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The Langmuir wave turbulence generated by a beam—plasma interaction has been studied since the
early days of plasma physics research. In particular, mechanisms which lead to the quasi-power-law
spectrum for Langmuir waves have been investigated, since such a spectrum defines the turbulence
characteristics. Meanwhile, the generation of harmonic Langmuir modes during the beam—plasma
interaction has been known for quite some time, and yet has not been satisfactorily accounted for
thus far. In paper | of this series, nonlinear dispersion relations for these harmonics have been
derived. In this papefpaper ), generalized weak turbulence theory which includes multiharmonic
Langmuir modes is formulated and the self-consistent particle and wave kinetic equations are
solved. The result shows that harmonic Langmuir mode spectra can indeed exhibit a
quasi-power-law feature, implying multiscale structure in both frequency and wave number space
spanning several orders of magnitude. 2003 American Institute of Physics.
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I. INTRODUCTION where&, andk are the kinetic energy and the wave number
associated with the fluid eddies, respectiVélffhe above

The Langmuir turbulence spectrum arising from the non+g|ation was derived on the basis of a dimensional argument.

linear interaction of an glectron beam with thg background  the power-law spectrum associated with the turbulence
plasma has been an active research area during the last fewjies that the fluctuation appears to be scale-free within a
decades.Frequently, in events where the ratio of the electric g ain range. Such a quasiscale free, fractal-like structure
field over plasma energy densities is small, i.e., associated with the disturbance in any continuous media is
L /(87AkgTo) <1, often .said to de_fine what a turbulence is. When s_uch.a con-
cept is generalized to plasmas, however, the situation be-
wherel is the wave spectral intensitfy,is the electron bulk comes rather complicated. In magnetohydrodynaiiEiD)
density, kg=1.38x 10 ¢ erg/K is the Boltzmann constant turbulence, a similar dimensional argument involving Atfve
andT, is the electron temperature, emission in harmonics ofvaves leads to the so-called Iroshnikov—Kraichnan
the fundamental frequency has been observed ispectra®’
laboratory?~®in space plasma observatidfi®r in numerical Srock- 302
simulations’ k '
The concept of turbulence originates from hydrodynam-However, while two-dimensiond2D) MHD turbulence ap-
ics. In neutral fluids, turbulence is generated by the sheaipears to follow such a scaling law, it is found on the basis of
flow instability. The characteristic scale of the largest eddy ignumerical simulations that fully three-dimensio@D) situ-
determined by the system size, the flow speed, and the fluidtion behaves more like a neutral fldfta finding which is
viscosity, but smaller scale eddies are created by the shear ot completely understood.
the eddy flow itself. Thus, the cascading of the disturbance For high-frequency plasméa.e., Langmui turbulence,
from largest to smaller scales ensues, until the process g€ situation is even worse. Macroscopic dimensional analy-
arrested by the dissipation when the eddy scale size becomsis such as the shear-flow instabilityydrodynamicsor Al-
sufficiently small. Such a fluid turbulence is famously char-fven dynamics(MHD) is simply not available for Langmuir
acterized by the Kolmogorov-type power-law spectrum forturbulence, since it involves microscopic wave-particle inter-

