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Inverse Schrödinger equation and the exact wave function
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Using the inverse of the Hamiltonian, we introduce the inverse Schro¨dinger equation~ISE! that is equivalent
to the ordinary Schro¨dinger equation~SE!. The ISE has the variational principle and theH-square group of
equations as the SE has. When we use a positive Hamiltonian, shifting the energy origin, the inverse energy
becomes monotonic and we further have the inverse Ritz variational principle and cross-H-square equations.
The concepts of the SE and the ISE are combined to generalize the theory for calculating the exact wave
function that is a common eigenfunction of the SE and ISE. The Krylov sequence is extended to include the
inverse Hamiltonian, and the complete Krylov sequence is introduced. The iterative configuration interaction
~ICI! theory is generalized to cover both the SE and ISE concepts and four different computational methods of
calculating the exact wave function are presented in both analytical and matrix representations. The exact
wave-function theory based on the inverse Hamiltonian can be applied to systems that have singularities in the
Hamiltonian. The generalized ICI theory is applied to the hydrogen atom, giving the exact solution without any
singularity problem.
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I. INTRODUCTION

The basic principles of chemistry are described by
Schrödinger equation~SE! and the corresponding relativisti
equation@1#. Solving these equations as accurately as p
sible is, therefore, the central theme of theoretical chemis
In this series of papers@2–6#, our aim is to formulate a
systematic method of solving the SE, and for this purpo
we have studied the structure of the exact wave funct
Since the exact wave function is an eigenfunction of
Hamiltonian whose structure is very simple—a sum of o
one- and two-particle operators, such as

H5(
i

2 1
2 D i2(

i
(
A

ZA /r Ai1(
i . j

1/r i j ~1.1!

for atomic and molecular systems, we expect that the e
wave function must also have a simple structure, reflec
the simplicity of the structure of the Hamiltonian. When t
structure of the exact wave function is clarified to be simp
we would be able to find an easier way of solving the ex
wave function than before. We have proposed the itera
configuration-interaction~ICI! @2,3# and extended couple
cluster~ECC! @4# methods to calculate the exact wave fun
tion. The methods of calculating excited states based
these theories are formulated@3,5#, and the applications o
these theories to some simple system@4,5# and to the atomic
and molecular system@6# have been given. Van Voorhis an
Head-Gordon@7# have reported that the coupled cluster ge
eral singles and doubles~CCGSD! method, which is a spe
cial case of the ECC method, has reproduced the full
result for Ne and N2. We have shown more recently that fo
many atoms and molecules, the ICI method reproduces
full-CI results with only a few~one to three! variables@6#, in
contrast to a very large number of variables in the conv
tional full-CI algorithm @8#.
1050-2947/2002/65~5!/052122~15!/$20.00 65 0521
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Another approach for solving the SE is due to the dens
matrix theory~DMT! @9#. Since all the elementary physica
properties can be calculated from the second-order den
matrix G (2), we may utilize it as a basic variable of quantu
mechanics instead of the wave functionc. Calculating
G (2) through the variational principle with som
N-representability conditions@10,11# has long been a subjec
of discussion@12,13# since a birth of the DMT. Recently, a
general computational method of this density-matrix var
tional theory~DMVT ! has been developed@14# by using the
positive-semidefinite programming algorithm, and a high p
tentiality of the DMVT has been demonstrated@15#.

Another method in the DMT is to first derive the equatio
that is equivalent to the SE but contains only density ma
ces as variables. The density equation~DE! @16# is such an
equation and, therefore, we call this approach the den
equation theory~DET!. Later, this equation was alternative
called the contracted Schro¨dinger equation@17#. To solve this
equation, we need relations betweenG (3), G (4), and G (1),
G (2). Valdemoro and co-workers@18# proposed approximate
relations, we proposed the improved relations using
Green’s function method@19#, and Mazziotti@20# gave the
relations using the cumulant expansion method. We have
culated the ground state of many atoms and molecule
good accuracy by the DET@19#. Recently, many studies hav
been presented for the further development of the scie
lying here @8,21#. In particular, the cumulant expansio
method@22# has been shown to be useful to systematize
relations among the density matrices in different orders
to develop further this theory@23#. Nooijen @24# considered
solving the CCGSD using the DE, which circumvents t
N-representability problem.

Certainly, the DMVT and the DET are very promising.
is, however, true that an obstacle in these approaches stil
in our limited knowledge on theN-representability condition
@10#.
©2002 The American Physical Society22-1
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HIROSHI NAKATSUJI PHYSICAL REVIEW A 65 052122
In this paper, we take the wave-function approach.
first introduce the inverse Schro¨dinger equation~ISE! that is
completely equivalent to the SE. The ISE has the same
terminative power as the ordinary SE. Further, similar to
ordinary SE, the ISE has the variational principle and
H-square@25# group of equations, which are equivalent
the ISE. The cross-H-square equation couples the two worl
of the SE and the ISE. Based on these observations, we
tinuously develop the method of calculating the exact wa
functions@2–6# for general systems such as atomic and m
lecular systems. The ICI and the ECC theories are equ
defined for the ISE and are generalized to cover both the
and ISE concepts.

The ICI and the ECC theories utilize the products of t
Hamiltonian or the divided Hamiltonian applied to an app
priate reference function to construct the exact wave fu
tion. However, when the Hamiltonian includes singularit
such as those by the nuclear attraction operator and the
tron repulsion operator in the atomic and molecular Ham
tonian given by Eq.~1.1!, their higher-order products applie
to the reference function do not satisfy the quantu
mechanical condition that the physical wave function m
satisfy, i.e., integrable finiteness. The singularity of t
nuclear attraction operator is too large to be solved by
finite size of the nucleus@26,27#. This problem is similar to
those encountered in the analytical formulations of
t-expansion method@28# and the connected-moments meth
@29#. This difficulty was also pointed out@30# to occur in the
application of the surplus function method@31#, which is
similar to the simplest case of the ICI theory@3#.

However, in such a case, an introduction of the inve
Hamiltonian of the ISE resolves the problem. This is sho
by taking the Krylov sequence@32# as an example: by ex
tending the Krylov sequence into the inverse side of
Hamiltonian, we have a sequence that naturally satisfies
quantum-mechanical condition. The ICI theory is gener
ized based on both the SE and ISE concepts and by
H-square and the cross-H-square group of equations. Fou
different formulas of the generalized ICI~GICI! theory are
presented, both in the analytical form and in matrix repres
tation. The generalized ICI theory is useful even for syste
that have singularities in the Hamiltonian. Numerical e
amples are given by applying the present theory to the
drogen atom, which has a Coulombic singularity at the po
tion of the nucleus. The concluding remarks are given in S
VII.

II. INVERSE SCHRÖ DINGER EQUATION

Suppose that we have an eigenvalue problem

AC5CE, ~2.1!

whereA is a regular Hermitian matrix andE and C are its
eigenvalue and eigenvector. When we introduce the inve
of A, A21 as

A21A5AA2151, ~2.2!

then it is easy to show that the inverse ofA satisfies
05212
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A21C5CE21. ~2.3!

Namely, the eigenvalue of the inverse matrix is the inverse
the eigenvalue of the original matrix, and the eigenvecto
common toA andA21.

We apply this relation to the Schro¨dinger equation~SE!,

Hc5Ec. ~2.4!

Based on Eq.~2.2!, we define the inverse of the Hamiltonia
H21 as

H21H5HH2151, ~2.5!

then it is easy to show thatH21 satisfies

H21c5E21c, ~2.6!

which is called the inverse Schro¨dinger equation~ISE!. Con-
versely, we can obtain SE from ISE by using Eq.~2.5!. Thus,
on the assumption that the inverse Hamiltonian exists,the SE
and the ISE are equivalent.

