2k8,vpe!;0.

On the other hand, other quantities,e(k2k8,vk
Ln2vk8

Ln8),
where n8Þn21, that is, when the argument involves th
frequency difference between two harmonics that are not
mediately adjacent to each other, can be ignored, since
jects such ase(k2k8,vk

Ln2vk8
L(n22))'e(k2k8,2vpe), are

finite.
To the lowest order (n51), we have the linear disper

sion relation forL1 mode,

05Ree~k,svk
L1! I L1

s ~k!.
se-

he
e,
ly
ar

e-

-
b-

To the next order (n52), if we keep the leading nonlinea
term with the frequency difference equal to;vpe in the
argument of the denominators, then we have

05Ree~k,svk
L2! I L2

s ~k!14 ReE dk8

3 (
s8561

$x (2)~k8,s8vk8
L1uk2k8,svk

L22s8vk8
L1

!%2

e~k2k8,svk
L22s8vk8

L1
!

3 I L1
s8~k8! I L2

s ~k!. ~6!

Note that the last term in Eq.~5! does not contribute becaus
the delta function condition cannot be satisfied.

To the next order (n53), we have

05Ree~k,svk
L3! I L3

s ~k!14 ReE dk8

3 (
s8561

$x (2)~k8,s8vk8
L2uk2k8,svk

L32s8vk8
L2

!%2

e~k2k8,svk
L32s8vk8

L2
!

3 I L2
s8~k8! I L3

s ~k!. ~7!

In general, we have
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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Ln!14 ( E dk8

$x (2)~k8,s8vk8
L(n21)uk2k8,svk

Ln2s8vk8
L(n21)

!%2

L(n21) I L(n21)
s8 ~k8!D I Ln

s ~k! ~n.2!.
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s8561 e~k2k8,svk
Ln2s8vk8

!

~8!

The second-order susceptibility can be approximated by45

$ x (2)~k8,s8vk8
L(n21)uk2k8,svk

Ln2s8vk8
L(n21)

! %2'2
1

4vpe
4

e2

me
2 Ak,k8

(n) ,

Ak,k8
(n)

5$@~n21! k2 k81n k82 k#•~k2k8!1n ~n21! uk2k8u2 ~k•k8!%2$n4 ~n21!4 k2 k82 uk2k8u2%21. ~9!
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This leads to the following dispersion equation:

Ree~k,v!5
e2

me
2 vpe

4 ReE dk8
Ak,k8

(n) I L(n21)
1 ~k8!

e~k2k8,v2vk8
L(n21)

!
,

~10!

where we have replaced the argumentvk
Ln by a genericv,

and have restricted ourselves to the case ofs5s8511,
without loss of generality. The solution to the above equat
will be designated as

v5vk
Ln .

We expect at the outset thatvk
Ln'nvpe .

Following the standard approach, which is applicable
the spectral range over which a given eigenmode is ei
marginally damped or weakly growing, we employ the a
sumption that

uIm e~k,v!u!uRee~k,v!u,

which is equivalent to the assumption that the linear grow
damping rate,g, of the wave is much less than the real fr
quency,v,

ugu[U Im e~k,v!

] Ree~k,v!/]vU!uvu. ~11!

To justify this assumption, we will later compute the growt
damping rate of the harmonic modes and show that inde
the above inequality is satisfied. We assume the same
e(k2k8,v2vk8

L(n21)).
Under this assumption we may approximate the lin

response function by

e~k,v!'12
vpe

2

v2 S 113k2lDe
2

vpe
2

v2 D .

For e(k2k8,v2vk8
L(n21)), we simply replace the appropr

ate arguments. Further simplification is possible if we n
that the frequency difference,v2vk8

L(n21) , is expected to be
of order;vpe . Then, after some straightforward manipul
tions, Eq.~10! can be shown to reduce to

1'
n2

2 ~n221!

e2

me
2 vpe

3 E dk8
Ak,k8

(n) I L(n21)
1 ~k8!

v2vk8
L(n21)

2vk2k8
L1 , ~12!

wherevk2k8
L1 is the fundamental Langmuir mode dispersi

relation ~4!. This is the desired formal nonlinear dispersi
equation to be analyzed in the next section. Before we
Downloaded 04 Jun 2007 to 130.54.110.22. Redistribution subject to AIP
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that however, we remind the readers of thead hoctreatment
employed in Refs. 45 and 46, which were concerned w
only n52. In these references, the denominator was sim
fied by setting

vk8
L1;vpe and vk2k8

L1 ;vk
L1 ,

thus approximating

v2vk8
L1

2vk2k8
L1 'v22vpe2~3/2!~vpek2lDe

2 !.