the steady-state turbulence, action. However, in the strong Langmuir turbulen@&iT)
regime, defined by
gkock75/3, )
I /(8mAKgTe) >k \E,,
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is the square of the Debye length, Zakhdfaformulated a The traditional weak turbulent theory goes beyond the
macroscopic theory of plasma turbulence by ignoring theplateau formation process described by the quasilinear theory
microscopic wave-particle interaction. Ever since, a substarnto include wave decay and induced scattering process. How-
tial amount of theoretical efforts have been focused on thever, the weak turbulence theory only involves the linear
solutions of the Zakharov equatidhwhich describes the eigenmodes of the plasma, i.e., the fundamental Langmuir
mechanism ofvave collapse and ion-sound wavegn the case of unmagnetized, longitu-
According to the generally accepted picture, SLT con-dinal plasma, which is of our concerrTherefore, the har-
sists of randomly distributed coherent field structures charmonic generation cannot be discussed on the basis of such a
acterized by high field amplitude and low plasma densitytheory. Moreover, the processes depicted by weak turbulence
calledcavitons embedded in the low-level, incoherent back- theory are only effective after the saturation of the quasilin-
ground of the weakly turbulent spectrum. Cavitons form duesar wave growth, and thus are not able to explain the har-
to the increase of the ponderomotive force in certain localmonic power spectrum observed before the saturation
ized regions, leading to the reduction of the plasma densitystage?® The usual weak turbulence theory only describes
The cavitons act as a potential well, trapping Langmuir osprocesses such as the formation of the backscattered mode
cillations and generating islands of high-intensity coherentand the so-called condensation of wave modes in small
modes inside the plasma. Eventually, the cavitons start tivave-number regimés~0. The combined effects of Landau
collapse, effectively spreading the SLT spectrum to highedamping and wave condensation result in a relatively narrow
values of wave number along the Langmuir dispersion relaspectrum along the Langmuir dispersion relation curve. In
tion curve, until dissipation effects such as Landau dampinghort, the issue of the formation of power-law spectrum for
become sufficiently important to absorb the coherent modes.angmuir turbulence, especially in the weak turbulence re-
Relying on this model, Zakharov predicted that the stagime, still remains open.
tionary SLT spectrum would be a power law given by, In this paper, we will argue and present evidence that the
generation of quasi-power-law spectra associated with weak
Langmuir turbulence involves a physical mechanism funda-
Although several subsequent theoretical works have found &xentally different from fluid or MHD turbulence. The basic
power-law spectrunisee Ref. 1 for a revieythe exponent Mechanismin hydrodynamig turbulence is the shear-flow in-
—7/3 has not been confirmed. Moreover, experiméfemd  stability, while in MHD, Alfven waves play such a role. In
simulatiorf?? results suggest that the saturated spectruriveak Langmuir turbulence, however, as we will show, the
should not be of a Kolmogorov type, but rather it possesses @eneration of turbulence spectrum involves not only Lang-
combination of power-law and exponential dependence ofuir waves, but an entire series of higher harmonics.
the wave number. Recent experimental re$tiigem also to As already explained in the paper, papdiPl H. Yoon
indicate that, besides the wave collapse, another competirgj al. Phys. Plasmas0, 364 (2003 ], the excitation of elec-
mechanism for energy transfer to large wave numbers is th&ostatic Langmuir harmonics can be viewed as either forced
conversion of Langmuir waves induced by the ion-sound turnonlinear perturbationsn which case, the harmonics are not

I K k*7/3.

bulence. the eigenmodes of a plasind2*~?"or in terms of nonlinear
In the weakly turbulent regime, eigenmodes of a turbulent plasifz® Both theories might

be applicable under certain conditions, but we believe that

I/ (87kgTe) <k?\B,, the eigenmode theory is better capable of explaining the

. available simulation results. In particular, numerical simula-
on the other hand, the effect of Landau damping becomeﬁonS in Refs. 13 and 14 cor%pared favorably with our

important and the rate of caviton formation is low. Thus, 8.29 . -
. . >’ theory?®2° However, these analyses are incomplete in that
there is no such mechanism to account for the cascadin

. ; t(ﬁey pertain only to the first harmonic mode with frequency,
toward the large wave-number region. However, experimen. ",
tal observation of the beam—plasma system has shown that per . .

: . In an effort to generalize the theory, put forth in Refs. 28
the spectrum comprised of the harmonics of the plasma fre-

) . and 29, to include all higher harmonics, we first derived the
quency forms a power law both in frequency and in wave

. ) . . nonlinear dispersion relations for higher-harmonic Langmuir
number?? and that this spectrum readily emerges in the lin- o oo dispersion relations for higher-harmonic Langmu

: : modes in paper | of the present series. In the present paper,
ear growth phase of the_ _beam—plasma Interaction PrOCESSy hich forms paper Il, we complete the analysis by also de-
The traditional q_uasmnear and We‘?‘." turbulenc_e theorlesriving and solving the entire particle and wave kinetic equa-
cannot reproduce this spectrum. Quasilinear theories only aGns. which involves fundamental and higher-harmonic
count for a finite, relatively narrow emission band around th ’