Note thatH and H21 commute, as easily seen from E
~2.5!. As the Hamiltonian is an operator, including differe
tial operators, etc., it is not necessarily straightforward
write down the analytical form of the inverse Hamiltonia
However, quantum mechanically, we can always define
matrix form of the HamiltonianH, and then we can alway
define its inverseH21. H21 may be defined as the analytic
correspondence of the inverse matrixH21. In the matrix
formulation of quantum mechanics@33# H andH21 are en-
tirely equivalent.

Hereafter, we callH as regular Hamiltonian or simply
ordinary Hamiltonian to distinguish it from the invers
Hamiltonian.

Here, a remark is necessary on the inverse energy.
energyE in Eq. ~2.4! may be defined by

^cuH2Euc&50, ~2.7!

namely, by

E5^cuHuc&/^cuc&. ~2.8!

The inverse of the energyE21 is, therefore,

E21[1/E5^cuc&/^cuHuc&. ~2.9!

On the other hand, from Eq.~2.6!, we obtain ^cuH21

2E21uc&50, which gives

E215^cuH21uc&/^cuc&. ~2.10!

For the exact wave functionc, two expressions, Eqs.~2.9!
and~2.10!, are equivalent, but for approximate ones, they
different. For this reason, we introduce the inverse energyiE
associated with a wave functionf as

iE@f#[^fuH21uf&/^fuf&. ~2.11!
2-2



or
S

-
t

is

al

se

er

o

nal
to

the
hey
rst

fi-

he
di-
al-

n-

of

at

INVERSE SCHRÖDINGER EQUATION AND THE EXACT . . . PHYSICAL REVIEW A 65 052122
If f is not exact, the inverse energyiE@f# is different from
the inverse of the energyE@f#, which is defined aŝfuH
2E@f#uf&50 similarly to Eq. ~2.7!. For the exact wave
function c, we have

iE@c#5E@c#21. ~2.12!

III. EQUATIONS EQUIVALENT TO SE AND ISE

The equation that is equivalent to the SE is very imp
tant, since it has the same determinative power as the
The variational equation and theH-square group of equa
tions @25# are two important equations that are equivalent
the SE. The variational equation is written as

^cuH2Eudc&50 ~3.1!

and the Ritz variational principle for the ground state
given by

E@c#>Eg , ~3.2!

whereE@c# is defined by

^cuH2E@c#uc&50. ~3.3!

The simplestH-square equations@2# are given by

^cu~H2E!2uc&50, ~3.4!

^cu~H2E!Huc&50, ~3.5!

and

^cuH22E2uc&50, ~3.6!

whereE of Eqs.~3.5! and ~3.6! is defined by Eq.~3.3!. For
Eq. ~3.4!, such a definition ofE is unnecessary. More gener
H-square equations were introduced in Paper II~Ref. @3#! as
follows. We define a division of the Hamiltonian intoND
parts as

H5(
I

ND

HI , ~3.7!

then theH-square equation is given, in general, by

^cu~H2E!~HI2EI !uc&50 ~3.8!

or

^cu~H2E!HI uc&50 ~3.9!

for all I (I 51,...,ND). In Eq. ~3.8!, EI is defined bŷ cuHI
2EI uc&50.

The variational equation is a flexible equation and is u
to calculate thebest possiblewave function within a given
functional form ofc. TheH-square equation is, on the oth
hand, a rather strict equation that is validonly for the exact
wave function. Therefore, if a variation of a givenc, substi-
tuted into the variational equation, leads to theH-square
equation, then, thatc is guaranteed to have the structure
05212
-
E.

o
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the exact wave function. Namely, in this case, the variatio
best is the exact wave function. We used this criterion
investigate the structure of the exact wave function@2–5#.

We formulate here the equations that are equivalent to
ISE and therefore to the SE. They are useful not only as t
are, but also for calculating the exact wave function. We fi
prove theinverse variational principle.

Theorem. When we define the inverse energyiE@c# by

^cuH212 iE@c#uc&50, ~3.10!

then the wave functionc that satisfies

d iE@c#50 ~3.11!

is exact in the necessary and sufficient sense.
Proof. Taking the derivative of Eq.~3.10!, we get

^dcuH212 iEuc&1^cuH212 iEudc&2^cuc&d iE50,
~3.12!

where iE representsiE@c#. From ^cuc&Þ0 and Eq.~3.11!,
we obtain

^dcuH212 iEuc&1^cuH212 iEudc&50, ~3.13!

which leads to@34# the inverse variational equation

^cuH212 iEudc&50. ~3.14!

For arbitrarydc, Eq. ~3.14! gives

~H212 iE!uc&50, ~3.15!

where iE5E21 for the uniqueness of the ISE. So, the suf
ciency is proved. Conversely, when we have the ISE,iE
5E21 from Eq. ~2.10! and we have Eq.~3.11! from Eq.
~3.12!. Q.E.D.

The Ritz variational principle can be inverted when t
Hamiltonian has only positive eigenvalues. Though the or
nary Hamiltonian may have positive and negative eigenv
ues, it is easily made a positive operator,Hp , by shifting the
origin of the Hamiltonian, i.e., by adding some positive co
stant to the original Hamiltonian as

Hp5H1«c , ~3.16!

where «c is some positive constant with the dimension
energy. In the SE ofHp ,

Hpc5Epc, ~3.17!

and in the ISE,

Hp
21c5Ep

21c, ~3.18!

the energyEp is

Ep5E1«c , ~3.19!

which is positive by definition. Then, it is easy to show th
for the ground state, the inverse positive energyiEp@f# as-
sociated with an approximatef,
2-3
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HIROSHI NAKATSUJI PHYSICAL REVIEW A 65 052122
^fuHp
212 iEp@f#uf&50, ~3.20!

gives a lower bound of the inverse of the positive ene
Epg

21 of the true ground state

iEp@f#<Epg
21. ~3.21!

We call this relation theinverse Ritz variational principlefor
a positive Hamiltonian. Note that the subscriptg means the
ground state.

Proof. We assume that we have the exact wave functi
for the positive Hamiltonian as

HpcK5EpKCK , ~3.22!

Hp
21CK5EpK

21CK . ~3.23!

Since$CK% is a complete set, we expandf of Eq. ~3.20! by
this set asf5(KCKCK and obtain

iEp@f#2Epg
215~^fuf&!21H(

K
uCKu2~EpK

212Epg
21!J <0,

~3.24!

where the last inequality arises becauseEpK
21 is always

smaller than or equal toEpg
21. The equality occurs when a

CK50 except for K505g, namely, whenf5C0C0 .
Q.E.D.

Thus, in iterative variational calculations of the inver
positive energy, the inverse energy approachesfrom below
the exact inverse energy. We further note that if the Ham
tonian is not positive, we do not have the inverse Ritz va
tional principle given above and, therefore, we cannot exp
the above behavior in an iterative process.

The above argument has clarified the necessity of in
ducing the positive Hamiltonian when we introduce the
verse Hamiltonian. The reason is simple. Consider a hyd
gen atom, then the eigenvalues of the regular Hamilton
range from20.5 to 0 for the bound states and 0 to` for the
unbound continuum states. Then, the eigenvalues of the
responding inverse Hamiltonian range from20.2 to2` for
the bound states and from1` to 0 for the unbound con
tinuum states. Thus, there exists a large discontinuous
from 2` to 1` in the inverse energy spectrum. This
undesirable and can be easily avoided by shifting the or
of the energy of the regular Hamiltonian into the positi
region. By shifting the regular Hamiltonian by unity to th
positive side, i.e.,«c51, the eigenvalues of the bound stat
of the positive Hamiltonian range from 0.5 to 1.0 and tho
of the unbound states range from 1.0 to1`. Then, the ei-
genvalue spectrum of the inverse positive Hamilton
ranges from 2.0 to 1.0 for the bound states and from 1.0
0.0 for the unbound states: they are monotonic and ther
no infinite gap. Thus, when we shift the regular Hamiltoni
into the positive region, we have monotonic descriptions
the energy eigenvalue spectra for both the regular and
verse Hamiltonians.

