ARTICLES

Prediction of the new spinel phase of Ti_3N_4 and $SiTi_2N_4$ and the metal-insulator transition

W. Y. Ching,* Shang-Di Mo, and Lizhi Ouyang

Department of Physics, University of Missouri-Kansas City, Kansas City, Missouri, 64110

Isao Tanaka

Department of Energy Science and Technology, Kyoto University, Sakyo, Kyoto 606-8501, Japan

Masato Yoshiya

Department of Materials Science and Engineering, Kyoto University, Sakyo, Kyoto 606-8501, Japan (Received 27 August 1999; revised manuscript received 5 November 1999)

Titanium nitrides are important materials with many industrial applications. However, the structure and properties of nitrogen-rich compounds are not well established. Based on *ab initio* calculations, stochiometric titanium nitride compounds, c-Ti₃N₄ and c-SiTi₂N₄, with a spinel structure were predicted. This result is different from the accepted model that TiN_x with x > 1 has a rocksalt structure with Ti vacancies. Electronic structure calculations show that these are highly covalent superhard materials. c-Ti₃N₄ is a narrow gap semiconductor and c-SiTi₂N₄ is a metal. By doping Ti at the octahedral site of the spinel c-Si₃N₄, the direct band gap can be adjusted. An insulator-to-metal transition in c-Si[Si_{1-x}Ti_x]₂N₄ is predicted to occur at x = 0.44. A process of preparing these compounds is suggested, and several promising applications contemplated.

I. INTRODUCTION

Titanium compounds are widely used because of their many outstanding structural and electronic properties.¹ They can be metals, semiconductors, or ionic insulators depending upon the Ti valence state. Among them, TiC, TiN, and TiO with a rocksalt structure, exhibit extremely high hardness, high melting points, and chemical stability, and are referred to as refractory compounds.² Other than the rocksalt compounds, Ti₂O₃ and TiO₂ are the other well-known phases. Nonstoichiometry in the Ti compounds is common. For example, TiC_x with 0.47<x<0.95, TiN_x with 0.39<x<1.0 and TiO_x with $0.54 \le x \le 1.2$ are amply documented.³ These known Ti compounds are illustrated in Fig. 1 according to the formal valence of Ti. As can be noticed, the anticipated compound between Ti with a + 4 valence or Ti (IV) and N which should have a chemical formula of Ti₃N₄ is conspicuously missing. Based on a critical review of 56 studies, Wriedt and Murray⁴ established the binary phase diagram of Ti-N for Ti:N ratio up to unity. There were several reports on the synthesis and properties of TiN_x films with x > 1.0 using techniques such as dual ion beam deposition,⁵ and metallorganic or inorganic precursor deposition.⁶⁻⁹ The generally accepted view is that these are TiN in rocksalt structure with vacancies at the metal sites.⁵ The existence (or nonexistence) of stoichiometric Ti₃N₄ compound is a subject of great scientific interest and technological significance.

The spinel phase is a major class of oxides with a chemical formula AB_2O_4 where A and B are the tetrahedral (tet) and octahedral (oct) cation sites. In a normal spinel such as MgAl₂O₄, A has +2 valence and B has +3 valence. In the so-called inverse spinel, half of the B ions exchange sites with the A ions to form $B[AB]O_4$. It is also possible to have mixed spinels of the form $(A_{1-2\lambda}B_{2\lambda})[A_{2\lambda}B_{2-2\lambda}]O_4$, where λ is the inversion parameter ranging from 0 for the normal spinel to 0.5 for the inverse spinel. The notable examples for inverse and the mixed spinels are Fe₃O₄ and Mg_{0.1}Fe_{0.1}(Mg_{0.9}Fe_{1.1})O₄, respectively.¹⁰ Recently, Zerr et al. reported the successful synthesis of spinel Si₃N₄ $(c-Si_3N_4)$ by applying high-pressure and temperature of 15 GPa and 2000 K.¹¹ The occurrence of spinel nitrides with a formal anion valence of -3 is a significant discovery since it opens the door for an entirely new class of nitride compounds. Soon after the discovery, we have reported¹² that $c-Si_3N_4$ is a wide gap semiconductor having a direct band gap of 3.45 eV. We have also proposed that the transition pressure from hexagonal β -Si₃N₄ to the c-Si₃N₄ might be lowered by doping with Ti.

FIG. 1. Titanium compounds in various valence states.

