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Harmonic Langmuir waves. II. Turbulence spectrum
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The Langmuir wave turbulence generated by a beam–plasma interaction has been studied since the
early days of plasma physics research. In particular, mechanisms which lead to the quasi-power-law
spectrum for Langmuir waves have been investigated, since such a spectrum defines the turbulence
characteristics. Meanwhile, the generation of harmonic Langmuir modes during the beam–plasma
interaction has been known for quite some time, and yet has not been satisfactorily accounted for
thus far. In paper I of this series, nonlinear dispersion relations for these harmonics have been
derived. In this paper~paper II!, generalized weak turbulence theory which includes multiharmonic
Langmuir modes is formulated and the self-consistent particle and wave kinetic equations are
solved. The result shows that harmonic Langmuir mode spectra can indeed exhibit a
quasi-power-law feature, implying multiscale structure in both frequency and wave number space
spanning several orders of magnitude. ©2003 American Institute of Physics.
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I. INTRODUCTION

The Langmuir turbulence spectrum arising from the no
linear interaction of an electron beam with the backgrou
plasma has been an active research area during the las
decades.1 Frequently, in events where the ratio of the elect
field over plasma energy densities is small, i.e.,

I k /~8pn̂kBTe!!1,

whereI k is the wave spectral intensity,n̂ is the electron bulk
density, kB51.38310216 erg/K is the Boltzmann constan
andTe is the electron temperature, emission in harmonics
the fundamental frequency has been observed
laboratory,2–6 in space plasma observations7,8 or in numerical
simulations.9–14

The concept of turbulence originates from hydrodyna
ics. In neutral fluids, turbulence is generated by the sh
flow instability. The characteristic scale of the largest eddy
determined by the system size, the flow speed, and the
viscosity, but smaller scale eddies are created by the she
the eddy flow itself. Thus, the cascading of the disturba
from largest to smaller scales ensues, until the proces
arrested by the dissipation when the eddy scale size beco
sufficiently small. Such a fluid turbulence is famously ch
acterized by the Kolmogorov-type power-law spectrum
the steady-state turbulence,

E k}k25/3,

a!CNPq fellow. Permanent address: Instituto de Fı´sica e Matema´tica, Uni-
versidade Federal de Pelotas~UFPel!, Caixa Postal 354, 96010
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whereEk andk are the kinetic energy and the wave numb
associated with the fluid eddies, respectively.15 The above
relation was derived on the basis of a dimensional argum

The power-law spectrum associated with the turbule
implies that the fluctuation appears to be scale-free withi
certain range. Such a quasiscale free, fractal-like struc
associated with the disturbance in any continuous medi
often said to define what a turbulence is. When such a c
cept is generalized to plasmas, however, the situation
comes rather complicated. In magnetohydrodynamic~MHD!
turbulence, a similar dimensional argument involving Alfve´n
waves leads to the so-called Iroshnikov–Kraichn
spectra,16,17

E k}k23/2.

However, while two-dimensional~2D! MHD turbulence ap-
pears to follow such a scaling law, it is found on the basis
numerical simulations that fully three-dimensional~3D! situ-
ation behaves more like a neutral fluid,18 a finding which is
not completely understood.

For high-frequency plasma~i.e., Langmuir! turbulence,
the situation is even worse. Macroscopic dimensional an
sis such as the shear-flow instability~hydrodynamics! or Al-
fvén dynamics~MHD! is simply not available for Langmuir
turbulence, since it involves microscopic wave-particle int
action. However, in the strong Langmuir turbulence~SLT!
regime, defined by

I k /~8pn̂kBTe!@k2lDe
2 ,

where

lDe
2 5kBTe/4pn̂e2
© 2003 American Institute of Physics
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is the square of the Debye length, Zakharov19 formulated a
macroscopic theory of plasma turbulence by ignoring
microscopic wave-particle interaction. Ever since, a subs
tial amount of theoretical efforts have been focused on
solutions of the Zakharov equation,19 which describes the
mechanism ofwave collapse.

According to the generally accepted picture, SLT co
sists of randomly distributed coherent field structures ch
acterized by high field amplitude and low plasma dens
calledcavitons, embedded in the low-level, incoherent bac
ground of the weakly turbulent spectrum. Cavitons form d
to the increase of the ponderomotive force in certain loc
ized regions, leading to the reduction of the plasma den
The cavitons act as a potential well, trapping Langmuir
cillations and generating islands of high-intensity coher
modes inside the plasma. Eventually, the cavitons star
collapse, effectively spreading the SLT spectrum to hig
values of wave number along the Langmuir dispersion re
tion curve, until dissipation effects such as Landau damp
become sufficiently important to absorb the coherent mod

Relying on this model, Zakharov predicted that the s
tionary SLT spectrum would be a power law given by,

I k}k27/3.