This procedure was designed to reproduce the approxim
solution for L2 , given by Eq.~1!, but of course, it is not
strictly justified. In the present paper, the proper solution
Eq. ~12! is obtained according to a procedure with a firm
mathematical and physical basis.

B. Dispersion relations for harmonic Langmuir
modes

We approach in a deductive manner, starting withn
52. First we note that forTe→0 ~or, equivalently,lDe

→0), Eq.~12! can be solved exactly for arbitraryn. In tak-
ing this limit, we ignore the implicit temperature dependen
of the wave intensity. The limit,Te→0, is therefore, a math
ematical one, rather than a physical assumption. First, fon
52, we have the low-temperature limit of Eq.~12!,

15
2e2

3me
2vpe

3

1

v22vpe
E dk8 Ak,k8

(2) I L1
1 ~k8!,

which immediately leads to

vk
L2'vpe ~21«k

(2)!,

«k
(2)5

2

3

e2

me
2vpe

4 E dk8 Ak,k8
(2) I L1

1 ~k8!.

Note that«k
(2) is a small correction term, which can be ig

nored whenvk
L2 is inserted to the next-order nonlinear di

persion equation. Moving on ton53, we have

1'
9

16

e2

me
2 vpe

3

1

v23vpe
E dk8 Ak,k8

(3) I L(n21)
1 ~k8!,

from which we obtain

vk
L3'vpe ~31«k

(3)!,

«k
(3)5

9

16

e2

me
2vpe

4 E dk8 Ak,k8
(3) I L2

1 ~k8!.
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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In general, for arbitraryn andTe50, Eq. ~12! reduces to

1'
n2

2 ~n221!

e2

me
2 vpe

3

1

v2nvpe
E dk8 Ak,k8

(n) I L(n21)
1 ~k8!,

from which, the desired solution forTe50 for arbitraryn is
obtained

vk
Ln5vpe~n1«k

(n)!,
~13!

«k
(n)5

n2

2 ~n221!

e2

me
2 vpe

4 E d3k8 Ak,k8
(n) I L(n21)~k8!.

To obtain the thermal corrections to the nonlinear disp
sion relation~13!, let us assume that the full dispersion re
tion can be expanded in a Taylor series inlDe

2 ,

vk
Ln5vk

Lnul
De
2 501

]vk
Ln

]lDe
2 U

l
De
2 50

lDe
2 1¯ ,

where

vk
Lnul

De
2 505vpe~n1«k

(n)!

is already given by Eq.~13!. Higher-order Taylor series co
efficients can be obtained by taking successive derivative
the nonlinear dispersion equation~12!. We are only inter-
ested in the second-order correction. Let us first considen
52. Taking the derivative with respect tolDe

2 while ignoring
possiblelDe

2 dependence ofI L1
1 (k8), we have

05
2

3

e2

me
2vpe

3 E dk8
Ak,k8

(2) I L1
1 ~k8!

~v2vk8
L1

2vk2k8
L1

!2

3S ]v

]lDe
2 2

3

2
vpek822

3

2
vpe uk2k8u2D .

SettinglDe
2 50, we have

05
2

3

e2

me
2vpe

3 E dk8
Ak,k8

(2) I L1
1 ~k8!

~v22vpe!
2 S ]v

]lDe
2 U

l
De
2 50

2
3

2
vpek223 vpe ~k822k•k8!D .

Since the factor (v22vpe)
2 can be taken out of thek8 in-

tegral, after some straightforward algebraic manipulatio
we see that

]vk
L2

]lDe
2 U

l
De
2 50

5
3

2
vpeS k21

2 uk
(2)

«k
(2) D ,

uk
(2)5

2

3

e2

me
2vpe

4 E dk8 ~k822k•k8! Ak,k8
(2) I L1

1 ~k8!,

or, equivalently,

vk
L25vpeS 21«k

(2)1
3

2
k2lDe

2 1
3uk

(2)

«k
(2) lDe

2 D .

Next, we move on ton53,
Downloaded 04 Jun 2007 to 130.54.110.22. Redistribution subject to AIP
r-
-

of

s

05
9

16

e2

me
2vpe

3 E dk8 Ak,k8
(3) I L2

1 ~k8!F ]v

]lDe
2 U

l
De
2 50

2
3

2
vpeS k821

2uk8
(2)

«k8
(2) 1uk2k8u2D G .