Next, we prove theinverse H-square theorem.
Theorem. We define the inverseH-square equation o

H21-square equation by
05212
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^cu~H212 iE!2uc&50, ~3.25!

then this equation holds if and only ifc satisfies the ISE.
Proof. When the ISE holds,c is exact and Eq.~3.25! is

valid when iE5E21. Conversely, when Eq.~3.25! holds, we
define

D5~H212 iE!c, ~3.26!

and then Eq.~3.25! implies ^DuD&50, which is valid only
whenD50, namely,

~H212 iE!c50. ~3.27!

From the uniqueness of the ISE,iE5E21, namely, Eq.
~3.27! is the ISE. Q.E.D.

With the definition of iE5 iE@c# given by Eq.~3.10!, it is
easy to show that the following equations:

^cu~H212 iE!H21uc&50 ~3.28!

and

^cu~H21!22~ iE!2uc&50 ~3.29!

are also equivalent to the ISE. Note that for the origin
H21-square theorem given by Eq.~3.25!, iE5E21 is auto-
matic and, therefore, Eq.~3.10! is unnecessary.

Similarly to Theorem II-1 of Paper II, we can prove th
following H21-square theorem for the partitioned inver
Hamiltonian. Namely, when the inverse Hamiltonian is d
vided intoND ~number of divisions! parts,

H215(
I

ND

dI
iHI , ~3.30!

wheredI is a constant, then the wave functionc that satisfies
the following partitioned inverseH-square equation:

^cu~H212 iE!~ iHI2
iEI !uc&50 ~3.31!

or

^cu~H212 iE! iHI uc&50 ~3.32!

for all I (I 51,...,ND) with iE defined by Eq.~3.10! and iEI
defined by

^cu iHI2
iEI uc&50 ~3.33!

is exact in the necessary and sufficient sense. The partitio
inverse energyiEI satisfies

(
I

dI
iEI5

iE. ~3.34!

Proof. When ISE holds, both Eqs.~3.31! and~3.32! hold,
where iE is given by Eq. ~3.10!. Conversely, when Eq
~3.31! or Eq. ~3.32! holds, we multiply it bydI , sum up for
all I, and using Eqs.~3.30! and ~3.34!, we obtain Eq.~3.25!
or Eq. ~3.28!, so that thisc is exact. Q.E.D.
2-4
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INVERSE SCHRÖDINGER EQUATION AND THE EXACT . . . PHYSICAL REVIEW A 65 052122
Note that in the above division of the inverse Hamiltoni
given by Eq.~3.30!, we have given the coefficientsdI on
each partitioned HamiltonianiHI . Throughout the proof,
however, we need not to know the actual value ofdI . This
means that all we must know for the division of the Ham
tonian is the individual functional forms of the operato
iHI , and not their coefficients. The same is true for t
H-square theorem of the divided Hamiltonian given in P
pers I and II. This relaxes the necessary knowledge on
regular and inverse Hamiltonians and would be useful w
the detailed form of the Hamiltonian is difficult to know.

We now show an importantH-square equation that com
bines the regular and inverse worlds of the Hamiltonian:
call it the cross-H-square theorem, which is valid only for
the positive Hamiltonian. Namely, the following cross-H-
square equation:

^cu~Hp2Ep!~Hp
212Ep

21!uc&50 ~3.35!

is equivalent to the SE and ISE in the necessary and s
cient sense.

Proof. When the SE and the ISE of the positive Ham
tonian are satisfied byc, Eq. ~3.35! holds automatically. So
the necessity is evident. The sufficiency is as follows.
expandc by the exact eigenfunctions,c5(KCKCK , and
insert it into Eq.~3.35! and obtain

^cu~Hp2Ep!~Hp
212Ep

21!uc&

5(
K

uCKu2~EpK2Ep!~EpK
212Ep

21!

52(
K

uCKu2~EpK2Ep!2/EpKEp50. ~3.36!

Since all elements of the summation are positive, it is va
only whenEp5EpK for someK for which CK is nonzero,
andCK50 for all otherK, which meansc5CKCK . So, the
sufficiency is also proved. Q.E.D.

The cross-H-square equation also has its family. Name
the following equation:

^cu~Hp2Ep!Hp
21uc&50 ~3.37!

with the definition ofEp as

^cuHp2Epuc&50 ~3.38!

is necessary and sufficient for the equivalence to the cr
H-square equation. Also, the following equation,

^cu~Hp
212 iEp!Hpuc&50 ~3.39!

with the definition of iEp as

^cuHp
212 iEpuc&50 ~3.40!

is again necessary and sufficient for the equivalence to
cross-H-square equation. The proof of these equations
straightforward and so omitted for brevity. Note thatiEp in
Eq. ~3.39! is not Ep

21.
05212
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When we divide the positive Hamiltonian and its inver
as

Hp5(
I

ND

eIHpI , ~3.41!

Hp
215(

I

ND
ieI

iHpI , ~3.42!

then we have cross-H-square theorems for the divide
Hamiltonians. First, with Eq.~3.40!, the following set of
equations:

^cu~Hp
212 iEp!HpIuc&50 ~ I 51,...,ND! ~3.43!

is equivalent to Eq.~3.39!. Second, with Eq.~3.38!, the fol-
lowing set of equations,

^cu~Hp2Ep! iHpIuc&50 ~ I 51,...,ND! ~3.44!

is equivalent to Eq.~3.37!. Further, each of the following two
sets of equations is equivalent to Eq.~3.35!,

^cu~Hp
212Ep

21!~HpI2EpI!uc&50 ~ I 51,...,ND!,
~3.45!

^cu~Hp2Ep!~ iHpI2
iEpI!uc&50 ~ I 51,...,ND!,

~3.46!

where the partitioned energiesEpI and iEpI are defined by

^cuHpI2EpIuc&50 , ^cu iHpI2
iEpIuc&50 ,

~3.47!

and they satisfy

Ep5(
I

ND

eIEpI , iEp5(
I

ND
ieI

iEpI . ~3.48!

The proof of these equations is very similar to that for E
~3.31! and ~3.32! and is, therefore, omitted here.

We will see later in the formulation of the generalized IC
theory that these cross-H-square equations are importan
connecting the two worlds of the regular and inverse Ham
tonians. In this sense, it is natural that this theorem is va
only for the positively shifted Hamiltonian.

The inverse Hamiltonian has the ISE, the inverse va
tional principle, and theH21-square group of equations, jus
as the ordinary SE. Therefore, there exists entirely the s
theoretical framework as that of the SE on the inverse sid
the SE. Further, these two sides are connected by the c
H-square equation. The knowledge on the existence of th
equivalent sets of equations on both sides of the Hamilton
would make the physical and chemical imagination mo
fertile and would help us to understand Nature more clea

On the regular side, we usually have an analytical expr
sion of the Hamiltonian, but on the inverse side, we do
necessarily have a closed analytical expression of the Ha
tonian, though we really require it. However, in the matr
form, we can always define the inverse Hamiltonian mat
2-5
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HIROSHI NAKATSUJI PHYSICAL REVIEW A 65 052122
when we have the regular Hamiltonian matrix. Thus,
concept combining the SE and ISE may have a larger p
tical merit when we formulate our problem in a matrix re
resentation.

We study in this series of papers@2–6# the structure of the
exact wave function. Now that the exact wave functionc is
an eigenfunction of not onlyH but alsoH21, the structure of
the exact wave function must depend not only onH but also
on H21 entirely on the same footing. This fact would lead
to a deeper understanding of the structure of the exact w
function. In the following section, we utilize the concept
the regular and inverse Hamiltonians to generalize the K
lov sequence, and in Sec. V, the ICI theory is generali
into four different ones by connecting the regular and inve
sides of the Hamiltonian.