Although several subsequent theoretical works have foun
power-law spectrum~see Ref. 1 for a review!, the exponent
27/3 has not been confirmed. Moreover, experimental20 and
simulation21,22 results suggest that the saturated spectr
should not be of a Kolmogorov type, but rather it possess
combination of power-law and exponential dependence
the wave number. Recent experimental results23 seem also to
indicate that, besides the wave collapse, another compe
mechanism for energy transfer to large wave numbers is
conversion of Langmuir waves induced by the ion-sound
bulence.

In the weakly turbulent regime,

I k /~8pn̂kBTe!&k2lDe
2 ,

on the other hand, the effect of Landau damping becom
important and the rate of caviton formation is low. Thu
there is no such mechanism to account for the casca
toward the large wave-number region. However, experim
tal observation of the beam–plasma system has shown
the spectrum comprised of the harmonics of the plasma
quency forms a power law both in frequency and in wa
number,2,3 and that this spectrum readily emerges in the l
ear growth phase of the beam–plasma interaction proce

The traditional quasilinear and weak turbulence theo
cannot reproduce this spectrum. Quasilinear theories only
count for a finite, relatively narrow emission band around
characteristic wave number associated with the fundame
Langmuir mode,

kL1
;vpe /V0

@wherevpe5(4pn̂e2/me)
1/2 is the plasma frequency, andV0

represents the average speed associated with the ele
beam, which excites the Langmuir mode,L1], encompassed
in wave-number space, by modes that are strongly damp
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The traditional weak turbulent theory goes beyond
plateau formation process described by the quasilinear th
to include wave decay and induced scattering process. H
ever, the weak turbulence theory only involves the line
eigenmodes of the plasma, i.e., the fundamental Langm
and ion-sound waves~in the case of unmagnetized, longitu
dinal plasma, which is of our concern!. Therefore, the har-
monic generation cannot be discussed on the basis of su
theory. Moreover, the processes depicted by weak turbule
theory are only effective after the saturation of the quasi
ear wave growth, and thus are not able to explain the h
monic power spectrum observed before the satura
stage.2,3 The usual weak turbulence theory only describ
processes such as the formation of the backscattered m
and the so-called condensation of wave modes in sm
wave-number regime,k;0. The combined effects of Landa
damping and wave condensation result in a relatively nar
spectrum along the Langmuir dispersion relation curve.
short, the issue of the formation of power-law spectrum
Langmuir turbulence, especially in the weak turbulence
gime, still remains open.

In this paper, we will argue and present evidence that
generation of quasi-power-law spectra associated with w
Langmuir turbulence involves a physical mechanism fun
mentally different from fluid or MHD turbulence. The bas
mechanism in hydrodynamic turbulence is the shear-flow
stability, while in MHD, Alfvén waves play such a role. In
weak Langmuir turbulence, however, as we will show, t
generation of turbulence spectrum involves not only Lan
muir waves, but an entire series of higher harmonics.

As already explained in the paper, paper I@P. H. Yoon
et al., Phys. Plasmas10, 364 ~2003!#, the excitation of elec-
trostatic Langmuir harmonics can be viewed as either for
nonlinear perturbations~in which case, the harmonics are n
the eigenmodes of a plasma!,10,24–27or in terms of nonlinear
eigenmodes of a turbulent plasma.28,29 Both theories might
be applicable under certain conditions, but we believe t
the eigenmode theory is better capable of explaining
available simulation results. In particular, numerical simu
tions in Refs. 13 and 14 compared favorably with o
theory.28,29 However, these analyses are incomplete in t
they pertain only to the first harmonic mode with frequen
v;2vpe .

In an effort to generalize the theory, put forth in Refs.
and 29, to include all higher harmonics, we first derived
nonlinear dispersion relations for higher-harmonic Langm
modes in paper I of the present series. In the present pa
which forms paper II, we complete the analysis by also
riving and solving the entire particle and wave kinetic equ
tions, which involves fundamental and higher-harmon
Langmuir waves as well as the low-frequency ion-sou
waves. Since both experiments and simulations present
dence that the harmonic spectra develop during the quas
ear growth phase, the numerical analysis carried out in
paper will also be restricted to this time interval. The evo
tion of the wave spectra during the later time, fully nonline
stage was not considered in this work because the evolu
of the first harmonic, studied in Ref. 29, seems to indic
that the harmonic spectra does not play a relevant role on
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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decay and/or nonlinear scattering processes. However,
assumption needs to be further investigated in future wo
We find that under certain initial conditions, the satura
wave spectra involving higher harmonics form a power-l
dependence among the peaks of individual harmonic spe
We have also carried out the Vlasov simulations, the det
of which are the subject of the third and final installment
the present series@paper III; T. Umedaet al., Phys. Plasmas
10, 382~2003!#. In paper III, we will discuss that the forma
tion of quasi-power-law saturated spectrum seems to b
natural consequence of the harmonic Langmuir turbule
process.