From this, we obtain

]vk
L3

]lDe
2 U

l
De
2 50

5
3

2
vpeS k21

2 uk
(3)

«k
(3) D ,

uk
(3)5

9

16

e2

me
2vpe

4 E dk8 Ak,k8
(3) I L2

1 ~k8!

3S k822k•k81
uk8

(2)

«k8
(2)D .

In general we obtain the desired nonlinear dispers
relation for harmonic Langmuir mode for anyn>2,

vk
Ln5vpeS n1«k

(n)1
3

2
k2lDe

2 1
3uk

(n)

«k
(n) lDe

2 D , ~14!

where«k
(n) is defined in Eq.~13!, and

uk
(n)5

n2

2 ~n221!

e2

me
2 vpe

4 E d3k8 Ak,k8
(n) I L(n21)~k8!

3S k822k•k81
uk8

(n21)

«k8
(n21)D , ~15!

with uk
(1)50.

The result we have obtained, namely, Eq.~14!, is quite
general but formal. In a time-dependent calculation of
entire array of wave kinetic equations, the instantaneous
persion relation~14!, and the coefficient~15! can be com-
puted at each moment in time by numerical means, using
actual intensity,I Ln(k), computed on the basis of the wav
kinetic equation. However, for the purpose of illustration,
us consider a specific model for the harmonic Langmu
wave spectra.

The physical situation in mind is that an energetic b
tenuous population of beam electrons interact with therm
background plasma to excite primary Langmuir waves (L1).
The enhancedL1 mode is the source of the nonlineari
which leads to the existence and excitation ofL2 mode,
which in turn leads toL3 mode, and so on. In a one
dimensional situation, let us assume that the electrons
initially distributed in velocity space according to the mod
specified by

f e~v !5
e2v2/ve

2

p1/2ve
1

nb

n0

e2(v2V0)2/vb
2

p1/2vb
,

where the beam-to-background density ratio is suppose
be small,nb /n0!1. The thermal speeds associated with t
background and the beam are given by

ve5A2kBTe /me, vb5A2kBTb /me,
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respectively, wherekB is the Boltzmann constant. The qua
tity V0 represents the average beam speed, which we h
encountered already. The beam electrons will excite prim
(L1) Langmuir waves in a range of spectrum with avera
wave number given approximately byk0'vpe /V0 .

Simulations33–41 as well as experiments22–29,32 provide
evidence that the primaryL1 mode gives rise to the secon
ary excitation of theL2 mode with characteristic wave num
ber equal to;2k0 , and that in general,nth-harmonic Lang-
muir mode (Ln) possesses a spectrum with average w
number located at roughly

nk0'nvpe /V0 .

On the basis of this consideration, let us model the o
dimensional harmonic Langmuir mode spectra by

I Ln~k!5I n ~p1/2d!21 e2(k2nk0)2/d2
, ~16!

where I n5*dk ILn(k), and d represents the spread asso
ated with the spectra. With the above model spectra, we
explicitly evaluate the quantity«k

(n) as follows:

«k
(n)5

n2

2~n221!

e2I n21

me
2 vpe

4

3 S an k22~n21! bn k0 k1 ~n21!2cn k0
21cn

d2

2 D ,

~17!

where

an5
~n11!2

n4 ~n21!2 , bn5
2~n11!~n22!

n3 ~n21!3 , cn5
~n22!2

n2 ~n21!4 .

Let us assume that the width of the spectrum,d, for each
n, although broad enough to justify the use of incoher
turbulence theory, is sufficiently narrow in comparison w
the central wave number,nk0 , i.e., d,nk0 . Then we may
compute the coefficient,«k

(n) , by ignoring terms proportiona
to d. As a matter of fact, however, this approximation is qu
valid even ifd is not so small when compared withk0 , since
the coefficientcn is much smaller thanan or bn for a givenn
~first few members of these coefficients area250.5625,b2

5c250; a350.0494, b350.0370, c350.0069; a4

50.0109, b450.0116, c450.0031; a550.0036, b5

50.0045,c550.0014; . . .!. Under this assumption, one ma
also show thatuk

(n) is related to«k
(n) by

uk
(n)5«k

(n)~n21! k0S nk0

2
2kD .

Making use of these results, we obtain the followi
specific form of dispersion relation for the harmonic Lan
muir modes in a beam–plasma system:

vk
Ln

vpe
5n1

3

2
k2lDe

2 2
3 ~n21!