10 609

FIG. 2. (Color) Calculated band structure of (a) TiN; (b) $Ti_3 \Box N_4$; (c) $c - Ti_3N_4$; (d) $c - SiTi_2N_4$. The color of each band is determined by the percentage of atomic origin as calculated from the wave function at each *k* point. The representations are red for Si, yellow for Ti, and blue for N. The color and the degree of mixing in the band is illustrated by the color triangle. So the orange bands above 4 eV in $c - SiTi_2N_4$ indicate a substantial mixing of Ti and Si orbitals. Likewise, the purple bands near -5 eV show interaction between N and Si. Note that the atomic components of the band can change along different *k* directions as a result of hybridization and the symmetry of the wave functions. The width of each panel is determined by the BZ of the crystal and is inversely proportional to the lattice constant.

FIG. 5. (Color) Band structure for the solid solution c-Si[Si_{1-x}Ti_x]₂N₄ for $x = \frac{1}{16}$; $x = \frac{3}{16}$; $x = \frac{5}{16}$; $x = \frac{7}{16}$; $x = \frac{8}{16}$. The color designations are the same as in Fig. 2. Note the substantial mixing of Ti and Si in the CB.

FIG. 3. Calculated DOS of A TiN; B $Ti_3 \Box N_4$; C c- Ti_3N_4 ; D c-Si Ti_2N_4 . The zero of energy is set at the Fermi level for metal and at the top of VB for insulators.

Subsequent investigations lead us to the conclusion that spinel Ti_3N_4 (c- Ti_3N_4) should also exist. This further leads to the idea that mixed nitrides in the Si-Ti-N system should be stable. Indeed, we find that spinel $SiTi_2N_4$ (denoted as c-SiTi₂N₄ with Si at the tet site and Ti at the oct site is stable but not vice versa. This implies that Si likes to be in a tet environment as in β -Si₃N₄ and Ti prefers an oct setting as in TiO₂.

FIG. 4. Calculated total energy per Ti_3N_4 unit vs volume for $c-Ti_3N_4$ and $Ti_3\Box N_4$. The dashed line shows the possible transformation from $c-Ti_3N_4$ to $Ti_3\Box N_4$.

In the following section, we briefly outline our method and approach used in the prediction of these phases of nitrides and in the study of their properties. Our main results are presented in Sec. III. In Sec. IV, we discuss the possible ways of making these materials and also suggest several plausible applications in ceramic and semiconductor technologies. The paper ends with a succinct conclusion.

II. METHOD AND APPROACH

We used the first-principles orthogonalized linear combination of atomic orbitals (OLCAO) method¹³ within the local approximation of the density-functional theory¹⁴ for electronic structure and ground-state property calculations. A full basis set consisting of core orbitals of Si and N, valence electron orbitals of Si-3*s*, Si-3*p*, N-2*s*, and N-2*p*, and ad-

TABLE I. Calculated physical properties of c-Si₃N₄, c-Ti₃N₄, Ti₃ \Box N₄, and c-SiTi₂N₄. a is the lattice constant and u is the internal parameter.

	$c-Si_3N_4$	$c - \mathrm{Ti}_3 \mathrm{N}_4$	$Ti_3 \Box N_4$	<i>c</i> -SiTi ₂ N ₄
a (Å)	7.8367	8.4459	4.1327	8.2109
и	0.3843	0.3833	-	0.3758
Eq. Vol. (Å ³ /mol)	60.160	75.309	70.535	69.196
E_{g} (eV)	3.45	0.25 (dir.)	metal	metal
0		0.07 (ind.)		
$Q^{\rm a}$ (electron)				
Si or Ti (tet)	2.63	3.05	-	2.52
Si or Ti (oct)	2.54	3.22	3.11	3.31
N	6.05	5.63	5.54	5.72
Bond order ρ_{ii}				
Si or Ti (tet)–(N)	0.361	0.349	-	0.366
(bond length)	(1.830 Å)	(1.956 Å)	-	(1.790 Å)
Si or Ti (oct)-N	0.241	0.236	0.224 ^a	0.257
(bond length)	(1.885 Å)	(2.04 Å)	(2.076 Å) ^a	(2.045 Å)
Crystal bond order	8.670	8.465	8.048	9.094
B (GPa)	280	266	254	278

^aAveraged value.