II. WAVE KINETIC EQUATION

The basic equation in the present analysis is the non
ear spectral balance equation for electrostatic oscillation
an unmagnetized plasma,28,30–33i.e., Eq.~2! of paper I. The
real part of the nonlinear spectral balance equation give
the dispersion relations for all modes, as was already a
lyzed in paper I. The focus of the present paper is the ima
nary part, which will provide the wave kinetic equation
However, in formulating and solving the wave kinetic equ
tion, the eigenmodes must be chosen in accordance with
solution of the real part. Thus, the results of paper I
directly utilized in the present discussion.

We assume that the total wave intensity,I (k,v), can be
expanded as the sum of all possible eigenmodes in
plasma,

I ~k,v!5 (
s561

(
a

I a
s~k!d~v2svk

a! ~1!

~here, we ignore, for the sake of simplicity, the possibility
broadening of frequency spectrum by the turbulence—thi
the standard approximate procedure adopted in the lit
ture!, where a5S,L1 ,L2 ,L3 ,... denotes the eigenmode
with S andL1 being the usual ion-sound and~fundamental!
Langmuir modes, respectively. Mode designations,a
5L2 ,L3 ,..., correspond to the first harmonic mode (L2), the
second harmonic (L3), and so on. In Eq.~1!, the quantity
vk

a corresponds to the dispersion relation for a given mo
designated bya. The quantity I a

s(k) corresponds to the
wave intensity carried by the modea. Finally, the quantity
s561 takes into account the existence of both forward- a
backward-propagating waves, for a given eigenmode.
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The linear plasma theory provides us with the dispers
relations for the ion-sound and~fundamental! Langmuir
modes,

vk
S5

kcs~113Ti /Te!
1/2

~11k2lDe
2 !1/2 ,

~2!

vk
L15vpeS 11

3

4

k2ve
2

vpe
2 D ,

respectively, whereve
252kBTe /me is the square of the ther

mal speed associated with the background electrons.
According to the paper, paper I, the following dispersi

relation for the harmonic Langmuir modes is applicable fo
beam–plasma system when the characteristic wave num
associated with the fundamental Langmuir mode is given
kL1

:

vk
Ln5vpeFn1

3

4

k2ve
2

vpe
2 2

3~n21!

2 S k

kL1

2
n

2D kL1

2 ve
2

vpe
2 G ,

~3!

n51,2,3,. . . . Note that in paper I, we have specifically a
sumed that the characteristic wave number associated
the fundamental Langmuir mode is given by

kL1
'vpe /V0 ,

whereV0 is the average speed of the beam electrons, but
also noted there that a more accurate estimate is

kL1
5vpe /~V02AkBTb /me!,

where Tb is the thermal spread associated with the be
component.

The general procedure for obtaining the wave kine
equation for various plasma eigenmodes is already outli
in Refs. 28 and 29. Among the various terms in the wa
kinetic equation, let us retain only the terms that are imp
tant. For the fundamental Langmuir wave (L1), the most
important terms are those which represent the induced e
sion ~the first term on the right-hand side of the equati
below!, three-wave decay process involvingL1 andS modes
~the second term!, and the induced scattering off ions~the
third term!,
tity
]I L1

s ~k!

]t
5psvk

L1
vpe

2

k2 E dv d~svk
L12k"v!k•

] f e~v!

]v
I L1

s ~k!1
p

2

e2

kB
2Te

2 (
s8,s9561

svk
L1E dk8

mk2k8~k"k8!2

k2k82uk2k8u2

3d~svk
L12s8vk8

L12s9vk2k8
S

!$svk
L1I L1

s8~k8!I S
s9~k2k8!2@s8vk8

L1I S
s9~k2k8!1s9vk2k8

L1 I L1

s8~k8!#I L1

s ~k!%

1
p

vpe
2

e2

memi
svk

L1 (
s8561

E dk8E dv
~k"k8!2

k2k82 d@svk
L12s8vk8

L12~k2k8!•v#~k2k8!•
] f i~v!