IV. COMPLETE KRYLOV SEQUENCE

The Krylov sequence,

$c,Ac,A2c,A3c,...%, ~4.1!

plays an important role in the eigenvalue problem given
Eq. ~2.1! @32,35#. The Arnoldi method@36# and the Lanczos
method@37# are related to the Krylov sequence. The Ham
tonian Krylov space

$c0 ,Hc0 ,H2c0 ,H3c0 ,...% ~4.2!

is important for solving the SE: these functions are used
basis functions to expand the wave function. As we n
know thatA21 plays an equivalent role toA in the eigen-
value problem, we expect a similar important role of t
inverse Krylovsequence defined by

$c,A21c,A22c,A23c,...%. ~4.3!

Similarly, we define the inverse Hamiltonian Krylov s
quence as

$c0 ,H21c0 ,H22c0 ,H23c0 ,...%. ~4.4!

Further by combining the two sets of Krylov sequences,
obtain thecomplete Krylov sequenceas

$...,A23c,A22c,A21c,c,Ac,A2c,A3c,...% ~4.5!

and the complete Hamiltonian Krylov sequence as

$...,H23c0 ,H22c0 ,H21c0 ,c0 ,Hc0 ,H2c0 ,H3c0 ,...%.
~4.6!

The Hamiltonian Krylov sequence gives a basis of
expansion of the exact wave function. Since the ISE
equivalent to the SE, the inverse Krylov sequence sho
also be important in the expansion of the exact wave fu
tion. The complete Krylov sequence given by Eq.~4.6! pro-
vides a wider functional space that is useful for calculat
the exact wave function.

When we use the Hamiltonian Krylov sequence as a b
of the expansion of a wave function, it sometimes happ
that the element of the Krylov subspace does not satisfy
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quantum-mechanical~QM! condition a physical wave func
tion must satisfy, i.e., integrable finiteness. For examp
when the Hamiltonian includes the Coulombic nuclear
traction operator, it has a singularity at the position of t
nucleus, and, therefore, the functionHnc0 with n>1 does
not satisfy the QM condition:c0 is finite but Hn becomes
infinite at the nuclear position@see Eq.~6.2!, for example#
and this nuclear singularity is too large to be solved with
aid of the fact that the nucleus is a finite-size entity@26,27#.
This is the difficulty also encountered in thet-expansion
method@28# and the connected-moments method@29#. Mar-
morino@30# discussed that this difficulty should also occur
the calculation of the surplus function method@31#. How-
ever, we must also note that whenc0 is exact,Hnc0 is
simply Enc0 , which implies that a very good reference fun
tion is necessary for the convergence of this procedure.

In the present formalism of the Krylov sequence, ho
ever, we can use in such a case the inverse Hamilton
Krylov sequence, where the Coulombic singularity proble
does not occur since the elements of the sequence are
posed of the inverse of the Hamiltonian,H2nc0 . At the
nuclear position, for instance,H2n becomes zero, and at
distance apart from the nuclei,H2nc0 behaves liker nc0 ,
which is integrable finite becausec0 decays exponentially
like ;exp(2ar) or ;exp(2br2). In comparison with the
ordinary Krylov sequence, the dependence of this seque
on the quality of the reference functionc0 would be dull
and, therefore, the convergence would be faster. In gener
is convenient to use the complete Hamiltonian Krylov s
quence given by Eq.~4.6! and use only such parts that satis
the QM condition. In this case, we can calculate the grou
state starting from an approximate excited-state refere
function c0 . In conclusion, introducing the inverse of th
Hamiltonian, the proposed method is free from the singu
ity problems originating from the nuclear attraction opera
and the electron repulsion operator in the atomic and m
lecular Hamiltonian given by Eq.~1.1!.

V. GENERALIZED ICI THEORY

As shown in Sec. III, the ISE has the variational princip
and theH-square group of equations just as the ordinary S
Therefore, the theoretical framework developed for the or
nary SE should also be formulated on the inverse side of
SE. Further, the regular and inverse sides are connecte
the cross-H-square equation, which turns out to be very im
portant and useful in this section. The ICI and ECC theor
developed previously for calculating the exact wave funct
are, therefore, generalized to cover both sides of the Ha
tonian. We describe here the GICI theory. The generali
ECC theory will be given in a forthcoming paper@38#. We
show the operator formalism first and then the matrix rep
sentation. These formalisms are used in the applicati
given in Sec. VI.

A. Generalized ICI theory in analytical form

In Sec. III, we have shown that in order to have a co
tinuous correspondence between the eigenvalues of the r
2-6
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INVERSE SCHRÖDINGER EQUATION AND THE EXACT . . . PHYSICAL REVIEW A 65 052122
lar and the inverse Hamiltonian, we have to introduce
positive Hamiltonian, which is easily obtained by shifting t
origin of the Hamiltonian as in Eq.~3.16!. For the positive
Hamiltonian, we have the inverse Ritz variational princip
and the cross-H-square equation, but for nonpositive Ham
tonian, these useful relations do not hold. Therefore, in
section, we limit ourselves to use only the positive Ham
tonian. Though we do not use the subscriptp like in Hp , for
simplicity, all the quantities given in this section are those
the positive Hamiltonian.

The generalized ICI theory will be grouped into four, d
pending on how theS operator is defined and what varia
tional principle is used in calculating the unknown variab
in the S operator. Depending on whether the regular Ham
tonian or the inverse Hamiltonian is used, we denoteR or I,
respectively, so thatR-R, R-I, I-R, and I-I cases occur. We
explain these four cases below.

First are theR-R andR-I cases, where we start from th
division of the regular Hamiltonian

H5(
I

ND

dIHI . ~5.1!

We note again that we have assigned the coefficients$dI% in
front of the divided HamiltonianHI , differently from the
partitioning of the Hamiltonian given in Paper II. These c
efficients are introduced just for making it clear that all w
need to know is the functional form ofHI and we need no
know the coefficientsdI . In other words, this coefficientdI
was assumed to be unity in the previous formalism@2–4#.
Corresponding to Eq.~5.1!, we define the variable operatorS
by

S5(
I 51

ND

CIHI . ~5.2!

We here note that in the definition of theS operator, we do
not use the coefficients$di% in Eq. ~5.1!: we need not know
the coefficients$dI%. The ICI method is defined by the re
currence

cn5~11Sn!cn21 , ~5.3!

wheren denotes iteration number.
Now, to calculate the unknown coefficients$CI% in the S

operator, we can use either the regular or the inverse va
tional principle. When we use the regular variational pr
ciple, it is theR-Rcase, and we obtain the secular equati

^cnuH2Enucn21&50, ~5.4!

^cnu~H2En!HI ucn21&50 ~ I 51,...,ND!. ~5.5!

Note that the energy of thenth iterationEn satisfies

^cnuH2Enucn&50 ~5.6!

as well as Eq.~5.4!. Because of the variational nature, th
energyEn converges to the exact energy from above@6#. At
convergence,cn5cn21 , and therefore, Eq.~5.5! is identical
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to theH-square equation given by Eq.~3.9!, which guaran-
tees that the solution is exact. ThisR-Rcase is the formula-
tion given in Papers I and II.

Next is theR-I case, where we use the inverse variation
principle given by Eq.~3.14! to calculate the unknown vari
ables$CI% of the S operator and obtain

^cnuH212 iEnucn21&50, ~5.7!

^cnu~H212 iEn!HI ucn21&50 ~ I 51,...,ND!. ~5.8!

iEn also satisfies

^cnuH212 iEnucn&50. ~5.9!

At convergence,cn5cn21 and the variational equation
given by Eq. ~5.8! becomes equal to the cross-H-square
equation given by Eq.~3.43!, which guarantees that the so
lution is exact. Since the present Hamiltonian is positive,
energy converges from below to the exact inverse energ

In the above formulation, we defined our variable ope
tor S in terms of the regular Hamiltonian. Next, in theI-R
andI-I cases, we define our variable operator in terms of
inverse Hamiltonian. For doing so, we first define the di
sion of the inverse Hamiltonian as

H215(
I

ND

dI
iHI . ~5.10!