FIG. 6. DOS of c-Si[Si_{1-x}Ti_x]₂N₄ near the gap or the Fermi level for $x = \frac{1}{16}$; $x = \frac{3}{16}$; $x = \frac{5}{16}$; $x = \frac{7}{16}$; $x = \frac{8}{16}$.

ditional excited states orbitals (Si-4s, Si-4p,Si-3d, N-3s, N-3p) is employed. For each phase and composition, the total energy (TE) of the crystal is minimized by varying both the lattice constants and internal parameters. The computational procedure is the same as in Ref. 12 for c-Si₃N₄ and c-C₃N₄, except that in the present case much more k points in the irreducible part of the Brillouin zone (IBZ) must be used for metallic systems to achieve adequate convergence. We have used the same method to study the electronic structure of normal, inverse, and partially inverse spinels in the MgAl₂O₄ system.¹⁵ As a point of reference, our calculation predicts the lattice constant of TiN to within 0.1% of the measured value (4.241 Å). The TE of TiN converges to better than 0.0002 eV by using 250 k points in the IBZ. We used 44 and 68 k points in the IBZ for c-Ti₃N₄ and c-SiTi₂N₄, respectively for their TE calculations and geometry optimization. An important finding is that the final relaxed c-Ti₃N₄ structure is lower in energy than that of $3(\text{TiN}) + 0.5 N_2$ by 1.25 eV per Ti₃N₄ unit. This strongly suggests that the spinel phase is stable at least at low temperatures. To investigate the current defect model for Ti₃N₄ and TiN_x , we carried out the TE calculation of TiN in a rocksalt structure with an ordered Ti vacancy, which we denote as $Ti_3 \square N_4$. When fully relaxed and with a converged result using 68 k points in the IBZ, $Ti_3 \Box N_4$ has a higher energy than c-Ti₃N₄ by about 0.93 eV per Ti₃N₄ unit, and the lattice constant reduces to 4.133 Å. The small difference in TE and equilibrium volume (see Table I) of the two

FIG. 7. *x* dependence of band gap Eg in c-Si[Si_{1-x}Ti_x]₂N₄. The calculated data points are based on a single configuration for each *x*. The dashed line is a guide to the eye.

phases indicates that the defect model may be valid for nonstoichiometric TiN_x films, but the stoichiometric $c - \text{Ti}_3\text{N}_4$ is a more stable compound. We further confirm that $c - \text{SiTi}_2\text{N}_4$ is more stable than a simple mixture of $1/3(c-\text{Si}_3\text{N}_4)$ and $2/3(c-\text{Ti}_3\text{N}_4)$ by 1.43 eV per SiTi_2N_4 formula unit. Thus $c-\text{SiTi}_2\text{N}_4$ should be an easily accessible compound.

The effective charges Q_{α}^{*} on each atom and the bond order $\rho_{\alpha,\beta}$ for each pair of atoms in the spinel crystals are calculated using the crystal wave functions and overlap integrals according to the Mulliken scheme.¹⁶

$$Q_{\alpha}^{*} = \sum_{i} \sum_{n,occ} \sum_{j,\beta} C_{i\alpha}^{*n} C_{j\beta}^{n} S_{i\alpha,j\beta}, \qquad (1)$$

$$\rho_{\alpha\beta} = \sum_{n,occ} \sum_{i,j} C_{i\alpha}^{*n} C_{j,\beta}^{n} S_{i\alpha,j\beta}.$$
⁽²⁾

Here $C_{i\alpha}^n$ is the coefficient for the eigenvector of state *n* with atomic specification α and orbital specification *i*. $S_{i\alpha,j\beta}$ is the overlap matrix between the Bloch functions. Separate calculations using a minimal basis set were invoked in order to be most effective in applying the Mulliken scheme.

To explore the properties of solid solutions between $c-Si_3N_4$, a wide-band-gap semiconductor and $c-SiTi_2N_4$, a metal, we used a "supercell" (the full cubic spinel cell) with 56 atoms for $c-Si[Si_{1-x}Ti_x]_2N_4$ and a progressive substitution of Si by Ti at the oct sites. In these fully self-consistent calculations, we used the scaled lattice constants and internal parameters between $c-Si_3N_4$ and $c-SiTi_2N_4$. Ideally, as many different substitutional configurations should be considered for each *x*, and the results averaged. Such extensive calculation is still quite prohibitive and a single representative configuration is used for each *x*.