]v
I L1

s8~k8!I L1

s ~k!.

~4!

In the above,s51 designates forward-propagatingL1 mode, whiles521 represents the backward mode, and the quan
mk is defined by
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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mk5uku3lDe
3 S me

mi
D 1/2S 11

3Ti

Te
D 1/2

.

In Refs. 28 and 29, other terms including those that depict the induced scattering involvingL2 and L1 , as well as the
three-wave decay/coalescence betweenL2 mode and twoL1 modes, can be found. However, these terms are found to
generally insignificant. Moreover, the induced scattering process involving twoL1 modes but mediated by the electrons~i.e.,
nonlinear Landau damping by the electrons! is also known to be unimportant. As a result, these terms were ignored a
outset in the present discussion.

The wave kinetic equation for the ion-sound mode (S) can also be found in Refs. 28, 29, and 34,

]I S
s~k!

]t
5pmksvk

L
vpe

2

k2 E dv d~svk
S2k"v!S k•

]

]vD S f e~v!1
me

mi
f i~v! D I S

s~k!

1
p

4

e2

kB
2Te

2 (
s8,s9561

svk
L1E dk8

mk@k8•~k2k8!#2

k2k82uk2k8u2
d~svk

S2s8vk8

L12s9vk2k8

L1 !$svk
L1I L1

s8~k8!I L1

s9~k2k8!

2@s8vk8

L1I L1

s9~k2k8!1s9vk2k8

L1 I L1

s8~k8!#I S
s~k!%. ~5!
en

p
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y
s
d.
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In the above, the first term on the right-hand side repres
the induced emission~or ion-sound damping! process, while
the second term corresponds to the three-wave decay
cess. The induced scattering process for the ion-sound m
involves the ions and twoS-mode waves, which is a ver
slow process compared with the time scale of interest to u
the present discussion. Therefore, such a term is ignore

A preliminary version of the kinetic equation forL2

mode was also derived in Ref. 29. One of the findings in R
29 is that the nonlinear terms of the wave kinetic equat
only play a small role on the long-term dynamics of t
mode~i.e., these terms remain insignificant untilvpet;104

or so!. Therefore, in the present study, which is restricted
relatively early time period, we shall ignore nonlinear wa
coupling associated withL2 and higher harmonics. This i
justified in view of the evidence from experiments as well
numerical simulations. Since the late 1960s, it has b
shown both in beam-plasma experiments2–5,8,35–37and in nu-
merical simulations,9–14,38that harmonic waves start to gro
while the system is still in the quasilinear growth phase
the fundamental mode. It is also known that harmonics re
saturation at about the same instant as the fundamental d
Therefore, it is apparent that the dynamics of the nonlin
harmonic modes is dominated by the quasilinear, or equ
lently, an induced emission or inverse Landau damping p
cess. Accordingly, in this work we will be concerned on
with the quasilinear evolution of the harmonic modes.

In view of the above discussion, instead of consider
the complete expression for the higher-harmonic wave
netic equations, which can be represented as

]I Ln

s ~k!

]t
5S ]

]t U
ind. emiss.

1
]

]t U
decay

1
]

]t U
ind. scatt.

D I Ln

s ~k!,

where the first term describes induced emission, and the
ond and third terms represent decay and induced scatte
processes, respectively, we will keep only the first ter
Therefore, the wave kinetic equations for the harmo
eigenmodes is given by
Downloaded 04 Jun 2007 to 130.54.110.22. Redistribution subject to AIP
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]I Ln

s ~k!

]t
52

2 Im«~k,svk
Ln!

] Re«~k,svk
Ln!/]~svk

Ln!
I Ln

s ~k!,

wheren>2. Noting that

] Re«~k,svk
Ln!

]~svk
Ln!

'
2vpe

2

~svk
Ln!3 '

2

n2svk
Ln

,

Im «~k,svk
Ln!52p

vpe
2

k2 E dv k•
] f e~v!

]v
d~svk

Ln2k"v!,

we obtain the desired kinetic equation forLn mode,

]I Ln

s ~k!

]t
5n2psvk

Ln
vpe

2

k2 E dv d~svk
Ln2k"v!

3k•
] f e~v!

]v
I Ln

s ~k!. ~6!

Equation~6! has the same structure as the conventional q
silinear wave kinetic equation, except for the overall coe
cient proportional ton2. Therefore, even without solving thi
equation, one can readily see that the harmonic modes
start to grow in the linear regime, provided that a minimu
level of spectral intensity exists for these modes.