2 S k

k0
2

n

2D k0
2ve

2

vpe
2 1«k

(n) ,

~18!

where k0'vpe /V0 . In the above, the nonlinear frequenc
shift factor «k

(n) can be ignored for all practical purpose
since it is a small quantity.
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III. NUMERICAL RESULTS

Figure 1 shows the plot of analytical dispersion curv
for the harmonics when the beam is characterized
V0 /ve54. The normalizations for the frequency, wave nu
ber, and the ratio of average to background thermal spe
are according to

x5v/vpe , k5kV0 /vpe , U5V0 /ve . ~19!

The straight diagonal dashed line represents the beam m
v'kV0 , or equivalently,x5k. The beam mode is not a
actual eigenmode solution, but is shown here only as a
erence to guide the readers. The growth of each harmon
expected to occur only around the intersection points
tween the harmonic mode dispersion curves and the stra
beam line. The stacked curves are the eigenmode solut
written in normalized form, by

x5n1
3k2

4U2 2
3 ~n21!

2U2 S k2
n

2D , n51,2,3,. . . . ~20!

A caveat in the interpretation of Fig. 1 is that we are on
interested in each harmonic dispersion curve which satis
the condition,v;nvpe , a presumption imposed at the ou
set. Therefore, solutions which do not satisfy this criteri
must not be taken literally. A close examination reveals t
the dispersion curve for a givenn satisfies this criterion only
around the vicinity of the intersection point between t
dashed beam line and the dispersion curve itself.

Before we close, we note that if we are only interested
the sufficiently early~i.e., quasilinear! phase of the harmonic
mode generation process, then we may discuss the am
cation of Ln mode by considering its ‘‘linear’’ growth rate
@which can be obtained by only considering the linear
sponse of Eq.~2!#,

FIG. 1. Normalized frequencyx5v/vpe versus wave numberk
5kV0 /vpe , for U5V0 /ve54. The straight diagonal dashed line is th
beam mode,x5k ~or equivalently,v5kV0), shown here only as a refer
ence. The growth of each harmonic is expected to occur only around
intersection points between the beam line and the dispersion curves~see the
next Fig. 2!.
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g52p1/2S vk
Ln

kve
D 3Fvk

Ln expS 2
~vk

Ln!2

k2ve
2 D

1
nb

n0
S Te

Tb
D 3/2

~vk
Ln2kV0!expS 2

~vk
Ln2kV0!2

k2vb
2 D G .

~21!

Figure 2 plots the normalized growth rate,G5g/vpe ,
where

G52Ap

2

~xU!3

2k3 Fx expS 2
~xU!2

2k2 D
1 d t3/2~x2k!expS 2

~x2k!2U2t

2k2 D G ,
versus k, for d5nb /n051023, U5V0 /ve54, and t
5Te /Tb51. Note that the peak value ofG monotonically
increases for increasingn, which confirms the findings in
Ref. 36 that the initial growth rate for the harmonic mode
higher than that of the fundamental by a factor roughly p
portional to the harmonic mode number.~Such a finding is
also confirmed by our own simulations as will be discuss
in paper III.! A close examination reveals that indeed, t
growth of the harmonic mode occurs only in the vicinity
the intersections between the beam mode line and the dis
sion curves.

Since the maximum of the normalized growth rate,G,
increases for increasing harmonic mode number,n, one
might wonder whether the original assumption,g!v, is vio-
lated for very highn. However, since the normalized fre
quency,x, also increases as a function ofn, the ratio,G/x,
always remains small for alln. To see this, we replot the
result shown in Fig. 2 in a new format, in terms of the rat
G/x5g/v, in Fig. 3. The numerical result reconfirms th
inequality, g!v, which validates the present approxima
analysis.

It should be noted that when the growth rate formu
~21! is plotted inG5g/vk

Ln versusq5kve /vk
Ln , then all the

FIG. 2. Normalized growth rateG5g/vpe versusk, for nb /n051023,
V0 /ve54, andTe5Tb .
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curves collapse onto a single curve. This can be seen e
by the fact that Eq.~21! can be expressed in terms ofG and
q as

G52
Ap

q3 Fe21/q2
1

nb

n0

Te
3/2

Tb
3/2

3S 12
qV0

ve
De2(ve /vb)(1/q2V0 /vb)2G .