III. RESULTS

The band structures of TiN, Ti₃ \Box N₄, *c*-Ti₃N₄, and *c*-SiTi₂N₄ are shown in Fig. 2. We used a color graphic scheme for the bands $E_n(k)$ which can better illustrate the atomic origin and interatomic mixing for each band as *k* varies. (see caption of Fig. 2). In TiN, states within 1.7 eV of the Fermi level E_F are almost exclusively from Ti. For *c*-Ti₃N₄, the top of the valence band (VB) is at *X* consisting purely of the *N*-2*p* nonbonding orbitals, and the bottom of the conduction band (CB) is at Γ with a small indirect band gap E_g of less than 0.1 eV. The direct E_g at Γ is 0.25 eV. In

contrast, c-Si₃N₄ has a direct E_g of 3.45 eV at Γ .¹² The fact that c-Ti₃N₄ is a semiconductor and TiN is a metal can be simply understood by the number of valence electrons per formula unit. The most conspicuous feature in TiN is an almost pure Ti band along Γ -X extending down to 3 eV below E_F . The band structure of Ti₃ \Box N₄ resembles neither TiN nor c-Ti₃N₄. There is a substantial portion of *N*-derived bands near the Fermi level. At the point M, a N-derived band actually crosses E_F . Despite the same formal charge, c-SiTi₂N₄ is a metal. From the colored band scheme, we can see that the metalization in c-SiTi₂N₄ is due to the increased Ti band width as the result of the modified interactions, such that the bottom of one of the Ti band overlap with the N-2pband. The Fermi level E_F is slightly below the top of the VB at Γ , resulting in a small hole pocket. Doping with electron donor elements in c-SiTi₂N₄ may shift the E_F slightly up and eliminate the hole pocket at Γ . The color-coded scheme also shows that Si has little influence on the states near the Fermi level in c-SiTi₂N₄. The densities of states (DOS) of the four crystals are shown in Fig. 3. For TiN, our calculated DOS and band structure are the same as other recent ab initio calculations.^{17,18} In c-SiTi₂N₄, E_F lies near a minimum in the DOS which is an indication for the stability of the material. On the other hand, E_F in Ti₃ \Box N₄ is near a local maximum in DOS.

The results for the effective charge and bond order calculations are listed in Table I. It is remarkable that the bond orders of Ti-N at both tet and oct sites are comparable to those of Si-N, in spite of the much longer Ti-N bonds. In particular, we find that c-SiTi₂N₄ has a higher crystal bond order (sum of all bond orders in the unit cell per molecular unit) than either c-Si₃N₄ or c-Ti₃N₄. This implies that with Si at the tet site and Ti at the oct site, an optimal bonding configuration is created. The defective Ti₃ \square N₄ has the lowest crystal bond order.

The bulk moduli *B* of the predicted crystals and that of $Ti_3 \Box N_4$ are obtained by fitting the TE data to the Murnaghan equation of states and are listed in Table I. The TE at eight different crystal volumes were calculated with the internal parameter optimized in each case. $c - Ti_3N_4$ and $c - SiTi_2N_4$ have bulk moduli of 266 GPa and 278 Gpa, respectively. These results again show that both spinel crystals are superhard materials with a high degree of covalent bonding. The bulk modulus for $Ti_3\Box N_4$ is somewhat smaller, 254 GPa, which is consistent with the smaller value of the crystal bond order. A common tangent construct to the TE vs volume curves as shown in Fig. 4 indicates that a transition from the $c-Ti_3N_4$ to $Ti_3\Box N_4$ may occur at about 35 GPa. This relatively high transition pressure is due to the rather close equilibrium volume of the two phases.

The band structures and DOS of c-Si[Si_{1-x}Ti_x]₂N₄ for a series of x values are shown in Figs. 5 and 6, respectively. At low x, a Ti atom introduces two deep impurity bands near the CB edge of c-Si₃N₄ and the direct gap is reduced to 2.1 eV. Inspection of the wave functions reveals that the impurity bands consist of mainly the Ti-3d(xy,yz,zx) orbitals with considerable mixing from the Si-3s and Si-3d orbitals. States with significant Ti-3 $d(x^2-y^2,3z^2-r^2)$ components are at a much higher energy of 5.7 eV (not shown in Fig. 5), and also mix with Si orbitals. As x increases, the "impurity bands"

grow and merge with the CB with a concomitant reduction in E_g . This brings the exciting possibility of adjusting the direct E_g in this system by proper mixing. At x = 0.44, the gap disappears and an insulator-to-metal transition is realized. Beyond x = 0.44, the solid solution is a metal all the way up to x = 1.0. The x dependence of E_g is shown in Fig. 7, which shows the relationship is not linear. Since the local density-functional theory generally underestimates the E_g of an insulator, and since the calculated result can also be affected by a variational and basis set effect as demonstrated recently by Bagayoko, Zhao, and Williams in several crystals,¹⁹ the precise value of x for metal-insulator transition in Si[Si_{1-x}Ti_x]₂N₄ may be somewhat uncertain.