This brings us to an important question of the physi
origin of the seed perturbation for the harmonics. The pres
theory relies upon the presence of the harmonic mode
noise level at timet50 ~however small they may be!. We
expect two mechanisms which can bring about the seed
turbation. One is the spontaneous thermal emission from
plasma~which is a single-particle effect, and thus cannot
discussed on the basis of Vlasov equation!, and the other
possibility is the coherent nonlinear dynamics. In the pres
formalism we simply impose a certain level of fluctuatio
for each harmonic mode at the outset. At this moment
complete theory which includes the spontaneously gener
noise, or self-consistently generated harmonics by the co
ent nonlinear dynamics, in a general scheme of s
consistent theory, is not forthcoming.
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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Finally, the kinetic equation for the particle distributio
f a(v,t), is given by the customary quasilinear diffusio
equation,

] f a~v!

]t
5

p2e2

ma
2

]

]v i
(

s561
(
a

E dk
kikj

k2 I a
s~k!

3d~svk
a2k"v!

] f a~v!

]v j
. ~7!

In the subsequent numerical computation, we will hold
ion distribution as quasiconstant in time. Therefore,
above diffusion equation will be solved only for the ele
trons.

In what follows, we have restricted ourselves to a on
dimensional situation. Let us adopt the following normaliz
tion convention:
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T5vpet, u5v/ve , x5v/vpe , k5kve /vpe ,

I ~k!5I ~k!/~8pn̂kBTe!, t5Ti /Te , m5me /mi ,
~8!

q5~8m!1/2~113t!1/2/3, kL1
5ve /V0 .

Then, the one-dimensional normalized versions of wave
persion relations for harmonic Langmuir modes~including
the fundamental! and the ion-sound mode are given by

xk
Ln5n1~3/4!@k21~n21!kL1

~nkL1
22k!#,

~9!
xk

S5~3q/4!@k~11k2/2!21/2#,

while the one-dimensional normalized form of se
consistent kinetic equations for the waves and particles
given, respectively, by
] f e /]T5~]/]u!~D] f e /]u!, D~u!5
2p

uuu (
n51,2,3,...

(
s561

Q~su!@ I Ln

s ~k!#k51/uuu ,

]I L1

6 ~k!

]T
5

6pxk
L1

k2 F] f e

]u G
u56x

k

L1/k

I L1

6 ~k!

1pqxk
L1@xk

L1I L1

7 ~k1q!I S
7~2k1q!2xk1q

L1 I S
7~2k1q!I L1

6 ~k!1x2k1q
L1 I L1

7 ~k1q!I L1

6 ~k!#

1pqQ~k2q!xk
L1@xk

L1I L1

7 ~k2q!I S
6~2k2q!2xk2q

L1 I S
6~2k2q!I L1

6 ~k!2x2k2q
L1 I L1

7 ~k2q!I L1

6 ~k!#

1pqQ~q2k!Q~2k2q!xk
L1@xk

L1I L1

6 ~q2k!I S
6~2k2q!2xq2k

L1 I S
6~2k2q!I L1

6 ~k!2x2k2q
L1 I L1

6 ~q2k!I L1

6 ~k!#

1pqQ~q2k!Q~q22k!xk
L1@xk

L1I L1

6 ~q2k!I S
6~q22k!2xq2k

L1 I S
6~q22k!1xq22k

L1 I L1

6 ~q2k!I L1

6 ~k!#

7
2pxk

L1

t E
0

`

dk8
uk2k8u
k2k8

@u fi~u!#u563(k1k8)/4I L1

6 ~k8!I L1

6 ~k!

7
2pxk

L1

t E
0

`

dk8
uk1k8u
k1k8

@u fi~u!#u563(k2k8)/4I L1

7 ~k8!I L1

6 ~k!, ~10!

]I S
6~k!

]T
5

63pq

8
xk

L1kS ] f e~u!

]u
2

2u

t
f i~u! D

u56x
k
S/k

I S
6~k!1

pq

2
Q~q2k!xk

L1Fxk
L1I L1

6 S k1q

2 D I L1

6 S q2k

2 D
2x(k1q)/2

L1 I L1

6 S q2k

2 D I S
6~k!1x(q2k)/2

L1 I L1

6 S k1q

2 D I S
6~k!G1

pq

2
Q~k2q!xk

L1Fxk
L1I L1

6 S k1q

2
,t D I L1

7 S k2q

2 D
2x(k1q)/2

L1 I L1

7 S k2q

2 D I S
6~k!1x(k2q)/2

L1 I L1

6 S k1q

2 D I S
6~k!G ,

]I Ln

6 ~k!