Again, we have introduced the unimportant coefficients$dl%,
which we need not know throughout the calculations. F
this division of the inverse Hamiltonian, we introduce th
variable operatoriS as

iS5(
I 51

ND
iCI

iHI ~5.11!

and define the ICI wave function as

cn5~11 iSn!cn21 . ~5.12!

Now, we calculate the unknown coefficients$ iCl% in the
iS operator again either by the regular or the inverse va
tional principle. The former is theI-R case and the latter is
the I-I case. When we use the regular variational princip
we obtain the secular equation for theI-R case,

^cnuH2Enucn21&50, ~5.13!

^cnu~H2En! iHI ucn21&50 ~ I 51,...,ND!. ~5.14!

At convergence, this equation is identical to the crossH-
square equation given by Eq.~3.44!, which guarantees tha
the solution is exact. In this case, the energyEn converges to
the exact energy from above. On the other hand, when
use the inverse variational principle given by Eq.~3.14!, we
obtain the secular equation for theI-I case,

^cnuH212 iEnucn21&50, ~5.15!
2-7
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HIROSHI NAKATSUJI PHYSICAL REVIEW A 65 052122
^cnu~H212 iEn! iHI ucn21&50 ~ I 51,...,ND!.
~5.16!

At convergence, this is identical to theH21-square equation
given by Eq.~3.32!, so that the converged solution is exa
In the I-I case, the energy converges from below to the ex
inverse energy.

Thus, from the SE and ISE, we have four different I
methods for calculating the exact wave function. One wo
converge more quickly than others and one would be m
easily formulated than others. A criterion for the choice is
existence of singularities in the Hamiltonian or in the inve
Hamiltonian. For atomic and molecular systems, the larg
singularity is due to the nuclear attraction operator. In t
case, the integrals involving higher products of the nucl
attraction operator may diverge and do not satisfy the Q
condition necessary for physical wave functions, so that
calculation is problematic. Such a situation may occur wh
we use theS operator defined by using the divided regu
Hamiltonian, Eq.~5.1!. Namely, theR-R and R-I cases are
problematic. Therefore, we recommend using theiS operator
defined by Eq.~5.11!: the variational principle may be eithe
regular or inverse, which is theI-R or I-I case.

It is convenient if we can combine two different defin
tions of the recurrence formula of the ICI theory, Eqs.~5.3!
and~5.12!, into one. This is possible by introducing the com
bined recurrence formula as

cn5~11Sn1 iSn!cn21 . ~5.17!

In using this formula, a remark is necessary. When the Q
condition is not satisfied by the elements ofSn and/or iSn ,
we must omit them from the calculations. When we st
from an approximate higher excited state as an initial gu
to calculate the ground state, some deexcitations are don
Sn or iSn and, therefore, we need the terms belonging to b
Sn and iSn . For the ordinary case, however, using Eq.~5.17!
is essentially the same as using Eq.~5.3! or Eq. ~5.12! sepa-
rately.

B. Generalized ICI theory in matrix representation

In the above operator formalism of the ICI theory, w
need an explicit form of the inverse Hamiltonian in theR-I,
I-R, and I-I cases, but it is not necessarily given in a clos
analytical form. However, in the matrix formulation of qua
tum mechanics, we can always define the inverse of
Hamiltonian, so that the matrix representation of the I
theory has certainly a merit in actual calculations.

Suppose that we have a set of orthonormal configura
functions$xi% for the system under consideration. It may
a complete configuration space of full CI made of some
thonormal set of orbitals such as Hartree-Fock orbitals
some subspace of this set, such as the singles to quadr
~SDTQ! configuration space. We define the Hamiltonian m
trix defined in these configuration functions as
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H5$Hi j %5$^x i uHux j&%. ~5.18!

For convenience, we assume in this section that we h
shifted our HamiltonianH to be positive as defined by Eq
~3.16!, though we do not use the subscriptp for simplicity.
The matrixH is then positive definite. The eigenvalue pro
lem of this Hamiltonian is given by

Hl5El, ~5.19!

and that of the inverse HamiltonianH21 is given by

H21l5E21l, ~5.20!

wherel is an eigenvector andE and E21, which are posi-
tive, are the eigenvalue and its inverse. The correspond
wave function is written as

c5xl5(
i

l ix i , ~5.21!

wherex is a row vector andl is a column vector. Whenx
involves full configurations, as we assume below, this
nothing else but the full CI, and whenx involves only SDTQ
functions, it is SDTQ-CI.

In the matrix representation of ICI, we have four differe
cases,R-R, R-I, I-R, andI-I , as in the operator formalism. In
theR-RandR-I cases, we first divide theH matrix as in Eq.
~5.1!,

H5(
I

ND

dIHI , ~5.22!

and define theS operator as

S5(
I 51

ND

CIHI . ~5.23!

Then, the ICI is defined by the recurrence

ln5~11Sn!ln21 , ~5.24!

wheren is the iteration number. For the formulations belo
it is convenient to introduce the coefficientC0 for the unit
matrix 1 of the above ICI equation, and redefine the ICI a

ln5S (
l 50

ND

CI ,nHI D ln21 , ~5.25!

whereH051.
In theR-Rcase, we apply the regular variational princip

to this expression and obtain the secular equation of the
mensionND11,

~hn2Ensn!Cn50, ~5.26!

whereCn is a column vector composed of the coefficien
CI ,n and the matrix elements ofhn andsn are given by

~hn! IJ5ln21* HI* HH Jln21 ~5.27!
2-8
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INVERSE SCHRÖDINGER EQUATION AND THE EXACT . . . PHYSICAL REVIEW A 65 052122
and

~sn! IJ5ln21* HI* HJln21 . ~5.28!

As we perform iterative calculations, the energy decrea
and at convergence the eigenvalueEn and the eigenvectorln
become identical with the solution of the full CI given by E
~5.19!.

In the R-I case, we use the inverse variational princip
By applying it to the ICI recurrence formula given by E
~5.25!, we obtain the secular equation

~hn
212 iEnsn!Cn50, ~5.29!

wheresn is the same as that given by Eq.~5.28! andhn
21 is

given by

~hn
21! IJ5ln21* HI* H21HJln21 , ~5.30!

where H21 is the inverse of the Hamiltonian matrix. W
perform iterative calculations of the small eigenvalue pro
lem given by Eq.~5.29!. The energy approaches from belo
the inverse of the full-CI energy and at convergence,
obtain the inverse energy and the eigenvector that are i
tical to the full-CI values.

In the above formulation, the variable operatorS of the
ICI was defined by using the regular Hamiltonian. In theI-R
and I-I cases, we define it using the inverse Hamiltoni
First, we define a partition of the inverse Hamiltonian,

H215(
I

ND

dI
iHI , ~5.31!

and define theiS operator as

iS5(
I 51

ND
iCI

iHI . ~5.32!

Then, the ICI is given by the recurrence

ln5~11 iSn!ln21 . ~5.33!

For convenience, we assign the coefficientiC0 for the unit
matrix 1 of the above ICI equation, and redefine the ICI a

ln5S (
I 50

ND
iCI ,n

iHI D ln21 , ~5.34!

where iH051.
We apply first the regular variational principle to the IC

wave function given by Eq.~5.34! and obtain the secula
equation for theI-R case as

~ ihn2En
isn!Cn50, ~5.35!

where the matrix elements ofihn and isn are given by

~ ihn! IJ5ln21* iHI* H iHJln21 ~5.36!

and
05212
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~ isn! IJ5ln21* iHI*
iHJln21 . ~5.37!

In iterations, the energy approaches from above the full
energy.

Next, in the I-I case, we apply the inverse variation
principle to the ICI recurrence given by Eq.~5.34! and obtain
the secular equation of the dimensionND11 as

~ ihn
212 iEn

isn!Cn50, ~5.38!

where the matrixihn
21 is defined by

~ ihn
21! IJ5ln21* iHI* H21iHJln21 , ~5.39!

and the overlap matrixisn is common to that given by Eq
~5.37!. After iteration, the solution of Eq.~5.38! should ap-
proach from below the inverse of the full-CI energy.