IV. DISCUSSIONS

The theoretical prediction of the spinel phase of c-Ti₃N₄ and SiTi₂N₄ naturally leads to the question on how they might be prepared in laboratory. On the basis of past experience in the synthesis of related materials, it is our opinion that a high-temperature route is probably not feasible since direct nitridation of metallic Ti at high temperatures usually ends up with TiN in rocksalt structure. Even for the N₂ pressure above 100 MPa as in the case of self-propagating hightemperature synthesis, no higher nitrides of Ti, Zr, and Hf have been synthesized.²⁰ In the traditional "heat and beat" methods, it is difficult for the Ti ion to settle in a tet environment. Physical vapor deposition process as represented by reactive sputtering is not likely to succeed either because it will create too many defect structures and the materials more likely will end as $Ti_3 \Box N_4$ rather than $c - Ti_3 N_4$. Johansson et al. had tried to synthesize higher nitrides of Ti, Hf and Zr by dual beam deposition process.⁵ They obtained Hf₃N₄ and Zr₃N₄ in a defective rocksalt structure, but not Ti₃N₄. Fix et al. have shown that Zr₃N₄ and Hf₃N₄ films can be prepared by chemical vapor deposition on various substrates.⁷ There were several other reports on the synthesis of TiN_x with x > 1 by metallorganic or inorganic precursor decomposition, but no spinel Ti₃N₄ have thus far been reported. A trial to prepare Si-Ti nitrides from precursors was reported by Narula et al.²¹ They obtained a mixture of rocksalt TiN with α - and β -Si₃N₄, not the spinel phase. If these crystals can ever be synthesized, it probably has to be at low temperatures and with a very careful control of N₂ partial pressure using suitable precursor agents. The use of NH₃ and laser illumination or plasma treatment of N₂ may enhance the nitridation. Too high a pressure may result in the defective structure since the equilibrium volume of $Ti_3 \Box N_4$ is smaller than that of c-Ti₃N₄. Lastly, we notice the predicted lattice constant of c-Ti₃N₄ is about twice that of TiN in rocksalt structure. TiN can therefore be a good substrate on which c-Ti₃N₄ can be grown epitaxially.

The calculated properties of c-Ti₃N₄, c-SiTi₂N₄ and its solid solutions suggest a number of interesting applications. Before these materials are actually synthesized and tested, the suggested applications are admittedly speculative and may even be premature. First, these are super hard materials and as such, can be used as cutting tools and protective coatings. They should be more oxidation resistant than TiN, similar to Si₃N₄ as a structural ceramic. Another important area is to use them as diffusion barrier and adhesion promoter in semiconductor technology. c-SiTi₂N₄, with its strong covalent bonding and no vacancy sites, can be highly resistant to the interdiffusion of impurity ions or selfdiffusion. Its metallic properties can ensure a low electric resistivity and perhaps a higher thermal conductivity. The presence of Si should make it easier to integrate into the existing Si-based device materials similar to SiO₂ and Si₃N₄. Solid solutions $Si[Si_{1-x}Ti_x]_2N_4$ exhibit insulator-to-metal transition and the direct band gap can be adjusted to the desired value by suitable mixing of Ti to Si. This special feature offers a tremendous opportunity for application in certain semiconductor technology where the size of the gap plays a crucial role. The materials are expected to have higher dielectric constants since it has a small band gap,¹² and may replace SiO₂ as the insulating layer in the MOSFET devices. The ever-shrinking submicron size of microelectronic devices will eventually reach the fundamental limit of SiO_2 as a gate oxide,²² and other viable alternative must be found. Lastly, the ideal lattice matching between TiN and c-Ti₃N₄ implies that many of the applications using TiN can be replaced with c-Ti₃N₄ which is an insulator rather than a metal.