]T
5

6n2pxk
Ln

k2 F] f e

]u G
u56x

k

Ln/k

I Ln

6 ~k!.
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In the above,Q(x)51 for x.0, andQ(x)50 for x,0.
The initial electron distribution function is given by

Maxwellian ~thermal! core plus an energetic beam comp
nent, while the ions are treated as quasistationary. In norm
ized forms, the initial electron and immobile ion distributio
are given, respectively, by

f e~u,0!5
12d

Ap
e2u2

1
d

Apr
expS 2

~u2U0!2

r D ,

~11!
f i~u!5~pmt!21/2exp@2u2/~mt!#,

where the various dimensionless parameters are

d5
nb

n0
, r5

Tb

Te
, U05

V0

vb
, vTb5A2kBTb

me
. ~12!

III. NUMERICAL ANALYSIS

We have numerically solved the complete set of wa
and particle kinetic equations, Eq.~10!, with the initial
choice of parameters,

d51023, U055, r51,
Te

Ti
5

1

t
57, m5

1

1836
.

To solve the equations numerically, we have defined a se
Nu5120– 240 points along the normalized velocity (u),
with a spacing ofDu5(umax2umin)/(Nu21), and a set ofNq

points along the normalized wave number (q). The value of
Nq increases with the total number of harmonics (Nhar) con-
sidered and the spacing (Dq) and the final value (qmax) is
chosen so that the effect of all harmonics is adequately c
sidered in the linear resonance region. We have then a
of Neq5Nu12(Nhar11)Nq equations. For a total number o
harmonicsNhar511, we have typicallyNq'680 andNeq

'16 560. This set of equations is numerically solved usin
fourth-order Runge–Kutta method with adaptive step siz39

and the solutions are stored at predefined time instants.
method insures that the total energy of the system compo
by particles plus waves is conserved within 0.1%.

As mentioned already, the present formalism does
have a self-consistent generation mechanism which can
count for the initial~seed! perturbation for harmonic mode
with n.2. Such a conceptual difficulty does not arise for t
fundamental Langmuir (L1) and ion-sound (S) modes, how-
ever, since their initial noise levels can be attributed to th
mal fluctuations~i.e., spontaneous emission!. Therefore, al-
though the present formalism ignores spontane
fluctuations, the physical origin of the initial levels ofL1 and
S modes~which we arbitrarily impose! can be easily justified
on the basis of physical grounds.

As far as the harmonics are concerned, there is no the
yet available in the literature which accounts for the spon
neous emission levels, and the development of such theo
beyond the scope of the present work. In this case, we sim
sidestep the precise issue of the physical origin of the s
perturbations, and treat the initial choice of mode intensi
as somewhat of a free parameter. In the present scheme
employ the followingad hocprocedure to define the initia
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state for all eigenmodes: For a givennth harmonic, the small
level of initial spectrum is modeled by a Gaussian form,

I Ln
~k!5

I n

ApD
expS 2

~k2nkL1
!2

D2 D , ~13!

wherekL1
is the normalized wave number associated w

the primaryL1 mode. This choice is guided by the linea
growth property which dictates that thenth harmonic mode
should grow in the vicinity ofk;nkL1

, with some spread in
wave number, characterized byD. The precise functiona
form is not crucial in this regard. The quantityI n is deter-
mined by the expression

I n5I 1e2b(n21)n2a, ~14!

where I 1 , a, andb are all constants that can be arbitrari
chosen. It turns out that this particular profile allows for
combination of exponential and power-law dependen
among the peaks of saturated harmonic mode spectra. S
the dynamical evolution of the harmonic modes is dicta
by quasilinear equation, the choice of input will be direc
reflected in the saturation spectra. Our choice~14! gives us
sufficient freedom to adjust our theory to match the simu
tion result to be shown later~paper III!.

Figure 1 shows the time evolution for the peak of ea
harmonic mode spectrum,

maxI Ln

1 ~ t !/~8pn̂kBTe!.

The parameters relevant to determine the initial spectra
I 151023, a55, andb52.236. Note that the higher the ha
monic mode number, the faster the mode grows initially,
agreement with the simulations,10,11 and also with the linear
growth rate computed in paper I~see Fig. 2 of that paper!.
Note also that all eigenmodes reach saturation at about
same time. In the displayed time scale, nonlinear effects
still not relevant enough to substantially affect the spectru
Therefore, although we have fully retained the nonline

FIG. 1. Time evolution of the normalized wave intensit
maxILn

1 (t)/(8pn̂kBTe), versusvpet, in logarithmic vertical scale, for the firs
ten harmonics.
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wave coupling terms in Eq.~10!, time evolution shown in
Fig. 1 is practically determined by the quasilinear proc
alone.