L . : ngmuir waves as well as the low-frequency ion-sound
characteristic wave number associated with the fundamenta . . . ) .
. waves. Since both experiments and simulations present evi-
Langmuir mode,

dence that the harmonic spectra develop during the quasilin-
K, ~ @pe/Vo ear growth phase, the numerical analysis carried out in this
paper will also be restricted to this time interval. The evolu-
[wherewp= (4mhe?/m is the plasma frequency, aM}  tion of the wave spectra during the later time, fully nonlinear,
represents the average speed associated with the electrstage was not considered in this work because the evolution
beam, which excites the Langmuir modg], encompassed of the first harmonic, studied in Ref. 29, seems to indicate
in wave-number space, by modes that are strongly dampedhat the harmonic spectra does not play a relevant role on the
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)
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decay and/or nonlinear scattering processes. However, this The linear plasma theory provides us with the dispersion
assumption needs to be further investigated in future workselations for the ion-sound an@undamental Langmuir
We find that under certain initial conditions, the saturatedmodes,

wave spectra involving higher harmonics form a power-law

dependence among the peaks of individual harmonic spectra.  s_ keg(1+3T, /T

We have also carried out the Vlasov simulations, the details ¥~ (1+ k239" '

of which are the subject of the third and final installment of 2)
the present seridpaper lII; T. Umedeet al, Phys. Plasmas L 3 kzvé

10, 382(2003]. In paper Ill, we will discuss that the forma- W= wpe| 1+ 4 w_ge '

tion of quasi-power-law saturated spectrum seems to be a
natural consequence of the harmonic Langmuir turbulenceespectively, where2=2kgT,/m, is the square of the ther-

process. mal speed associated with the background electrons.
According to the paper, paper I, the following dispersion
II. WAVE KINETIC EQUATION relation for the harmonic Langmuir modes is applicable for a

beam—plasma system when the characteristic wave number

The basic equation in the present analysis is the nonlin-
a P y ﬁssomated with the fundamental Langmuir mode is given by

ear spectral balance equation for electrostatic oscillations i

an unmagnetized plasm&®®-®i.e., Eq.(2) of paper I. The  <Lv’
real part of the nonlinear spectral balance equation gives us ) 2 12 2
the dispersion relations for all modes, as was already ana-  L,_ |, 3kwe 3(n—1)[ k niKLle
lyzed in paper I. The focus of the present paper is the imagi- k P 4 —pre 2 kL1 2 wzpe '
nary part, which will provide the wave kinetic equations. 3
However, in formulating and solving the wave kinetic equa-
tion, the eigenmodes must be chosen in accordance with tHe= 12,3, ... Note that in paper |, we have specifically as-
solution of the real part. Thus, the results of paper | aresumed that the characteristic wave number associated with
directly utilized in the present discussion. the fundamental Langmuir mode is given by
We assume that the total wave intenslt{k,w), can be K ~w V
expanded as the sum of all possible eigenmodes in the ‘1 @pel Voo

plasma, whereV, is the average speed of the beam electrons, but it is

also noted there that a more accurate estimate is

) ) o o kLl:wpe/(VO_ VkgTp/Me),
(here, we ignore, for the sake of simplicity, the possibility of
broadening of frequency spectrum by the turbulence—this isvhere T, is the thermal spread associated with the beam
the standard approximate procedure adopted in the liter&zomponent.
ture), where «=S,L,,L,,L3,... denotes the eigenmodes, The general procedure for obtaining the wave kinetic
with S andL; being the usual ion-sound arifindamental  equation for various plasma eigenmodes is already outlined
Langmuir modes, respectively. Mode designations, in Refs. 28 and 29. Among the various terms in the wave
=L,,Ls,..., correspond to the first harmonic mods,}, the  kinetic equation, let us retain only the terms that are impor-
second harmonicl(3), and so on. In Eq(1), the quantity tant. For the fundamental Langmuir wave,§, the most
wy corresponds to the dispersion relation for a given modeimportant terms are those which represent the induced emis-
designated bya. The quantity | (k) corresponds to the sion (the first term on the right-hand side of the equation
wave intensity carried by the mode Finally, the quantity below), three-wave decay process involvihg andS modes
o= =1 takes into account the existence of both forward- andthe second terjn and the induced scattering off iorthe
backward-propagating waves, for a given eigenmode. third term),

l(kw)= 2 217k 0w) (1)

a7, (k)
ot

of (V) aa 62 Ly ,/Lk,k/(k’k’)z
— oo fd”(“w B AU IR K

><5(0(0:21—a"le—a'"a)ka,){a'lel L(KDIE (k=) =[0" 0 1 (k=K + 0wt 17 (KO (K)}

k/
12
P oot X dkfdv kzk,l Sow—o' i (k—k')-v](k—k') () ORI (K).