V. CONCLUSIONS

We have used an *ab initio* method to predict the existence of the spinel phase of stoichiometric Ti_3N_4 . We have argued

*Author to whom correspondence should be addressed. Electronic address: chingw@umkc.edu

- ¹L. E. Toth, *Transition Metal Carbides and Nitride* (Academic, New York, 1971).
- ²J. L. Calais, Adv. Phys. 26, 847 (1977).
- ³Binary Alloy Phase Diagrams, 2nd ed., edited by T. B. Massalski (ASM International, Materials Park, OH, 1990).
- ⁴H. A. Wriedt and J. L. Murray, Bull. Alloy Phase Diagrams 8, 378 (1987).
- ⁵B. O. Johansson, H. T. G. Hentzell, J. M. E. Harper, and J. J. Cuomo, J. Mater. Res. 1, 442 (1986).
- ⁶G. M. Brown and L. Maya, J. Am. Ceram. Soc. **71**, 78 (1988).
- ⁷R. Fix, R. G. Gordon, and D. M. Hoffman, Chem. Mater. 3, 1138 (1991); 5, 614 (1993).
- ⁸C. G. Faltermeier, C. Goldberg, M. Jones, A. Upham, A. Knorr, A. Ivanova, G. Peterson, A. E. Kaloyeros, and B. Arkles, J. Electrochem. Soc. **145**, 676 (1998).
- ⁹D. Seyferth and G. Mignani, J. Mater. Sci. Lett. 7, 487 (1988).
- ¹⁰F. S. Glasso, *Structure and Properties of Inorganic Solids* (Pergamon, New York, 1970), p. 219.
- ¹¹A. Zerr, G. Miehe, G. Serghiou, M. Schwarz, E. Kroke, R. Riedel, H. Fueß, P. Kroll, and R. Boehler, Nature (London) 400,

that the existence of a stoichiometric spinel phase of Ti₃N₄ is a more likely model than the currently accepted defect model for Ti₃N₄ and TiN_x. Many previous diffraction analyses of TiN_x compounds failed to review the spinel structure because its lattice constant is almost twice of that of TiN in rocksalt structure. This situation may be the reason that they missed the model reported here. We also predict that spinel $SiTi_2N_4$ with Ti at the octahedral site and Si at the tetrahedral site should be stable. Electronic structure calculations show that c-Ti₃N₄ is a narrow gap semiconductor and c-SiTi₂N₄ to be a metal. Both crystals are super hard materials with strong covalent bonding. We further predict that by replacing Si by Ti at the tetrahedral sites of the spinel structure, the band gap of the solid solution can be adjusted and a metal-insulator transition should occur at the Ti to Si ratio of 0.44 for the octahedral sites. We further suggest possible routes of synthesis for these materials and also point out some potential applications of these predicted materials as structural ceramics as well as in semiconductor technology.

ACKNOWLEDGMENTS

Work at UMKC was supported by the U.S. Department of Energy under Grant No. DE-FG02-84DR45170. I. Tanaka was supported by the Grant-in-aid from Ministry of Education, Science, Sports and Culture of Japan.

340 (1999).

- ¹²S.-D. Mo, L. Ouyang, W. Y. Ching, I. Tanaka, Y. Koyama, and R. Riedel, Phys. Rev. Lett. **83**, 504 (1999).
- ¹³W. Y. Ching, J. Am. Ceram. Soc. 73, 3135 (1990).
- ¹⁴P. Hohenberg and W. Kohn, Phys. Rev. **136**, B864 (1964); W. Kohn and L. J. Sham, Phys. Rev. **140**, A1133 (1965).
- ¹⁵S.-D. Mo and W. Y. Ching, Phys. Rev. B **54**, 16 555 (1996).
- ¹⁶R. S. Mulliken, J. Am. Chem. Soc. 23, 1833 (1955).
- ¹⁷R. Ahuja, O. Eriksson, J. M. Wills, and B. Johansson, Phys. Rev. B **53**, 3072 (1996).
- ¹⁸W. Wolf, P. Podloucky, T. Antretter, and E. D. Fisher, Philos. Mag. B **79**, 839 (1999).
- ¹⁹D. Bagayoko, G. L. Zhao, J. B. Fan, and J. T. Wong, J. Phys.: Condens. Matter **10**, 5645 (1999); G. L. Zhao, D. Bagayoko, and T. D. Williams, Phys. Rev. B **60**, 1563 (1999).
- ²⁰A. G. Merzhanov and S. Yu. Sharivker, *Materials Science of Carbides, Nitrides and Borides* (Kluwer Academic, Dordrecht, The Netherlands, 1999), p. 205.
- ²¹C. K. Narula, B. G. Demczyk, P. Czubarow, and D. Seyferth, J. Am. Ceram. Soc. **78**, 1247 (1995).
- ²²D. A. Muller, T. Sorsch, S. Moccio, F. H. Baumann, K. Evans-Lutterod, and G. Timp, Nature (London) **399**, 758 (1999).