The evolution of the wave-number spectrum for we
harmonic Langmuir turbulence from the linear phase u
quasisaturation stage can be seen in Fig. 2. In this fig
where we have plotted the superposition of all the harmo
wave intensities,

I 1~k!5 (
n51,2,3, . . .

I Ln

1 ~k!,

the total time interval ranges fromvpet50 to vpet53400.
Note that the initial form of superposed spectra~dashed line!
is not in the power-law form, but it achieves a power-la
spectral shape at the saturation stage. This is owing to
fact that the higher harmonics grow faster than the low
harmonics. Our choice of spectral shape parameters,a andb,
and the specific form of initial spectra were partly design
to produce a power-law form at quasisaturation stage. If
connect the peaks of the individual harmonics, then one
tains an overall power-law,

I 1~k!}k25.

The spectrum shown in Fig. 2 bears a qualitative rese
blance with some measurements made on weak be
plasma systems~see, for instance, Fig. 4 of Ref. 3!. The
spectral property in terms of frequency, instead of wa
number, follows the same power-law pattern and is
shown here.

Since the results presented here practically correspon
the quasilinear stage of the kinetic evolution, the elect
distribution function is mostly affected by the linear wav
particle interaction with the combined fundamental and n
linear harmonic Langmuir modes. However, the energy c
tent of the harmonic modes is very low compared to
fundamental mode. As a consequence, the temporal ev

FIG. 2. Evolution of the total wave number spectrum,I 1(k)/(8pn̂kBTe)
versuskve /vpe ~in log–log scale!, whereI 1(k)5(n51

10 I Ln

1 (k), showing up
to 10 harmonics. The parameters are the same as in Fig. 1. The dashe
is for t50. The subsequent curves correspond tovpet5100, 200, 400, 600,
1000, 1400, 1800, 2200, 2600, 3000, and 3400.
Downloaded 04 Jun 2007 to 130.54.110.22. Redistribution subject to AIP
s

il
e,
ic

he
r

d
e
b-

-
–

e
t

to
n

-
-

e
lu-

tion of the distribution function is very similar to the custom
ary quasilinear theory which does not include the harmon
The change in the electron distribution is largely restricted
the inverse population region,] f e /]v.0, resulting in the
usual plateau formation at saturation. Thus, this process d
not scatter the electrons to the tail, resulting in a power-l
velocity distribution function, as is frequently observed
multaneously with the power-law spectrum for the wav
The velocity-space power-law distribution must result fro
the longer time-scale nonlinear interactions in the plasm
which may involve processes other than quasilinear dif
sion, and is beyond the scope of the present discussion.

Admittedly, our choice of initial spectra affects the ou
come of the dynamic evolution. The power-law form for th
total spectrum is not the only possible solution at the satu
tion stage. The specific power-law index,25 in the case of
Fig. 2, is the result of our choice of form factor,a55 in Eq.
~14!, although the choice was guided by experimen
observation.3 However, other possible power-law indices,
even an alternative form for the spectra may also result
pending on the choice of the initial spectral function, E
~14!. For different choices of the constantb, the saturated
spectrum may also deviate substantially from the pure po
law.

As an example, Fig. 3 shows five different possibiliti
of b parameter. The black line corresponds to the case sh
in Fig. 2, namely,b52.236. This case displays an exa
power-law profile with the index of25. However, the neigh-
boring curves were obtained with slightly different values f
the parameterb. The specific values are as follows: For th
red curves, we choseb51.8 and 2.0; for the blue lines, w
have made the choices ofb52.4 and 2.6. These curves dis
play a combination of power-law and exponential profi

line

FIG. 3. ~Color! Saturation-state spectra for five different choices of t
parameterb. The black curve in the middle corresponds to the saturat
state depicted in Fig. 2, namelyb52.236. The two red curves above th
black line are forb51.8 andb52.000, the topmost curve being the ca
for the lowerb value. These two curves show the power-law index sligh
increasing for largek. The two blue curves underneath the solid line are
b values corresponding tob52.4 andb52.6, as indicated in the figure
The latter two curves exhibit combined power law and exponential decay
largek.
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similar to that reported in Ref. 20 for a strong beam–plas
turbulence, although the present case is in a different con
The source of this ambiguity is again, the lack of informati
on the initial level of perturbation, as mentioned alrea
which is not yet included in the theory.