To test the idea of the present nonlinear eigenmo
theory of harmonic generation, we have also performe
one-dimensional electrostatic Vlasov simulation. The full d
tails of the simulation technique and the in-depth analysis
the results will be the focus of paper III, but here we previe
one of the crucial results. The simulation result shown in F
4 corresponds to the intensity of the waves plotted in gr
scale format against normalized frequency and wave num

FIG. 3. The ratio of the growth rate to the real frequency,g/v versusk, for
the same set of parameters as in Fig. 2.

FIG. 4. Simulated dispersion diagram for harmonic Langmuir waves.
intensity of the waves are Fourier analyzed in both space and time, an
result is plotted in grayscale format against normalized frequency and w
number,v/vpe and kV0 /vpe . We have superposed the theoretical disp
sion relation curves~18!.
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v/vpe and kV0 /vpe . The input parameters for the simula
tion were nb /n051023, V053.5ve , and Te /Tb54. The
Fourier transformation is performed over the simulated d
in both space and time, and the result is a simulatedv –k
dispersion diagram shown in Fig. 4. We have superposed
theoretical dispersion relation curves, given by Eq.~18! or
~20!, on top of the numerically generated wave intensity v
susv andk. The result is the comparison between the the
and simulation.

In Fig. 4, we have made one adjustment to the theor
cal curve. Note that the theoretical dispersion curve~18! as-
sumes that the central wave number associated with the
damental Langmuir mode (L1) is given by

k05vpe /V0 .

However, this estimation is only a crude one. This ste
from the notion that the optimum interaction between
waves and the electrons occur atv5V0 . In reality, however,
the instability takes place when the derivative of the be
distribution is positive, not at the peak of the distributio
itself. The maximum positive derivative occurs whe
]2f e /]v250. Considering only the beam distribution in
account, one can easily compute

05~]2/]v2!exp@2~v2V0!2/vb
2#

5 2~2/vb
2!@~122~v2V0!2/vb

2# exp@2~v2V0!2/vb
2#.

This shows that the central wave number associated withL1

mode should not be atvpe /V0 , but rather at

k05vpe /~V02vb /& !. ~22!

For the input parametersV053.5ve andTe /Tb54, we find
that V0

eff5V02vb /&5V02AkBTb /me53.2ve . Thus, the
normalized theoretical curve~20! was computed withV0

eff

53.2ve , instead of 3.5ve . The result is an excellent agree
ment between the simulation result and theory, especially
relatively low harmonics. For higher harmonics, the discr
ancy between the theoretical curves and the simulated re
becomes more and more apparent, albeit only slightly, as
harmonic mode number increases.

Here, we note that the wave levels fall off in intensity
high harmonics. At first sight, this might seem to contrad
the theoretical growth rate prediction which indicates t
g/v is roughly constant. However, the linear growth rate
only an indication of how rapidly the mode amplifies, b
says nothing about the saturation amplitude. The reason
the low saturation amplitudes is their low initial noise amp
tude. Even though higher-harmonic modes may grow fa
than the lower-harmonic modes in accordance with the lin
growth rate prediction, they saturate at low amplitudes si
they have to grow from lower initial wave intensity level. I
short, Fig. 4 proves that the overall agreement between
theory and simulation is excellent, and that the analyti
dispersion relations for the harmonic modes@Eq. ~18!# are
valid.

IV. CONCLUSIONS AND DISCUSSION

To conclude this paper, an analytical expression for
harmonic Langmuir mode dispersion relation valid for ar
Downloaded 04 Jun 2007 to 130.54.110.22. Redistribution subject to AIP
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trary harmonicn has been derived. The theoretical expre
sion is then compared against the simulated dispersion r
tion. The result shows an excellent agreement between
theory and simulation, which lends a strong support for tre
ing the electrostatic harmonics as nonlinear eigenmodes
turbulent plasma. These eigenmodes exist as a result of
ing the nonlinear mode coupling associated with finite~but
not necessarily large amplitude! waves into account. Such
finding cannot be discussed on the basis of the traditio
weak turbulence theory since the traditional theory only c
siders the primary Langmuir mode (L1), which is a linear
eigenmode.

We have also computed the initial growth rates of t
harmonic modes. The focus of the present paper was to c
acterize the dispersion relation of the harmonic Langm
modes. Paper II of the present series will make use of
results derived in this paper, to formulate and solve the en
wave kinetic equation as well as the particle kinetic equat
in a self-consistent manner. Such an approach is neede
one is to discuss the actual level of the saturated harm
Langmuir mode spectra. Finally, paper III of the present
ries presents a detailed account of the Vlasov simulatio
one of the results of which has already been showcase
Fig. 4.
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