pemm o'=*+1

4

In the aboveo=1 designates forward-propagatibg mode, whilec=—1 represents the backward mode, and the quantity
M is defined by
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m 1/2 3T 1/2
I3y 3 [ ® -1
=1 AD‘*(m) (“ Te> |

In Refs. 28 and 29, other terms including those that depict the induced scattering invblviagd L,, as well as the
three-wave decay/coalescence betwegmmode and twoL,; modes, can be found. However, these terms are found to be
generally insignificant. Moreover, the induced scattering process involvind jwoodes but mediated by the electrans.,
nonlinear Landau damping by the electrpisalso known to be unimportant. As a result, these terms were ignored at the
outset in the present discussion.

The wave kinetic equation for the ion-sound mo@& €¢an also be found in Refs. 28, 29, and 34,

ANZ(k) 2 a
Zt =7T,uka'w||;%)2—f dv 8(owp— k-v)(k ON)( e(V)+ f (V)) 13(k)

T € K- (k=k")]? L
+ 7o > O'wtlj dk Sowp—o' v~ 0" 0 k,){alel (K'Y (k=K")

86y artey k2kr2|k_kr|2 K’
! Ll " ! " I-l o’ ! o
—[o wk,ILl(k—k )+ o wk_k,ll_l(k Y12(k)} (5)
|
In the above, the first term on the right-hand side represents oy (k) 2 Ims(k,awL“)
the induced emissiofor ion-sound dampingprocess, while = T K 17 (k),
the second term corresponds to the three-wave decay pro- at ‘9Re8(k’0wkn)/‘9(‘”"kn) "

cess. The induced scattering process for the ion-sound mod
involves the ions and tw&-mode waves, which is a very
slow process compared with the time scale of interest to us ia Ree(k,cw n) zwge 2
the present discussion. Therefore, such a term is ignored. n)3 ook’
A preliminary version of the kinetic equation fdr, T
mode was also derived in Ref. 29. One of the findings in Ref. 2 of ( V)
29 is that the nonlinear terms of the wave kinetic equatiorim g(k,o'w:zn)— - 77?2—
only play a small role on the long-term dynamics of the
mode(i.e., these terms remain insignificant untijt~10"  we obtain the desired kinetic equation ox mode,
or sO. Therefore, in the present study, which is restricted to "
relatively early time period, we shall ignore nonlinear wave a'Ln(k)
coupling associated with, and higher harmonics. This is at
justified in view of the evidence from experiments as well as
numerical simulations. Since the late 1960s, it has been
shown both in beam-plasma experimént$-**-*"and in nu-
merical simulationg;*8that harmonic waves start to grow . :
Equation(6) has the same structure as the conventional qua-
while the system is still in the quasilinear growth phase of
ilinear wave kinetic equat|0n except for the overall coeffi-
the fundamental mode. It is also known that harmonics reach.
cient proportional t;m?. Therefore, even without solving this
saturation at about the same instant as the fundamental does
quatlon one can readily see that the harmonic modes will
Therefore, it is apparent that the dynamics of the nonlinear
start to grow in the linear regime, provided that a minimum
harmonic modes is dominated by the quasilinear, or equwa]
evel of spectral intensity exists for these modes.
lently, an induced emission or inverse Landau damping pro-

This brings us to an important question of the physical
cess. Accordingly, in this work we will be concerned only . . . )
. o . : origin of the seed perturbation for the harmonics. The present
with the quasilinear evolution of the harmonic modes.