In the above formulation, we used the matricesH, HI , etc.
of the full-CI dimension, since we adopted the complete
sis functions$x i% for our matrix representation. In actual IC
calculations, it is unnecessary to keep such huge matrice
memory. On the other hand, the matrices that appear in
ICI secular equations, such ashn andsn of Eq. ~5.26!, have
only ND11 dimension. Actually, the present matrix repr
sentation is equivalent to calculating the necessary integ
by the resolution of identity method using the complete ba
$x i% @6#.

In the matrix formulation, the singularity problem is no
so explicit, because all the individual matrices are well d
fined. For a small basis function space, no problem wo
occur except that the convergence would be slower in
problematic case. But, as the basis function space approa
completeness, the product of the matrices approaches
matrix of the operator product, so that the same problem
in the analytical procedure would occur in the problema
case even in the matrix formulation. We see below such
example in the application to hydrogen atom.

VI. GENERALIZED ICI THEORY APPLIED
TO HYDROGEN ATOM

The hydrogen atom is the simplest basic system t
shows the importance of the ISE concept, because the reg
Hamiltonian has a singularity due to the nuclear attract
operator. The ordinary ICI theory~GICI in the R-Rcase! is
problematic for this singularity, but we show that the gen
alized ICI theory in theI-R andI-I cases has no problem. Th
ECC study will be given in the forthcoming paper@38#.

The Hamiltonian for the radial part with zero angular m
mentum is written as

H5k1n52
1

2

d2

dr22
1

r

d

dr
2

1

r
, ~6.1!

where the first two terms represent the kinetic operatork and
the last term represents the nuclear attraction potentian.
This Hamiltonian has a singularity at the origin in the la
two terms, so that the higher elements of the ordinary Kry
sequence have a strong singularity at the origin and do
2-9
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HIROSHI NAKATSUJI PHYSICAL REVIEW A 65 052122
satisfy the QM condition. For example, the following int
gral diverges even for the exact wave functionc5exp(2r)
@30#:

^cu~21/r !H~21/r !uc&52`, ~6.2!

but the next one does not,

^cu~2r !H~2r !uc&521.0. ~6.3!

We define the positive Hamiltonian by shifting the orig
as

Hp5H11. ~6.4!

We show here the application of the generalized ICI the
to the hydrogen atom first in the analytical form and then
the matrix representation.

A. Analytical application of the generalized ICI theory

The ordinary ICI method, which is the generalized ICI
the R-Rcase, is problematic, because of the Coulombic s
gularity due to the nuclear attraction operator. Some integ
involved are divergent, just like the integral shown in E
~6.2!. Therefore, the ICI in theR-Rcase is not applicable, in
its analytical form, even to the hydrogen atom. This probl
is circumvented by using the generalized ICI theory based
the ISE concept, in particular, the cross-H-square theorem
We show below the use of the generalized ICI theory in
I-R case.

To utilize the ISE concept, we need an explicit express
of the inverse Hamiltonian. Different from the matrix formu
lation, this is not necessarily straightforward in the analy
treatment. But, we may write the inverse of the Hamilton
given by Eq.~6.1! as

H215
1

k1n
5

1

n S 11
1

n
kD 21

~6.5a!

5
1

n H 12
1

n
k1S 1

n
kD 2

2S 1

n
kD 3

1¯J . ~6.5b!

In Eq. ~6.5b!, the kinetic operator is not in the inverse form
Putting 1/n52r , we see no singularity in the inverse Ham
tonian. The inverse of the positive Hamiltonian given by E
~6.4! is written similarly as

Hp
215

1

k1n11
5

1

n S 11
k11

n D 21

~6.6a!

5(
I 51

1

n S 2
k11

n D I 21

. ~6.6b!

The generalized ICI theory is defined by using the po
tive Hamiltonian given by Eqs.~6.4! and~6.6!. Based on the
expression of the inverse positive Hamiltonian given by E
~6.6b!, we define the variable operatoriS as in Eq.~5.11!,
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iS5(
I 51

`

CI

1

n S 2
k11

n D I 21

. ~6.7!

In this case, the number of divisionsND is infinity. Using this
operator, the generalized ICI wave function is defined by
recurrence

cn5~11 iSn!cn21 , ~6.8!

wheren is the iteration number.
We calculate the ICI wave function by successively tru

cating the terms of Eq.~6.7!: first iS(1)5C1(1/n), second
iS(2)5C1(1/n)2C2(1/n2)(k11), third iS(3)5C1(1/n)
2C2(1/n)@(k11)/n#1C3(1/n)@(k11)/n#@(k11)/n#, and
so on. The initial guess is the Slater-type function

c05exp~2ar !, ~6.9!

with a51.5 for which the energy expectation value is 0.6
a.u. with the positive Hamiltonian~20.375 a.u. with the
regular Hamiltonian!. a51.0 is the exact wave function with
Ep50.5 a.u. forHp ~E520.5 a.u. for the regularH!. We
optimize the unknown variablesCi by the regular variationa
method for the shifted positive Hamiltonian. This is the GI
in the I-R case and the basic secular equation, which is gi
by Eqs.~5.13! and~5.14!, becomes the cross-H-square equa-
tion at convergence.

Table I gives the overall result and the convergence p
cess is shown in Table II foriS(1), iS(3), and iS(5). When
we use onlyiS(1), the ICIconverges by four iterations: th

TABLE I. Energy of the hydrogen atom calculated by theI-R
type ICI method with increasing accuracy of theiS operator.

iSa n b E c

iS of Eq. ~6.7!
c0 0.625

iS(1) 4 0.507 054 4
iS(2) 3 0.500 597 4
iS(3) 3 0.500 042 6
iS(4) 3 0.500 002 6
iS(5) 2 0.500 000 1
iS(6) 1 0.500 000 0

iS of Eq. ~6.10!
c0 0.625

iS(1) 4 0.507 054 4
iS(2) 3 0.500 413 2
iS(3) 2 0.500 020 7
iS(4) 2 0.500 001 1
iS(5) 2 0.500 000 1
iS(6) 1 0.500 000 0

aTruncatediS operator.
bNumber of iterations at which the energy converges by seven d
mal figures.
cPositively shifted by11.0. The exact energy is 0.5 a.u. for th
positive Hamiltonian and20.5 a.u. for the nonpositive Hamil
tonian.
2-10
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coefficientC1 converges toward 0.0 and the converged
ergy is 0.507 054 a.u. which is higher than the exact va
0.5 a.u. This is becauseiS(1) is only a part of the inverse
Hamiltonian. For obtaining the exact solution, theiS opera-
tor must include all parts of the divided inverse Hamiltonia
When we useiS(2), theconverged energy is 0.500 597, b
coming closer to 0.5. ForiS(3), the convergence is very
quick as shown in Table II and the converged ene
0.500 043 is closer to 0.5. WithiS(5), theconverged energy
becomes much closer to 0.5, and withiS(6), the energy
converges to the exact value within seven decimal figu
The convergence is good not only for the individual level
iS(I ), but also for the overall level. Though theiS operator
is composed of infinite number of terms in the express
given by Eq.~6.7!, only the first six terms are enough to g
the energy correct to seven decimal figures.

In the expansion of theiS operator given by Eq.~6.7!, the
operator (k11) can be omitted, and we can expand theiS
operator solely by the inverse potential2r ,

iS5(
l 51

`

CI S 1

n D I

. ~6.10!

This is possible because the operator (k11) in Eq. ~6.7!
gives the terms in lower orders ofr, which already exist in
the individual iS(I ) term. In other words, eachiS(I ) term of
Eq. ~6.7! can be rearranged in the form of theiS(I ) term of
Eq. ~6.10!: no new order terms appear in Eq.~6.7! in com-
parison with Eq.~6.10!. Further, we can look at Eq.~6.10! as
an expansion of theiS operator by the basic variabler of this
system: for theS state of the hydrogen atom, the basic va
able is only one that isr and, therefore, theiS operator
should be able to be expanded by this variable as given
Eq. ~6.10!.