Given the fact that the final spectrum depends critica
on the choice of initial conditions, one may naturally a
whether the quasi-power-law distribution of waves at
saturation stage is an artifact or not. To address this issue
have also carried out Vlasov simulations. Since the Vla
simulation also suffers from the lack of single-particle effe
~i.e., the lack of spontaneous fluctuations!, to a certain ex-
tent, the final outcome of the Vlasov simulation should a
depend on the initial choice of seed perturbation. Howe
as we will discuss more thoroughly in paper III, the results
Vlasov simulations with a variety of initial spectral func
tions, including quasi-monochromatic initial perturbatio
and white noise, invariably produced quasi-power-law sp
tra at the end stage, albeit the detailed structure assoc
with the spectrum varied depending on the initial conditio
From this, we conclude that the harmonic Langmuir wa
spectrum exhibiting quasi-power-law feature is an essen
characteristic of the Langmuir turbulence.

IV. CONCLUSIONS

In this paper, we have numerically solved the compl
set of one-dimensional weak turbulent equations, includin
new set of equations for the harmonic eigenmodes, al
with the corresponding dispersion relations. The new eq
tions were derived from the generalized weak turbule
theory,28 which predicts the existence of harmonic modes
a weak beam–plasma system, as solutions to the nonli
spectral balance equation when one considers nonlinea
fects over both the real and imaginary parts of the said eq
tion.

The usual linear plasma theory of the weak beam
plasma system only considers the existence of the ion-so
and Langmuir modes as the eigenmodes of an unmagne
plasma interacting through electrostatic field in a unifo
medium. In the conventional turbulence theories available
the literature, plasma turbulence is described in terms
mode couplings among these linear eigenmodes. In the
eralized weak turbulence theory, on the other hand, the g
eration of harmonic eigenmodes is considered as part of
basic turbulent beam–plasma interaction process.

By including nonlinear terms not only on the imagina
part of the spectral balance equation, but also on the
part, and by carefully balancing the effects of the nonlin
terms against the linear response, the generalized weak
bulence theory provides the dispersion relations and
wave kinetic equations for the harmonic Langmuir eige
modes. The spectra for the harmonic modes, obtained f
the numerical solution of the wave kinetic equations, sh
that a possible solution for the total spectrum of Langm
turbulence has a power-law dependence on the peaks o
individual harmonic modes.

The possibility of a power-law spectrum in the relative
early quasilinear phase may provide an alternative scen
Downloaded 04 Jun 2007 to 130.54.110.22. Redistribution subject to AIP
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to the usual plasma turbulence models. This process is
different from the hydrodynamic turbulence where the qu
sistationary power-law spectrum is formed due to nonlin
cascading process of the shear-flow instability, or fro
strong Langmuir turbulence, where the same behavior is
played by the plasma caviton collapse process. Both
amples of the turbulence spectrum formation depend on
fact that a given energy threshold is reached before they
be triggered.

In the usual weak-turbulence theory, there is no sim
basic structure such as a fluid eddy or a caviton. Since
linear mechanism of Landau damping is dominant over
nonlinear interaction effects, i.e., the wave decay and
duced scattering, any wave packet with phase velocity o
side the inverse-population region will be strongly damp
However, the generation of harmonics of the Langmuir mo
has no energy threshold, and it occurs along different eig
modes, but they all employ the same free energy source
this way, the free energy contained in the distribution
particles is effectively partitioned among several wa
modes before any nonlinear effect can take place. Moreo
the presence of a power-law spectrum composed by the
monics of the fundamental frequency imply the well-know
fractal or multiscale structures inside the plasma, both
time and space. This picture suggests, therefore, that the
eration of harmonic eigenmodes of Langmuir waves is
alternative mechanism of high-frequency turbulence in
plasma within the weakly turbulent regime.

One of the shortcomings of the present approach is
lack of the effects due to single-particle fluctuations, whi
will describe the spontaneous emission of the plasma eig
modes including the harmonic components. The custom
theory of fluctuations describes the spontaneous emission
linear eigenmodes, namely, the ion-sound and fundame
Langmuir modes. A generalization of the customary the
of fluctuations may provide the theory for the initial-sta
wave amplitudes for the harmonic modes as well, thus r
dering the artificial initial condition implemented in thi
work unnecessary. Such extension is under developm
now.

Another shortcoming of the present approach is that
herent nonlinear dynamics is precluded at the outset. T
situation is not easy to remedy, however. The evidence fr
Vlasov simulation~see paper III! suggests that the later de
velopment of harmonic generation is intimately related to
internal nonlinear dynamics which takes place beyond
initial quasilinear process.
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