i . S . theory relies upon the presence of the harmonic modes at
In view of the above discussion, instead of con5|der|ngn
oise level at time=0 (however small they may heWe
the complete expression for the higher-harmonic wave ki-
expect two mechanisms which can bring about the seed per-
netic equations, which can be represented as
turbation. One is the spontaneous thermal emission from the
plasma(which is a single-particle effect, and thus cannot be
19 (k) discussed on the basis of Vlasov equakjcand the other
possibility is the coherent nonlinear dynamics. In the present
formalism we simply impose a certain level of fluctuations
where the first term describes induced emission, and the sefor each harmonic mode at the outset. At this moment, a
ond and third terms represent decay and induced scatterirgpmplete theory which includes the spontaneously generated
processes, respectively, we will keep only the first term.noise, or self-consistently generated harmonics by the coher-
Therefore, the wave kinetic equations for the harmonicent nonlinear dynamics, in a general scheme of self-
eigenmodes is given by consistent theory, is not forthcoming.

fheren=2. Noting that

&(ka”) (O'a)k

—Kk-v),

2
»
_ 2 Ly “pe L
=n Wawk”ij dvé(ow, "—k-v)

afe(V)

(k). (®)

d

+_
decay

N (K) (g
ot ot

ind. emiss. ind. scatt

Downloaded 04 Jun 2007 to 130.54.110.22. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



Phys. Plasmas, Vol. 10, No. 2, February 2003 Harmonic Langmuir waves. Il. Turbulence spectrum 377

Finally, the kinetic equation for the particle distribution, T=wpd, U=0/ve, X=wlwpe, k=Kvelwpe,
fa(v,t), is given by the customary quasilinear diffusion A
equation, [(k)=1(k)/(87hkgTe), 7=T;/Te, u=m/m;, ®
dofa(v) _m%e® 9 k- P
S g, 2 |t k) 0= (8) (1 +30)Y3, Ky, =ve/Vs.

It (V) Then, the one-dimensional normalized versions of wave dis-
=, (7)  persion relations for harmonic Langmuir modgscluding
vj the fundamentaland the ion-sound mode are given by

In the subsequent numerical computation, we will hold the L 2
ion distribution as quasiconstant in time. Therefore, the "=n+ @M+ (n— D, (MK, —2k)]
above diffusion equation will be solved only for the elec- xf=(3q/4)[;<(1+f<2/2)*1’2],

trons.
In what follows, we have restricted ourselves to a onewhile the one-dimensional normalized form of self-

dimensional situation. Let us adopt the following normaliza-consistent kinetic equations for the waves and particles are
tion convention: given, respectively, by

X é(ow —k-v)

(€)

ol dT=(3lou)(Ddf o/ du), D(u)=|27|7 Z 2 O (a1 (1) ]e=1u)

0'51('0 + rx-t

B of e
T K2

Ju

u=+x"1k
K

(%)

1

™+

+ XD T (kIS (26 0) =X S (20 ) (1) T35 (I F (e F @I (k)]
+ G0 (k— XXM (k= D)5 (26— Q) =X, (1§ (26— DI (1) =XGE I (k=) ()]
+7q0 (q— 1) O (26— XXM (A= 1015 (26— A) = XgE 1§ (26— DI (1) =X5L I{ (A=K ()]

+7g0(q— 1) O (A= 2%, X (A= 1)1 5 (A= 20) =X 15 (A= 20) + x5, 1 £ (A= )1 ()]

27TX
f d 4 , [Uf(u)]u +3(K+K/)/4| (K )| (K)
_zthl ” /|K+K,| + ’ +
N jo A e LU = eyl £ (1D (00, (10)

dls(k) *=3mq L, [fe(u) 2u . q Ly Ly« (%10 q—«
e N —7fi(U) uziXS/Kls(K)‘F?@(q—K)XK XML T IL1 5
+ q_K + + K+q + 71-q &+ K+q e K_q
I(_i+q)/2||_1( 2 )S(K)+X(q K)/zlLl( 2 )IS(K) +7®(K_Q)th th||_1( > ,t)||_l< 5 )
L s k—(q K+q
_X(i+q)/2ll—1( 5 )lS(K)-i-X(K q)/2|L T s(x) |,

I (k) =nPaxtn
aT K

of
Ju

"
I (k).
L n
u==*x "k
K
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In the above®(x)=1 for x>0, and®(x)=0 for x<0. 2 ' ' ' ' '