In Table I we also give the converged energy for ea
choice of iS(I ) of Eq. ~6.10! from I 51 to I 56. The initial
energies by theiS(I ) of Eqs. ~6.7! and ~6.10! were com-
pletely the same and the converged energies were also
to each other.

TABLE II. Convergence process for eachiS(I ) (I 51,3,5) of
Eq. ~6.7!.

iS Iteration Energya

iS(1) 0 0.625
1 0.508 974 6
2 0.507 112 6
3 0.507 056 3
4 0.507 054 4

iS(3) 0 0.625
1 0.500 045 9
2 0.500 042 7
3 0.500 042 6

iS(5) 0 0.625
1 0.500 000 2
2 0.500 000 1

aThe variable coefficientCI converges toward zero.
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We emphasize here that no problem of the Coulom
singularity has occurred in the above calculations of theI-R
case of the GICI theory, in contrast to the case of using
ordinary Hamiltonian operator in the ordinary ICI metho
which is theR-R case of the GICI theory. This would als
have been the case in thet-expansion method@28# and the
connected-moments method@29#. Thus, the use of the ISE
concept given in this paper would overcome a well-kno
long-continued difficulty of singularities in the study of a
curate wave functions.

B. Application of the generalized ICI theory
in matrix representation

We show here the usage of the present concept of the
and the ISE by applying the matrix representation of
generalized ICI theory to the hydrogen atom. This appli
tion is particularly interesting because we can show all fo
cases of the generalized ICI theory. Different from the a
lytical case given above, we have an explicit form of t
inverse Hamiltonian matrix without ambiguity.

The basis functions of the matrix representation are
STO-NG sets~N54 and 8! of O-ohata, Taketa, and Huzi
naga@39#. For the STO-8G orbital, we further added two
GTO’s of very large exponents, 2000 and 10 000, to re
force the region close to the nucleus. The orthonormal b
orbitals $x i% are made by diagonalizing the overlap matr
and transforming the basis orbitals in terms of the Lo¨wdin
orthogonalization@40#. By diagonalizing the positive Hamil-
tonian matrix defined by Eq.~6.4!, we obtain the energy o
the ground state as 0.501 009 a.u. and 0.500 004 a.u., res
tively, by the STO-4G and STO-(812)G sets. The corre-
sponding inverse energy is 1.995 970 a.u. and 1.999 985
respectively. Thus, these energies and inverse energies
our goal in the matrix representation GICI calculations.

In doing the GICI, the Hamiltonian and the invers
Hamiltonian are divided as

H5v1~k11! ~6.11!

and

H215v211r , ~6.12!

respectively, wherev is the matrix of the potential operato
k the matrix of the kinetic operator, andr is the residual
matrix. TheSand iS operators are defined, corresponding
the above equations, as

S5Cnv1Ck~k11! ~6.13!

and

iS5 iCnv211 iCrr , ~6.14!

respectively.
Table III shows the converging process of the four typ

of the generalized ICI calculations of the hydrogen ato
based on the STO-4G basis set. The initial reference func
tion c0 is the second outermost Lo¨wdin orthogonalized or-
bital: the first one was too good as the initial guess to sh
2-11
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the converging process. With the rather crude STO-4G basis,
all four types of the generalized ICI calculations ha
converged. The R-R and I-R cases converge toEp

50.501 009 a.u. and theR-I and I-I cases to Ep
21

51.995 970 a.u. In the analytical case, theR-RandR-I cases
involve the calculations of the diverging integrals such
that expressed by Eq.~6.2!. However, in the matrix represen
tation with the crude STO-4G basis set, even these problem
atic cases showed no difficulty in the convergence proc
On the other hand, theI-R andI-I cases that have no intrinsi
theoretical problem show remarkably good convergen
they converge with only four iterations, in contrast to 14 a
18 for theR-RandR-I cases. In theR-RandI-R cases, which
use the normal variational principle, the energy conver
from above, and in theR-I and I-I cases, which use the in
verse variational principle, the energy converges monoto
cally from below to the correct value.

We next show the GICI calculations for the STO-(
12)G basis set. The STO-8G basis is already a much bette
basis than the STO-4G basis. The energy of the former
0.500 009 a.u. in comparison with that of the latter, 0.501 0
a.u. We further added two large exponent bases in orde
reinforce the inner region of the AO where the divergence
the integrals such as that given by Eq.~6.2! is dictated. By
this addition, the energy decreases slightly to 0.500 004
The initial reference functionc0 is the outermost Lo¨wdin
orthogonalized orbital.

For this better basis, the convergences of theR-RandR-I
cases become much worse than for the STO-4G basis: actu-
ally, the convergence was too slow to be realistic. This

TABLE III. Generalized ICI calculations in matrix form for the
hydrogen atom using a positive Hamiltonian for the STO-4G basis
set. The correct energy for the positive Hamiltonian of the STO-G
basis isEp50.501 009 a.u. andEp

2151.995 970 a.u.21.

Interation

Energy

R-Rcase I-R case R-I case I-I case

1 0.554 112 0.827 107 1.909 055 1.758 40
2 0.522 819 0.502 693 1.949 066 1.995 88
3 0.507 856 0.501 013 1.975 771 1.995 96
4 0.503 171 0.501 009 1.987 305 1.995 97
5 0.501 761 1.991 964
6 0.501 103 1.994 120
7 0.501 043 1.995 084
8 0.501 022 1.995 546
9 0.501 014 1.995 763
10 0.501 011 1.995 869
11 0.501 010 1.995 921
12 0.501 010 1.995 946
13 0.501 010 1.995 958
14 0.501 009 1.995 964
15 1.995 967
16 1.995 969
17 1.995 969
18 1.995 970
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expected since these cases are very problematic in the
lytical case because of the existence of the diverging in
grals. As the basis set is improved, the behavior of the ma
formulation would become closer to the analytical one. Th
Table IV shows only theI-R and I-I cases. For these case
however, the convergence was quite fantastic: the ene
converges only with five iterations in both cases. This m
be expected, since there is no intrinsic theoretical problem
these cases, but the performance is much better than
pected. Since the convergence was so beautiful for theI-R
and I-I cases, we tried the calculations using a worse ini
guess, which is the second outermost orthogonalized orb
Again, both of theI-R and I-I cases showed quite a nic
convergence with only six iterations. For theI-R case, it
converges monotonically from above to the correct val
and for theI-I case, it converges from below to the corre
value.

It is interesting to see the effect of using the positi
Hamiltonian. It has been shown in the previous section t
without introducing the positive Hamiltonian, a natural co
nection between the regular and the inverse worlds is d
cult and we cannot obtain the cross-H-square equations, s
that the formulation of theI-R andR-I cases becomes impos
sible.

Table V shows the generalized ICI calculations for t
STO-4G basis set using a nonpositive Hamiltonian, who
energy eigenvalue is20.498 990 a.u. and22.004 046 a.u.
for the inverse case. The problematicR-RandR-I cases show
a behavior similar to that of Table III. TheI-R case, which
has no theoretical problem with the positive Hamiltonia
shows some problem with the nonpositive Hamiltonian, b
cause the cross-H-square theorem does not hold in this ca
Namely, the convergence becomes much worse when we
the nonpositive Hamiltonian~13 times in comparison with
only five times!. The I-I case shows a good convergen
~only four iterations! and is insensitive to whether the Hami
tonian is positive or not, as seen from the fact that

TABLE IV. Generalized ICI calculations in matrix form for the
hydrogen atom using the positive Hamiltonian for the STO-
12)G basis set. The correct energy for the positive Hamilton
of the STO-(812)G basis is Ep50.500 004 a.u. andEp

21

51.999 985 a.u.21. For theR-R and R-I cases, the convergenc
was too slow to be realistic.

Iteration

I-R case I-I case

Guess 1a Guess 2b Guess 1a Guess 2b

1 0.505 034 0.973 440 1.960 160 1.930 67
2 0.500 161 0.502 669 1.999 802 1.998 41
3 0.500 013 0.500 287 1.999 972 1.999 82
4 0.500 005 0.500 024 1.999 984 1.999 97
5 0.500 004 0.500 005 1.999 985 1.999 98
6 0.500 004 1.999 985

aThe outermost orthogonalized orbital is the initial guess funct
c0 .
bThe second outermost orthogonalized orbital is the initial gu
function c0 .
2-12
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H21-square equation is valid for both nonpositive and po
tive Hamiltonians. It is noteworthy that both theR-I and I-I
cases of the nonpositive Hamiltonian converge from abov
the correct value, as the ordinary variational case, contrar
the behavior from below in Table III, which is theoretical
correct for the positive Hamiltonian.

Table VI shows a similar convergence process for
nonpositive Hamiltonian with STO-(812)G basis. In com-

TABLE V. Generalized ICI calculations in matrix form with th
nonpositive Hamiltonian for the hydrogen atom with th
STO-4G basis set. The correct energy for the STO-4G basis is
E520.498 990 a.u. andE21522.004 046 a.u.21.

Iteration

Energy

R-Rcase I-R case R-I case I-I case

1 20.445 888 20.436 302 21.588 918 21.965 856
2 20.477 181 20.496 044 21.834 904 22.003 510
3 20.492 144 20.498 222 21.940 275 22.004 033
4 20.496 829 20.498 678 21.980 685 22.004 046
5 20.498 239 20.498 842 21.995 473
6 20.498 729 20.498 920 22.000 914
7 20.498 897 20.498 956 22.002 900
8 20.498 957 20.498 973 22.003 627
9 20.498 978 20.498 982 22.003 893
10 20.498 986 20.498 986 22.003 990
11 20.498 989 20.498 988 22.004 025
12 20.498 990 20.498 989 22.004 039
13 20.498 990 22.004 043
14 22.004 045
15 22.004 046
05212
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parison with Table IV, the effect of taking a positive Ham
tonian is remarkable for theI-R case. In the nonpositive
Hamiltonian case, which is theoretically bad in theI-R case,
the convergence to the correct value,20.499 996 a.u., takes
50 iterations in contrast to only five~guess 1! shown in Table
IV for the positive Hamiltonian case. This is a very natur
consequence, since the calculation must be done as
theory requires. Even in theI-I case, the convergence for th
positive Hamiltonian is better than the nonpositive ca
With the nonpositive Hamiltonian, theI-I case gives the con
vergence from above, different than ‘‘from below’’ seen f
the positive Hamiltonian given in Table IV.

VII. CONCLUSION

Introducing the inverse of the Hamiltonian, we obtain t
inverse Schro¨dinger equation~ISE! that is entirely equivalent
to the ordinary Schro¨dinger equation~SE!. The ISE has the
same determinative power as the regular SE. The inve
forms of the variational principle and theH-square group of
equations that are equivalent to the ISE are derived, and
further shifting our Hamiltonian to be positive, the inver
Ritz variational principle and the cross-H-square equations
are derived. For the positive Hamiltonian, we obtain a mo
tonic correspondence between the energy eigenvalues o
regular and inverse Hamiltonians. In the variational proce
the inverse energy approaches ‘‘from below’’ the exact e
ergy, in contrast to ‘‘from above’’ in the ordinary case. Th
knowledge on the equivalent sets of equations on the reg
and inverse sides of the Hamiltonian, including the SE a
ISE, not only makes the imaginations on physical and che
cal phenomena fertile and gives a deep insight on the na
of the quantum-mechanical entities, but also provides an
the

be
TABLE VI. Generalized ICI calculations in matrix form with the nonpositive Hamiltonian for
hydrogen atom with the STO-(812)G basis set. The correct energy for the STO-(812)G basis is
E520.499 996 a.u. andE21522.000 015 a.u.21 In the R-R case, the convergence was too slow to
realistic, and in theR-I case, the calculations were diverging.

I-R case I-I case

Iteration Energy Iteration Energy Iteration Energy Iteration Energy

1 20.449 651 16 20.499 751 31 20.499 979 1 21.931 726
2 20.491 420 17 20.499 791 32 20.499 982 2 21.943 310
3 20.497 023 18 20.499 824 33 20.499 984 3 21.989 179
4 20.497 824 19 20.499 852 34 20.499 986 4 21.996 062
5 20.498 260 20 20.499 875 35 20.499 988 5 21.998 332
6 20.498 542 21 20.499 895 36 20.499 989 6 21.999 379
7 20.498 784 22 20.499 912 37 20.499 990 7 21.999 758
8 20.498 981 23 20.499 925 38 20.499 991 8 21.999 914
9 20.499 147 24 20.499 937 39 20.499 992 9 21.999 975
10 20.499 285 25 20.499 946 40,41 20.499 993 10 21.999 999
11 20.499 400 26 20.499 955 42–44 20.499 994 11 22.000 009
12 20.499 497 27 20.499 961 45–49 20.499 995 12 22.000 013
13 20.499 578 28 20.499 967 50 20.499 996 13 22.000 014
14 20.499 646 29 20.499 972 14 22.000 015
15 20.499 703 30 20.499 976
2-13
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fective and powerful method for formulating and calculati
the exact wave function. This is the purpose of the pres
series of studies@2–6,38#.

The Hamiltonian Krylov sequence is extended to inclu
the inverse Hamiltonian, giving the inverse Krylov sequen
Since the Hamiltonian often involves Coulombic singula
ties, the element of the ordinary Krylov sequence,Hnc0 with
n>1, strongly breaks the quantum-mechanical condit
~i.e., integrable finiteness!, while the inverse Krylov se-
quence does not have such a singularity problem. Combin
the ordinary and inverse Krylov sequences, we obtain
complete Krylov sequence, which provides a natural ba
for describing the exact wave function.

The SE and ISE concepts are combined to generalize
ICI method for calculating the exact wave function. Bas
on the variational principles in the regular and inverse form
and on theH-square, inverseH-square, and cross-H-square
equations, we formulated the four different cases of gene
ized ICI theory. They correspond to the two different form
tions of the variable operatorS, depending on the use ofH or
H21, and to the use of the two different variational pri
ciples, either regular or inverse. They have clear internal
lations, and all four ICI methods give, in principle, the exa
wave function. In these formulations, we used a positiv
shifted Hamiltonian for consistency. Further, we formulat
the generalized ICI theory in a matrix representation, whe
merit is that the definition of the inverse Hamiltonian
straightforward in comparison with the analytical case. T
four different cases of ICI theory would have merits a
demerits depending on the system, and the convergence
would also be different, again depending on the system
ys

a
tri-
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particular, when the Hamiltonian of the system has a sin
larity, the integrals involving higher-order products of th
regular Hamiltonian may diverge and, therefore, the meth
may be problematic, but even in such a case, when we
the inverse Hamiltonian, we can calculate the exact w
function without having such a difficulty.

The generalized ICI theory has been applied to the hyd
gen atom. Since the regular Hamiltonian has a Coulom
singularity at the origin, the ordinary ICI theory in theR-R
case is problematic: it involves the integrals that do not c
verge in the analytical formulation. Thus, even the hydrog
atom is a very good system to test the utility of the IS
based concept. We have performed generalized ICI calc
tions in both analytical and matrix formulations and w
could calculate the ground state of the hydrogen atom w
out the problem of singularity. The matrix formulatio
showed some interesting behaviors that are clearly attri
able to the SE and SE concepts given in this paper.

In conclusion, the concept of the regular and inve
Hamiltonians and the various formulas originating fro
them seem to give an important insight for further stud
aiming at the exact understanding of atomic and molecu
systems.
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