The initial electron distribution function is given by a
Maxwellian (therma) core plus an energetic beam compo-
nent, while the ions are treated as quasistationary. In normalz. |

ized forms, the initial electron and immobile ion distributions g
are given, respectively, by E 8t
&
1-6 ) (u—Up)? =1
fo(u,0)= e vt —exg — o, E
\/; \NTP P =
(12) g
fi(u)=(mur) Y2exd —u?/(u7)], S-1
where the various dimensionless parameters are 16k
Ny Tb Vo ZkBTb _ . . . . L
o= p=7. U=~ vmp= o (12 8, 500 1000 1500 2000 2500 3000
0 e b e ®pe t
11I. NUMERICAL ANALYSIS FIG. 1. Time evoluton of the normalized wave intensity,

maxl[n(t)/(Sq-rﬁkBTe), versusw,t, in logarithmic vertical scale, for the first
We have numerically solved the complete set of waveten harmonics.
and particle kinetic equations, Eq10), with the initial
choice of parameters,

4 T, 1 1 state for all eigenmodes: For a givath harmonic, the small
6=10""°, Up=5, p=1, T 7. 1= g3 level of initial spectrum is modeled by a Gaussian form,
i i ; I (k—nky,)?
To solve the equations numerically, we have defined a set of | (k)= —"exp — 1 (13)
N,=120-240 points along the normalized velocity) ( bn JmA A? '

with a spacing ofA ;= (Umax—Umin)/(N,—1), and a set oN, . . : .
points along the normalized wave numbey) ( The value of where «_ is the normalized wave number associated with

N, increases with the total number of harmonit,{) con- the primaryL; mode. This choice is guided by the linear
sidered and the spacing\() and the final value ) is growth propgrty whph Q|ctates that tim_h harmonic mod.e
chosen so that the effect of all harmonics is adequately corgnould grow in the vicinity ofk~n«_ , with some spread in
sidered in the linear resonance region. We have then a tot#fave number, characterized hy. The precise functional
of Ngg= N+ 2(Npat+ 1)N,, equations. For a total number of form is not crucial in this regard. The quantity is deter-
harmonicsNy,=11, we have typicallyN,~680 andN., Mmined by the expression
~16 560. This set of equations is numerically solved usinga | _| o-B(n-1)~«a (14)
fourth-order Runge—Kutta method with adaptive step§ize ot '
and the solutions are stored at predefined time instants. Thigherel;, «, and B are all constants that can be arbitrarily
method insures that the tota' energy Of the System Composé‘(!]OSGn. It turns out that this particular prOfile allows for a
by particles plus waves is conserved within 0.1%. combination of exponential and power-law dependence
As mentioned already, the present formalism does no@Mmong the peaks of saturated harmonic mode spectra. Since
have a self-consistent generation mechanism which can at?e dynamical evolution of the harmonic modes is dictated
count for the initial(seed perturbation for harmonic modes Py quasilinear equation, the choice of input will be directly
with n>2. Such a conceptual difficulty does not arise for thereflected in the saturation spectra. Our chait4) gives us
fundamental Langmuirul) and ion_sound$) modesy how- sufficient freedom to adjust our theory to match the simula-
ever, since their initial noise levels can be attributed to therlion result to be shown latepaper I1).
mal fluctuations(i.e., spontaneous emissjor herefore, al- Figure 1 shows the time evolution for the peak of each
though the present formalism ignores spontaneou§a@rmonic mode spectrum,
fluctuations,_the physigal o_rig?n of the initial Ieve_ls lp{ a_n_d maxl; (t)/(8mhkgTe).
S modes(which we arbitrarily imposkecan be easily justified n
on the basis of physical grounds. The parameters relevant to determine the initial spectra are
As far as the harmonics are concerned, there is no theoryy =102, a=5, andB=2.236. Note that the higher the har-
yet available in the literature which accounts for the spontamonic mode number, the faster the mode grows initially, in
neous emission levels, and the development of such theory agreement with the simulation$*and also with the linear
beyond the scope of the present work. In this case, we simplgrowth rate computed in paper($ee Fig. 2 of that paper
sidestep the precise issue of the physical origin of the seeNote also that all eigenmodes reach saturation at about the
perturbations, and treat the initial choice of mode intensitiesame time. In the displayed time scale, nonlinear effects are
as somewhat of a free parameter. In the present scheme, \&#ll not relevant enough to substantially affect the spectrum.
employ the followingad hocprocedure to define the initial Therefore, although we have fully retained the nonlinear
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FIG. 2. Evolution of the total wave number spectrum(k)/(8mfiksT,) FIG. 3. (Color) Saturation-state spectra for five different choices of the
versuskv/wp (in log—log scalg wherel . (k) =324I/ (k), showing up

parameterB. The black curve in the middle corresponds to the saturation
=1 . . . o
to 10 harmonics. The parameters are the same as in Fig. 1. The dashed Iiﬁtrzate d_eplcted n Flg' 2, namei)yf 2.236. The two red curves above the
. = - ack line are for3=1.8 andB=2.000, the topmost curve being the case
is for t=0. The subsequent curves corresponejgt =100, 200, 400, 600, for the lowerB value. These two curves show the power-law index slightl
1000, 1400, 1800, 2200, 2600, 3000, and 3400. : P gty

increasing for larg&. The two blue curves underneath the solid line are for
B values corresponding t8=2.4 andB=2.6, as indicated in the figure.

The latter two curves exhibit combined power law and exponential decay for
wave coupling terms in Eq10), time evolution shown in largek.

Fig. 1 is practically determined by the quasilinear process
alone.

The evolution of the wave-number spectrum for weaktion of the distribution function is very similar to the custom-
harmonic Langmuir turbulence from the linear phase untilary quasilinear theory which does not include the harmonics.
guasisaturation stage can be seen in Fig. 2. In this figurélhe change in the electron distribution is largely restricted to
where we have plotted the superposition of all the harmonithe inverse population regiorf./dv>0, resulting in the
wave intensities, usual plateau formation at saturation. Thus, this process does
not scatter the electrons to the tail, resulting in a power-law
velocity distribution function, as is frequently observed si-

multaneously with the power-law spectrum for the waves.
the total time interval ranges frompt=0 to wpct=3400. The velocity-space power-law distribution must result from

Note that the initial form of superposed spediiashed ling  the longer time-scale nonlinear interactions in the plasma,
is not in the power-law form, but it achieves a power-lawwhich may involve processes other than quasilinear diffu-
spectral shape at the saturation stage. This is owing to thgon, and is beyond the scope of the present discussion.
fact that the higher harmonics grow faster than the lower Admittedly, our choice of initial spectra affects the out-
harmonics. Our choice of spectral shape parameteasd 3, come of the dynamic evolution. The power-law form for the
and the specific form of initial spectra were partly designedotal spectrum is not the only possible solution at the satura-
to produce a power-law form at quasisaturation stage. If wdion stage. The specific power-law index5 in the case of
connect the peaks of the individual harmonics, then one obFig. 2, is the result of our choice of form facter=5 in Eq.
tains an overall power-law, (14), although the choice was guided by experimental

1 (K)ock =5 observatior?. However, other possible power-law indices, or

) even an alternative form for the spectra may also result de-

The spectrum shown in Fig. 2 bears a qualitative resempending on the choice of the initial spectral function, Eq.
blance with some measurements made on weak beam4). For different choices of the constast the saturated
plasma systemssee, for instance, Fig. 4 of Ref).3The spectrum may also deviate substantially from the pure power
spectral property in terms of frequency, instead of wavdaw.
number, follows the same power-law pattern and is not
shown here.

o= > 1K),

As an example, Fig. 3 shows five different possibilities

of B parameter. The black line corresponds to the case shown
Since the results presented here practically correspond ia Fig. 2, namely,8=2.236. This case displays an exact

the quasilinear stage of the kinetic evolution, the electrorpower-law profile with the index of-5. However, the neigh-
distribution function is mostly affected by the linear wave- boring curves were obtained with slightly different values for
particle interaction with the combined fundamental and nonthe parameteB. The specific values are as follows: For the
linear harmonic Langmuir modes. However, the energy conred curves, we chosg=1.8 and 2.0; for the blue lines, we
tent of the harmonic modes is very low compared to thehave made the choices gf=2.4 and 2.6. These curves dis-
fundamental mode. As a consequence, the temporal evolplay a combination of power-law and exponential profile,
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similar to that reported in Ref. 20 for a strong beam—plasmdo the usual plasma turbulence models. This process is very
turbulence, although the present case is in a different contexdifferent from the hydrodynamic turbulence where the qua-
The source of this ambiguity is again, the lack of informationsistationary power-law spectrum is formed due to nonlinear
on the initial level of perturbation, as mentioned already,cascading process of the shear-flow instability, or from
which is not yet included in the theory. strong Langmuir turbulence, where the same behavior is dis-
Given the fact that the final spectrum depends criticallyplayed by the plasma caviton collapse process. Both ex-
on the choice of initial conditions, one may naturally askamples of the turbulence spectrum formation depend on the
whether the quasi-power-law distribution of waves at thefact that a given energy threshold is reached before they can
saturation stage is an artifact or not. To address this issue, wee triggered.
have also carried out Vlasov simulations. Since the Vlasov In the usual weak-turbulence theory, there is no similar
simulation also suffers from the lack of single-particle effectsbasic structure such as a fluid eddy or a caviton. Since the
(i.e., the lack of spontaneous fluctuatipn® a certain ex- linear mechanism of Landau damping is dominant over the
tent, the final outcome of the Vlasov simulation should alsononlinear interaction effects, i.e., the wave decay and in-
depend on the initial choice of seed perturbation. Howeverduced scattering, any wave packet with phase velocity out-
as we will discuss more thoroughly in paper lll, the results ofside the inverse-population region will be strongly damped.
Vlasov simulations with a variety of initial spectral func- However, the generation of harmonics of the Langmuir mode
tions, including quasi-monochromatic initial perturbation has no energy threshold, and it occurs along different eigen-
and white noise, invariably produced quasi-power-law specmodes, but they all employ the same free energy source. In
tra at the end stage, albeit the detailed structure associatélis way, the free energy contained in the distribution of
with the spectrum varied depending on the initial condition.particles is effectively partitioned among several wave
From this, we conclude that the harmonic Langmuir wavemodes before any nonlinear effect can take place. Moreover,
spectrum exhibiting quasi-power-law feature is an essentighe presence of a power-law spectrum composed by the har-
characteristic of the Langmuir turbulence. monics of the fundamental frequency imply the well-known
fractal or multiscale structures inside the plasma, both in
time and space. This picture suggests, therefore, that the gen-
eration of harmonic eigenmodes of Langmuir waves is an
In this paper, we have numerically solved the completealternative mechanism of high-frequency turbulence in a
set of one-dimensional weak turbulent equations, including @lasma within the weakly turbulent regime.
new set of equations for the harmonic eigenmodes, along One of the shortcomings of the present approach is the
with the corresponding dispersion relations. The new equaack of the effects due to single-particle fluctuations, which
tions were derived from the generalized weak turbulencevill describe the spontaneous emission of the plasma eigen-
theory?® which predicts the existence of harmonic modes inmodes including the harmonic components. The customary
a weak beam—plasma system, as solutions to the nonlinetiteory of fluctuations describes the spontaneous emissions of
spectral balance equation when one considers nonlinear dinear eigenmodes, namely, the ion-sound and fundamental
fects over both the real and imaginary parts of the said equd-angmuir modes. A generalization of the customary theory
tion. of fluctuations may provide the theory for the initial-state
The usual linear plasma theory of the weak beam-wave amplitudes for the harmonic modes as well, thus ren-
plasma system only considers the existence of the ion-sour@ering the artificial initial condition implemented in this
and Langmuir modes as the eigenmodes of an unmagnetiz&¢brk unnecessary. Such extension is under development
plasma interacting through electrostatic field in a uniformnow.
medium. In the conventional turbulence theories available in  Another shortcoming of the present approach is that co-
the literature, plasma turbulence is described in terms ofierent nonlinear dynamics is precluded at the outset. This
mode couplings among these linear eigenmodes. In the gesituation is not easy to remedy, however. The evidence from
eralized weak turbulence theory, on the other hand, the gervlasov simulation(see paper I)l suggests that the later de-
eration of harmonic eigenmodes is considered as part of theelopment of harmonic generation is intimately related to the
basic turbulent beam—plasma interaction process. internal nonlinear dynamics which takes place beyond the
By including nonlinear terms not only on the imaginary initial quasilinear process.
part of the spectral balance equation, but also on the real
part, and t_)y carefu_lly balancing the effects of t_he non“nearACKNOWLEDGMENTS
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